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We study persistent currents in semiconductor ballistic rings with spin-orbit Rashba interaction. We use as a
working model the multicomponent Tomonaga-Luttinger liquid which arises due to the nonparabolic disper-
sion relations of electrons in the rings with rather strong spin-orbit coupling. This approach predicts some
characteristic features of persistent currents, which may be observed in experimental studies of semiconductor
ballistic rings.
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I. INTRODUCTION

It has been known for a long time that due to the conser-
vation of the electron phase coherence an isolated metallic
mesoscopic ring threaded by a magnetic flux may carry a
persistent current.1 This quantity, which equals the derivative
of free energy with respect to the flux, has been theoretically
shown to exist in both ballistic rings2 and rings with
disorder.3 The effect of impurities on persistent currents was
studied later in a number of theoretical works.4–9

The experimentally measured currents10–12 in diffusive
metallic rings demonstrated a disagreement with the theoreti-
cally predicted values. This observation has initiated an in-
tensive debate. Several authors have studied the effect of
Coulomb interaction on persistent current,6,13–20either with-
out or with disorder. There is still no total consensus on the
simultaneous effect of impurities and electron-electron
se-ed interactions on persistent current.

On the other hand, the experimental results for ballistic
GaAs/GaAlAs-based rings21 were found to be in good
agreement with the theoretical predictions. For one-
dimensional(1D) systems there is a variety of powerful
methods which allow to treate-e interactions. For instance,
the persistent current in the Hubbard ring with a flux and
Coulomb repulsion can be found from the Bethe ansatz(BA)
solution.13,22 The effects of disorder in the Hubbard model
have been studied in Ref. 18 by means of the bosonization
technique.

It is generally believed that the low-energy physics of 1D
systems can often be described using the Tomonaga-
Luttinger (TL) liquid concept23 (see Refs. 24 and 25 for the
review). In particular, quantum wires made of semiconductor
heterostructures have been found to demonstrate the TL
features.26 Therefore, the TL model appears to be a reason-
able approximation for accounting for different effects in the
1D semiconductor heterostructures.

In Ref. 27 the persistent current has been studied within
the TL model, and the particular emphasis has been made on
the effects of electron number parity. The crucial significance
of parity effects for the persistent current in 1D systems was
recognized quite a long time ago.1,4 In particular, it has been
noticed28 that for a system ofNe interacting spinless fermi-

ons in the TL phase the sign of a current, which reflects the
properties of the ground state, is diamagnetic for oddNe,
while it is paramagnetic for evenNe.

For the case of spin interacting fermions the nature of the
ground state may change depending both on the strength of
Coulomb repulsion and on the relative parity of spin-up and
spin-down electron numbers. For instance,13 in Hubbard
rings with an odd number of electronsNe=Ne↑+Ne↓ the cur-
rent is paramagnetic aroundF=0, and its period is half the
flux quantumF0;hc/e. Meanwhile, in the Hubbard rings
with evenNe and low filling the current is diamagnetic near
zero flux, whereas at densities close to half filling the cur-
rents may become paramagnetic.

In the modern expanding field of spintronics the main
research interest focuses basically on spin injection and spin
detection in solid-state devices.29,30 Semiconductor
InAlAs/ InGaAs-based heterostructures provide promising
opportunities for spin manipulation, because in such materi-
als spin-orbit (SO) splitting of Rashba type30,31 is rather
large, and this allows for especially strong coupling of spin
polarization and electric field. A naturally arising problem is
to understand the effect of SO coupling on such a ground-
state property as persistent current in a mesoscopic ring
made of semiconductor material. Indeed, the issue of SO
effects in noninteracting 1D ballistic rings has been already
addressed in Refs. 32–34. Surprisingly, the exact BA solution
which takes into account the SO effects in the appropriately
modified Hubbard model is also available.35 Persistent cur-
rents in this system have been analyzed on the ground of the
BA solution in Ref. 36. The interplay of Coulomb repulsion
and the SO coupling in combination with the parity effects
leads to the remarkable features in the nature of current:
although the SO interaction does not produce any effect in
the case of a ring with the odd numberNe, the result for
even-Ne rings differs from that of the standard Hubbard
model without SO interaction.

In the regime of low electron densities the 1D system of
interacting electrons with SO coupling can also be described
in terms of a multicomponent TL model. The persistent cur-
rent in the SO-split TL liquid has been studied in Ref. 37
using the approach developed in Refs. 27 and 36.

We have been discussing so far the effects of SO coupling
which are caused by the relative horizontal shift of spin-up
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and spin-down parabolic dispersion curves. In such a situa-
tion the densities of states near the Fermi energy are the
same in each branch, and therefore they can be characterized
by a unique value of the Fermi velocity. However, it has been
recently shown38–40 that the presence of strong SO interac-
tion can qualitatively change the band structure of a 2D elec-
tron gas confined to the 1D geometry. This can be achieved
by applying both a specific lateral confining potential in the
plane of a 2D electron gas and the Rashba potential perpen-
dicular to this plane. The single particle electron spectrum of
thus effectively created ballistic quantum(quasi)-1D wire re-
veals quite a strong deviation from parabolic shape. The ex-
tent of this deviation depends significantly on the relation
between the strength of confining potential and the Rashba
SO coupling constant. In order to capture the physics of the
effective 1D wire with nonparabolic, spin-split spectrum it
has been recently suggested to consider a modified TL model
characterized by two different Fermi velocities41 v1Þv2.
Without loss of generality, this model may be regarded as a
multicomponent TL liquid introduced by Penc and Sólyom.42

