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We treat the adsorption on homogeneous surfaces of asymmetric rigid rods(like for instance heteronuclear
diatomic molecules). We show that then→0 vector spin formalism is well suited to describe such a problem.
We establish an isomorphism between the coupling constants of the magnetic Hamiltonian and the adsorption
parameters of the rigid rods. By solving this Hamiltonian within a mean-field approximation, we obtain
analytical expressions for the densities of the different rod’s configurations, both isotherm and isobar adsorp-
tions curves. The most probable configurations of the molecules(normal or parallel to the surface) which
depends on temperature and energy parameters are summarized in a diagram. We derive that the variation of
Qv, the heat of adsorption at constant volume, with the temperature is a direct signature of the adsorbed
molecules configuration change. We show that this formalism can be generalized to more complicated prob-
lems such as for instance the adsorption of symmetric and asymmetric rigid rods mixtures in the presence or
not of interactions.
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I. INTRODUCTION

Adsorption with multisite occupancy(MSO) is an impor-
tant topic of surface science because of its key role in a broad
range of industrial processes such as adhesion, wetting,
monolayers, gas and hydrocarbon separation, streams and
pollution control.1 For instance, the adsorption of rigid rod-
like molecules, including liquid crystals and liquid crystal-
line is essential to applications in displays. Other examples
of multisite adsorption processes are for instance,O2, N2,
CO adsorbed in carbons and zeolite molecular sieves or oli-
gomers in activated carbons.2 Despite the practical impor-
tance of MSO adsorption, most theoretical developments
have been limited to monosite(i.e., monoatomic) adsorption.
In contrast to monoatomic adsorption, treating exactly the
statistics of MSO is a very challenging theoretical problem
because of the existence of statistical correlations. Indeed in
this case, statistical equivalence between vacancies and oc-
cupied sites does no longer hold. Thus, an occupied site has
two different possible configurations depending on whether
the diatomic molecule that occupies it, sticks perpendicular
or parallel to the surface. Recall that in this latter case, at
least one of its nearest-neighbor sites must be occupied by
the other atom of the same molecule. Therefore, an isolated
vacancy cannot serve to determine if that site can ever be-
come occupied by a molecule parallel to the surface. Al-
though an exact solution exists in one dimension both for
gases and gases mixtures with MSO,3 extension to higher
dimensions remains still difficult, even in the simplest non-
interacting dimer adsorption. Moreover, no exact solution to
Langmuir isotherms exists for two or more dimensions. That
is why to analyze adsorption isotherms and heat of adsorp-
tion of dimers on homogeneous substrates, mean field, qua-
sichemical or cluster approximations, and numerical Monte
Carlo simulations are usually developed.4–12

The aim of this paper is to show that then→0 dilute
vector spin formalism, introduced originally by Wheeler and

co-workers13–15 for describing the polymerization phenom-
enon of liquid sulfur and of living polymers, is particularly
suited for treating MSO adsorption. Solved within the mean-
field approximation, this model permits to obtain analytical
expressions, for instance, of:(i) the probability of the differ-
ent configurations a molecule can adopt when it adsorbs and
(ii ) isotherm and isobar adsorption curves. In contrast to
other approaches, such formalism may benefit from general
methods used in theories of magnetism such as renormaliza-
tion calculations. Besides, we show that it can easily be ex-
tended to treat the adsorption of diatomic molecules mixtures
and interacting dimers.

II. ADSORPTION OF ASYMMETRIC RIGID MOLECULES
ON HOMOGENEOUS SURFACES: STATISTICAL

TREATMENT

To describe the adsorption of asymmetric rigid rods(or
heteronuclear diatomic molecules) on homogeneous sub-
strates, we use a lattice approach. The substrate is modeled
as a two-dimensional(2D) lattice, whoseM sites represent
the different adsorption sites. On each sitesid, are associated

a magnetic vector spinSY i whose dimensionn→0 and an
Ising numbersi whose two possible values are 0 or 1.

Under these conditions, let us now consider the following
magnetic Hamiltonian:

− bH = Q• o Si,1
2 si + Q+ o Si,1

2 s1 − sid

+ Ko
ki,jl

Si,1
2 siSj ,1

2 s1 − s jd, s1d

where the notationki , jl recalls the fact thati and j are
nearest-neighbor sites and whereb is the Boltzmann’s factor.
For now,Q+, Q•, andK are numerical constants whose physi-
cal significance for the adsorption problem will be explained
further in the text. By definition, the partition function asso-
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ciated with this Hamiltonian isZ=kexps−bHdl0. The nota-
tion k·l0 represents the average with no weight over all the
ncomponents of all spinsSi,a (i =1,2, . . . . ,M and a
=1, . . . , . ,n) and over all the possible values ofhsij. Another
possible expression ofZ can be obtained by expanding
exps−bHd in terms of powers ofH and by averaging this
expression with no weight over all the components of all

spinsSY i,a and all the possible Ising numberssi:

Z

M
= k1l0 − bkHl0 +

b2

2
kH2l0 + ¯ ¯ +

s− bdn

n!
kHnl0 + ¯ .

