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Anisotropy of interband transitions in InAs quantum wires: An atomistic theory
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The electronic and optical properties @d01]-oriented free-standing InAs cylindrical quantum wires
(QWR9 with diameters 10-100 A are calculated using an atomistic, empirical pseudopotential plane-wave
method. We analyze the effect of different degrees of mixing between valence bands on the optical properties
of these nanostructures, by switching on and off the spin-orbit interaction. The fundamental transition in these
QWRs exhibit a large anisotropy, with emission polarized prevalently along the wire.aiie magnitude of
such an anisotropy is found to depend on both degree of valence band mixing and wire size. In higher energy
interband transitions, we find anisotropies close to 100% with emission polarized perpendicular to the wire
axis. Furthermore, in large wires, transitions involving highly excited valence states show in-plane polarization
anisotropies between tH&10] and[110] directions. InAs wires can therefore switch betwespolarized to
xy-polarized emission/absorption for different excitation energies. This makes them ideally suited for applica-
tion in orientation-sensitive devices.
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I. INTRODUCTION detectors. Moreover, the determination of the orientation of
the polarization gives also specific indications on the optimal

. : _ U 'aS€bnfiguration of a QWR laséP,i.e., on whether it is better to
assisted catalytic growttLCG) and its variations, made it 5jign the wires parallel or perpendicular to the cavity walls in

possiblé~* to produce high quality quantum wir¢QWRS  grder to achieve maximum interaction with the optical cavity
of many Ill-V (InAs, InP, GaAs, GaP, GaN, elcll-VI (ZnS,  feld.

ZnSe, CdS, Cd9eand IV-IV (alloys of SiGeg semiconduc- The polarization of optical transitions in QWRs with dif-
tors, with diameters ranging from 3 nm to several tens of nmferent cross sections has been extensively studied both
and lengths exceeding Am. This growth method exploits experimentally-1°and theoretically®-26 All studies concur
laser ablation to generate nanometer diameter catalytic cluge attribute the main origin of anisotropies in the dipole ma-
ters that define the size and direct the growth of the crystaltrix elements of optical transition to valence band mixing.
line nanowires by a vapor-liquid-solid mechanism. TheAnother source of anisotropy in the optical transitions, that
availability of such perfect cylindrical samples at a crystal-may occur even in the case of isotropic dipole matrix ele-
line level offers challenging opportunities to the theorist toments, is a dielectric constant discontinuity at the wire
explain their properties and predict new features that can beurface???3 Although excitonic effects have also been
exploited for the realization of novel devices. One of thefound” to weakly contribute to the in-plane anisotropy even
most important properties of QWRSs is the polarization anisoin cylindrically symmetrical quantum dots, this paper will
tropy of their interband transitions: due to the 1D confine-focus only on the single-particle contribution to the polariza-
ment, the emission/absorption intensifyfor light polarized o anisotropy in optical transitions. Despite the crucial im-

parallel to the wire axi$z) can be different from that ,) for ~ Portance of band mixing to optical anisotropy, most theoret-
light polarized in the(x,y) plane, perpendicular to it. The ical treatment$~2*decouple conduction and valence bands,

polarization anisotropy is defined in terms of the degree o nd consider only interactions between a limited nu_mber of
linear polarization alence bands, e.g., only between the btﬂgu—c_ierlved
heavy-hole(hh) and light-hole(lh) bands, neglecting cou-
@ -a, pling with the bulk I';,-derived split-off bands. This ap-
p= ata () proach is also known as thgfinite spin-orbit splitting ap-
U proach Furthermore, in all the aforementioned treatments,
where « is the absorption coefficient. Furthermore, as thethe wire is assumed to becantinuousmedium(i.e., with no
underlying crystal structure of the wire might be different underlying atomistic structuye modeled as a 2D square
along two perpendicular directions in thg,y) plane, an well. It has therefore an ideally high symmet@, for a
in-plane polarization anisotropy can also be expected. A gieircular, C,, for a square, and,, for a rectangular cross
ant anisotropy in the band gap emission, which was found tesection, whereas the actuatomistio symmetries might be
be over 90% polarized parallel to the wire axis, was recentlyjower depending on the wire orientation.
measuretl in InP LCG-grown cylindrical wires. Interest- In the present work we present an atomistic study of the
ingly, no transition polarized perpendicular to the wire axiselectronic and optical properties of zinc-blend@01]-
was found in an energy range of about 50-60 meV aroundoriented, free-standing cylindrical wires by means of a semi-
the main peak. This feature makes the wires ideal for mangmpirical pseudopotential method that naturally includes
orientation-sensitive applications, such as optical switchegeneral multiband coupling as well as the effect of spin-orbit
and interconnectors, near-field imaging and high resolutioiSO). In one set of our calculations, we also set artificially
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As,=0 in order to study the contribution of the split-off nanostructure radius, due to the boundary conditions, result-
bands to band mixing and consequently to polarization proping in3?
erties. We find that:

(i) Thefundamental h— e, transitionin QWRs shows a E*=5-E., 3)
high polarization anisotropy, with emission polarized preva-yhere
lently along the wire axig. The magnitude of the anisotropy
depends on the degree of valence band mixing: when the SO 5= 2equt ()
interaction is set to zerd.e., for maximum band mixing Eoutt €in

the value of the degree of linear polarization is close to 100% . . .
and is independent of both size and temperature; when %ndsi“ an_dsout are _the d|electr_|c constant Qf the wire and the
realistic value for the SO splitting is consideréice., for sqrroun'dlng material, r'espect|vely. WhEn is parallel to the
reduced band mixing p decreases to about 80% and be-WIr'€ axis, no moo_lulatlon takes place. The degree of linear
comes size-and temperature-dependent. polarization is defined as

_ (i) I'—|igher.energy interband trgnsitiqnshow polarizg- ~ o - at ~ [, |E" - plurd|? = (i, |[E L - plpo)|?
tion anisotropies close to 100% with emission perpendicular P= st IET - plud B+ [ [EX - plur)
to the wire axis, with no dependence on wire size or band v ¢ v ¢
mixing. where we assumeEﬂO:E;. If E is homogeneous inside the

(iii) If we assume a line broadening of the order of thatwire, Eq.(5) becomes

obtained in typical experimental conditioh¢he features of

h , . o ; ) IML 2= &ML |2
photoluminescencé’L) peaks with emission polarized per pz o " "o
pendicular to the wire at energy close to the band gap tran- IML |2+ &2 MZ |2
sition are hidden by the broad band-gap PL. This might be
the reason why no transition polarized perpendicular to thed"
wire axis was fountlin InP wires in an energy range of M(ci3:<¢u|pi|¢c>- (7)
about 50-60 meV around the main peak. ) o o

(iv) Transitions involving highly excited valence states in |t follows that if &= si, (i.e., if §=1) the polarization an-

thick wires show in-plane polarization anisotropiés., |sotr_opy m_the qptlcal transmon_ls complete_ly determmed by
anisotropies between the inequival¢ht] and[110] direc- the intrinsic anisotropy of the interband dipole matrix ele-

tions, both perpendicular to the wire axisegardless to ments. If, howeverg # 1, there will be a polarization aniso-
whether SO is considered or not. tropy component deriving from the discontinuity in the di-

electric constant between wire and surrounding material,
even in the absence of anisotropy My,. This effect van-
Il. ORIGINS OF THE LINEAR POLARIZATION ishes in spherical objects, where the field distribution due to
ANISOTROPY IN QWRs boundary conditions does not depend on the light polariza-
tion. A further cause of polarization anisotropy could also

Within the dipole approximation, in the limit where the arise in case the electric field were inhomogeneously distrib-
wavelength\ of the electromagnetic field is much larger than yted inside the wird2

the wire radiusR, absorption and emission are proportional
to the scalar product of the local electric fiehl and the B. Polarization anisotropy due to valence band mixing
interband dipole momerq, averaged over the electron-hole
wave function. The absorption coefficiemtcan therefore be
written as

©)

(6)

here

1. Band couplings

In bulk zinc-blende semiconductors with point grotp
_ the valence bands can have three symmettigd’,, andl’.
0o K, |EV - plypo)? 2 TheT's, bands are fourfold degenerate at zone cgfke_lo)
|E..[2 ' and have a total angular momentum3/2, with projection
along z L,=+3/2 (these bands are also known as heavy-
wherei=|, L are the component parallel and perpendiculatgley, andJ,=+1/2 (these bands are known as light-hgles
to the wire axis, respectively. There are two main factors thatpe I';, bands, also called split-off bands, ha¥e1/2, and
can cause a polarization dependence in the optical transitior]g: +1/2 and ardocatedA, below thel's, bands at zone
in a QWR: (i) a discontinuity in the dielectric constant be- center. Group theoretical treatmelit$26-2%have long estab-
tween the wire and its surroundings?*(ii) a strong valence |ished that the characterization of valence band states as
band mixing® heavy-holes and light-holes is not possible in QWRs, be-
cause the irreducible representations for the hole states in
these structuregsee below do not transform neither like
heavy-hole nor like light-hole, but have a mixed character at
all k. One of the main causes of polarization dependence in
According to Landau theory of dielectric medfawhen  the optical transitions in QWRs is precisely this mixing of
the electric fieldE.. of the incident light wave far from the the valence bands. This is in contrast to the case of the quan-
wire is perpendicular to the wire axis, the amplitudeEf tum well, where the hh and |h states are decoupled at the
inside the wire is strongly modulated on the scale of thezone center.

A. Polarization anisotropy due to dielectric constant
discontinuity
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There are two types of possible zone-center coupling be-Ill. GENERAL PROPERTIES OF WIRES WITH  C,, AND
tween valence bands in a QWR) intraband coupling be- D2g SYMMETRIES

tween the componentghh, Ih) of the bulk I'g,-derived In aC.., wire the irreducible representation of the valence
bands?® TI'g,(J,=3/2)-T,(J,=-1/2) and T's,(3,=-3/2  states al are characterizéd by the valueF, of the z com-
-Tg,(3,=1/2). According to thek-p approach/*%?'the  ponent of their total angular momentufEJ+L (wherelL is
highest degree of linear polarization produced by this hh-lithe angular momentum of the envelope part drttie total
coupling for the fundamentdl; — e, (band gaptransition is  angular momentum of the Bloch part of the wave function
60%, independent of wire diameter and composifloor  and by their zone-center parifgven(+), or odd(—)] in the
orientation?! (ii) Interband coupling between the bulk plane perpendicular to the wire, ﬁ)n wheren refers to