The goal of this paper is to study the persistent currents in
the class of the multicomponent TL liquids described above,
emphasizing the features which can be potentially observed
in experiment. In Sec. II we review the derivation of the
dispersion relations in the ring geometry performed in Refs.
34, 43, and 44 presenting it in an optimized form. In particu-
lar, we consider other profiles of the confining potential
which allow us to treat the radial part of the wave function
without any further approximation. We also estimate the pa-
rameterh=sv1−v2d / sv1+v2d, which measures the asymme-
try (nonparabolicity) of the single particle spectrum for the
recently fabricated semiconductor ring with Rashba SO
coupling.45 In Sec. III we outline the basic steps of bosoniza-
tion procedure and thus introduce our notations. We also
quote the main results concerning the multicomponent TL
liquids. We appreciate the importance of the zero-mode con-
tributions to a persistent current and therefore take a special
care of the zero-mode part of the bosonized TL Hamiltonian.
In Secs. IV and V we consider persistent currents in the cases
of canonical and grand canonical ensembles, respectively.
The important issue in these sections is the parity depen-
dence of persistent currents, which in bosonization picture
stems from the topological constraints(selection rules) im-
posed onto the topological excitations(zero modes). We ob-
serve the features of persistent currents caused by the non-
zero value ofh. The discussion of the results obtained is
presented in Sec. VI.

II. MESOSCOPIC RINGS WITH RASHBA INTERACTION:
DISPERSION RELATIONS

The Hamiltonian for a quasi-1D ballistic ring with the
Rashba SO coupling in polar coordinates34,43,44 is a sum of
the radial, angular, and spin-orbit coupling terms

H0
rad= −

"2

2m
S ]2

]r2 +
1

r

]

]r
D + Vsrd, s1d

H0
ang= −

"2

2mr2
S− i

]

]w
− qFD2

, s2d

HSO= aR
sr

r
S− i

]

]w
− qFD + iaRsw

]

]r
, s3d

whereqF=F /F0, m is an effective(band) mass of electron,
aR is the Rashba coupling constant,sr =cosws1+sinws2,
sw=−sinws1+cosws2, and the Zeeman interaction is ne-
glected. The confining potentialVsrd can be modeled by a
singular oscillator potential46
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or by a hard-wall potential
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In these expressionsa can be associated with a mean radius
of the ring andlv;Î" /mv or d can be associated with its
mean width.

We introduce dimensionless parametersl=a2/ lv
2, y

=r / lv, a0=aRma/"2, h=H /"v, and rewrite the integrable
h0

rad and nonintegrable partshw,s;h0
ang+hSO in the new no-

tations
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whereq=−i]w−qF. We can remove the dependence onw in
Eq. (7) (which enters throughsr and sw) by a gauge trans-
formation

hw,s → hw,s8 = eiws3/2hw,se−iws3/2 s8d

and therefore obtain
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Note that due to the transformation(8) the periodic boundary
conditions(at zero flux) for an angular wave function have
changed to the antiperiodic ones.

The radial eigenfunctions

Rnsyd = F Gsn + 1d
Gsn + l + 1dG1/2

Î2yle−y2/2Ln
lsy2d, s10d

whereLn
l is the generalized Laguerre polynomial and
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Rnsyd =Î2

y
sinfpsn + 1dsy − Îl + 1/2dg

for Îl − 1/2, y , Îl + 1/2,

Rnsyd = 0 elsewhere, s11d

correspond to the confining potentials(4) and (5), respec-
tively. In both cases they are labeled byn=0,1, . . ., and nor-
malized according to

E
0

`

yRmsydRnsyddy= dmn. s12d

We would like to emphasize that in our consideration we do
not make use of the approximationl@1, which is usually
employed when the confining potential is modeled by a regu-
lar harmonic oscillator.34,44This becomes an important issue
when the mean radius of the ring is comparable to its mean
width.

We can find the spectra of Eq.(6)

«0
rad= 2n + 1 and«0

rad=
p2sn + 1d2

2
s13d

for a singular oscillator and a hard-wall potentials, respec-
tively, and the matrix elementshmn8 of Eq. (9) in the basis of
Rnsyd:
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Here we denote

amn=E
0

`

yRmsydS1

y
DRnsyddy, s15d

bmn=E
0

`

yRmsydS 1

y2DRnsyddy, s16d

cmn=E
0

`

yRmsydS 1

2y
+

]

]y
DRnsyddy. s17d

It is remarkable44 that the diagonal elementscnn identically
vanish because they correspond to the momentum operator
in polar coordinates.

Ideally, we have to diagonalizehmn8 in the infinite basis
N→` s0øm,nøN−1d. Practically, it can be only done ap-
proximately at some large but finite value ofN. After having
diagonalizedhmn8 , we can perform another—inverse of Eq.
(8)—gauge transformation

hdiag8 → hdiag9 = Shdiag8 S−1, S= e−iws3/2
^ 1N s18d

in order to restore the periodic boundary conditions for an
angular wave function. The formal expression(18) is equiva-

lent to saying that the spin up«n↑8 sqd and spin down«n↓8 sqd
dispersion curves in every bandn must be shifted inq by
−1/2 and +1/2, respectively.

To describe the main qualitative effects of spin-orbit cou-
pling it is sufficient to consider the one-bandsN=1d and
two-bandsN=2d approximations only. We calculate the ma-
trix elements(15)–(17) in the singular oscillator basis(10),
as well as in the hard-wall potential basis(11). In the former
case we have
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l + 3

4
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gsld, s19d
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gsld, s20d
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wheregsld is expressed through theG function

gsld =
Gsl + 1

2d
Gsl + 1d

. s23d

Respectively, in the latter case we havec01=−c10=−8/3 and
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wherek=1,2 correspond toa andb, respectively. It is easy
to compute the integrals in Eqs.(24) and (25) numerically.