s2d

Usually, this expression cannot be computed because of its
very complicated structure. However, whenn tends to zero
(which must only be considered as a mathematical trick), it
turns out that it becomes much simpler because of the mo-
ment theorem(valid only in this limit) which states that16

kSi,aSj ,bl0 = da,bdi,j

and

kSi,a
k l0 = d0,k + d2,k. s3d

Briefly, this expansion leads to a sum of polynomial expres-

sions in power series ofSY i andsi. In then→0 limit, because
of the moment theorem[see Eqs.(3)], the only nonvanishing
contributions toZ correspond to polynomials containing for
each sitesid, a factorSi,1

k with k=0 or k=2. In this expansion
because the averages are performed with no weight, terms
involving more than one site(i.e., i Þ j) like, for instance,
kSi,a

m .Sj ,b
p l0 reduce tokSi,a

m l0.kSj ,b
p l0 (Ref. 16) and can there-

fore be easily computed by using the moment theorem. Such
calculations have already been treated in details in the
literature.13–18 Following this procedure, it is then straight-
forward to show thatZ is simply given by

ZsMd =Kp
i=1

M

f1 + Q+Si,1
2 s1 − sidg

3p
j=1

M

s1 + Q•Sj ,1
2 sidp

ki,jl
f1 + KSi,1

2 siSj ,1
2 s1 − s jdgL

0

.

s4d

As first noticed by de Gennes,16 all successive nonvanishing
polynomials can be represented by graphs on the lattice. The
exponentk of the prefactorSi,1

k indicates whether the site(i)
is occupiedsk=2d or not sk=0d. Now, let us recall that to
each site one associates an Ising number which can take two
different values(0 or 1). Therefore, each lattice site can be
occupied by two different species that we, respectively, rep-
resent on the graphs by openssi =0d and closedssi =1d
circles (see Fig. 1). Thus, the presence of a term,Si,1

2 s1
−sid in a nonvanishing polynomial expressions ofZ, indi-
cates that the site(i) is occupied by an open circle, since this
prefactor is different from 0 only ifsi =0. Because of the
nature of the Hamiltonian and because of the moment theo-
rem, such a prefactor comes from a first-order expansion of
exps−b Hd. Therefore, it either arises from a termQ+Si,1

2 s1

−sid or KSi,1
2 siSj ,1

2 s1−s jd [see Eq.(4)]. Similarly, a prefac-
tor, Si,1

2 si, indicating that site(i) is occupied by a close circle,
arises either from a termQ•Si,1

2 si or KSi,1
2 siSj ,1

2 s1−s jd. Now,
if to each term,KSi,1

2 Sj ,1
2 , one associates a continuous line

between sitessid and s jd, each nonvanishing polynomial ex-
pressions contributing toZ can be represented by a diagram,
made of isolated open and close circles(monomers) and con-
tinuous lines linking an open to a close adjacent circle
(dimers) (Fig. 1). Note that lines connecting more than two
sites do not contribute to the partition function since they
require the presence of at least a termkSi,1

2ml0 with m.1,
which cancels the polynomial expression associated to such
a configuration. Besides, dimers made of two adjacent sites
of same nature(open or close circles) do not contribute to the
partition function. Recall that the prefactorSi,1

2 Sj ,1
2 sis1−s jd

associated to dimers vanishes wheneversi =s j. Following
these considerations, the partition functionZ can be ex-
pressed as

ZsN+,N•,N+•,Md = o
N+

o
N•

o
N+•

GsN+,N•,N+•,MdQ+
N+Q•

N•KN+•,

s5d

where GsN+ ,N• ,N+• ,Md represents the number of ways to
place on theM sites of the lattice:N+ monomerss+d, N•

monomerss•d, andN+• dimerss•−+d.
In what follows, we show that an isomorphism can be

drawn between the magnetic partition functionZ derived
previously and the grand-partition functionJ describing the

FIG. 1. (a) Shown are the representations of an open circle and
close circle monomers. Such monomers are, respectively, related to
a prefactorQ+Si,1

2 s1−sid and Q•Si,1
2 si in the polynomial expansion

of Z. (b) Shown is the schematic representation of a dimer which is
associated to a prefactorKSi,1

2 siSj ,1
2 s1−s jd, in the polynomial ex-

pansion ofZ. Such nonvanishing dimers link an open circle to a
close adjacent circle.(c) Lattice representation of a configuration
consisting of one “open circle” monomer(site 1), two “close circle”
monomers(sites 7 and 16), and a dimer occupying both sites 10 and
14. By using the moment theorem, valid in then→0 limit, this
corresponding configuration is associated to a term:Q+sQ•d2K.
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adsorption on a homogeneous surface of asymmetric rigid
rods (for instance, heteronuclear diatomic molecules). In
such a problem, the molecules are in exchange chemical
equilibrium between a large reservoir(gas or liquid) and the
substrate. In general, an adsorbed rigid rod may assume an
infinite number of orientations relative to surface. However,
following classical lattice approaches12,19,20and for simplici-
ty’s sake, we restrict the possible rod orientations to either
parallel and normal to the surface(Fig. 2). When an adsorbed
molecule is arranged parallel to the surface, it occupies two
adjacent sites whereas when it is adsorbed normal to the
surface, it occupies only one site. However, because of its
asymmetry, a molecule arranged normal or parallel to the
surface exhibits two different configurations. The adsorption

energies associated with each molecule configuration are of
the order of the thermal energy, so that the adsorbed mol-
ecules(or rods) can change the configurations depending on
the adsorbed amounts. We first consider the grand-partition
function J of the substrate. LetN+• be the number of ad-
sorbed molecules arranged parallel to the substrate andN+

and N• the numbers of molecules arranged normal to the
surface associated, respectively, with the two possible con-
figurations due to the molecule asymmetry(see Fig. 2). Un-
der these circumstances,J can be written as

