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The electronic and optical properties of[001]-oriented free-standing InAs cylindrical quantum wires
(QWRs) with diameters 10–100 Å are calculated using an atomistic, empirical pseudopotential plane-wave
method. We analyze the effect of different degrees of mixing between valence bands on the optical properties
of these nanostructures, by switching on and off the spin-orbit interaction. The fundamental transition in these
QWRs exhibit a large anisotropy, with emission polarized prevalently along the wire axisz. The magnitude of
such an anisotropy is found to depend on both degree of valence band mixing and wire size. In higher energy
interband transitions, we find anisotropies close to 100% with emission polarized perpendicular to the wire
axis. Furthermore, in large wires, transitions involving highly excited valence states show in-plane polarization
anisotropies between the[110] and f110g directions. InAs wires can therefore switch betweenz-polarized to
xy-polarized emission/absorption for different excitation energies. This makes them ideally suited for applica-
tion in orientation-sensitive devices.
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I. INTRODUCTION

Recent advances in fabrication techniques such as laser
assisted catalytic growth(LCG) and its variations, made it
possible1–9 to produce high quality quantum wires(QWRs)
of many III-V (InAs, InP, GaAs, GaP, GaN, etc.), II-VI (ZnS,
ZnSe, CdS, CdSe), and IV-IV (alloys of SiGe) semiconduc-
tors, with diameters ranging from 3 nm to several tens of nm,
and lengths exceeding 1µm. This growth method exploits
laser ablation to generate nanometer diameter catalytic clus-
ters that define the size and direct the growth of the crystal-
line nanowires by a vapor-liquid-solid mechanism. The
availability of such perfect cylindrical samples at a crystal-
line level offers challenging opportunities to the theorist to
explain their properties and predict new features that can be
exploited for the realization of novel devices. One of the
most important properties of QWRs is the polarization aniso-
tropy of their interband transitions: due to the 1D confine-
ment, the emission/absorption intensityI i for light polarized
parallel to the wire axisszd can be different from thatsI'd for
light polarized in thesx,yd plane, perpendicular to it. The
polarization anisotropy is defined in terms of the degree of
linear polarization

r =
ai − a'

ai + a'

, s1d

where a is the absorption coefficient. Furthermore, as the
underlying crystal structure of the wire might be different
along two perpendicular directions in thesx,yd plane, an
in-plane polarization anisotropy can also be expected. A gi-
ant anisotropy in the band gap emission, which was found to
be over 90% polarized parallel to the wire axis, was recently
measured1 in InP LCG-grown cylindrical wires. Interest-
ingly, no transition polarized perpendicular to the wire axis
was found1 in an energy range of about 50–60 meV around
the main peak. This feature makes the wires ideal for many
orientation-sensitive applications, such as optical switches
and interconnectors, near-field imaging and high resolution

detectors. Moreover, the determination of the orientation of
the polarization gives also specific indications on the optimal
configuration of a QWR laser,10 i.e., on whether it is better to
align the wires parallel or perpendicular to the cavity walls in
order to achieve maximum interaction with the optical cavity
field.

The polarization of optical transitions in QWRs with dif-
ferent cross sections has been extensively studied both
experimentally11–15 and theoretically.16–26All studies concur
to attribute the main origin of anisotropies in the dipole ma-
trix elements of optical transition to valence band mixing.
Another source of anisotropy in the optical transitions, that
may occur even in the case of isotropic dipole matrix ele-
ments, is a dielectric constant discontinuity at the wire
surface.22,23 Although excitonic effects have also been
found27 to weakly contribute to the in-plane anisotropy even
in cylindrically symmetrical quantum dots, this paper will
focus only on the single-particle contribution to the polariza-
tion anisotropy in optical transitions. Despite the crucial im-
portance of band mixing to optical anisotropy, most theoret-
ical treatments16–24 decouple conduction and valence bands,
and consider only interactions between a limited number of
valence bands, e.g., only between the bulkG8v-derived
heavy-hole(hh) and light-hole(lh) bands, neglecting cou-
pling with the bulk G7v-derived split-off bands. This ap-
proach is also known as theinfinite spin-orbit splitting ap-
proach. Furthermore, in all the aforementioned treatments,
the wire is assumed to be acontinuousmedium(i.e., with no
underlying atomistic structure), modeled as a 2D square
well. It has therefore an ideally high symmetry:C`v for a
circular, C4v for a square, andC2v for a rectangular cross
section, whereas the actual(atomistic) symmetries might be
lower depending on the wire orientation.

In the present work we present an atomistic study of the
electronic and optical properties of zinc-blende,[001]-
oriented, free-standing cylindrical wires by means of a semi-
empirical pseudopotential method that naturally includes
general multiband coupling as well as the effect of spin-orbit
(SO). In one set of our calculations, we also set artificially
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Dso=0 in order to study the contribution of the split-off
bands to band mixing and consequently to polarization prop-
erties. We find that:

(i) The fundamental h1→e1 transition in QWRs shows a
high polarization anisotropy, with emission polarized preva-
lently along the wire axisz. The magnitude of the anisotropy
depends on the degree of valence band mixing: when the SO
interaction is set to zero(i.e., for maximum band mixing),
the value of the degree of linear polarization is close to 100%
and is independent of both size and temperature; when a
realistic value for the SO splitting is considered(i.e., for
reduced band mixing), r decreases to about 80% and be-
comes size-and temperature-dependent.

