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Persistent currents in a multicomponent Tomonaga-Luttinger liquid: Application to a
mesoscopic semiconductor ring with spin-orbit interaction
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We study persistent currents in semiconductor ballistic rings with spin-orbit Rashba interaction. We use as a
working model the multicomponent Tomonaga-Luttinger liquid which arises due to the nonparabolic disper-
sion relations of electrons in the rings with rather strong spin-orbit coupling. This approach predicts some
characteristic features of persistent currents, which may be observed in experimental studies of semiconductor
ballistic rings.
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I. INTRODUCTION ons in the TL phase the sign of a current, which reflects the

. properties of the ground state, is diamagnetic for dgd
It has been known for a long time that due to the conserwhile it is paramagnetic for eveN,.

vation of the electron phase coherence an isolated metallic For the case of spin interacting fermions the nature of the
mesoscopic ring threaded by a magnetic flux may carry ground state may change depending both on the strength of
persistent curreritThis quantity, which equals the derivative Coulomb repulsion and on the relative parity of spin-up and
of free energy with respect to the flux, has been theoreticallgpin-down electron numbers. For instaféen Hubbard
shown to exist in both ballistic ringsand rings with  rings with an odd number of electrong=N¢; +Ng, the cur-
disorder The effect of impurities on persistent currents wasrent is paramagnetic arouribl=0, and its period is half the
studied later in a number of theoretical wofk8. flux quantum®,=hc/e. Meanwhile, in the Hubbard rings
The experimenta”y measured Curré—ﬁ'téz in diffusive with eVenNe and low f|”|ng the current is diam«':ignetic near
metallic rings demonstrated a disagreement with the theoret%€r0 flux, whereas at densities close to half filling the cur-
cally predicted values. This observation has initiated an in/€Nts may become paramagnetic. _ _ _
tensive debate. Several authors have studied the effect of !N the modern expanding field of spintronics the main
Coulomb interaction on persistent curréf-2either with- research interest focuses basically on spin injection and spin

; ; o Y .30 .
out or with disorder. There is still no total consensus on th detection in solid-state devicé¥: Semiconductor

simultaneous effect of impurities and electron-electrorﬁinAlAS/InGa’A‘S'baseOI heterostructures provide promising

(e-€) interactions on persistent current opportunities for spin manipulation, because in such materi-

I in-orbit (SO) splitti f Rashba typ€3!is rather
On the other hand, the experimental results for ballisti als spin-orbit(SO) splitting of Rashba typ&™" |

; : Yarge, and this allows for especially strong coupling of spin
GaAs/GaAlAs-based rings were found to be in good polarization and electric field. A naturally arising problem is

agreement with the theoretical predictions. For oneyg ynderstand the effect of SO coupling on such a ground-
dimensional(1D) systems there is a variety of powerful state property as persistent current in a mesoscopic ring
methods which allow to treat-e interactions. For instance, made of semiconductor material. Indeed, the issue of SO
the persistent current in the Hubbard ring with a flux andeffects in noninteracting 1D ballistic rings has been already
Coulomb repulsion can be found from the Bethe anéBfr)  addressed in Refs. 32—34. Surprisingly, the exact BA solution
solution!®2?? The effects of disorder in the Hubbard model which takes into account the SO effects in the appropriately
have been studied in Ref. 18 by means of the bosonizatiomodified Hubbard model is also availaSfePersistent cur-
technique. rents in this system have been analyzed on the ground of the
It is generally believed that the low-energy physics of 1DBA solution in Ref. 36. The interplay of Coulomb repulsion
systems can often be described using the Tomonagand the SO coupling in combination with the parity effects
Luttinger (TL) liquid concept® (see Refs. 24 and 25 for the leads to the remarkable features in the nature of current:
review). In particular, quantum wires made of semiconductoralthough the SO interaction does not produce any effect in
heterostructures have been found to demonstrate the Tihe case of a ring with the odd numbi, the result for
features’® Therefore, the TL model appears to be a reasonevenN, rings differs from that of the standard Hubbard
able approximation for accounting for different effects in themodel without SO interaction.
1D semiconductor heterostructures. In the regime of low electron densities the 1D system of
In Ref. 27 the persistent current has been studied withifinteracting electrons with SO coupling can also be described
the TL model, and the particular emphasis has been made dn terms of a multicomponent TL model. The persistent cur-
the effects of electron number parity. The crucial significanceent in the SO-split TL liquid has been studied in Ref. 37
of parity effects for the persistent current in 1D systems wasising the approach developed in Refs. 27 and 36.
recognized quite a long time add.In particular, it has been We have been discussing so far the effects of SO coupling
noticed® that for a system oN interacting spinless fermi- which are caused by the relative horizontal shift of spin-up
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and spin-down parabolic dispersion curves. In such a situa- o,
tion the densities of states near the Fermi energy are the Hso= AR
same in each branch, and therefore they can be characterized