J = o o o GsN+,N•,N+•,MdzsN++N•+N+•dq+
N+q•

N•q+•
N+•. s6d

In Eq. (6), GsN+ ,N• ,N+• ,Md represents the number of ways to
accommodate on theM sites of the substrate,N++N•+N+•
molecules with, respectively,N+• and N•+N+ molecules ad-
sorbed parallel and normal to the surface.q+, q•, andq+• are,
respectively, the individual partition function corresponding
to the three configurations a molecule can adopt when it
adsorbs on the surface andz stands for the fugacity of mol-
ecules. This expression is quite similar to that of Eq.(5).
Indeed, an isomorphism between the magnetic partition
function Z and the grand canonical partition functionJ de-
scribing the adsorption of asymmetric rigid rods or hetero-
nuclear diatomic molecules on homogeneous surfaces can be
drawn by considering the following relations:

Q+ = q+z, Q• = q•z, K = q+•z. s7d

Now, by taking the contributions to the adsorbed molecule’s
partition function of the internal degree of freedom, namely,
vibration (which exists only for diatomic molecules and not
for rigid rods) and rotation modes, the relations given in Eq.
(7) become

Q+ = q+
vibq+

rotebsm−«+d,

Q• = q•
vibq•

rotebsm−«•d,

K = q•+
vibq•+

rotebsm−«•+d, s8d

wherem is the molecule’s chemical potential.«+, «•, and«•+
are the adsorption energies associated to the three different
configurations a molecule can adopt when it adsorbs on the
surface(see Fig. 2) and whereqrot and qvib, respectively,
stand for the rotational and the vibrational individual parti-
tion function of an adsorbed molecule.

III. MEAN-FIELD RESULTS AND DISCUSSION

Let us denotefsSY ,sd the mean-field probability function
describing the distribution of a single site in terms of the

Ising numbers and the spin vectorSY. In the mean-field
approximation, the Helmholtz free energy per cell site
F /Mof the Hamiltonian given in Eq.(1) can be written as
follows:

b F

M
=

kb Hl
M

+ o
s=0

1 E fsSY,sdlnffsSY,sdgdnSY , s9d

where the notationk·l refer to a mean-field thermal
average.21

FIG. 2. Schematic representation of the three different main
configurations a heteronuclear molecule(or asymmetric rigid rod)
can adopt when it adsorbs on the surface.(a) When a molecule
sticks normal to the surface, and occupies a sitesid a factorQ•Si,1

2 si

or Q+Si,1
2 s1−sid is associated to it, depending on which one of its

two extremities, namely, • or+, sticks to the surface. A factor
KSi,1

2 siSj ,1
2 s1−s jd is associated to a molecule lying parallel to the

surface(b), and therefore occupying two adjacent sitessid and s jd.
Such a factor is different from zero only ifsi Þs j. This condition
ensures that the nonvanishing dimers have two different extremities
(i.e., the molecules are heteronuclear). For instance, ifsi =1 and
s j =0, the extremity • of the molecule is on sitesid and the other
extremity+ is on sites jd. (c) Shown is a given lattice configuration
consisting of three different molecules adsorbed perpendicular to
the surface(two of which are adsorbed by the • extremity and the
other one by the+ extremity) and one adsorbed molecule sticking
parallel to the surface. In then→0 limit, the corresponding con-
figuration has a prefactorsQ•d2Q+K and its total energy is 2«•+«+

+«•+.
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The energy per cell site is

kb Hl
M

= Q•kS1
2sl + Q+kS1

2s1 − sdl +
Kq

2
kS1

2slkS1
2s1 − sdl,

s10d

with q the lattice coordination number. Furthermore, the
probability function f must satisfy the normalization condi-
tion that is

o
s=0

1 E fsSY,sddnSY = 1. s11d

Owing to Eqs.(9)–(11), by minimizing Eq.(9) with respect
to f, it can be shown that

fsSY,sd =
1

C
expFQ•S1

2s + Q+S1
2s1 − sd +

Kq

2
S1

2skS1
2s1 − sdl

+
Kq

2
S1

2s1 − sdkS1
2slG , s12d

whereC is a numerical constant given by

C = F2 + Q+ + Q• +
Kq

2
kS1

2sl +
Kq

2
kS1

2s1 − sdlG . s13d

If now, by using the moment theorem associated with the
special statistics in the vanishingn→0 limit,16 one computes
the two quantitieskS1

2sl andkS1
2s1−sdl, it is straightforward

to derive thatC satisfies the following second-order equation
which admits two mathematical solutions:

C2 − Cf2 + Q+ + Q•g − qK = 0. s14d

The physical solution which minimizes the magnetic free
energy, given in Eq.(9), is given by

C =
2 + Q+ + Q• + Îs2 + Q+ + Q•d2 + 4qK

2
. s15d

Using the previous relations, the magnetic free energy per
site can then be written as

b F

M
= − lnS2 + Q+ + Q• + Îs2 + Q+ + Q•d2 + 4qK

2
D

+
2qK

s2 + Q+ + Q• + Îs2 + Q+ + Q•d2 + 4qKd2
. s16d

From this expression, the numbers of molecules adsorbed on
the substrate, according to the three different possible con-
figurations, are, respectively, given by

kN•l = Q•
] ln Z

] Q•
= − Q•

] sb Fd
] Q•

, s17ad

kN+l = Q+

] ln Z

] Q+

= − Q+

] sb Fd
] Q+

, s17bd

and

kN+•l = K
] ln Z

] K
= − K

] sb Fd
] K

. s17cd

After a few calculations given into Appendix A, it is possible
to obtain the following analytical relations:

KN•

M
L =

Q•

2 + Q• + Q+ + Îs2 + Q• + Q+d2 + 4qK
,

KN+

M
L =

Q+

2 + Q• + Q+ + Îs2 + Q• + Q+d2 + 4qK
,

and

KN+•

M
L =

qK

fs2 + Q• + Q+d + Îs2 + Q• + Q+d2 + 4qKg
.

s18d

The fraction of occupied sitesQ is therefore given by

Q =KN+ + N• + 2N+•

M
L

= 1 −
4

s2 + Q• + Q+d + Îs2 + Q• + Q+d2 + 4qK
. s19d

Prior to discussing heteronuclear molecule adsorption re-
sults, let us first note that by takingQ+=Q•=Q=ebsm−«d and
K=0 in the mean-field solution of our model leads to the
well-known relation found by Langmuir for monoatomic
adsorption,22 namely,u=1/s1+Qd. Note also that this model
permits to treat adsorption of homonuclear molecules by
simply taking Q+=Q•=Q=qvibqrotebsm−«'d and K
=qvibqrotebsm−«//d, where «' and «//, respectively, represent
the energy for a molecule sticking normal and parallel to the
surface. Following the same mean-field treatment as previ-
ously described, the fractions of the adsorbed molecules
sticking normalsN'd and parallelsN//d to the surface and the
fraction of occupied sites are, respectively, given by

KN//

M
L =

qK

2fs1 + Qd + Îs1 + Qd2 + qKg
, s20ad

KN'

M
L =

Q

1 + Q + Îs1 + Qd2 + qK
, s20bd

and

Q =KN' + 2N//

M
L = 1 −

2

s1 + Qd + Îs1 + Qd2 + qK
.

s21d

Now let us go back to the results obtained for the adsorp-
tion of heteronuclear molecules. Another quantity very im-
portant in adsorption experiments is,Qv, the heat of adsorp-
tion at constant volume and temperature.23 Such a quantity
which provides information regarding the driving forces for
adsorption is defined accordingly to

ENGL, COURBIN, AND PANIZZA PHYSICAL REVIEW B70, 165407(2004)

165407-4



Qv =
] Etot

] Nad
, s22d

where Etot=Egas+Ead and Nad=kN++N•+N+•l, respectively,
stand for the total energy of the system(gas1 adsorbat) and
the number of adsorbed molecules. After a few steps(devel-
oped into details in the Appendix B), it is possible to derive
that

Qv =
dead

dnas
− egaz, s23d

where egaz and ead, respectively, represent the energy per
molecule in the gas phase and the mean energy per adsorp-
tion site and wherenad is defined asNad/M. Following a
classical statistical treatment, it can be shown for a perfect
gas that

egas= − F ] ln qtrans

] b
+

] ln qrot

] b
+

] ln qvib

] b
G , s24d

and for adsorption with no interaction between adsorbed
molecules other than excluded volume that

ead =KN+

M
LF«+ −

] lnsq+
vibq+

rotd
] T

G
+KN•

M
LF«• −

] lnsq•
vibq•

rotd
] b

G
+KN+•

M
LF«+• −

] lnsq+•
vibq+•

rotd
] b

G . s25d

Now, let us focus on both isobar and isotherm adsorption
curves found for diatomic adsorption in the mean-field ap-
proximation. For simplicity’s sake, we assume the following:

(i) The reservoir gas behaves as a perfect diatomic gas
(i.e., the molecules do not interact but have rotation and vi-
bration modes).

(ii ) The molecule’s vibration modes are not affected by
adsorption.

(iii ) The adsorbed molecules cannot rotate(i.e., their ro-
tation modes are frozen).

Let us then comment the typical shapes of the isobar ad-
sorption curves, found with these assumptions. In Fig. 3,
shown are several isobar curves found when the values of«•
and«+ are identical, but the value of«•+ is different. In these
curves,Q, the fraction of occupied sites and the proportions
of the three different molecule’s configurations on the sub-
strate are plotted as a function ofT, the temperature, for the
same gas pressure fixed toP=105 Pa. In order to do so, for
each chosen temperatureT, we calculate the value of the
corresponding chemical potential using the expression of the
perfect gas for diatomic molecules,msT,Pd, and replace it in
Eqs. (18) and (19). Provided that«•+øSups«• ,«+d /2, at T
<0, all the sites of the substrate are occupied by molecules
sticking normal to the surface and having the most energetic
configuration per site. Contrary to monoatomic adsorption,
when the temperature increases, all the sites of the substrate
remain occupied until a temperature:T=T1, is reached. How-
ever forT1øTøT2, a close look reveals that the number of

molecules adsorbed normal to the surface decreases whereas
that of molecules adsorbed parallel increases and reaches a
maximum at a temperatureT2. Indeed, the entropy related to
this disorder compensates the loss of adsorption energy due
to the presence on the substrate of molecules having less
favorable energetic configurations(since the total number of
adsorbed molecules decreases, some molecules are therefore
released in the reservoir). For higher temperatures(i.e., for
T.T2), the total number of adsorbed molecules decreases as
the temperature increases. This phenomenon induces a no-
ticeable kink for the total number of adsorbed molecules
versusT which obviously does not exist in monoatomic ad-
sorption curves. However, the variation ofQ versusT does
not exhibit such a kink. For temperatures larger thanT2,
when «•+.Sups«• ,«+d, most of the adsorbed molecules are
lying parallel to the surface and their number now decreases
as the temperature increases. In this case, the last molecules
leaving the substrate are those lying parallel to the surface
since such molecule’s configuration requires the highest de-
sorption barrier energy. Finally, for a given seth«• ,«+j of
energy parameters, solving our model within a mean-field
approximation makes it possible to predict how the configu-
rations of adsorbed molecules vary withT and«•+ (Fig. 4).