(ii ) Higher energy interband transitionsshow polariza-
tion anisotropies close to 100% with emission perpendicular
to the wire axis, with no dependence on wire size or band
mixing.

(iii ) If we assume a line broadening of the order of that
obtained in typical experimental conditions,1 the features of
photoluminescence(PL) peaks with emission polarized per-
pendicular to the wire at energy close to the band gap tran-
sition are hidden by the broad band-gap PL. This might be
the reason why no transition polarized perpendicular to the
wire axis was found1 in InP wires in an energy range of
about 50–60 meV around the main peak.

(iv) Transitions involving highly excited valence states in
thick wires show in-plane polarization anisotropies(i.e.,
anisotropies between the inequivalent[110] andf110g direc-
tions, both perpendicular to the wire axis) regardless to
whether SO is considered or not.

II. ORIGINS OF THE LINEAR POLARIZATION
ANISOTROPY IN QWRs

Within the dipole approximation, in the limit where the
wavelengthl of the electromagnetic field is much larger than
the wire radiusR, absorption and emission are proportional
to the scalar product of the local electric fieldE and the
interband dipole momentp, averaged over the electron-hole
wave function. The absorption coefficienta can therefore be
written as

asid ~
ukcvuEsid ·pucclu2

uE`u2
, s2d

where i =i, ' are the component parallel and perpendicular
to the wire axis, respectively. There are two main factors that
can cause a polarization dependence in the optical transitions
in a QWR: (i) a discontinuity in the dielectric constant be-
tween the wire and its surroundings;22,23 (ii ) a strong valence
band mixing.20

A. Polarization anisotropy due to dielectric constant
discontinuity

According to Landau theory of dielectric media,32 when
the electric fieldE` of the incident light wave far from the
wire is perpendicular to the wire axis, the amplitude ofE
inside the wire is strongly modulated on the scale of the

nanostructure radius, due to the boundary conditions, result-
ing in32

E' = d ·E`
', s3d

where

d =
2«out

«out + «in
, s4d

and«in and«out are the dielectric constant of the wire and the
surrounding material, respectively. WhenE` is parallel to the
wire axis, no modulation takes place. The degree of linear
polarization is defined as

r =
ai − a'

ai + a'
=

ukcvuEi ·pucclu2 − ukcvuE' ·pucclu2

ukcvuEi ·pucclu2 + ukcvuE' ·pucclu2
, s5d

where we assumedE`
i =E`

'. If E is homogeneous inside the
wire, Eq. (5) becomes

r =
uMcv

i u2 − d2uMcv
' u2

uMcv
i u2 + d2uMcv

' u2
, s6d

where

Mcv
sid = kcvupiuccl. s7d

It follows that if «out=«in (i.e., if d =1) the polarization an-
isotropy in the optical transition is completely determined by
the intrinsic anisotropy of the interband dipole matrix ele-
ments. If, however,d Þ1, there will be a polarization aniso-
tropy component deriving from the discontinuity in the di-
electric constant between wire and surrounding material,
even in the absence of anisotropy inMcv. This effect van-
ishes in spherical objects, where the field distribution due to
boundary conditions does not depend on the light polariza-
tion. A further cause of polarization anisotropy could also
arise in case the electric field were inhomogeneously distrib-
uted inside the wire.22

B. Polarization anisotropy due to valence band mixing

1. Band couplings

In bulk zinc-blende semiconductors with point groupTd
the valence bands can have three symmetries:G8, G7, andG6.
The G8v bands are fourfold degenerate at zone centersk=0d
and have a total angular momentumJ=3/2, with projection
along z Jz= ±3/2 (these bands are also known as heavy-
holes), andJz= ±1/2 (these bands are known as light-holes).
The G7v bands, also called split-off bands, haveJ=1/2, and
Jz= ±1/2 and arelocatedDso below theG8v bands at zone
center. Group theoretical treatments16,18,26,28have long estab-
lished that the characterization of valence band states as
heavy-holes and light-holes is not possible in QWRs, be-
cause the irreducible representations for the hole states in
these structures(see below) do not transform neither like
heavy-hole nor like light-hole, but have a mixed character at
all k. One of the main causes of polarization dependence in
the optical transitions in QWRs is precisely this mixing of
the valence bands. This is in contrast to the case of the quan-
tum well, where the hh and lh states are decoupled at the
zone center.
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There are two types of possible zone-center coupling be-
tween valence bands in a QWR:(i) intraband coupling be-
tween the components(hh, lh) of the bulk G8v-derived
bands:20 G8vsJz=3/2d−G8vsJz=−1/2d and G8vsJz=−3/2d
−G8vsJz=1/2d. According to thek ·p approach,17,19,21 the
highest degree of linear polarization produced by this hh-lh
coupling for the fundamentalh1→e1 (band gap) transition is
60%, independent of wire diameter and composition19 or
orientation.21 (ii ) Interband coupling between the bulk
G8v-derived lh and theG7v-derived split-off bands:G8vsJz