by a unique value of the Fermi velocity. However, it has been _ : :
recently showff—*°that the presence of strong SO interac-Whereqq’_q)/q)O’ mis an effective(bang mass of electron,

. . . H H = + M
tion can qualitatively change the band structure of a 2D elec®R ° the Rashba coupling constamt, =Coseo, +Sin poy,
=-singo+CoSepo,, and the Zeeman interaction is ne-

tron gas confined to the 1D geometry. This can be achieved¢ T )
by applying both a specific lateral confining potential in theg.IeCted' Thq confining p%ttiennal(r) can be modeled by a
plane of a 2D electron gas and the Rashba potential perpeﬁ'—ngular oscillator potenti
dicular to this plane. The single particle electron spectrum of 5 2
thus effectively created ballistic quantuiquas)-1D wire re- V(r) = Mo < a ) (4)
veals quite a strong deviation from parabolic shape. The ex- 2

tent of this deviation depends significantly on the relation

between the strength of confining potential and the Rashbar by a hard-wall potential

SO coupling constant. In order to capture the physics of the

il >+i a 3
oo Jo) TIARTe G

effective 1D wire with nonparabolic, spin-split spectrum it 2 d

has been recently suggested to consider a modified TL model V(r) = 5 for (a— —) <r< <a+ —>,
characterized by two different Fermi velocitfésy; # v,. 8mr

Without loss of generality, this model may be regarded as a

multicomponent TL liquid introduced by Penc and Solytm. V(r) = o elsewhere. (5)

The goal of this paper is to study the persistent currents in

the class of the multicomponent TL liquids described above . : . .
. . ; In these expressiors can be associated with a mean radius
emphasizing the features which can be potentially observed o

in experiment. In Sec. Il we review the derivation of the Of the ring andl,, = v#/mw or d can be associated with its

) . , . . . mean width.
dispersion relations in the ring geometry performed in Refs. We introduce dimensionless parametexsazllf), y

34, 43, and 44 presenting it in an optimized form. In particu-_ _ P . .
lar, we consider other profiles of the confining potentialHr;élghgon;ﬁ?r:?:/?ablz_g ho, j';gngfhwm?nt?hee'Eggrgg!e
which allow us to treat the radial part of the wave function ta(\)tions 9 parts, , =Mo"+ hso

without any further approximation. We also estimate the pa-
rametern=(v,—v,)/(v1+v,), which measures the asymme-
try (nonparabolicity of the single particle spectrum for the hrad— _ 1<ﬁ " Eﬁ) +o(y) (6)
recently fabricated semiconductor ring with Rashba SO 0 2 ’

coupling®® In Sec. lll we outline the basic steps of bosoniza-

tion procedure and thus introduce our notations. We also )
quote the main results concerning the multicomponent TL h :q_+ 0( aq fio i) 7)
liquids. We appreciate the importance of the zero-mode con- VA ’

tributions to a persistent current and therefore take a special

care of the zero-mode part of the bosonized TL Hamiltonianwhereq:_ia¢_qq,, We can remove the dependence®m
In Secs. IV and V we consider perSiStent currents in the CaSQ§q_ (7) (WhICh enters throughrr and U‘P) by a gauge trans-
of canonical and grand canonical ensembles, respectivelygrmation