I'g,-derived |h and thel’7,-derived split-off bandsT's,(J,  the order of the subband for the particular quantum number
=%1/2)-I'7,(J;= +1/2). Citrin and Chang showéﬁt.hat, N F,. The conduction subbands are labeled according to their
square cross-section wires, this |h-split-off coupling affectsyarity in the plane perpendicular to the witeenceforth
the energy position and dispersion of all subbands at the zoRghen referring to “parity” we will always mean parity in the
center in QWRs. This is a consequence of the hh-Ih coupling|ane perpendicular to the witeand the value ofL,, as

(l) in these wires: in quantum wells, where at zone Centeb(i)(||_z|)_ In what follows we will consider interband tran-
there is no such hh-lh coupling and the valence subbands C&ltions of the formC®(|L \)—>E(i) [at zone center, transi-
be characterized as pure hh or Ih, the heavy-holes do not : Fan 17 .
couple to the split-off bands fdt=0;?8 if the hole subbands t|(()+r)|s betwe(eir)w subbands with different parities, i.e.,
in a wire had pure hh or Ih character, the inclusion of theC~ (|LZ|)_>EFZ,n’ are forbidden The allowed transitions can
spin-orbit coupling would influence only I|h states, leaving hhbe divided into two general classes, depending on their po-
states unchanged. As in these wires all energy subbands dagization: (i) mixed polarizationMP) transitions, that have
affected when spin-orbit is considered, it follows that all both perpendiculatx) and parallel(z) componentfto this
states have some Ih component, i.e., there is Ih-hh couplinglass belongC(0)— E;»,, C(1)—E;n, and C(1)—Egpp

The degree of linear polarization calculated by Citrin and(Ref. 19]; (ii) single polarizationSP) transitions, that are
Chang® s of the order of 67% in GaAs square cross-sectionpolarized only perpendicular to the wire axis, liK&0)
wires. According to Zheng and co-workéfghe inclusion of ~ — Egjp .1

the Ih-split-off coupling in thek.p treatment leads in In a C,, square cross-section wire or [y cylindrical
Ings8Ga4As cylindrical wires to a diameter- and wire instead, the conduction and valence subbands hgve
temperature-dependept which ranges from 40%for ad  andI'; symmetry?® In order to determine the allowed and
=15 nm wire aff=300 K) to about 80%for ad=7 nm wire  forbidden transitions ifD,4 wires we can resort to consider-

at the same temperature ations similar to those regarding the conservation of the par-
ity quantum number, just made f@x., wires. In this case the
2. Perceived wire symmetry angular momentunh of the envelope function needs to be

conserved, therefore transitions between subbands with dif-

The magnitude of these band couplings and the polarizaferent value of areformally forbidden. This criterion would
tion of the interband transitions depend on the symmetryield the same forbidden transitions Dy wires as the par-
with which the wire is “seen” by a theoretical model. The ity selection rule yielded irC., wires. However, we find
simplest approach i&-p, where the wire is assumed to be a that, due to the strong confinement, the wire subbands do not
continuousmedium(i.e., with no underlying atomistic struc- have pure(s, p, d, etc) character, but receive contributions
ture), modeled as a 2D square well. Within this approach, d&rom different angular momenta. This leads to a relaxation of
circular cross-section wire has therefore an ideally ligh ~ the angular momentum conservation rulebgy cylindrical
symmetry® which is independent of its orientation. How- wires. The interband’; —I'; transitions(with i, j=6, 7), can
ever, a real cylindrical wire made of zinc-blende material,again be grouped into two classes, as bef@pethe mixed
due to its underlying atomic structure, has always a lowepolarization transitions include onlyf’;—T' transitions,
symmetry than that modeled by the continudkmp ap-  whereas tq(ii) single polarization transitions belong transi-
proach. Furthermore, this symmetry depends on its crystakions between subbands with different symmetries. The ex-
lographic orientation, or growth direction: if grown along the planation for the inclusion of a particular transition in one of
principal axes[100], [010Q] or [00]] it will have an overall the two classes derives from general group theoretical con-
D,q symmetry, otherwise its symmetry will be even lower. A siderations. Ir'C..,,, C,,, andD,q wires, the component of the
cylindrical wire grown along thg111) direction, for ex- dipole operator along the axis transforms as the identity
ample, has &C,, symmetry. In order to obtain these two representatio®’ Therefore, inC.., wires transitions between
symmetries within continuum models, however, one mustonduction subbands with,=0[C(0)] and valence sub-
represent the real circular cross-section wire as havingpands withF,=3/2 cannot occur if the optical wave is po-
squaré®?® (the groupsC,, and D,y are isomorphit®) and, larized along the wire axis. The same is true for transitions
respectively, trianguldf cross sections. The problem with between subbands with different symmetrie<Cipy and Doq
the perceived higher symmetry ki p is that the irreducible  wires. Transitions through optical waves polarized perpen-
representations o€.., are different from those of the real dicular to the wire are however allowed. Table | summarizes
Dyq. Cs,, etc., symmetries. This is discussed in the next secthe allowed polarizations for the different transitions consid-
tion. ered and indicates the class to which each transition belongs.
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TABLE I. Summary of the polarizations allowed ., Dyq, growth? the nanostructures are embedded in a lattice-
and C4, symmetry for the different transitions considered. The di- matched fictitious wide-gap~5.6 e\) material. This results
rectionsz and x refer to orientations parallel and perpendicular to jp large band offsets and the absence of strain between ma-
the wire axis, respectively. The class to which each transition begix and wire. The atoms occupy therefore the ideal positions
longs is also indicated: pF and IF stand for parity-Forbidden anq)f a perfect zinc-blende bulk crystal.