= ±1/2d−G7vsJz= ±1/2d. Citrin and Chang showed28 that, in
square cross-section wires, this lh-split-off coupling affects
the energy position and dispersion of all subbands at the zone
center in QWRs. This is a consequence of the hh-lh coupling
(i) in these wires: in quantum wells, where at zone center
there is no such hh-lh coupling and the valence subbands can
be characterized as pure hh or lh, the heavy-holes do not
couple to the split-off bands fork=0;28 if the hole subbands
in a wire had pure hh or lh character, the inclusion of the
spin-orbit coupling would influence only lh states, leaving hh
states unchanged. As in these wires all energy subbands are
affected when spin-orbit is considered, it follows that all
states have some lh component, i.e., there is lh-hh coupling.
The degree of linear polarization calculated by Citrin and
Chang26 is of the order of 67% in GaAs square cross-section
wires. According to Zheng and co-workers,25 the inclusion of
the lh-split-off coupling in thek ·p treatment leads in
In0.53Ga0.47As cylindrical wires to a diameter- and
temperature-dependentr, which ranges from 40%(for a d
=15 nm wire atT=300 K) to about 80%(for a d=7 nm wire
at the same temperature).

2. Perceived wire symmetry

The magnitude of these band couplings and the polariza-
tion of the interband transitions depend on the symmetry
with which the wire is “seen” by a theoretical model. The
simplest approach isk ·p, where the wire is assumed to be a
continuousmedium(i.e., with no underlying atomistic struc-
ture), modeled as a 2D square well. Within this approach, a
circular cross-section wire has therefore an ideally highC`v
symmetry19 which is independent of its orientation. How-
ever, a real cylindrical wire made of zinc-blende material,
due to its underlying atomic structure, has always a lower
symmetry than that modeled by the continuumk ·p ap-
proach. Furthermore, this symmetry depends on its crystal-
lographic orientation, or growth direction: if grown along the
principal axes[100], [010] or [001] it will have an overall
D2d symmetry, otherwise its symmetry will be even lower. A
cylindrical wire grown along the(111) direction, for ex-
ample, has aC3v symmetry. In order to obtain these two
symmetries within continuum models, however, one must
represent the real circular cross-section wire as having
square26,28 (the groupsC4v and D2d are isomorphic33) and,
respectively, triangular28 cross sections. The problem with
the perceived higher symmetry ink ·p is that the irreducible
representations ofC`v are different from those of the real
D2d, C3v, etc., symmetries. This is discussed in the next sec-
tion.

III. GENERAL PROPERTIES OF WIRES WITH C`v AND
D2d SYMMETRIES

In a C`v wire the irreducible representation of the valence
states atG are characterized19 by the valueFz of the z com-
ponent of their total angular momentumF=J+L (whereL is
the angular momentum of the envelope part andJ the total
angular momentum of the Bloch part of the wave function)
and by their zone-center parity[even(1), or odd(2)] in the
plane perpendicular to the wire, asEFz,n

s±d , wheren refers to
the order of the subband for the particular quantum number
Fz. The conduction subbands are labeled according to their
parity in the plane perpendicular to the wire(henceforth
when referring to “parity” we will always mean parity in the
plane perpendicular to the wire), and the value ofuLzu, as
Cs±dsuLzu d. In what follows we will consider interband tran-
sitions of the formCs±dsuLzu d→EFz,n

s±d [at zone center, transi-
tions between subbands with different parities, i.e.,
Cs±dsuLzu d→EFz,n

s7d , are forbidden]. The allowed transitions can
be divided into two general classes, depending on their po-
larization: (i) mixed polarization(MP) transitions, that have
both perpendicularsxd and parallelszd component[to this
class belongCs0d→E1/2,n, Cs1d→E1/2,n and Cs1d→E3/2,n

(Ref. 19)]; (ii ) single polarization(SP) transitions, that are
polarized only perpendicular to the wire axis, likeCs0d
→E3/2,n.

19

In a C4v square cross-section wire or aD2d cylindrical
wire instead, the conduction and valence subbands haveG6
and G7 symmetry.28 In order to determine the allowed and
forbidden transitions inD2d wires we can resort to consider-
ations similar to those regarding the conservation of the par-
ity quantum number, just made forC`v wires. In this case the
angular momentuml of the envelope function needs to be
conserved, therefore transitions between subbands with dif-
ferent value ofl areformally forbidden. This criterion would
yield the same forbidden transitions inD2d wires as the par-
ity selection rule yielded inC`v wires. However, we find
that, due to the strong confinement, the wire subbands do not
have pure(s, p, d, etc.) character, but receive contributions
from different angular momenta. This leads to a relaxation of
the angular momentum conservation rule inD2d cylindrical
wires. The interbandGi →G j transitions(with i, j =6, 7), can
again be grouped into two classes, as before:(i) the mixed
polarization transitions include onlyGi →Gi transitions,
whereas to(ii ) single polarization transitions belong transi-
tions between subbands with different symmetries. The ex-
planation for the inclusion of a particular transition in one of
the two classes derives from general group theoretical con-
siderations. InC`v, C4v, andD2d wires, the component of the
dipole operator along thez axis transforms as the identity
representation.19 Therefore, inC`v wires transitions between
conduction subbands withLz=0 fCs0dg and valence sub-
bands withFz=3/2 cannot occur if the optical wave is po-
larized along the wire axisz. The same is true for transitions
between subbands with different symmetries inC4v andD2d
wires. Transitions through optical waves polarized perpen-
dicular to the wire are however allowed. Table I summarizes
the allowed polarizations for the different transitions consid-
ered and indicates the class to which each transition belongs.
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IV. ATOMISTIC DESCRIPTION OF D2d WIRES