The important issue in these sections is the parity depen-

dence of persistent cur_rents, which in bos.onization. picture h o h  =d¢od?, erieoy? 8)
stems from the topological constrainiselection rulegim- @0 ¢ i

posed onto the topological excitatiof@ero modes We ob- )

serve the features of persistent currents caused by the nof?d therefore obtain

zero value ofz. The discussion of the results obtained is

i 1 1 \? 1.9
presented in Sec. VI. - (q— _03> . g[alg . i02<_ . _)] ©
’ 2 I\ 2y

) 2_)/2 v y 4%
II. MESOSCOPIC RINGS WITH RASHBA INTERACTION:

DISPERSION RELATIONS . o
Note that due to the transformatié8) the periodic boundary

conditions(at zero fluy for an angular wave function have
changed to the antiperiodic ones.
The radial eigenfunctions

The Hamiltonian for a quasi-1D ballistic ring with the
Rashba SO coupling in polar coordinge®44is a sum of
the radial, angular, and spin-orbit coupling terms

2 # 19
HBad=——(—+——> +V(r), (1) 12
2m\ar  ror I'(n+1) oA ay22) Ay /2
=| 0| V2y'eV"L 1
Ra(Y) {F(n+)\+1) v2yre YLy, (10)
w0 W) e
0 2mr? do e/ whereLﬁ is the generalized Laguerre polynomial and
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2 — lent to saying that the spin ug.(q) and spin dowre, ()
Ry(y) =/ —sinf@(n+ 1)(y - VA + 1/2)] dispersion curves in every bamdmust be shifted iy by
y -1/2 and +1/2, respectively.
To describe the main qualitative effects of spin-orbit cou-
pling it is sufficient to consider the one-baritl=1) and
two-band(N=2) approximations only. We calculate the ma-

for V\ - 1/2< y < W +1/2,

Ra(y) = 0 elsewhere, (1D trix elements(15<17) in the singular oscillator basi€0),
correspond to the confining potentiai$) and (5), respec- as well as in the hard-wall potential bagld). In the former
tively. In both cases they are labeled by0,1,..., and nor- case we have
malized according to N

% =g(n), = 19
aOOg()all)\lg (19
f YRu(Y)Ra(Y)dY = i (12)
1
0 =a,0= ——=g(\), 20
Qo1= 310 2\’mg( ) (20)

We would like to emphasize that in our consideration we do
not make use of the approximatiors 1, which is usually

employed when the confining potential is modeled by a regu- Boo= by = 1’ by = byo= 1 , (21)
lar harmonic oscillato?*#4 This becomes an important issue A AN+ 1
when the mean radius of the ring is comparable to its mean
width. N+ %
We can find the spectra of E(6) Co1=~C1o=~ ﬁg(x>, (22)
\!
m(n+ 1)
e9=2n+ 1 anded= T+ 5 ) (13)  whereg()) is expressed through tHe function
. . . r(\+3)
for a singular oscillator and a hard-wall potentials, respec- \) = 2. (23
tively, and the matrix elements;, , of Eq. (9) in the basis of F(A+1)
Ra(y): Respectively, in the latter case we hayg=-c,,=-8/3 and
b ( 1 2 ap . ™
=57\ 9 _03) OBt iozCn)- (19 AH2 (1+(=1)"cogn+ 1)y’
2 2 VA (a,b)pn= Py J VIR y dy', (24
Here we denote T (1 + r)
2w\
o= | yRm<y>(1)Rn(y>dy 15) .
n— - ]
y A¥2 [ sin cos( /2)
0 (ab)or= (bio=~"— f YN Py, (25
* 1 277\)\
n= f YRn(Y)(—Z)Rn(Y)dy, (16)  wherek=1,2 correspond ta andb, respectively. It is easy
0 to compute the integrals in Eq&4) and (25) numerically.
In the one-band approximation we find the dispersion re-
* lations
an(y)(— + —)Rn(y) (17) , b B
{ bo=£+(e) = 70~ 0o = G, (26)