I-(angular momentupaForbidden; SP and MP stand for Single and Due to the large number of atoms involved, we solve Eq.

Mixed Polarization, respeciively. (8) by using thefolded spectrum methgd31 whereby it is
N i possible to calculate exactly only selected eigenstates of the
Irrep. Transition Polariz. Class  gchrgdinger equation around an arbitrary reference energy
C.., c® _LE® pF €er IN this approach, Eq8) is replaced by
C(0)— Egyzn X SP %2 ) 2 )
C(0)—Ey2n Z,X MP - EV + Vps(r) + Vi~ €t | %i(r) = (6 — €e)“W%i(r),
C(1) —Ezjzn Z,X MP 11
C(1) —Eyjan Z,X MP (1D
which is equivalent to it in the sense that y@und stateof
D2a, Cay Al#0 IF Eqg. (11) coincides with the solution of Eq8) with energy
le—T7 X SP closest toe,. Therefore, with this method the band-edge
I'7—T X SP states can be obtained by choosing the reference energy in-
I'e—Tg Z,X MP side the band gap. The minimization procedure is carried out
r,—T; 7% MP in a plane-wave basis set using a preconditioned conjugate-

gradients algorithm. More details on this procedure can be
found in Ref. 31. With the single-particle energies and wave
IV. ATOMISTIC DESCRIPTION OF D,y WIRES functions thus obtained, we calculate the interband transition
gnergiesz:ec—eU and dipole matrix elements:

The electronic structure of a nanostructure is calculate .
by solving the single-particle Schrédinger equation: MY = (b1l ), (12)

2 .
o, PR where g, ¢, and €., ¢, are valence and conduction band
{ sz +V(r)]¢,//,(r) = &), (8) eigenenergies and wave functions, respectively, @mlthe
momentum operator with coordinatgs (i=x,y,z). The

whereV(r) is the potential and; the energy eigenvalues. In  gmission spectrum is then calculated as a function of energy
the effective mass approximatiom is taken as theffective  5nd temperature according to

mass, andvV=V,,(r) is an external potential defining the

geometric confinement of the nanostructure. We use a differ- o M) |2 @B~ Berp® /Mg (o) / kT
ent approach, whema=my is the actualbare electron mass  1(E,T) =Cc— ,
and the microscopic pseudopotential of the systgir) is EC',U' e (Be'v'~Fa) /kgT

obtained as a superposition of screened atomic potentials, (13)

Ved 1) = 210 Valr = Ria), © where C is a constant\ is the PL broadeningT is the
wherev,(r —R; ,) is the atomic potential for an atom of type temperature, and we take a Boltzmann average, where the
« located at the positiofr; ,. The atomic pseudopotentials sum overc’v’ is over states that satist,,, =E,, to take
are derived from the bulk LDA screened pseudopotential anéhto account temperature effects.
fitted to reproduce the measured InAs bulk transition ener-
gies, deformation potentials and effective mag8ase total

potential is then expressed as
_ In order to investigate the role of microscopic structure

VI = Vod 1) + Vi, (10 and degree of valence-band coupling in the determination of
whereV,, accounts for the nonlocal part of the potential andthe wire optical properties, we calculated dipole matrix ele-
includes the SO coupling. In this atomistic approach @y. ments and degree of linear polarization for cylindrical wires
we set up the zinc-blende geometry of the sysfeamostruc-  with diameters in the range 1-10 nm, both in the firiite/
ture plus its surrounding matpin a supercell with periodic  SO) and in the zerqN/SO) spin-orbit splitting approxima-
boundary conditions. The supercell size is chosen so as tion. In this way we were able to vary the mixing between
minimize any interaction between neighboring nanostruci'g-derived andl',-derived bands, which is maximum in the
tures. This is obtained by increasing the supercell size untihbsence of SO interaction.
the calculated electron ground state energy does not change
to within 1 meV (the hole energies converge much faster
than the electron energiesVe model LCG grown wires as
free-standing, unstrained systems. In order to simulate the Figure 1 shows schematically the electron and hole en-
effect of an oxide coating, that is often present after the wireergy levels calculated with our atomistic method, together