The electronic structure of a nanostructure is calculated
by solving the single-particle Schrödinger equation:

F−
"2

2m
¹2 + Vsr dGcisr d = eicisr d, s8d

whereVsr d is the potential andei the energy eigenvalues. In
the effective mass approximation,m is taken as theeffective
mass, andV=Vextsr d is an external potential defining the
geometric confinement of the nanostructure. We use a differ-
ent approach, wherem=m0 is the actual(bare) electron mass
and the microscopic pseudopotential of the systemVpssr d is
obtained as a superposition of screened atomic potentials,

Vpssr d = Si,a vasr − Ri,ad, s9d

wherevasr −Ri,ad is the atomic potential for an atom of type
a located at the positionRi,a. The atomic pseudopotentials
are derived from the bulk LDA screened pseudopotential and
fitted to reproduce the measured InAs bulk transition ener-
gies, deformation potentials and effective masses.29 The total
potential is then expressed as

Vsr d = Vpssr d + Vnl, s10d

whereVnl accounts for the nonlocal part of the potential and
includes the SO coupling. In this atomistic approach Eq.(9)
we set up the zinc-blende geometry of the system(nanostruc-
ture plus its surrounding matrix) in a supercell with periodic
boundary conditions. The supercell size is chosen so as to
minimize any interaction between neighboring nanostruc-
tures. This is obtained by increasing the supercell size until
the calculated electron ground state energy does not change
to within 1 meV (the hole energies converge much faster
than the electron energies). We model LCG grown wires as
free-standing, unstrained systems. In order to simulate the
effect of an oxide coating, that is often present after the wire

growth,9 the nanostructures are embedded in a lattice-
matched fictitious wide-gaps,5.6 eVd material. This results
in large band offsets and the absence of strain between ma-
trix and wire. The atoms occupy therefore the ideal positions
of a perfect zinc-blende bulk crystal.

Due to the large number of atoms involved, we solve Eq.
(8) by using thefolded spectrum method,30,31 whereby it is
possible to calculate exactly only selected eigenstates of the
Schrödinger equation around an arbitrary reference energy
eref. In this approach, Eq.(8) is replaced by

F−
"2

2m0
¹2 + Vpssr d + Vnl − erefG2

cisr d = sei − erefd2cisr d,

s11d

which is equivalent to it in the sense that theground stateof
Eq. (11) coincides with the solution of Eq.(8) with energy
closest toeref. Therefore, with this method the band-edge
states can be obtained by choosing the reference energy in-
side the band gap. The minimization procedure is carried out
in a plane-wave basis set using a preconditioned conjugate-
gradients algorithm. More details on this procedure can be
found in Ref. 31. With the single-particle energies and wave
functions thus obtained, we calculate the interband transition
energiesEcv=ec−ev and dipole matrix elements:

Mcv
sid = kcvupiuccl, s12d

where ev, cv and ec, cc are valence and conduction band
eigenenergies and wave functions, respectively, andp is the
momentum operator with coordinatespi si =x,y,zd. The
emission spectrum is then calculated as a function of energy
and temperature according to

Icv
sidsE,Td = C

oc8,v8
uMc8v8

sid u2 e−sE − Ec8v8d
2/ l2

e−sEc8v8−Ecvd / kBT

oc8,v8
e−sEc8v8−Ecvd / kBT

,

s13d

where C is a constant,l is the PL broadening,T is the
temperature, and we take a Boltzmann average, where the
sum overc8v8 is over states that satisfyEc8v8ùEcv, to take
into account temperature effects.

V. RESULTS

In order to investigate the role of microscopic structure
and degree of valence-band coupling in the determination of
the wire optical properties, we calculated dipole matrix ele-
ments and degree of linear polarization for cylindrical wires
with diameters in the range 1–10 nm, both in the finite(W/
SO) and in the zero(N/SO) spin-orbit splitting approxima-
tion. In this way we were able to vary the mixing between
G8-derived andG7-derived bands, which is maximum in the
absence of SO interaction.

A. Single-particle energies of cylindrical InAs wires

Figure 1 shows schematically the electron and hole en-
ergy levels calculated with our atomistic method, together

TABLE I. Summary of the polarizations allowed inC`v, D2d,
andC4v symmetry for the different transitions considered. The di-
rectionsz and x refer to orientations parallel and perpendicular to
the wire axis, respectively. The class to which each transition be-
longs is also indicated: pF and lF stand for parity-Forbidden and
l-(angular momentum)-Forbidden; SP and MP stand for Single and
Mixed Polarization, respectively.