It is remarkablé* that the diagonal elements, identically  whereqg= 2(V1+4ada5,/ \b3,- 1) is the Rashba angular mo-

vanish because they correspond to the momentum operatgfentum. The upper sign corresponds to the spin-up branch

in polar coordinates. and the lower sign—to the spin-down branch. In this ap-
Ideally, we have to diagonalizk;,, in the infinite basis proximation the effect of spin-orbit coupling shows up in the

N—o (O=m,n<N-1). Practically, it can be only done ap- relative horizontal shift by g of the two parabolic disper-

proximately at some large but finite value 8f After having  sion curves.

diagonalizedhy,,, we can perform another—inverse of Eq.  In the two-band approximation the analytical results are

(8—gauge transformation also available: we can find the solutions of the fourth-order

/ "o 1 o ieoa2 characteristic equation forX4-matrix (14) and then shift
Noiag — Mjag = SHiagS * S=€7¢7"® 1y (18 them according to Eq18). However, it is easy to find the
in order to restore the periodic boundary conditions for andispersion relations in this case numerically. We use the fol-
angular wave function. The formal expressi@®) is equiva-  lowing estimates for the parameters of the ballistic ring
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FIG. 1. The lowest radial band in the two-band approximation FIG. 3. The lowest radial band in the singular oscillator poten-
(ap=3.0). Solid thick line: hard-wall potential. Dashed thick line: tial («p=3.0. Dashed thick line: two-band approximation. Dashed
singular oscillator potential. thin line: one-band approximation.

which has been studied in the recent experiffferd  mations in the hard-wall potential at=6.0. So, we can see
=350 nm,d=180 nm, mean free patsl um, m=0.042M..  that the dispersion relations calculated in the ring geometry
The Rashba COUpling Constaﬂh for the heterostructure appear to be similar to the electron Spectra in thiee
used in this experiment was0.8X 10" eV m. In other het-  geometn?®-41 The common qualitative feature of the wire
erostructures it can reach even larger val(ge®, e.g., Ref. and the ring dispersion curves beyond the one-band approxi-
47) in the rangeag~=1-6x 107" eV m. With these param- mation is their bending, i.e., the deviation from the parabolic
eters we can findh=3.78 andayp in the range 2—12, as shape. It emerges already in the two-band approximation,
well as the matrix elementg,=0.500.52, a;;=0.4710.52,  and including higher bands into consideration would not
29;=0.110.09, bp=0.260.27, by;=0.260.28, by;  qualitatively change the picture. The immediate consequence
=0.120.05, andcy;=-0.91-2.67) in the singular oscillator  of the spectrum bending is the difference in Fermi velocities
(hard-walh potential basis. The results of the band structure ' .

calculations are presented in Figs. 1-4. In each figure the vpd" o — ol oM - ol (27)
level e24n=0) is set to zero. We plot the lowest radial band _ _
SO-split into the two subbandspin up and spin downin  However, due to the time-reversal symmetry expressed in the
Fig. 1 we compare the results of the two-band approximatiofom &;(a)=¢(-q) (at zero fluy we still have

in the hard wall and the singular oscillator potentials for the aht ot daht et

value of the Rashba constam=3.0. In Fig. 2 the results of VRl =-UE, UE = UF (28)

the two-band and the one-band approximations in the hard- N .