V. RESULTS

A. Single-particle energies of cylindrical InAs wires
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B. Calculated polarizations and the role of dielectric mismatch
e ® Figures 2 and 3 show the dipole matrix elements squared
€2 ® IM[2 and the relative degree of linear polarization, for the
31 h—e (i=1,...,6 and=1,2,3 transitions with light po-
——) larized along the wire axi&-polarized and perpendicular to
it (x-polarized. Thex- andz-polarized matrix elements rela-
) tive to the same transition are offset for clarity. The degree of
linear polarization shown was calculated from E@) con-
o0 e Spg sidering only the anisotropy of the matrix elements but not
” the dielectric constant discontinuity between wire and sur-
rounding materiali.e., =1). Indeeds~1 in a wire covered
by an oxide, where the two materials have similar dielectric
) ()t — dip; Ve simiar
—(s)fg] hy Edp constants. In the case of a free standing wire in vacuum
: (equi=1), because of the small value & in Eqg. (6), the
gsi anisotropy due to the dielectric constant discontinuity domi-
nates over the contribution due to the matrix element aniso-
tropy. Using our calculated matrix elements and the values of
FIG. 1. Schematics of the calculated single-particle energy Iev-s"‘_ld"6 for the InAs dlelectrl_c cqnstant amg=1, we find
els (labeled with their main angular momentum componédot 3 ”??“ the degree of linear polarization of the fgnda_mental tran-
InAs D,y cylindrical wires with sizesi=1.2, 3.6, 9.6 nm, respec- sition h; — €, assumes vaIuesQQ% for all wire dlameters .
tively. The dashed lines connect, respectively, CBM and VBM incons'dereaiOn Te, other hand, if we a_lssume Isotropic matrix
the different wires. Only a few states are shown that were used iﬁlements(M =M)) in Eq. (), we obtaln.for the same S.ys-.
the calculations of the optical properties. tems the value of 96.8%. Therefore we find that, for a wire in
vacuum, the matrix element anisotropy contributes by less

0 .
with their main angular momentum component, relative to 3than 3% to the total anisotropy.

InAs wire sizes: the thinnesti=1.2 nm, the thickestd
=9.6 nm, and an intermediate siz#;3.6 nm. We see that
the energy gap and the energy splitting between the subbands Table Il summarizes the irreducible representations of the
decreases with increasing wire diameter, owing to the defirst 3 conduction and 5 valence subband<in,*® D,y and
creased size confinement effect. As we will see, this featur€,, (Ref. 28 wires with similar sizes. In &, wire the

is one of the causes of the different temperature behavior dbwest conduction subban@™(0) has even parity and is
the degree of linear polarization with different wire size.  singly degeneratgexcluding spif, whereas the next sub-

I\
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-
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z

C. Symmetry considerations
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bandC)(1) has odd parity and is doubly degenerététh-  subbands, it does not pose any constraint on their specific
out spin. The uppermost subbands,,...,hs in a d ordering, a feature which depends, among other factors, on
=10 nm wire at zone center a}%ES)Z . E(ﬂ)z ” Eg; . E<37; , the magnitude of the confinement. It is therefore not incon-
and E(J% , respectively. In aL=10 nmC,, square cross- sistent with our group theoretical considerations that the sub-
section wire(whereL is the square side dimensjomstead, bands in cyllndrlpal and square cross-section wires have dif-
e owestconduction sate, e, ande havel = I, and _Sfent order, This fat has mporant consequences on he
£7 symr:n ?:X[,hzgscpaescem;er?g.lj— h?uplgerrpos;r\]/gll? ncreeguggan(%ee that the lowest conduction subb&p@nd the uppermost

t.l’ II 5th' K we fi dths,t d7 G"t t7h id Z IIpb ! valence subbantl; have the same symmettgnd the same
Ively. In this work we find that, despite the identical 1abeling ., i, angular momentum compongirt C4, and D,y wires.
between theC,, and Dy representation®, the ordering of  ag 5 consequence, the lowest energy transition has the same
both conduction and valence subbands =10 nmCy,  pojarization(i.e., MP) in both wires. This property can be
square cross section aridhy cylindrical wires is different  eypected in general from isomorphic groups, and reflects the
(see Table Ii. In fact, although the isomorphism between thestapility of the band edges with respect to perturbations, such
C4, andDyq4 groups specifies the possible symmetries of theas the change in wire symmetry can be considered to be.
Therefore, by considering a continuous wire with the appro-
priate cross sectiofi.e., the one that simulates the symmetry
resulting from the underlying crystal structure of the real
wire, as mentioned in Sec. Il B2one should always be able

to obtain the correct polarization for the ground state transi-

TABLE Il. Summary of the irreducible representations of the
first 5 valence and 3 conduction subbands in wires v@th (d
=10 nm), Dyq (d=3.6 nm), andCy, (L=10 nm symmetry.

Subband Representation tion. As shown in Table II, however, the similarity between
C.,® Do Ca’ two isomorphic groups cannot be exploited further to infer
e C(0) T's T's the polarizat_io_n of higher energy transiti(_)ns as the ordering
e, co) r, r, of the remaining subba_nds might be different in the two
- groups. Given the ordering of the subbands shown in Table
& () T's I I, using the general arguments discussed in Sec. Ill we can
hy E(f/;,l T's T deduce the polarizations allowed in all the transitions involv-
h, E(l',;z Iy I; ing the first 3 conduction and 5 valence subbands in wires
hy Eg;l I, T's with C.,, Cg4,, and D,y symmetry. The results are summa-
h EC) r r rized in Table Ill, which also contains our pseudopotential
4 3/2.2 6 7 . . .
h £ " r results. A consequence of the different subband ordering in
5 3/2.3 6 ! C,, andD,y symmetry is that transitions with particular po-
%Reference 19. larizations that are forbidden i@,, symmetry are allowed in
bpresent calculation. D,q and vice versa. Furthermore Table IIl also highlights two
‘References 26 and 28. other important differences betwe@&yy and C,, wires: (i)
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TABLE lll. Summary of the polarization predicted for the tran- 1 I T Py J ]
sitions ¢ —h; (i=1,2,3,h=1,...,5 for wires with (atomistig N/SO al T
Dyg (d1=3.6 nm,d2=9.6 nm and (continuum C., (d=10 nm
0.9 =