Irrep. Transition Polariz. Class

C`v Cs±d→Es7d pF

Cs0d→E3/2,n x SP

Cs0d→E1/2,n z,x MP

Cs1d→E3/2,n z,x MP

Cs1d→E1/2,n z,x MP

D2d, C4v Dl Þ0 lF

G6→G7 x SP

G7→G6 x SP

G6→G6 z,x MP

G7→G7 z,x MP
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with their main angular momentum component, relative to 3
InAs wire sizes: the thinnest,d=1.2 nm, the thickest,d
=9.6 nm, and an intermediate size,d=3.6 nm. We see that
the energy gap and the energy splitting between the subbands
decreases with increasing wire diameter, owing to the de-
creased size confinement effect. As we will see, this feature
is one of the causes of the different temperature behavior of
the degree of linear polarization with different wire size.

B. Calculated polarizations and the role of dielectric mismatch

Figures 2 and 3 show the dipole matrix elements squared
uMu2 and the relative degree of linear polarization, for the
hi →ej si =1, . . . ,6 andj =1,2,3d transitions with light po-
larized along the wire axis(z-polarized) and perpendicular to
it (x-polarized). Thex- andz-polarized matrix elements rela-
tive to the same transition are offset for clarity. The degree of
linear polarization shown was calculated from Eq.(6) con-
sidering only the anisotropy of the matrix elements but not
the dielectric constant discontinuity between wire and sur-
rounding material(i.e., d=1). Indeedd<1 in a wire covered
by an oxide, where the two materials have similar dielectric
constants. In the case of a free standing wire in vacuum
s«out=1d, because of the small value ofd in Eq. (6), the
anisotropy due to the dielectric constant discontinuity domi-
nates over the contribution due to the matrix element aniso-
tropy. Using our calculated matrix elements and the values of
«in=14.6 for the InAs dielectric constant and«out=1, we find
that the degree of linear polarization of the fundamental tran-
sition h1→e1 assumes values.99% for all wire diameters
considered. On the other hand, if we assume isotropic matrix
elementssM'=Mid in Eq. (6), we obtain for the same sys-
tems the value of 96.8%. Therefore we find that, for a wire in
vacuum, the matrix element anisotropy contributes by less
than 3% to the total anisotropy.

C. Symmetry considerations

Table II summarizes the irreducible representations of the
first 3 conduction and 5 valence subbands inC`v,

19 D2d and
C4v (Ref. 28) wires with similar sizes. In aC`v wire the
lowest conduction subbandCs+ds0d has even parity and is
singly degenerate(excluding spin), whereas the next sub-

FIG. 1. Schematics of the calculated single-particle energy lev-
els (labeled with their main angular momentum component) for 3
InAs D2d cylindrical wires with sizesd=1.2, 3.6, 9.6 nm, respec-
tively. The dashed lines connect, respectively, CBM and VBM in
the different wires. Only a few states are shown that were used in
the calculations of the optical properties.

FIG. 2. (a) Matrix elements
squared and(b) degree of linear
polarization for the interband tran-
sitions hi →ej (i =1, . . . ,5, j
=1,2,3), as a function of the tran-
sition energy for thed=3.6 nm
InAs wire.
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bandCs−ds1d has odd parity and is doubly degenerate(with-
out spin). The uppermost subbandsh1, . . . ,h5 in a d
=10 nm wire at zone center are:19 E1/2,1

s+d , E1/2,2
s−d , E3/2,1

s+d , E3/2,2
s−d ,

and E3/2,3
s+d , respectively. In aL=10 nmC4v square cross-

section wire(whereL is the square side dimension), instead,
the lowest conduction statese1, e2, ande3 haveG6,

26 G7 and
G7 symmetry, respectively. The uppermost valence subbands
h1, . . . ,h5 in this case are28 G6, G7, G6, G7, and G7, respec-
tively. In this work we find that, despite the identical labeling
between theC4v and D2d representations,33 the ordering of
both conduction and valence subbands in aL=10 nmC4v
square cross section andD2d cylindrical wires is different
(see Table II). In fact, although the isomorphism between the
C4v andD2d groups specifies the possible symmetries of the

subbands, it does not pose any constraint on their specific
ordering, a feature which depends, among other factors, on
the magnitude of the confinement. It is therefore not incon-
sistent with our group theoretical considerations that the sub-
bands in cylindrical and square cross-section wires have dif-
ferent order. This fact has important consequences on the
allowed polarizations in several transitions. From Table II we
see that the lowest conduction subbande1 and the uppermost
valence subbandh1 have the same symmetry(and the same
main angular momentum component) in C4v andD2d wires.
As a consequence, the lowest energy transition has the same
polarization(i.e., MP) in both wires. This property can be
expected in general from isomorphic groups, and reflects the
stability of the band edges with respect to perturbations, such
as the change in wire symmetry can be considered to be.
Therefore, by considering a continuous wire with the appro-
priate cross section(i.e., the one that simulates the symmetry
resulting from the underlying crystal structure of the real
wire, as mentioned in Sec. II B 2), one should always be able
to obtain the correct polarization for the ground state transi-
tion. As shown in Table II, however, the similarity between
two isomorphic groups cannot be exploited further to infer
the polarization of higher energy transitions as the ordering
of the remaining subbands might be different in the two
groups. Given the ordering of the subbands shown in Table
II, using the general arguments discussed in Sec. III we can
deduce the polarizations allowed in all the transitions involv-
ing the first 3 conduction and 5 valence subbands in wires
with C`v, C4v, and D2d symmetry. The results are summa-
rized in Table III, which also contains our pseudopotential
results. A consequence of the different subband ordering in
C4v andD2d symmetry is that transitions with particular po-
larizations that are forbidden inC4v symmetry are allowed in
D2d and vice versa. Furthermore Table III also highlights two
other important differences betweenD2d and C4v wires: (i)