Figure 5 shows the variation ofQv, numerically derived
from Eqs.(22)–(24), versusT. Contrary to monoatomic ad-
sorption process for whichQv varies linearly withT [i.e.,
QvsTd=«−3kBT/2], such a curve(Fig. 5) exhibits two linear
branches with the same slope −5kB/2, separated by an in-
flexion point located atT<T2. The shape of this curve can
be easily understood if one takes a look at Fig. 3. For low
temperatures, namely, forT!T2, since the predominant
population of adsorbed molecules iskN•l, it results that:
nad<kN• /Ml since. By using Eqs.(23)–(25) with our mod-
el’s assumptions, it is therefore possible to derive thatQv
varies linearly withT in this regime, accordingly, to

QvsTd < «• − 5kBT/2. s26ad

On the other hand, for:T@T2, most of the adsorbed mol-
ecules lay parallel to the surface and therefore:nad
<kN•+ /Ml. A similar calculation to the previous one, leads
now to

QvsTd < «•+ − 5kBT/2. s26bd

Let us notice thatDQv, the amplitude of the continuous jump
between the two asymptotic branches, respectively, described
by Eqs.(26a) and(26b) is roughly equal tos«•+−«•d. Conse-
quently, these results show that ifDQv is large enough, both
s«•+−«•d andT2 can be experimentally estimated.

Now, let us focus on a typical isotherm adsorption curves,
calculated using the same mean-field approximation of our
model. To determine these curves(Fig. 6), we proceed by
analogy as for Fig. 3. We fix the value ofT and for each
chosen pressureP we calculate the value of the correspond-
ing chemical potential(using the expression of the perfect
gas for diatomic molecules) msT,Pd and replace it in Eqs.
(18) and(19). Figure 6 shows the variations ofQ and of the
proportions of the three possible molecule’s configurations as
a function of pressure in the case where«•+.Sups«• ,«+d. As
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FIG. 3. Shown are several isobar adsorptionsP=105 Pad curves found in the mean-field approximation for the same set of adsorption
parameters, namely,«•=−4, «+=−2, but different values of«•+ (the unit of energy iskBT0, whereT0=300 K). The different values of«•+ are:
(a) «•+=−3,5, (b) «•+=−4, (c) «•+=−5, (d) «•+=−6, and(e) «•+=−7. The molecule’s weight ism=4.10−26 kg and the vibration and rotation
temperatures are, respectively,Tvib=3000 K andTrot=20 K. The pressure and the coordination number are, respectively,P=105 Pa andq
=6. Below, is the significance of the different symbols:(closed circles) N• /M, (crosses) N•+ /M, (closed triangles) Q, and(open triangles)
sN•++N•+N+d /M. Inset: shown is the evolution ofN+ /M (open circles).
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for monoatomic adsorption, at very high pressures, all the
sites of the substrate are occupied by adsorbed molecules
(i.e., Q=1), lying normal to the surface. When the pressure
decreases, their number decreases, whereas the number of
molecules adsorbed parallel to the surface increases and
reaches a maximum at a pressureP1. For pressures lower

thanP1, note that most of the adsorbed molecules are stick-
ing parallel to the surface and their number now decreases as
the pressure decreases.

IV. GENERALIZATION TO NONINTERACTING GAS
MIXTURES

Now, let us show that ourn→0 vector spin Hamiltonian
approach can easily be generalized to treat the adsorption of
gas mixtures consisting of single atoms and/or diatomic(het-
eroatomic or homoatomic) molecules. Following the same
approach previously used, a modification of our Hamiltonian
permits to answer this problem. In order to illustrate this, let
us consider a mixture made of two diatomic molecules, for
example, a homonuclearsA2d and a heteronuclearsBCd one.
For instance, this can represent a mixture of CO and N2
molecules. To each sitesid of the lattice, one still associates

both an→0 vector spinSY i and an Ising numbersi. However
now, the possible values ofsi are: 0, 1, or 2, depending on
whether the corresponding site is, respectively, occupied by
an atomA, B, or C. As before, we assume that both mol-
ecules can adsorb either perpendicular or parallel to the sur-
face. When a molecule sticks perpendicular to the surface,
only one of its two constituting atoms is adsorbed and the
molecule occupies only one lattice site. However, when the
same molecule sticks parallel to the surface, its two atoms
are adsorbed and so this molecule occupies two adjacent
sites. Let us consider the following Hamiltonian:

− b H = QA o Si,1
2 fAssid + QB o Si,1

2 fBssid

+ QC o Si,1
2 fCssid + KAAo

ki,jl
Si,1

2 fAssidSj ,1
2 fAss jd

+ KBCo
ki,jl

Si,1
2 fBssidSj ,1

2 fCss jd, s27d

FIG. 4. Shown is a diagram giving the most probable configu-
ration of adsorbed molecules in thesT,«•+d plane. The set of energy
parameters is«•=−4 and«+=−2 (given inkBT0 units). The continu-
ous lines separating two different configurations correspond to the
limit where these two configurations have the same probability.
Although whenQø0.1, we consider that the molecules are des-
orbed; in this region, we nevertheless indicates what is the most
favorable configuration of the few molecules still adsorbed.