andC,, (L=10 nm symmetry. The main angular momentum com-
ponents obtained in the present calculation for each subband ar
indicated in parentheses. The directiarendx refer to orientations
parallel and perpendicular to the wire axis, respectively. In case of
multiple polarizations, the first direction quoted is the one with the
largest matrix element. We indicate in boldface the polarizations
that are found different betweefi andd2 for the same transition.
Each transition is also labeled by the class to which it belongs,
according to Table I.

e
20

e
2

e
=

i | (a) Polarization ratio

Degree of Linear Polarization |p|

Transition Polarization 0.5 : : : : : : :
. T N I
EPM k-p 0.21-| (b) Dipole matrix :
Dyg(dl)  Dyy(d2) Coop? CyP - elements

jizl
e,(s)—hy(s) zxX(MP)  z,x(MP)  z,x(MP)  z,x(MP) € z-polarized
ey(s)—hy(p) X(SP X(SP) pF X(SP ,g
e1(s) — hy(s,d)© X(SP X(SP X(SP IF o o1
ey(s)—ha(p) z,x(MP)  x(MP) pF IF = | wso
els)—hs(d,9°  zx(MP)  z,x(MP)  X(SP X(SP =

L
e(p)—hy(s) IF IF pF IF =
ex(p)— hy(p) Z,x(MP)  z,x(MP)  z,x(MP) IF 01_-"1”59 ----- e-Tme T ~Xporanized
e(p)—hy(s,d)°¢  x,z(MP)  z,x(MP) pF X(SP Y A SR SR SR

. 2 4 6 10
€(p) — hy(p) X(SP) XSSP zx(MP)  z,x(MP) Wire diameter d (nm)
e(p)— hs(d,s)¢ X(SP IF pF IF
_ FIG. 4. (a) Degree of linear polarization of the fundamental

&(p)—My(s) X(MP) 2(MP) PR I transitionh; —e; as a function of wire diameter, calculated &t
es(p) —ha(p) x(SP xSP  z,x(MP) IF =2 K andT=300 K both consideringW/SO) and not considering
e3(p) — hs(s,d) X(SP X(SP pF X(SP) (N/SO) SO splitting.(b) Dipole matrix elements, for the same tran-
e3(p) — hy(p) z,x(MP)  z,x(MP)  z,x(MP)  z,x(MP) sition, polarized paralle(z) and perpendiculafx) to the wire axis,
es(p)—hs(d,9)°  x,z(MP)  z,x(MP) pF IF in the finite and zero SO splitting approximations.

8Reference 19.

bThe polarization ofel—>hj transitions is from Ref. 26, that of
transitions involvinge, ande; has been deduced from group theory
arguments.

‘The angular momentum componestandd have similar magni-
tudes.

although both conduction states have mpioharacterand
h; mains), thee,— h; transition is forbidderisee Table I,
whereas thee;— h; transition is very weakly allowedsee
Figs. 4a) and 3a)].

the different angular momentum composition of the sub- D. Near band-gap transitionsh; —e,

bands, which is manifested in differehforbidden transi- The fundamental band-gap — e; transition has bottz
tions; (i) the fact that in continuous wires the subbands al-and x polarizations, but is mainly polarized along the wire
ways have purd character, as opposed to atomistic wiresaxis in all wire symmetries considered in Table Ill. We find
where, as discussed in Sec. Ill, each subband receives cotfiat, in the absence of SO interactiah,,=0 eV), in a cir-
tributions from different angular momentum components.cular cross-section wire with atomisti@,y symmetry it is

The angular momentum selection rule is therefore relaxed iA00% z-polarized(i.e., theh; state does not interact at all
D,q wires and formally forbidden transitions may becomewith optical waves polarized normal to the wire gxig/hen
weakly allowed. We find that this mixing dfcharacter in the the coupling between bull’g,- and I';,-derived valence
wave functions oD,y wires increases with decreasing wire bands is restored to its actual valwéth A;,=0.4 eV in bulk
diameter (i.e., with increasing confinementand with in-  InAs) the degree of linear polarization decreases by about
creasing subband positiaine., h; and e; are more mixed 20% and becomes size and temperature dependent. Figures 4
than h; ande;). This is reflected in the decrease, with in- and 5 show the temperature dependence of our calculated
creasing wire diameter, of the magnitude of the optical madipole matrix elements and degree of linear polarization in
trix elements relative to the formally angular-momentum-the finite and zero SO approximations. This decreasp of
forbidden transitions [compare Figs. @ and 3a)]. from 100% to about 80% with increasing SO splitting, to-
Furthermore the lower degree of angular momentum compogether with the value of 60% obtained fprin the infinite

nent mixing ine, compared tae; is shown in the fact that, spin-orbit approximation?'%2*show that linear polarization
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FIG. 5. Degree of linear polarization of the fundamental transi- é o.12} .

tion hy—e; as a function of temperaturE for the different wire
diameters considered.

effects in actual 1D systems are due to substantial mixing 008
between the four bulk's,- and the twol';,-derived valence
bands.