wall potential are presented ag=3.0. In Fig. 3 the results of 1 nerefore, we r%ﬁtve two d|s£g?19n the absolute valgerermi

the two-band and the one-band approximations in the singu‘€locitiesvi=vgr™ andv,=ve™. We introduce the notations
lar oscillator potential are presentedeg=3.0. In Fig. 4 we Vo=(U1+v2)/2, dv=(v1-v5)/2, and »=dv/vo. For ap=6.0
compare the results of the two-band and one-band approxV¢ make an estimate)~0.27 in the hard-wall confining

40 7 T T T T T T T T T T 40 T T T T T T T T T
30 30
20 20
w w
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0 0
[ ! , ! . ! . I . ! L] [ ! n : L]
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
q q
FIG. 2. The lowest radial band in the hard-wall potentia} FIG. 4. The lowest radial band in the hard-wall potentiaj,
=3.0. Solid thick line: two-band approximation. Solid thin line: =6.0). Solid thick line: two-band approximation. Solid thin line:
one-band approximation. one-band approximation.
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potential at the Fermi energy~1.48 measured from

rs —_~ —~
i) H= 3 S bl i T3 o N+ ),
Recently, the effects of nonzerg on two-point! and -0 .
four-point®® correlation functions of the TL liquid have been (33

studied. In the next sections we would like to consider hoWhere|v 1=[oL | = vy, [or|=|vrs] =v, and
the spectrum bending discussed above modifies the persistent RITIFLLIT 0 PRIIFLITT 2

currents. ~ L
- —ks (34

IIl. BOSONIZATION OF THE MULTICOMPONENT

TOMONAGA-LUTTINGER LIQUID The next step is to take into account the standgg

andg,s interactiong(forward scatteringwhich specify the

In this section we present the basic steps of bosonizatioMomonaga-Luttinger modéf. In our case we have the two-
procedure and the main issues of the TL liquid theory. Incomponent TL liquid, and its continuok+ 0) part can be

what follows we will use the notations diagonalized by the canonical transformaffoA=(A;)
k= 2_7:(1 and x= IZ__(P (kaT:bL_TykaL,bL_l)T = A(dkl+a dl2+! dkl—a dlz-)T,
ar

whereA;; =Ajj(Jaq(s) » Gac(s): Ov). Thus, we obtain

instead ofg and ¢ in order to employ the standard bosoniza- - _ _
tion formulas and to have a transparent relation between theH = >, k2, v,(dl k1, + di,da,) + i v KJZ + v K2

description of the ring and the wire geometries. k>0 v=t
Linearization of the spectrum near the Fermi energy Vemr  Vgm e . _
yields the second-quantized Hamiltonian + ECNg + ENi +260(INg+ IN¢) + 4voNg + 460 |,
Cc S

(35

wherev, is expresset! through the chargéspin) velocity
_ N : v Charge(spin stiffnessK), and év.
- “’2f AX(¢hr Atlr) ~ YLy0xihiy) (29) We note that the zero-mode part in Eg5) (the term in
the square bracketsannot be fully diagonalized by then-
whereyir{x) andy; (X) are the right and the left components tinuouscanonical transformatiof, since the charge and spin

H=- i01J dX(tﬁTRT&xlﬂRT - ‘ﬁlﬁx‘ﬁu)

of the fermionic field current excitations
Po(X) = PrdX) + P s(X), s=T(+),1(=). (30 Je =Ny =Ny +Ney =N, (36)
The standard bosonization ansatz réads 35= Ney = Nus = Ny *+ Ny 37)
Fus — i itati
YoX) = 15 RN skl gy ] — 27,51, as well as the charge and spin number excitations
vama Nc=Ng; + N+ Ng + N, (38
(31)
Ns=Ngj + N = Ng; =N (39

where »=R(+),L(-), N,s are the topological excitations
(zero modep andF , are the Klein factors. One can employ take integer values, and therefore they can be only trans-