FIG. 5. Adsorption heat at constant temperature and volume,
found in the mean-field approximation for the same molecular pa-
rameters than those of Fig. 3(d), as a function of temperaturesP
=105 Pad. Inset: shown is the isobar adsorption. The symbols are
identical to that of Fig. 3(d).

FIG. 6. Shown is the isotherm adsorption curve(T=250 K),
found in the mean-field approximation for the same molecular pa-
rameters than those of Fig. 3(d). The adsorption energies are«•

=−4, «+=−2, and«•+=−6, where the units of energy iskBT0 with
T0=300 K. (Closed circles) N• /M, (open circles) N+ /M, (crosses)
N•+ /M, (closed triangles) Q, and(open triangles) sN•++N•+N+d /M.
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whereQA, QB, QC, KAA, andKBC are numerical constants and
fA, fB, and fC are the following polynomial functions:

fAssd = ss − 1dss − 2d/2,

fBssd = ss2 − sd,

fAssd = sss − 1d/2. s28d

By expandingZ, the partition function, in power series ofSY i,
and using in then→0 limit, the moment theorem,16 it is
straightforward to show that

ZsNA,NB,NC,NAA,NBC,Md

= o
NA

o
NB

o
NC

o
NAA

o
NBC

GsNA,NB,NC,NAA,NBC,Md

3QA
NAQB

NBQC
NCKAA

NAAKBC
NBC, s29d

where GsNA,NB,NC,NAA,NBC,Md represents the number of
ways to adsorb on theM sites of the substrate,NA+NAA
moleculesA2 andNB+NC+NBC moleculesBC with, respec-
tively, NAA moleculesA2 and NBC moleculesBC sticking
parallel to the surface(i.e., occupying two adjacent sites)
and, respectively,NA andNB+NC moleculesA2 andBC ad-
sorbed normal to the surface. Note thatNB and NC corre-
spond to the number of moleculesBC, respectively, adsorbed
on the substrate by theirB or C atom.

An isomorphism can therefore be drawn between Z and
the grand-partition function describing the adsorption on the
homogeneous substrate of theA2/BC gas mixture, by con-
sidering the following relations:

QA = qAA,'
vib,rotebsmAA−«Ad, QB = qBC,'

vib,rotebsmBC−«Bd,

QC = qCB,'
vib,rotebsmBC−«Cd,

KAA = qAA,//
vib,rotebsmAA−«AAd, KBC = qBC,//

vib,rotebsmBC−«BCd,

s30d

wheremAA andmBC, respectively, stand for the chemical po-
tentials of the moleculesA2 andBC; and where«A and«AA
(respectively,«B, «C, and «BC) represent the different con-
figurations a moleculeA2 (or, respectively,BC) can adopt
when it adsorbs. The notationq

vib,rot
stands for the vibration

and rotation partition function of the different molecules con-
figurations. The indexes' and // indicate that the molecule
is, respectively, adsorbed normal and parallel to the surface.
For a moleculeBC adsorbed normal to the surface, the no-
tationsqBC,'

vib,rot andqCB,'
vib,rot permit to differentiate between the

two perpendicular configurations such a molecule(i.e., a
molecule adsorbed to the surface by itsB or C extremity) can
adopt.

Following the mean-field approximation, described into
details in Sec. III, one shows that the magnetic free energy
F /M per site is now given by

b F

M
= − lnsCd +

qsKAA + KBCd
2C2 s31d

with

C =
3 + QA + QB + QC + Îs3 + QA + QB + QCd2 + 4qsKAA + KBCd

2
. s32d

From this expression, the numbers of the molecules adsorbed
on the substrate with each possible configurations can be
estimated:

kNAl = QA
] ln Z

] QA
= − QA

] sb Fd
] QA

,

kNBl = QB
] ln Z

] QB
= − QB

] sb Fd
] QB

,

kNCl = QC
] ln Z

] QC
= − QC

] sb Fd
] QC

,

kNAAl = KAA
] ln Z

] KAA
= − KAA

] sb Fd
] KAA

,

and

kNBCl = KBC
] ln Z

] KBC
= − KBC

] sb Fd
] KBC

. s33d

Following the same kind of calculations, previously de-
scribed in Sec. III, one can derive mathematical expressions
for the thermodynamic properties of such a mixture, as for
instance,Qv or isotherm and isobar adsorption curves.

V. CONCLUSION

We have presented a simple model, based on a diluten
→0 vector spin model, to describe the adsorption of asym-
metric rigid rodlike molecules on homogenous surfaces. We
have shown that this approach is particularly suited to treat
multisite adsorption. In a first step, we have treated the case
of noninteracting dimer adsorption and have shown that can
easily be extended to the case of noninteracting or interacting
polyatomic mixtures. As a final comment, it is interesting to
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note that this model can also be extended to the case of
adsorption mixture with chemical decomposition or interact-
ing gas mixtures. Following the approach of Frumkin-Folwer
and Guggenheim,24 interactions can be included in the
model, for instance, in the case of ourA2/BC gas mixtures,
by adding the following term to the expression of the Hamil-
tonian [Eq. (27)]

o
ki,jl

xAAfAssidfAss jd + xABfAssidfBss jd + xACfAssidfCss jd

+ xBCfBssidfCss jd + xBBfBssidfBss jd + xCCfCssidfCss jd,

s34d

where the parametersxAA, xAB, xAC, xBC, xBB, andxCC rep-
resent the different interaction energies between two adjacent
adsorbed atoms.25 Moreover, our model can also be extended
to the adsorption of a gas mixture containing mono or linear
polyatomic molecules(such as for instance CO2) by, respec-
tively, adding to the Hamiltonian a termSi,1

2 or Si,1
2 Sj ,1

2 Sk,1
2 ,

wheres jd and skd are two nearest-neighbor sites of sitesid.
We therefore believe that this very versatile formalism will
be used frequently to treat such physical problems and
others.