In the one-band approximation we find the dispersion re-
lations

h009 = «±sqd =
b00

2
sq − qF 7 qRd2, s26d

whereqR= 1
2sÎ1+4a0

2a00
2 /lb00

2 −1d is the Rashba angular mo-
mentum. The upper sign corresponds to the spin-up branch
and the lower sign—to the spin-down branch. In this ap-
proximation the effect of spin-orbit coupling shows up in the
relative horizontal shift by 2qR of the two parabolic disper-
sion curves.

In the two-band approximation the analytical results are
also available: we can find the solutions of the fourth-order
characteristic equation for 434-matrix (14) and then shift
them according to Eq.(18). However, it is easy to find the
dispersion relations in this case numerically. We use the fol-
lowing estimates for the parameters of the ballistic ring
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which has been studied in the recent experiment45 a
=350 nm,d=180 nm, mean free path.1 mm, m<0.042me.
The Rashba coupling constantaR for the heterostructure
used in this experiment was<0.8310−11 eV m. In other het-
erostructures it can reach even larger values(see, e.g., Ref.
47) in the rangeaR<1–6310−11 eV m. With these param-
eters we can findl=3.78 anda0 in the range 2–12, as
well as the matrix elementsa00=0.50s0.52d, a11=0.47s0.52d,
a01=0.11s0.05d, b00=0.26s0.27d, b11=0.26s0.28d, b01

=0.12s0.05d, andc01=−0.97s−2.67d in the singular oscillator
(hard-wall) potential basis. The results of the band structure
calculations are presented in Figs. 1–4. In each figure the
level «0

radsn=0d is set to zero. We plot the lowest radial band
SO-split into the two subbands(spin up and spin down). In
Fig. 1 we compare the results of the two-band approximation
in the hard wall and the singular oscillator potentials for the
value of the Rashba constanta0=3.0. In Fig. 2 the results of
the two-band and the one-band approximations in the hard-
wall potential are presented ata0=3.0. In Fig. 3 the results of
the two-band and the one-band approximations in the singu-
lar oscillator potential are presented ata0=3.0. In Fig. 4 we
compare the results of the two-band and one-band approxi-

mations in the hard-wall potential ata0=6.0. So, we can see
that the dispersion relations calculated in the ring geometry
appear to be similar to the electron spectra in thewire
geometry.39–41 The common qualitative feature of the wire
and the ring dispersion curves beyond the one-band approxi-
mation is their bending, i.e., the deviation from the parabolic
shape. It emerges already in the two-band approximation,
and including higher bands into consideration would not
qualitatively change the picture. The immediate consequence
of the spectrum bending is the difference in Fermi velocities

vF↑
right Þ − vF↑

left, vF↓
right Þ − vF↓

left. s27d

However, due to the time-reversal symmetry expressed in the
form «↑sqd=«↓s−qd (at zero flux) we still have

vF↑
right = − vF↓

left, vF↓
right = − vF↑

left. s28d

Therefore, we have two distinct(in the absolute value) Fermi
velocitiesv1=vF↑

right andv2=vF↓
right. We introduce the notations

v0=sv1+v2d /2, dv=sv1−v2d /2, and h=dv /v0. For a0=6.0
we make an estimateh,0.27 in the hard-wall confining

FIG. 1. The lowest radial band in the two-band approximation
sa0=3.0d. Solid thick line: hard-wall potential. Dashed thick line:
singular oscillator potential.

FIG. 2. The lowest radial band in the hard-wall potentialsa0

=3.0d. Solid thick line: two-band approximation. Solid thin line:
one-band approximation.

FIG. 3. The lowest radial band in the singular oscillator poten-
tial sa0=3.0d. Dashed thick line: two-band approximation. Dashed
thin line: one-band approximation.

FIG. 4. The lowest radial band in the hard-wall potentialsa0

=6.0d. Solid thick line: two-band approximation. Solid thin line:
one-band approximation.
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potential at the Fermi energy,1.48 measured from
«0

radsn=0d.
Recently, the effects of nonzeroh on two-point41 and

four-point48 correlation functions of the TL liquid have been
studied. In the next sections we would like to consider how
the spectrum bending discussed above modifies the persistent
currents.

III. BOSONIZATION OF THE MULTICOMPONENT
TOMONAGA-LUTTINGER LIQUID

In this section we present the basic steps of bosonization
procedure and the main issues of the TL liquid theory. In
what follows we will use the notations

k =
2pq

L
and x =

Lw

2p

instead ofq andw in order to employ the standard bosoniza-
tion formulas and to have a transparent relation between the
description of the ring and the wire geometries.

Linearization of the spectrum near the Fermi energy
yields the second-quantized Hamiltonian

H = − iv1E dxscR↑
† ]xcR↑ − cL↓

† ]xcL↓d

− iv2E dxscR↓
† ]xcR↓ − cL↑

† ]xcL↑d, s29d

wherecRssxd andcLssxd are the right and the left components
of the fermionic field

cssxd = cRssxd + cLssxd, s= ↑s+ d,↓s− d. s30d

The standard bosonization ansatz reads49

chssxd =
Fhs

Î2pa
eihfs2p/LdNhs−khsgx expf− iÎ2pfhssxdg,

s31d

where h=Rs+d ,Ls−d, Nhs are the topological excitations
(zero modes), andFhs are the Klein factors. One can employ
the mode expansion of the bosonic fields

fhssxd =
i

ÎL
o
k.0

1
Îk

e−ak/2feihkxbkhs − e−ihkxbkhs
† g

in terms of bosonic mode excitationsbkhs
† sbkhsd, a→0 being

a small cutoff parameter. We have also introduced the effects
of a flux and a relative shift of the spin-up and spin-down
dispersion curves by including the boundary term

khs =
k1 + k2

2
+ sh

k1 − k2

2
+ hkF s32d

into the bosonization formula(31). Here k1 and k2 are the
linearization points for the right spin-up and the right spin-
down branches, respectively.