the mode expansion of the bosonic fields formed by amodulartransformation which maps a grid onto
itself. For this reason the grand partition functigg corre-
i 1 - i di d tb dint f th
LS 2 alpdiniogy  _ arinlogt sponding to zero modes cannot be expressed in terms of the
$rslX) \[go vk [ s = €7y standard Jacobian theta functigfhas it occurs in the spin-

less cas¥ and even in the spinful case with spin-orbit
in terms of bosonic mode excitatiobéns(bk,ls), a—0 being  coupling®” It is exactly the spectrum asymmetry parameter
a small cutoff parameter. We have also introduced the effectdv that violates the factorization & into differentJ;, Jg,
of a flux and a relative shift of the spin-up and spin-downN., Ng sectors. In the canonical ensemble the factorization of

dispersion curves by including the boundary term the partition functionZ, is still possible, but the terms pro-
portional todv would also cause some modification.
k, +k ki — ks In Eq. (35) we have also introduced
= ST (32 G (3orwe "
Je=Jc— 4q¢, Js=Js—44q, (40)
into the bosonization formulé31). Here k; andk, are the
linearization points for the right spin-up and the right spin- —NC: N, — 4qp, Ns: N, (41)

down branches, respectively.
Bosonizing the Hamiltonian29), we obtain with
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L(k; +ky) L(ky = ko) {4n¢,4ng}, {4n.+2,4ns+ 2}. (47
Qo= Z Z ~ G, 5q:_2 o~k (42 e ¢ ° _
™ ™ The summations oven, and ng are unconstrained and run

The similarity sign turns into the equality sign for the one- ffom —= to . Using the properties of the Jacobian theta
band approximation, i.e., when we deal with the paraboliJU”C“(%”S(Append'x A), we can find that the persistent cur-
dispersion relations. The first expression in E40) also  rentl'”(de) equals
shows that the entire dependence on the magnetic flux is / eff , eff
contained in the zero-mode part of the Hamiltonjas), and 0a(mla, ¥e) 03(7Tq5ﬁ’ Y9 + 0(mla, ¥e) 04(7Tq§ﬁ’ e ,
therefore it is sufficient to calculatgy=Z,) in order to find O3(0g, Yo) 03(TAR', ¥s) + 0a(TUe, o) Oa(TOR", V)
the persistent currents in tiigrand canonical ensemble. (49

IV. PERSISTENT CURRENTS: where

FIXED NUMBER OF ELECTRONS Yoo = ~ L Tve(gKe(s) (49

In the case of a fixed number of electrons persistent cur- |n the casesv =0 we find the agreement between E4g)
rent equals and the respective expression of Ref. 37. Considering further
the noninteracting limit

d
[(®) =-—AF(®), 43 L
( ) dCD ( ) ( ) Ye= Y= Y= e LT/vo, (50)
whereAF(®) is an oscillating part of the free energy. In the we can simplify Eq(48) down to
following we adopt the units in whickby=1 and introduce =4 T 1)
the characteristic scale for a currdgt=4mvg/L. | - LA cod2mnas)sin(2n
In the canonical ensemble the charge and spin number (Go) n%sinr(ZauznT/IO) s2mnag)sin2mnay,),
excitations are forbiddemMi.=N;=0. Therefore, different to- (51)
pological sectors disentangle, and we find
)T and recover the result of Ref. 33. FNE=4N, we can find
AF(®)=-TIn {%S}e 0 (44)  the persistent current by the mere shift of the argument
o
(2) =1@D
summing over{J;,Js sectors. We have introduced the 1(e) =100 + 1/2), (52
Hamiltonian which is valid in both noninteractifgand interactingt con-
siderations.
o
HO(CI)) = I[UCKC(‘JC - 4qd>)2 + USKS(‘JS - 4q§eﬁ)2] (45)
along with the effective Rashba angular momen{see Eq. B. Ne=4No*1 and Ne=4No+3
(42)] WhenN.=4Ny+1 orN.=4Ny+3, i.e., for the odd electron
5 L number, we have to sum in E@4) over the following com-
o = 5q+ 2(10 . Sv. (46) binations of{J;, Jg}:
Ushts {4ne+ 1,4ng+ 1} {4n. + 1,4ng + 3},
The curly brackets i{J;,Jss mean that the certain topo-

logical constraints are imposed onto the pair of valljess. {4n. + 3,4ns+ 1},{4n. + 3,4n¢ + 3}. (53)