The next transitionh,—e,), is al';—Ig transitions in 0.04}
both D,4 andC,, wires and is therefore allowed to be polar-
ized only perpendicular to the wire axis. The—e; and the
h,— e, transitions are forbiddéfin C.,, QWRs, due to the 0
different parity of the electron and hole wave functions. As 0.5
discussed above, these transitions would be formally

SmgUIar'mdomiml:E]forbldde“n 1|n ourDag V\;Irebs as \]/c\.le(ljl' FIG. 6. PL polarization spectra around the energy of the funda-
owever, due 1o the nonzele 1 component o, We 1in mentalh; — e; transition, calculated afi=2 K andT=300 K for a

that they arg_weakly allowed: the dipole matrix elements. fora) d=1.2 nm and &b) d=9.6 nm wire(with 50 meV broadening
these transitions decrease by over one order of m?‘gn'tUJﬁwe arrows mark the position in energy of the transitibns> e,

with increasing wire diametei.e., with decreasing mixing  ithi=1. . 5.

in e), from 2.4 nm to 9.6 nngboth becoming less than 1% Y

of the value of the matrix element relative to the band gager, thin wires have also a stronger mixing and therefore a
transition in thed=9.6 nm wirg. As theh;— e, transition is  higher degree of linear polarization. Furthermore, due to the
only x-polarized inC.., wires, the two lowest energy transi- larger confinement, the hole energy levels are farther apart in
tions have opposite polarizationsDyy, Cy4,, andC.,, wires.  thin wires than they are in thicker wirgsee Fig. 1, and

The fundamental transition is in fact polarized mainly alongtheir density of states is lower close to the band edge. There-
the wire axis while the next allowed transition has omly fore in thin wires at low temperature tlg— e; transition is
polarization in all symmetries. Thb,—e; transition, in-  the most probable and the degree of polarization is (sgle
stead, being a transition between tligsubbands, can have Fig. 6). In the case of thick wires the probability fdw, 5

both polarizations: however, id>4.8 nmD,q Structures, it — e, transitions, which as we mentioned before, unlike the
is only polarized perpendicular to the wire. The polarizationh, — e, transition are polarized only perpendicular to the
component parallel to the wire axis increases from Y@  wire, increases wit. This reduces the degree of linear po-
a value which is larger than that of the perpendicular comiarization with increasing temperature in thick wires. This is
ponent, when the wire diameter decreases from 9.6 nm to 3.€@early seen in Fig. 6, where we show the PL polarization

06 07 08
Energy (eV)

nm. spectra(with 50 meV broadeningaround the energy of the
Temperature dependencdéfe find (Figs. 4 and ba stron-  fundamentalh, — e, transition, calculated af=2 K and T
ger temperature dependence foh; —e;) in thick wires: in =300 K for ad=1.2 nm and al=9.6 nm wire. The different

ad=9.6 nm wirep decreases by 10% with a 300 K tempera-density of states also explains the larger bluegfifneV) of

ture increase, compared to a 0.25% decrease iml a the x-polarized PL that takes place in thick wires with a
=1.2 nm wire, for the same temperature variation. This sizéemperature increase of 300 K, compared to tfzameV)
dependence of the polarization can be understood in terms aftcurring in thin wiregFig. 6). The detectability of PL po-
lateral confinement effects. Due to the quantum size effeclarization peaks in these wires is, however, closely related to
thin wires experience a stronger confinement than thickethe experimental line broadening. As shown in Fig. 7, if the
wires, which means that they have a higher kinetic energyproadening is larger than 20 meV at room temperature
introduced by the confinement. As this kinetic energy is retypical experimental conditiofst is >50 me\), the peak in
sponsible for the mixing} of the valence bands at zone cen- the x-polarized emission corresponding to the— e, transi-
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1 . H
x-polarized

PL intensity (arb. units)

0.65
Energy (eV)

9.

5 0.6 0.75

FIG. 7. PL polarization spectra 8@=300 K calculated for a
=1.2 nm(a), and ad=9.6 nm(b) wire for different values of the
line broadening.

tion, found in Fig. 3, is masked by the broadening of the

fundamental transition in d=9.6 nm wire. In ad=1.2 nm
wire (Fig. 7), even if the broadening is of the order of 40
meV, the second peak in tixepolarized emission can still be

seen as a shoulder on the high energy side of the main peal —

but is almost completely lost in it for broadening$0 meV.