Bosonizing the Hamiltonian(29), we obtain

H = o
k.0

ko
hs

uvhsubkhs
† bkhs +

p

L
o
hs

uvhsuÑhssÑhs + 1d,

s33d

whereuvR↑u= uvL↓u;v1, uvR↓u= uvL↑u;v2 and

Ñhs = Nhs −
L

2p
khs. s34d

The next step is to take into account the standardg4cssd
andg2cssd interactions(forward scattering) which specify the
Tomonaga-Luttinger model.24 In our case we have the two-
component TL liquid, and its continuousskÞ0d part can be
diagonalized by the canonical transformation41 A=sAijd

sbkR↑,bkL↑
† ,bkR↓,bkL↓

† dT = Asdk1+,dk2+
† ,dk1−,dk2−

† dT,

whereAij =Aijsg4cssd ,g2cssd ;dvd. Thus, we obtain

H = o
k.0

ko
n=±

vnsdk1n
† dk1n + dk2n

† dk2nd +
p

4L
FvcKcJ̃c

2 + vsKsJ̃s
2

+
vc

Kc
Ñc

2 +
vs

Ks
Ñs

2 + 2dvsJ̃cÑs + J̃sÑcd + 4v0Ñc + 4dvJ̃sG ,

s35d

where v± is expressed48 through the charge(spin) velocity
vcssd, charge(spin) stiffnessKcssd, anddv.

We note that the zero-mode part in Eq.(35) (the term in
the square brackets) cannot be fully diagonalized by thecon-
tinuouscanonical transformationA, since the charge and spin
current excitations

Jc = NR↑ − NL↑ + NR↓ − NL↓, s36d

Js = NR↑ − NL↑ − NR↓ + NL↓, s37d

as well as the charge and spin number excitations

Nc = NR↑ + NL↑ + NR↓ + NL↓, s38d

Ns = NR↑ + NL↑ − NR↓ − NL↓ s39d

take integer values, and therefore they can be only trans-
formed by amodulartransformation which maps a grid onto
itself. For this reason the grand partition functionJ0 corre-
sponding to zero modes cannot be expressed in terms of the
standard Jacobian theta functions50 as it occurs in the spin-
less case27 and even in the spinful case with spin-orbit
coupling.37 It is exactly the spectrum asymmetry parameter
dv that violates the factorization ofJ0 into differentJc, Js,
Nc, Ns sectors. In the canonical ensemble the factorization of
the partition functionZ0 is still possible, but the terms pro-
portional todv would also cause some modification.

In Eq. (35) we have also introduced

J̃c = Jc − 4qF, J̃s = Js − 4dq, s40d

Ñc = Nc − 4q0, Ñs = Ns, s41d

with
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q0 =
Lsk1 + k2d

4p
, qF, dq =

Lsk1 − k2d
4p

, qR. s42d

The similarity sign turns into the equality sign for the one-
band approximation, i.e., when we deal with the parabolic
dispersion relations. The first expression in Eq.(40) also
shows that the entire dependence on the magnetic flux is
contained in the zero-mode part of the Hamiltonian(35), and
therefore it is sufficient to calculateZ0sJ0d in order to find
the persistent currents in the(grand) canonical ensemble.

IV. PERSISTENT CURRENTS:
FIXED NUMBER OF ELECTRONS

In the case of a fixed number of electrons persistent cur-
rent equals

IsFd = −
d

dF
DFsFd, s43d

whereDFsFd is an oscillating part of the free energy. In the
following we adopt the units in whichF0=1 and introduce
the characteristic scale for a currentI0;4pv0/L.

In the canonical ensemble the charge and spin number
excitations are forbidden:Nc=Ns;0. Therefore, different to-
pological sectors disentangle, and we find

DFsFd = − T ln o
hJc,Jsj

e−H0sFd/T s44d

summing over hJc,Jsj sectors. We have introduced the
Hamiltonian

H0sFd =
p

4L
fvcKcsJc − 4qFd2 + vsKssJs − 4qR

effd2g s45d

along with the effective Rashba angular momentum[see Eq.
(42)]

qR
eff = dq +

2q0 − 1

2vsKs
dv. s46d

The curly brackets inhJc,Jsj mean that the certain topo-
logical constraints are imposed onto the pair of valuesJc, Js.
These constraints, or selection rules, are different for differ-
ent parities of the electron number. This gives rise to the
parity dependence of persistent currents.1,4 Before discussing
it in further details, we are already able to state that the
whole effect of the spectrum asymmetry in the case of fixed
number of electrons is the renormalization of the Rashba
angular momentum(46).

The topological constraints in question have been derived
in Ref. 27 for spinless TL liquid, and the case of the spin-1

2
TL liquid has been considered later on by different
authors.37,51,52In what follows we will use the formulation of
Ref. 52.

A. Ne=4N0+2 and Ne=4N0

When the number of electrons in the ring equals toNe
=4N0+2, we have the following possible combinations of
hJc,Jsj:

h4nc,4nsj, h4nc + 2,4ns + 2j. s47d

The summations overnc and ns are unconstrained and run
from −` to `. Using the properties of the Jacobian theta
functions(Appendix A), we can find that the persistent cur-
rent I s1dsqFd equals

pT
u38spqF,gcdu3spqR

eff,gsd + u48spqF,gcdu4spqR
eff,gsd

u3spqF,gcdu3spqR
eff,gsd + u4spqF,gcdu4spqR

eff,gsd
,

s48d

where

gcssd = e−pLT/vcssdKcssd. s49d

In the casedv=0 we find the agreement between Eq.(48)
and the respective expression of Ref. 37. Considering further
the noninteracting limit

gc = gs = g ; e−pLT/v0, s50d

we can simplify Eq.(48) down to

I s1dsqFd = o
n=1

`
4pTs− 1dn

sinhs2p2nT/I0d
coss2pnqRdsins2pnqFd,

s51d

and recover the result of Ref. 33. ForNe=4N0 we can find
the persistent current by the mere shift of the argument

I s2dsqFd = I s1dsqF + 1/2d, s52d

which is valid in both noninteracting33 and interacting51 con-
siderations.