To date, most available experiments on adsorption of di-
atomic molecules on solid surfaces always involve complex
phenomena such as multilayer adsorption or heterogeneous
substrates, which are difficult to analyze only within the
framework of our model. Nevertheless, we strongly believe
that the analytical formulae derived above[Eqs. (18) and
(19)], will be of primary interest to experimentalists to un-
derstand and quantify the orientation of rigid rod molecules
on homogeneous surfaces such as liquid-liquid or gas-liquid
interfaces. Indeed a very active field of research is the ad-
sorption of colloidal solid spheres on liquid-liquid surfaces
as for instance the formation of colloidosomes,26,27 of pick-
ering emulsions28 or the adhesion of virus on cell29,30and by
no doubt these experiments will be extended to the adsorp-
tion of rigid rods.
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APPENDIX A

As seen in Eq.(16), the magnetic free energy per site can
be written as

b F

M
= − lnsCd +

qK

2C2 . sA1d

Using Eqs.(17a) and (17b), it is then straightforward to
show that

kN•l = − Q•
] sb Fd

] Q•
= M

Q•

C
F1 +

qK

C2G ] C

] Q•
sA2ad

and

kN+l = − Q+

] sb Fd
] Q+

= M
Q+

C
F1 +

qK

C2G ] C

] Q+

. sA2bd

By deriving each terms of Eq.(14) with respect toQ• or Q+,
one obtains, respectively, that

] C

] Q•
=

] C

] Q+

=
C

2C − s2 + Q• + Q+d
. sA3d

Using Eq.(14), it is straightforward to show that

qK

C2 =
C − s2 + Q+ + Q•d

C
. sA4d

Now, by inserting Eqs.(A3) and (A4) into the expressions
(A2a) and (A2b) one obtains, the two following relations:

KN•

M
L =

Q•

C
=

Q•

2 + Q• + Q+ + Îs2 + Q• + Q+d2 + 4qK

sA5ad

and

KN+

M
L =

Q+

C
=

Q+

2 + Q• + Q+ + Îs2 + Q• + Q+d2 + 4qK
.

sA5bd

If one inserts the expression(A1) in Eq. (17c), it is possible
to show that

kN+•l = − K
] sb Fd

] K
= M

K

C
F ] C

] K
S1 +

qK

C2D −
q

2C
G .

sA6d

By deriving the two terms of Eq.(14) with respect toK, one
obtains that

] C

] K
=

q

2C − s2 + Q• + Q+d
. sA7d

If the expressions(A4) and (A7) are introduced into Eq.
(A6), it is straightforward to derive that

KN+•

M
L =

qK

2C
=

qK

fs2 + Q• + Q+d + Îs2 + Q• + Q+d2 + 4qKg
.

sA8d

From the previous expressions, it is straightforward to derive
that Q, the fraction of occupied is given by:

Q = 1 −
2

C
= 1 −

4

s2 + Q• + Q+d + Îs2 + Q• + Q+d2 + 4qK
.

sA9d

APPENDIX B

The total energy of the system is the sum of the energy of
the gas and that of the adsorbed molecules

Etot = Egas+ Ead. sB1d

Considering now that at the temperatureT, the system com-
posed ofN molecules consists ofNgas molecules in the gas
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phase andNad=N−Ngas molecules adsorbed, the total energy
can be written as

Etot = Ngasegas+ EadsNad,Md = sN − Naddegaz+ EadsNad,Md,

sB2d

where egas represents the energy per molecule in the gas
phase.

Consequently,Qv, the heat of adsorption at constant vol-
ume and temperature is simply given by the following rela-
tion:

Qv =
dEtot

dNad
=

dead

dnad
− egaz sB3d

with ead=Ead/M andnad=Nad/M.
First of all, the total energy of the molecules adsorbed can

be computed from the expression of the grand partition func-
tion describing adsorption on the surface, namely,

J = o o o GsN+,N•,N+•,MdebmsN++N•+N+•d

3sq+
vibq+

rote−b«+dN+sq•
vibq•

rote−b«•dN•sq+•
vibq+•

rote−b«+•dN+•.

sB4d

In order to do so, let us recall that

Ead − mNad = −
] ln J

] b
sB5ad

and

Nad = kT
] ln J

] m
. sB5bd

Therefore, by replacing Eq.(B5b) in Eq. (B5a), one obtains
the following relation:

Ead = −
] ln J

] b
+ m kT

] ln J

] m
. sB6d

Now by taking forJ, the expression given in Eq.(B4), and
inserting into Eq.(B6) leads to