TABLE II. Summary of the irreducible representations of the
first 5 valence and 3 conduction subbands in wires withC`v sd
=10 nmd, D2d sdù3.6 nmd, andC4v sL=10 nmd symmetry.

Subband Representation

C`v
a D2d

b C4v
c

e1 Cs+ds0d G6 G6

e2 Cs−ds1d G7 G7

e3 Cs−ds1d G6 G7

h1 E1/2,1
s+d G6 G6

h2 E1/2,2
s−d G7 G7

h3 E3/2,1
s+d G7 G6

h4 E3/2,2
s−d G6 G7

h5 E3/2,3
s+d G6 G7

aReference 19.
bPresent calculation.
cReferences 26 and 28.

FIG. 3. (a) Matrix elements
squared and(b) degree of linear
polarization for the interband tran-
sitions hi →ej (i =1, . . . ,5, j
=1,2,3), as a function of the tran-
sition energy for thed=9.6 nm
InAs wire.
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the different angular momentum composition of the sub-
bands, which is manifested in differentl-forbidden transi-
tions; (ii ) the fact that in continuous wires the subbands al-
ways have purel character, as opposed to atomistic wires
where, as discussed in Sec. III, each subband receives con-
tributions from different angular momentum components.
The angular momentum selection rule is therefore relaxed in
D2d wires and formally forbidden transitions may become
weakly allowed. We find that this mixing ofl character in the
wave functions ofD2d wires increases with decreasing wire
diameter (i.e., with increasing confinement) and with in-
creasing subband position(i.e., h5 and e3 are more mixed
than h1 and e1). This is reflected in the decrease, with in-
creasing wire diameter, of the magnitude of the optical ma-
trix elements relative to the formally angular-momentum-
forbidden transitions [compare Figs. 2(a) and 3(a)].
Furthermore the lower degree of angular momentum compo-
nent mixing ine2 compared toe3 is shown in the fact that,

although both conduction states have mainp character(and
h1 mains), thee2→h1 transition is forbidden(see Table III),
whereas thee3→h1 transition is very weakly allowed[see
Figs. 2(a) and 3(a)].

D. Near band-gap transitionshi\e1

The fundamental band-gaph1→e1 transition has bothz
and x polarizations, but is mainly polarized along the wire
axis in all wire symmetries considered in Table III. We find
that, in the absence of SO interactionsDso=0 eVd, in a cir-
cular cross-section wire with atomisticD2d symmetry it is
100% z-polarized(i.e., theh1 state does not interact at all
with optical waves polarized normal to the wire axis). When
the coupling between bulkG8v- and G7v-derived valence
bands is restored to its actual value(with Dso=0.4 eV in bulk
InAs) the degree of linear polarization decreases by about
20% and becomes size and temperature dependent. Figures 4
and 5 show the temperature dependence of our calculated
dipole matrix elements and degree of linear polarization in
the finite and zero SO approximations. This decrease ofr
from 100% to about 80% with increasing SO splitting, to-
gether with the value of 60% obtained forr in the infinite
spin-orbit approximation,17,19,21show that linear polarization

TABLE III. Summary of the polarization predicted for the tran-
sitions ei →hj si =1,2,3, h=1, . . . ,5d for wires with (atomistic)
D2d sd1=3.6 nm,d2=9.6 nmd and (continuum) C`v sd=10 nmd
andC4v sL=10 nmd symmetry. The main angular momentum com-
ponents obtained in the present calculation for each subband are
indicated in parentheses. The directionsz andx refer to orientations
parallel and perpendicular to the wire axis, respectively. In case of
multiple polarizations, the first direction quoted is the one with the
largest matrix element. We indicate in boldface the polarizations
that are found different betweend1 andd2 for the same transition.
Each transition is also labeled by the class to which it belongs,
according to Table I.