B. Ne=4N0+1 and Ne=4N0+3

WhenNe=4N0+1 orNe=4N0+3, i.e., for the odd electron
number, we have to sum in Eq.(44) over the following com-
binations ofhJc,Jsj:

h4nc + 1,4ns + 1j,h4nc + 1,4ns + 3j,

h4nc + 3,4ns + 1j,h4nc + 3,4ns + 3j. s53d

We can then find

I s3dsqFd = o
n=1

`
4pT

sinhspnLT/vcKcd
sins4pnqFd. s54d

It is remarkable that the result does not depend onqR
eff, and

therefore the spin-orbit coupling does not show up in this
case at all. In the noninteracting limitvc=v0 andKc=1, and
we are again in agreement with Ref. 33.

We note that our result differs from that expressed in for-
mula (13) of Ref. 37. This happens because the latter as-
sumes the account of the just two combinations ofhJc,Jsj:
either given by the first line of Eq.(53) or by the second one.
Such assumption effectively forbids spin-flip processes, and
therefore leads to breaking of the time-reversal symmetry
and to appearance of anomalous currents at zero flux. On the
contrary, we keep all possible combinations in Eq.(53), and
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thus explicitly maintain the time-reversal symmetry. There-
fore, we always getI s3ds0d=0, as it follows from Eq.(54).

V. PERSISTENT CURRENTS:
FIXED CHEMICAL POTENTIAL

Let us now consider the case when the mesoscopic ring is
weakly coupled to the reservoir with chemical potentialm. In
this situation the charge and spin number excitations are al-
lowed. For this reason the terms mixingJ and N sectors in
Eq. (35) do not vanish, and therefore the consequences of the
spectrum asymmetrysdvÞ0d may become more diverse.

In order to find the persistent current

IsF,md = −
d

dF
DVsF,md, s55d

we need to calculate the oscillating part of the thermody-
namic potential

DVsF,md = − T ln o
hJc,Nc,Js,Nsj

e−H0sF,md/T, s56d

where the curly brackets inhJc,Nc,Js,Nsj again mean the
topological constraints, and

H0sF,md =
p

4L
FvcKcJ̃c

2 + vsKsJ̃s
2 +

vc

Kc
Ñc

2 +
vs

Ks
Ñs

2

+ 2dvsJ̃cÑs + J̃sÑcd + 4v0Ñc + 4dvJ̃sG − mNc.

s57d

Due to dvÞ0 different topologicalJ and N sectors remain
entangled. We can rewrite 16H0sF ,md / I0 (up to some irrel-
evant additive constant term) in the form

lcsJc − zFd2 + 2hsJc − zFdsNs − zBd + nssNs − zBd2

+ lssJs − zRd2 + 2hsJs − zRdsNc − zmd + ncsNc − zmd2

with h and I0 introduced in Secs. II and IV, respectively,

lcssd =
vcssdKcssd

v0
, ncssd =

vcssd

Kcssdv0
, s58d

and

zF = 4qF, zR = 4Sdq −
hsfm + ncd

2sncls − h2dD , s59d

zB = 0, zm = 4Sq0 +
fmls + h2

2sncls − h2dD . s60d

In the above expressionsfm=smpL /v0d−1 measures the dif-
ference between the chemical potential and the Fermi energy,
and zB is some argument, which would have been nonzero,
had we included the Zeeman interaction.

We remark that the charging energyEc and the gate volt-
ageVg are not explicitly included in Eq.(57). We infer that
they can be effectively taken into account by redefininglc
→lc+16Ec/ I0 andm→m+eVg, respectively.

In Appendix B we introduce auxiliary functions
GszF ,zB,zR,zmd and G8szF ,zB,zR,zmd, which allow us to
conveniently expressJsF ,md=e−DVsF,md/T and IsF ,md for
different electron numbersNe in the ground state(at T=0
and F=0). In the noninteracting limit and/or in the limith
=0 the functionsG andG8 can be simplified and rewritten in
terms of the standard Jacobian theta functions(due to the
relations quoted in Appendix A). In general, they are ex-
pressed in terms of the Siegel theta functions53 (i.e., theta
functions of higher degree), and therefore it is not straight-
forward to establish their asymptotics. However, for small
enough temperatures the functionsG and G8 can be easily
computed numerically.

A. Ne=4N0+2 and Ne=4N0 in the ground state

The selection rules formulated in Ref. 52 are also appli-
cable in our consideration. Thus, forNe=4N0+2 electrons in
the ground state we have to choose thoseJ’s andN’s which
satisfy the following requirements.

(1) Jc and Nc are either simultaneously even or simulta-
neously odd. The same holds forJs andNs.