These constraints, or selection rules, are different for differ- )
ent parities of the electron number. This gives rise to the/Ve can then find
parity dependence of persistent currért@efore discussing

it in further details, we are already able to state that the 19(ge) = >, Lsin@wnq‘p). (54)
whole effect of the spectrum asymmetry in the case of fixed m=1 SiNh(7nLT/v K)

number of electrons is the renormalization of the Rashba .

angular momentung4é). It is remarkable that the result does not dependy@h and

The topological constraints in question have been derivegqerefore”the sr;])in-orb'it coup!ingqueE not Sho"‘i up in this
in Ref. 27 for spinless TL liquid, and the case of the sﬁin- case at all. In the noninteracting limit=v, andK.=1, and

TL liquid has been considered later on by different W€ @€ again in agreement _W'th Ref. 33. .
authors”:5152n what follows we will use the formulation of We note that our result differs from that expressed in for-

Ref. 52. mula (13) of Ref. 37. This happens because the latter as-
sumes the account of the just two combinationgX3f Jg}:
either given by the first line of E¢53) or by the second one.
Such assumption effectively forbids spin-flip processes, and

When the number of electrons in the ring equald\tp  therefore leads to breaking of the time-reversal symmetry
=4Ny+2, we have the following possible combinations of and to appearance of anomalous currents at zero flux. On the
{3c, 3 contrary, we keep all possible combinations in Esg), and

A. Ng=4Ny+2 and Ne=4N,
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thus explicitly maintain the time-reversal symmetry. There- In Appendix B we introduce auxiliary functions
fore, we always get®(0)=0, as it follows from Eq(54). G(zp,28,25,2,) and G'(zg,Zs,2r,2,), Which allow us to
conveniently expres&(®,u)=e 2P/ and I(d, u) for
different electron numberbl, in the ground stat¢at T=0
V. PERSISTENT CURRENTS: and®=0). In the noninteracting limit and/or in the limi

FIXED CHEMICAL POTENTIAL =0 the functionsz andG’ can be simplified and rewritten in

Let us now consider the case when the mesoscopic ring igrms of the standard Jacobian theta functicaise to the

weakly coupled to the reservoir with chemical potentialn  'elations quoted in Appendix A In general, they are ex-

this situation the charge and spin number excitations are a_ress_ed in terms of the Siegel theta funct_ﬁ%r(s;e., theta
lowed. For this reason the terms mixidgand N sectors in 'unctions of higher degrgeand therefore it is not straight-

Eq. (35) do not vanish, and therefore the consequences of thigrward to establish their asymptotics. However, for ;mall
enough temperatures the functioBsand G’ can be easily

spectrum asymmetr§v # 0) may become more diverse. ted call
In order to find the persistent current computed numencatly.

d A. Ne=4Ng+2 and Ng=4Nj in the ground state
(D, ) == dEAQ(q”M)’ (55 The selection rules formulated in Ref. 52 are also appli-

cable in our consideration. Thus, fNg=4Ny+2 electrons in
we need to calculate the oscillating part of the thermodythe ground state we have to choose thdiseandN's which