Transition Polarization

EPM k ·p

D2dsd1d D2dsd2d C`v
a C4v

b

e1ssd→h1ssd z,xsMPd z,xsMPd z,xsMPd z,xsMPd
e1ssd→h2spd xsSPd xsSPd pF xsSPd
e1ssd→h3ss,ddc xsSPd xsSPd xsSPd lF

e1ssd→h4spd z,xsMPd xsMPd pF lF

e1ssd→h5sd,sdc z,xsMPd z,xsMPd xsSPd xsSPd

e2spd→h1ssd lF lF pF lF

e2spd→h2spd z,xsMPd z,xsMPd z,xsMPd lF

e2spd→h3ss,ddc x ,zsMPd z,xsMPd pF xsSPd
e2spd→h4spd xsSPd xsSPd z,xsMPd z,xsMPd
e2spd→h5sd,sdc xsSPd lF pF lF

e3spd→h1ssd xsMPd zsMPd pF lF

e3spd→h2spd xsSPd xsSPd z,xsMPd lF

e3spd→h3ss,ddc xsSPd xsSPd pF xsSPd
e3spd→h4spd z,xsMPd z,xsMPd z,xsMPd z,xsMPd
e3spd→h5sd,sdc x ,zsMPd z,xsMPd pF lF

aReference 19.
bThe polarization ofe1→hj transitions is from Ref. 26, that of
transitions involvinge2 ande3 has been deduced from group theory
arguments.
cThe angular momentum componentss andd have similar magni-
tudes.

FIG. 4. (a) Degree of linear polarization of the fundamental
transition h1→e1 as a function of wire diameter, calculated atT
=2 K andT=300 K both considering(W/SO) and not considering
(N/SO) SO splitting.(b) Dipole matrix elements, for the same tran-
sition, polarized parallelszd and perpendicularsxd to the wire axis,
in the finite and zero SO splitting approximations.
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effects in actual 1D systems are due to substantial mixing
between the four bulkG8v- and the twoG7v-derived valence
bands.

The next transitionsh2→e1d, is a G7→G6 transitions in
bothD2d andC4v wires and is therefore allowed to be polar-
ized only perpendicular to the wire axis. Theh2→e1 and the
h4→e1 transitions are forbidden19 in C`v QWRs, due to the
different parity of the electron and hole wave functions. As
discussed above, these transitions would be formally
(angular-momentum) forbidden in ourD2d wires as well.
However, due to the nonzerol =1 component ofe1 we find
that they are weakly allowed: the dipole matrix elements for
these transitions decrease by over one order of magnitude
with increasing wire diameter(i.e., with decreasingl mixing
in e1), from 2.4 nm to 9.6 nm(both becoming less than 1%
of the value of the matrix element relative to the band gap
transition in thed=9.6 nm wire). As theh3→e1 transition is
only x-polarized inC`v wires, the two lowest energy transi-
tions have opposite polarizations inD2d, C4v, andC`v wires.
The fundamental transition is in fact polarized mainly along
the wire axis while the next allowed transition has onlyx
polarization in all symmetries. Theh4→e1 transition, in-
stead, being a transition between twoG6 subbands, can have
both polarizations: however, ind.4.8 nmD2d structures, it
is only polarized perpendicular to the wire. The polarization
component parallel to the wire axis increases from zero34 to
a value which is larger than that of the perpendicular com-
ponent, when the wire diameter decreases from 9.6 nm to 3.6
nm.

Temperature dependence:We find (Figs. 4 and 5) a stron-
ger temperature dependence forrsh1→e1d in thick wires: in
a d=9.6 nm wirer decreases by 10% with a 300 K tempera-
ture increase, compared to a 0.25% decrease in ad
=1.2 nm wire, for the same temperature variation. This size
dependence of the polarization can be understood in terms of
lateral confinement effects. Due to the quantum size effect,
thin wires experience a stronger confinement than thicker
wires, which means that they have a higher kinetic energy
introduced by the confinement. As this kinetic energy is re-
sponsible for the mixing20 of the valence bands at zone cen-

ter, thin wires have also a stronger mixing and therefore a
higher degree of linear polarization. Furthermore, due to the
larger confinement, the hole energy levels are farther apart in
thin wires than they are in thicker wires(see Fig. 1), and
their density of states is lower close to the band edge. There-
fore in thin wires at low temperature theh1→e1 transition is
the most probable and the degree of polarization is high(see
Fig. 6). In the case of thick wires the probability forh2,3
→e1 transitions, which as we mentioned before, unlike the
h1→e1 transition are polarized only perpendicular to the
wire, increases withT. This reduces the degree of linear po-
larization with increasing temperature in thick wires. This is
clearly seen in Fig. 6, where we show the PL polarization
spectra(with 50 meV broadening) around the energy of the
fundamentalh1→e1 transition, calculated atT=2 K and T
=300 K for ad=1.2 nm and ad=9.6 nm wire. The different
density of states also explains the larger blueshift(7 meV) of
the x-polarized PL that takes place in thick wires with a
temperature increase of 300 K, compared to that(2 meV)
occurring in thin wires(Fig. 6). The detectability of PL po-
larization peaks in these wires is, however, closely related to
the experimental line broadening. As shown in Fig. 7, if the
broadening is larger than 20 meV at room temperature(in
typical experimental conditions1 it is .50 meV), the peak in
thex-polarized emission corresponding to theh3→e1 transi-

FIG. 5. Degree of linear polarization of the fundamental transi-
tion h1→e1 as a function of temperatureT for the different wire
diameters considered.