(2) Jc±Js+Nc±Ns takes values…, −4, 0, 4,… .
In fact, this concisely formulated prescription assumes the
summation over 16 different combinations ofhJc,Nc,Js,Nsj
(see Appendix B). Having properly performed it, we obtain

J1sF,md = GszF,zB,zR,zmd, s61d

J18sF,md = G8szF,zB,zR,zmd, s62d

and

I s1dsF,md = 2pT
J18sF,md
J1sF,md

. s63d

In the noninteracting limitlcssd=ncssd=1 the persistent
current(63) equals

4pTo
n=1

`

s− 1dn3sin
pn

2
zF8 cos

pn

2
zR8

sinh
4Tp2n

I0s1 + hd

+

sin
pn

2
zB8 cos

pn

2
zm8

sinh
4Tp2n

I0s1 − hd
4 ,

s64d

where

zF8 = zF + zB, zR8 = zR + zm, s65d

zB8 = zF − zB, zm8 = zR − zm. s66d

Recalling thatzB=0, we can easily establish the Fourier co-
efficientsIn of the series

Eq. s64d = o
n=1

`

In sin 2pnqF. s67d

In the limit T→0 we find thatIn equals

2I0
s− 1dn

pn
Fcos

pn

2
zR cos

pn

2
zm + h sin

pn

2
zR sin

pn

2
zmG .

So, we obtain additional modulation due tohÞ0.
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In the limit h=0 the grand partition function(61) is pro-
portional to

o
i=1

4

uiSp

2
zF,ac

4DuiSp

2
zR,as

4DuiSp

2
zm,bc

4DuiSp

2
zB,bs

4D
s68d

with

acssd = e−Tp2/I0lcssd, bcssd = e−Tp2/I0ncssd. s69d

The coefficient of proportionality in Eq.(68) is omitted,
since it does not depend onzF and therefore becomes unim-
portant for the calculation of the persistent current(63) in
this limit. We note that the expression(68) coincides with
that derived in Ref. 37.

In Figs. 5–7 the persistent currents for the ring withNe
=4N0+2 electrons in the ground state(i.e., atT=0) are pre-
sented atT=0.005I0. To parametrize thee-e interactions we
use the relation between the parameters of the TL model and
the Hubbard model at low densities25 lc=ls=1, nc=1+u,
ns=1−u, whereu=U /pv0 andU is an interaction parameter
in the Hubbard model. Other parameters aredq=0.15, q0
=0.04, fm=0.11.

In Figs. 5 and 6 we show how the persistent current in
rings with interactingsu=0.4d and noninteractingsu=0.0d
electrons is modified when we vary the spectrum asymmetry
parameterh. One can see that in the first case increasingh
develops a paramagnetic “tooth” nearqF=0, while in the
second case alteringh changes the size of the diamagnetic
“tooth” nearqF=1/2.

The dependence of the persistent current ath=0.3 on the
interaction parameteru is depicted in Fig. 7. Of course, an
alteration of other parametersdq, q0, fm may also change the
picture of the current, but it is obvious that the modification
due toh is remarkable. The results forNe=4N0 are obtained
by the shift in eitherzF or zm (see, e.g., Ref. 51):

J2sF,md = GszF + 2,zB,zR,zmd ; GszF,zB,zR,zm + 2d,

s70d

and similarly forI s2dsF ,md.

B. Ne=4N0+1 and Ne=4N0+3 in the ground state

First of all, we would like to remark that the ground state
with the odd electron number(Ne=4N0+1 or Ne=4N0+3)
can be justified only for repulsive interactions at very low
temperatures:T!U /L, I0u (see, e.g., Ref. 51 for the discus-
sion). In this case we can formulate the selection rules in
terms of the functionG and thus obtain the following expres-
sion for the grand partition function:

J3sF,md = GszF + 1,zB,zR + 1,zmd + GszF + 1,zB,zR − 1,zmd,

s71d

J38sF,md = G8szF + 1,zB,zR + 1,zmd

+ G8szF + 1,zB,zR − 1,zmd. s72d

Respectively,

I s3dsF,md = 2pT
J38sF,md
J3sF,md

. s73d

In the noninteracting limit the grand partition function
(71) is proportional to

FIG. 5. Persistent currentsI / I0 vs flux F /F0 at u=0.4 and dif-
ferent values ofh (fixed m, Ne=4N0+2).

FIG. 6. Persistent currentsI / I0 vs flux F /F0 at u=0.0 and dif-
ferent values ofh (fixed m, Ne=4N0+2).

FIG. 7. Persistent currentsI / I0 vs flux F /F0 at h=0.3 and
different values ofu (fixed m, Ne=4N0+2).
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u4Sp

2
zF9 ,g+Du4Sp

2
zB9,g−Du3Sp

2
zR9,g+Du3Sp

2
zm9 ,g−D

+ u3Sp

2
zF9 ,g+Du3Sp

2
zB9,g−Du4Sp

2
zR9,g+Du4Sp

2
zm9 ,g−D ,

whereg±=e−4Tp2I0s1±hd and

zF,R9 =
zF + zR

2
±

zB + zm

2
, zB,m9 =

zF − zR

2
±

zB − zm

2
.

In the limit h=0 the grand partition function(71) is pro-
portional to

u4Sp

2
zF,ac

4Du3Sp

2
zB,bs

4Du4Sp

2
zR,as

4Du3Sp

2
zm,bc

4D
+ u3Sp

2
zF,ac

4Du4Sp

2
zB,bs

4Du3Sp

2
zR,as

4Du4Sp

2
zm,bc

4D .

If we put in this expressionzR=zB=0 (no spin-orbit coupling
and no magnetic field) and as=bs, we obtain the formula
equivalent to that derived in Ref. 51:

J3sF,md , Fu3Sp

2
zF,ac

4Du4Sp

2
zm,bc

4D
+ u4Sp

2
zF,ac

4Du3Sp

2
zm,bc

4DG . s74d

In Fig. 8 we present the persistent currents atu=0.4 and
different values ofh, other parameters being the same as in
the even-Ne case. One can observe that in the presence of
hÞ0 the persistent current is modified considerably. In par-
ticular, the effects of SO coupling show up in the grand
canonical ensemble in the ring with odd number of electrons
in the ground state, in contrast to the ring with fixed odd
number of electrons where such effects are absent[see Eq.
(54)]. Due tohÞ0 there also happen transitions between the
diamagnetic and paramagnetic behavior atqF

=0, ±1/4, ±1/2, . . ., and forsome particular value ofh
(which is close to 0.45 foru=0.4) a period-halving occurs
(i.e., the period becomes equal toqF /4).