Therefore this peak has not been seen in cylindrical LCG
wires of any size, due to the present experimental accuracy

E. Higher energy transitions hj—e; 5

Theh;— e, transition is found to be forbidden in all wires
considered in Table Ill. Thh,— e, andh;— e, transitions in
Fig. 2 (I';—T'; transitions inD,q wires) are bothx- and

z-polarized. The former transition has a stronger parallel
component that increases with wire diameter, while the per-

pendicular component stays almost constant. Intthe e,
transition [weakly allowed only because of the nonzdro
=2 component of thee, subband inD,; wires, and
parity-forbidden® in C,, wires], instead, the perpendicular

component decreases by more than one order of magnitud

with increasingd, becoming smaller than the parallel com-
ponent ford>3.6 nm (see Table Il). The h,—e, and hg

— e, transitions arel's—I'; transitions inD,y QWRs and
can, therefore, only bg-polarized. The former, however, is
predicted® to have both polarizations i€..,, QWRs, where
the || component is the strongest. The— e, transition that

PHYSICAL REVIEW B 70, 165317(2004)

we only find very weakly allowed in smald<6 nm) D,y
wires, due to the highdrmixing in these structures, is also
formally parity-forbidden in the lower symmetry wires.

Interestingly, the(very weakly allowed inD,y wires)

h; — e; and hs— e; transitions, forbidden in low symmetry
wires® have opposite polarizations in the two wires of Fig.
2:h; —e;is z-polarized ind>6 nm wires anc-polarized in
d=6 nm wires; inh;— e; both polarizations are present, but
the L component decreases with increasitigbecoming
smaller than thdl component fod>6 nm.

As a rule we find that whenever a transition is formally
angular-momentum-forbidden D,y QWRs (and parity-
forbidden in lower symmetry wirgsthe L component de-
creaseqvery often by more than one order of magnitude
with increasingd in D,y QWRS, resulting either very weak
or nonexistent altogether in thick wires.

F. In-plane optical anisotropies

In an attempt to include microscopic features in k@
treatment in the infinite spin-orbit splitting approximation,
Yamaguchi and Usét derived a crystallographic-
orientation-dependent expression for the dipole matrix ele-
ment, which led to an in-plane anisotropy. In the spherical
approximation for the valence ban@s which the Luttinger

d (nm)
9.6 7260 4.8 3.6 2.4
LI I I 1 I I
4 0 (1-10)-polarized| |

6x10 B (110)-polarized
)
= i
= 4x10 .
o
e
I8,
N—
= 210t x10™ 2

x10
0 n 1 2 1 |I.

z [ T T T T T T T

c b

8o ®

T

N

8

[}

a

@

o
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3

‘S 0.

®

o

o

o}

a ] ! ]

0.1 0.15 0.2 0.25
E(h4,e1)'Eg (eV)

FIG. 8. (a) In-plane matrix elements squared afml degree of
linear polarization for the interband transitiohg— e;, as a func-
tion of the transition energy measured from the band @aper x
axis) and wire diametefupperx axis), in Doy INAs wires.
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d (nm)
9.6 7.2 6.0 4.8 3.6 24
I | | | | I
0.002f- (@ 0 (1-10)-polarized .
110)-polarized
hs_, e1 . ( )p
o
'c
3
£
& 0.001f .
N—
=
0 N 1
0.4

(b)

0.3

0.2

Degree of Linear Polarization |p’|

4 4 7 . | . 1 .
0.05 0.1 0.15 0.2 0.25
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FIG. 9. (a) In-plane matrix elements squared aiinl degree of
linear polarization for the interband transitions—e;, as a func-
tion of the transition energy measured from the band @aper x
axis) and wire diametetupperx axis), in D,q INAs wires.

parametery,= ;) there is no polarization anisotropy in the

plane normal to the wire axis in @.,, wire.?* By including

the effect of valence-band anisotropy, Yamaguchi and 4sui

PHYSICAL REVIEW B 70, 165317(2004)

for [001]- and [111]-oriented wires they found no in-plane
anisotropy, i.e.|M*|=|MY|. For all other orientations the cal-
culated dipole matrix elements alorgandy were different.
Similarly, we find no in-plane anisotropy in the funda-
mental transition irD,4 wires. However, higher energy tran-
sitions show polarization anisotropy in the plane perpendicu-
lar to the wire axis. Figures 8 and 9 show theplane(L to
the wire axi$ anisotropy we find in thén,—e; andhs;—e;
transitions inD,y QWRs, grown along th¢001] direction,
with d=6 nm, where the matrix element along th&l0]
direction is different from that along tHé.10] direction. We
see that thé,— e, transition is prevalentlj110]-polarized
with only the d=9.6 nm wire polarized alon§110]. The
opposite is true for thb;— e, transition, where the only size
for which the transition is prevalently polarized alofid.0]
is d=6 nm. However thed=9.6 nm wire is found mainly
polarized along 110] and thed=6 nm wire mainly along
[110], in both transitions. In all other transitions considered
we found no anisotropy in they plane.

VI. SUMMARY

In summary we applied an atomistic, empirical pseudopo-
tential method to calculate optical transitions in free-
standing, unstraine®01]-oriented cylindrical INAs quantum
wires with diameters in the experimentally accessible range
10-100 A. We found evidence of strong coupling of bulk
I'g,- and bulkI';,-derived bands in the size and temperature
dependence of the linear anisotropies of optical transitions in
QWRs. We show that simple approaches, that model the wire
as a continuum with no underlying crystal structure, miss
some optical transitions, due to their strict application of
conservation rules that we found to be relaxed in strongly
confined atomistic nanostructures.
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