FIG. 6. PL polarization spectra around the energy of the funda-
mentalh1→e1 transition, calculated atT=2 K andT=300 K for a
(a) d=1.2 nm and a(b) d=9.6 nm wire(with 50 meV broadening).
The arrows mark the position in energy of the transitionshi →e1

with i =1, . . . ,5.
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tion, found in Fig. 3, is masked by the broadening of the
fundamental transition in ad=9.6 nm wire. In ad=1.2 nm
wire (Fig. 7), even if the broadening is of the order of 40
meV, the second peak in thex-polarized emission can still be
seen as a shoulder on the high energy side of the main peak,
but is almost completely lost in it for broadeningsù50 meV.
Therefore this peak has not been seen in cylindrical LCG
wires of any size, due to the present experimental accuracy.

E. Higher energy transitions hi\e2,3

Theh1→e2 transition is found to be forbidden in all wires
considered in Table III. Theh2→e2 andh3→e2 transitions in
Fig. 2 (G7→G7 transitions inD2d wires) are bothx- and
z-polarized. The former transition has a stronger parallel
component that increases with wire diameter, while the per-
pendicular component stays almost constant. In theh3→e2
transition [weakly allowed only because of the nonzerol
=2 component of thee2 subband in D2d wires, and
parity-forbidden19 in C`v wires], instead, the perpendicular
component decreases by more than one order of magnitude
with increasingd, becoming smaller than the parallel com-
ponent ford.3.6 nm (see Table III). The h4→e2 and h5
→e2 transitions areG6→G7 transitions inD2d QWRs and
can, therefore, only bex-polarized. The former, however, is
predicted19 to have both polarizations inC`v QWRs, where
the i component is the strongest. Theh5→e2 transition that

we only find very weakly allowed in smallsdø6 nmd D2d

wires, due to the higherl mixing in these structures, is also
formally parity-forbidden in the lower symmetry wires.

Interestingly, the(very weakly allowed inD2d wires)
h1→e3 and h5→e3 transitions, forbidden in low symmetry
wires19 have opposite polarizations in the two wires of Fig.
2: h1→e3 is z-polarized ind.6 nm wires andx-polarized in
dø6 nm wires; inh5→e3 both polarizations are present, but
the ' component decreases with increasingd, becoming
smaller than thei component ford.6 nm.

As a rule we find that whenever a transition is formally
angular-momentum-forbidden inD2d QWRs (and parity-
forbidden in lower symmetry wires), the ' component de-
creases(very often by more than one order of magnitude)
with increasingd in D2d QWRs, resulting either very weak
or nonexistent altogether in thick wires.

F. In-plane optical anisotropies

In an attempt to include microscopic features in thek ·p
treatment in the infinite spin-orbit splitting approximation,
Yamaguchi and Usui21 derived a crystallographic-
orientation-dependent expression for the dipole matrix ele-
ment, which led to an in-plane anisotropy. In the spherical
approximation for the valence bands(in which the Luttinger

FIG. 7. PL polarization spectra atT=300 K calculated for ad
=1.2 nm (a), and ad=9.6 nm (b) wire for different values of the
line broadening.

FIG. 8. (a) In-plane matrix elements squared and(b) degree of
linear polarization for the interband transitionsh4→e1, as a func-
tion of the transition energy measured from the band gap(lower x
axis) and wire diameter(upperx axis), in D2d InAs wires.
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parameterg2=g3) there is no polarization anisotropy in the
plane normal to the wire axis in aC`v wire.21 By including
the effect of valence-band anisotropy, Yamaguchi and Usui21

predicted a weak dependence on the wire orientation for the
polarization alongz, and a strong dependence for the polar-
ization along two perpendicular directionsx andy (both in-
plane) for the fundamental transition in wires oriented in
directions different than[001] and [111]. Furthermore, only

for [001]- and [111]-oriented wires they found no in-plane
anisotropy, i.e.,uMxu= uMyu. For all other orientations the cal-
culated dipole matrix elements alongx andy were different.

Similarly, we find no in-plane anisotropy in the funda-
mental transition inD2d wires. However, higher energy tran-
sitions show polarization anisotropy in the plane perpendicu-
lar to the wire axis. Figures 8 and 9 show thexy-plane(' to
the wire axis) anisotropy we find in theh4→e1 andh5→e1
transitions inD2d QWRs, grown along the[001] direction,
with dù6 nm, where the matrix element along the[110]
direction is different from that along thef110g direction. We
see that theh4→e1 transition is prevalently[110]-polarized
with only the d=9.6 nm wire polarized alongf110g. The
opposite is true for theh5→e1 transition, where the only size
for which the transition is prevalently polarized along[110]
is d=6 nm. However thed=9.6 nm wire is found mainly
polarized alongf110g and thed=6 nm wire mainly along
[110], in both transitions. In all other transitions considered
we found no anisotropy in thexy plane.

VI. SUMMARY

In summary we applied an atomistic, empirical pseudopo-
tential method to calculate optical transitions in free-
standing, unstrained[001]-oriented cylindrical InAs quantum
wires with diameters in the experimentally accessible range
10–100 Å. We found evidence of strong coupling of bulk
G8v- and bulkG7v-derived bands in the size and temperature
dependence of the linear anisotropies of optical transitions in
QWRs. We show that simple approaches, that model the wire
as a continuum with no underlying crystal structure, miss
some optical transitions, due to their strict application of
conservation rules that we found to be relaxed in strongly
confined atomistic nanostructures.
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