VI. CONCLUSIONS

We have demonstrated that the account of the higher ra-
dial subbands leads to the modification of the spectrum of
electrons in the ring geometry. In particular, the dispersion
relations obtained are characterized by two different Fermi
velocities. Therefore, in order to describe the joint effect of
the e-e interactions and spin-orbit coupling in ballistic rings
it is reasonable to consider the multicomponent Tomonaga-
Luttinger model. The interplay between the spin-orbit split-
ting, nonparabolicity of the spectrumshÞ0d, e-e interac-
tions and parity effects is reflected in the spectral properties
of persistent currents. We have studied this within both ca-
nonical and grand canonical ensembles. Below we summa-
rize the basic features of persistent currents caused by the
subband nonparabolicity.

In Sec. IV we have shown that in the rings with the fixed
electron number persistent currents forhÞ0 do not change a
lot compared to the caseh=0. The reason for that is the
specific selection rule dictated by the particle conservation in
the system. On the other hand, in the rings with fixed chemi-
cal potential we have observed considerable modifications.
Thus, for the even number of electrons in the ground state
we have obtained the generation of new harmonics and com-
plication of the current shape. We have observed how the
picture changes if we vary the effective Coulomb interaction
parameteru, while fixing the effective nonparabolicity pa-
rameterh, and vice versa, and found these changes remark-
able. The modification of the current in the case of odd num-
ber of particles in the ground state appears to be even more
drastic: varyingh we can perform the transition from dia-
magnetic to paramagnetic behavior at the flux valuesF
=0, ±F0/4 , ±F0/2 , . . . . This makes the current essentially
different from that derived from the parabolic dispersion re-
lations for the same parity. We therefore conclude that the
nonparabolicity of the single particle electron spectrum pro-
duces a deep entanglement of thee-e repulsion and spin-
orbit coupling parameters, and this leads to the new features
of the current, which can be detected experimentally.

Recently, there has been the certain development in fab-
rication of toroidal carbon nanotubes,54 and in the study of
persistent currents in such systems.55 Since the electronic
spectrum in carbon nanotubes deviates considerably from the
parabolic shape, we expect our results to be applicable in
such realization as well, provided the selection rules are
properly modified.

Finally, we would like to mention that a certain analogy
between the persistent current in a TL ring and the Josephson
current in a superconductor-quantum wire-superconductor
junction exists. The effects of thechiral symmetry breaking
(i.e., of the nonparabolicity of electron spectrum in a TL wire
with strong Rashba coupling) on the Josephson current in the
latter system have been recently studied in Ref. 56.
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APPENDIX A: PROPERTIES OF THE JACOBIAN THETA
FUNCTIONS

We use the following definition of the Jacobian theta
functions:50

u1sz,gd = 2g1/4o
n=0

`

s− 1dngnsn+1d sins2n + 1dz, sA1d

u2sz,gd = 2g1/4o
n=0

`

gnsn+1d sins2n + 1dz, sA2d

u3sz,gd = 1 + 2o
n=1

`

gn2
cos 2nz, sA3d

u4sz,gd = 1 + 2o
n=1

`

s− 1dngn2
cos 2nz. sA4d

Note that an alternative definition exists which uses the dif-
ferent argumentz→pz.

Functionsu3 andu4 are periodic under the shiftz→z+p,
while u1 andu2 change their signs. Note also that

u3Sz+
p

2
,gD = u4sz,gd,u2Sz+

p

2
,gD = − u1sz,gd.

Making Poisson resummation, it is easy to prove the use-
ful formulas

o
k=−`

`

e−ask + zd2 =Îp

a
u3spz,e−p2/ad, sA5d

o
k=−`

`

s− 1dke−ask + zd2 =Îp

a
u2spz,e−p2/ad. sA6d

From the relations

u3,2s2z,g4d =
1

2
fu3sz,gd ± u4sz,gdg, sA7d

it is easy to deduce that

u3s2z1,g1
4du3s2z2,g2

4d + u2s2z1,g1
4du2s2z2,g2

4d

=
1

2
u3sz1,g1du3sz2,g2d +

1

2
u4sz1,g1du4sz2,g2d, sA8d

u3s2z1,g1
4du3s2z2,g2

4d − u2s2z1,g1
4du2s2z2,g2

4d

=
1

2
u3sz1,g1du4sz2,g2d +

1

2
u4sz1,g1du3sz2,g2d. sA9d

Moreover, forg1=g2;g

Eq. sA8d = u3sz1 + z2,g
2du3sz1 − z2,g

2d, sA10d

Eq. sA9d = u4sz1 + z2,g
2du4sz1 − z2,g

2d. sA11d

The following identity also holds

o
i=1

4

uisz1,gduisz2,gduisz3,gduisz4,gd

= 2u3sz19,gdu3sz29,gdu3sz39,gdu3sz49,gd, sA12d

where

z1,29 =
z1 + z2

2
±

z3 + z4

2
, z3,49 =

z1 − z2

2
±

z3 − z4

2
.

In Ref. 50 one can also find useful expressions for the
logarithmic derivativesui8sz,gd /uisz,gd.