Ead = N+F«+ −
] lnsq+

vibq+
rotd

] b
G + N•F«• −

] lnsq•
vibq•

rotd
] b

G
+ N+•F«+• −

] lnsq+•
vibq+•

rotd
] b

G sB7ad

and, therefore, to

ead =
N+

M
F«+ −

] lnsq+
vibq+

rotd
] b

G +
N•

M
F«• −

] lnsq•
vibq•

rotd
] b

G
+

N+•

M
F«+• −

] lnsq+•
vibq+•

rotd
] b

G . sB7bd

Following classical treatment, the total energy of the gas can
be derived from the expression ofZgas its partition function,
accordingly to

Egaz= −
] lnsZgasd

] b
. sB8d

Now, if one recalls that for a perfect gas

Zgas=
1

Ngas!
sqtransqrotqvibdNgas, sB9d

where,qtrans, qrot, andqvib, respectively, stand for the trans-
lational, the rotational, and the vibrational partition function
of an individual molecule, the relation(B8) leads straightfor-
wardly to

egaz=
Egas

Ngas
= −

] ln sqtransqrotqvibd
] b

. sB10d

For heteronuclear diatomic molecules, this relation gives

egaz=
5

2
kBT +

kBTvib

2
cothSTvib

2T
D sB11d

with Tv the characteristic temperature vibration of the mol-
ecule, whereas for asymmetric rigid rods, it is only:

egaz= 5
2kBT. sB12d

*Email: p.panizza@cpmoh.u-bordeaux1.fr
1A. Myers, in Molecular Thermodynamics of Adsorption of Gas

and Liquid Mixtures, edited by A. I. Liapis, Fundamentals of
Adsorption(Engineering Fundation, New York, 1987), and ref-
erences therein.

2W. Rudzinski and D. H. Everett,Adsorption of Gases on Hetero-
geneous Surfaces(Academic Press, New York, 1992).

3A. J. Ramirez-Pastor, T. P. Eggarter, V. D. Pereyra, and J. L.
Riccardo, Phys. Rev. B59, 11 027(1999).

4J. E. Gonzales, A. J. Ramirez-Pastor, and V. D. Pereyra, inFun-
damentals of Adsorption, edited by K. Kaneko, H. Kanoh, and
Y. Hanzawa(Elsevier, Paris, 2002), Vol. 7, p. 473.

5S. Yu. Snagovski and J. Russ, J. Phys. Chem.46, 2367(1972).
6Tovbin and K. Yu, Langmuir13, 979 (1997); 15, 6107(1999).
7R. Belardinelli, S. Manzi, A. J. Ramirez-Pastor, and V. D.

Peyrera, Surf. Sci.540, 207 (2003).
8E. V. Votyakov and Yu. K. Tovbin, Langmuir13, 1079(1997).
9A. J. Ramirez-Pastor, J. L. Ricardo, and V. D. Pereyra, Langmuir

16, 10167(2000).
10W. Rzysko and M. Borowko, J. Chem. Phys.117, 4526(2002).
11S. Manzi, W. Mas, R. Belardinelli, and V. D. Pereyra, Langmuir

20, 499 (2003).
12A. Matsuyama, R. Kishimoto, and T. Kato, J. Chem. Phys.106,

6744 (1997).
13J. C. Wheeler and P. Pfeuty, Phys. Rev. A24, 1050(1981).
14J. C. Wheeler and P. Pfeuty, J. Chem. Phys.74, 6415(1981).
15S. Kennedy and J. C. Wheeler, J. Chem. Phys.78, 953 (1983).
16P. G. de Gennes,Scaling Concepts in Polymer Physics(Cornell

University Press, Ithaca, NY, 1979).
17P. Panizza, G. Cristobal, and J. Curely, J. Phys.: Condens. Matter

ENGL, COURBIN, AND PANIZZA PHYSICAL REVIEW B70, 165407(2004)

165407-10



10, 11 659(1998).
18A. G. Zilman and S. A. Safran, Phys. Rev. E66, 051107(2002).
19E. M. DiMarzio, J. Chem. Phys.42, 2101(1962).
20R. E. Boehm and D. E. Martire, J. Chem. Phys.67, 1061(1977).
21The thermal average of a variableA is kAl=fkA exps−b Hdl0g /

kexpsb Hdl0, where the notationk·l0 refers to an average over all
the equally weighted orientations of each spin vectors and Ising
numbers.

22I. Langmuir, J. Am. Chem. Soc.40, 1361(1918).
23See for instance, H. J. Butt, K. Graf, and M. Kappl,Physics and

Chemistry of Interfaces, Physics Textbook(Wiley-VCH, Berlin,
2003).

24See for instance, R. H. Fowler and E. A. Guggenheim,Statistical
Thermodynamics(Cambridge University Press, Cambridge,
1965), p. 431.

25In that case, note that the expression of the two constants,KAA

and KBC must now be changed into:KAA=ebsmAA−«AA−xAAd and
KBC=ebsmAA−«BC−xBCd. This is explained in more details in
Ref. 17.

26M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M.
P. Brenner, C. Gay, and D. A. Weitz, Nature(London) 420, 299
(2002).

27A. M. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A.
R. Bausch, and D. A. Weitz, Science298, 1006(2002).

28S. Arditty, C. P. Whitby, B. P. Binks, V. Schmitt, and F. Leal
Calderon, Eur. Phys. J. E11, 273(2003), and references therein.

29D. Van Effenterre and D. Roux, Europhys. Lett.64, 543 (2003).
30S. Tzilil, M. Deserno, W. M. Gelbart, and A. Ben-Shaul, Biophys.

J. 86, 2037(2004).

ADSORPTION OF ASYMMETRIC RIGID RODS OR… PHYSICAL REVIEW B 70, 165407(2004)

165407-11