APPENDIX B: TOPOLOGICAL CONSTRAINTS FOR
FIXED CHEMICAL POTENTIAL

The topological constraints formulated in Ref. 52 forNe
=4N0+2 electrons in the ground state lead to the following
possible combinations ofhJc,Nc,Js,Nsj:

h4nc,4mc,4ns,4msj,

h4nc + 2,4mc + 2,4ns + 2,4ms + 2j,

h4nc + 2,4mc + 2,4ns,4msj,

h4nc,4mc,4ns + 2,4ms + 2j,

h4nc,4mc + 2,4ns,4ms + 2j,

h4nc,4mc + 2,4ns + 2,4msj,

h4nc + 2,4mc,4ns,4ms + 2j,

h4nc + 2,4mc,4ns + 2,4msj,

h4nc + 1,4mc + 1,4ns + 1,4ms + 1j,

h4nc + 3,4mc + 3,4ns + 3,4ms + 3j,

h4nc + 1,4mc + 1,4ns + 3,4ms + 3j,

h4nc + 3,4mc + 3,4ns + 1,4ms + 1j,

h4nc + 1,4mc + 3,4ns + 1,4ms + 3j,

h4nc + 1,4mc + 3,4ns + 3,4ms + 1j,

h4nc + 3,4mc + 1,4ns + 3,4ms + 1j,

h4nc + 3,4mc + 1,4ns + 1,4ms + 3j. sB1d
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Therefore, we have to perform 16 differentunconstrained
summations overnc, mc, ns, ms from −` to `.

Let us define for convenience the functions(see Ref. 53)

f1szF,zBd = o
nc,ms=−`

`

e−I0h1szF,zBd/T, sB2d

f2szR,zmd = o
ns,mc=−`

`

e−I0h2szR,zmd/T, sB3d

where

h1szF,zBd = lcSnc −
zF

4
D2

+ nsSms −
zB

4
D2

+ 2hSnc −
zF

4
DSms −

zB

4
D ,

h2szR,zmd = lsSns −
zR

4
D2

+ ncSmc −
zm

4
D2

+ 2hSns −
zR

4
DSmc −

zm

4
D ,

and we must demandnslc−h2.0 andncls−h2.0 to ensure
the convergence of the series in Eqs.(B2) and (B3). Note
that the functionsf1 and f2 have period 4 in each argument.

If we introduce

gszF,zB,zR,zmd

= ff1szF,zBd + f1szF + 2,zB + 2dg

3ff2szR,zmd + f2szR + 2,zm + 2dg + ff1szF,zB + 2d

+ f1szF + 2,zBdgff2szR,zm + 2d + f2szR + 2,zmdg,

then it becomes easy to see that the grand partition function
equals

GszF,zB,zR,zmd ; gszF,zB,zR,zmd

+ gszF + 1,zB + 1,zR + 1,zm + 1d.

sB4d

We can also define

f18szF,zBd =
I0

2T
o

nc,ms

flcs4nc − zFd + hs4ms − zBdg

3 e−I0h1szF,zBd/T, sB5d

as well asg8 andG8 replacingf1 by f18 in the above defini-
tions.

In the noninteracting limit

h1szF,zBd =
1 + h

2
Snc + ms −

zF + zB

4
D2

+
1 − h

2
Snc − ms −

zF − zB

4
D2

.

So, we can transformnc, ms by a modular transformation.
Similarly, we can proceed withh2 andns, mc.

In the limit h=0 the sumf1szF ,zBd+ f1szF+2,zB+2d is
proportional to

u3Sp

4
zF,acDu3Sp

4
zB,bsD + u4Sp

4
zF,acDu4Sp

4
zB,bsD ,

while f1szF+2,zBd+ f1szF ,zB+2d is proportional to

u3Sp

4
zF,acDu4Sp

4
zB,bsD + u3Sp

4
zF,acDu4Sp

4
zB,bsD ,

whereac andbs are given by Eq.(69). Similar relations hold
for f2. Using Eqs.(A8) and (A9), one can establish the ex-
pression(68).

For the odd number of electrons in the ground state one
can also establish the selection rules and calculate the grand
partition function. In terms of the functionG it is presented
in Eq. (71). An alternative way to expressJ3sF ,md is to
introduce

G̃szF,zB,zR,zmd ; g̃szF,zB,zR,zmd

+ g̃szF + 1,zB + 1,zR + 1,zm + 1d,

sB6d

where

g̃szF,zB,zR,zmd

= gszF + 1,zB,zR + 1,zmd + gszF + 1,zB,zR − 1,zmd

= f̃1szF,zBd f̃2szR,zmd sB7d

and

f̃1szF,zBd = f1szF + 1,zBd + f1szF + 1,zB + 2d

+ f1szF + 3,zBd + f1szF + 3,zB + 2d,

f̃2szR,zmd = f2szR + 1,zmd + f2szR + 1,zm + 2d

+ f2szR + 3,zmd + f2szR + 3,zm + 2d.

One can show that the functionsf̃1 and f̃2 have period 2 in
each argument and equal to

f̃1szF,zBd = o
ñc,m̃s=−`

`

e−I0h̃1szF,zBd/T, sB8d

f̃2szR,zmd = o
ñs,m̃c=−`

`

e−I0h̃2szR,zmd/T, sB9d

where
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h̃1szF,zBd =
1

4
FlcSñc −

zF + 1

2
D2

+ nsSm̃s −
zB

2
D2

+ 2hSñc −
zF + 1

2
DSm̃s −

zB

2
DG ,

h̃2szR,zmd =
1

4
FlsSñs −

zR + 1

2
D2

+ ncSm̃c −
zm

2
D2

+ 2hSñs −
zR + 1

2
DSm̃c −

zm

2
DG .

In the noninteracting limit

h̃1szF,zBd =
1 + h

8
Sñc + m̃s −

zF + zB + 1

2
D2

+
1 − h

8
Sñc − m̃s −

zF − zB + 1

2
D2

,

and we transformñc, m̃s by a modular transformation. Simi-

larly, we proceed withh̃2 and ñs, m̃c. The limit h=0 for f̃1

and f̃2 is straightforward.
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