namic potential satisfy the following requirements.
~ (1) J. and N, are either simultaneously even or simulta-
AQ@,w=-Tin X @, (56)  neously odd. The same holds fiyand NL.
HeNeJs Nt (2) J.+J+N =N takes values.., -4, 0, 4,... .
where the curly brackets ifJ.,N¢,Js,Ng again mean the In fact, this concisely formulated prescription assumes the
topological constraints, and summation over 16 different combinations {3, N;, Js, N}
(see Appendix B Having properly performed it, we obtain
Ho(®, 1) = - | v T2 + 0K T2 + “ENZ + 25N2 =, (, ) =G 61
0 !lu‘ 4L circYe S S KC C KS S '—'l( 1lu’) - (Z(IDIZB!ZR7Z,u,)1 ( )
+ 260N+ IN,) + 4o N, + 46635 | - uN,. E(P,u) = G'(29,28,2r,2,) (62
and
(57) L 4
. . . 1D(P =2 TM 63
Due to év # 0 different topologicall and N sectors remain () =27 2, (D) (63
entangled. We can rewrite H§(®P, u)/1, (up to some irrel- _ . o ’ .
evant additive constant tejnin the form In the noninteracting limitAg=v,s=1 the persistent
5 ) current(63) equals
Ne(Je = Zp) ™+ 29(Jc — Zp) (Ns = Zg) + vs(Ng — Z5)
P 2 .omn mn _, .omn_, mn _,
+N(Js— 2r)° + 277(Js— Zr) (Ne — 2,) + (N - 2,) o sin—zg cos;zR sin 723 cos;zﬂ
with 7 andly introduced in Secs. Il and 1V, respectively, 477Tn§l =1"  4AT#n +  4T#n '
sinh—— sinh——
UeeKegs) Uc(s) (58) lo(1+7) lo(1-7)
= y P, = —,
T v T Kagro (64)
and where
(f,+ vo) 2, =Zp+ 25, ZR=Zr+ 2, (65)
Zp = 4Qq, ZR:4<5Q‘ Z(Lvﬁ ' (59
chs™ 7 Zy=2p~ 28, 2, = 2R~ Z,. (66)
f s+ 7 Recalling thatzz=0, we can easily establish the Fourier co-
23=0,2,=4{Go* 2vhe-1D)) (600 efficientsl,, of the series
c’*s
In the above expressiorig=(umL/vo)—1 measures the dif- Eqa. (64 =S 1. sin 27 67
ference between the chemical potential and the Fermi energy, a- (64 n% " G- 67
and zz is some argument, which would have been nonzero o ,
had we included the Zeeman interaction. In the limit T—0 we find thatl, equals
We remark that the charging enerBy and the gate volt- -1)" n N o an _ amn
ageV, are not explicitly included in Eq57). We infer that 2lg COS?ZR COS?Z,J 7SN 7ZR sin ?Z,L .
they can be effectively taken into account by redefiniag
— N+ 16E/1g and u— u+eVy, respectively. So, we obtain additional modulation due #a# 0.
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FIG. 5. Persistent currentglg vs flux ®/dg atu=0.4 and dif-
ferent values ofy (fixed u, No=4Ng+2).

In the limit =0 the grand partition functio(61) is pro-
portional to

SHERRNCRRER A

(68)
with

Ay = —e ~T? Nohg( ®, B e—Tw Nove o), (69)
The coefficient of proportionality in Eq(68) is omitted,
since it does not depend a@g and therefore becomes unim-
portant for the calculation of the persistent curré€d®) in
this limit. We note that the expressi@f8) coincides with
that derived in Ref. 37.

In Figs. 5-7 the persistent currents for the ring with
=4N,+2 electrons in the ground stafiee., atT=0) are pre-
sented aff=0.009,. To parametrize the-e interactions we

PHYSICAL REVIEW B 70, 165316(2004)

— u=0.0

FIG. 7. Persistent currentdly vs flux ®/dy at »=0.3 and
different values ol (fixed u, Ne=4Ng+2).

In Figs. 5 and 6 we show how the persistent current in
rings with interacting(u=0.4) and noninteractingu=0.0)
electrons is modified when we vary the spectrum asymmetry
parametery. One can see that in the first case increasjng
develops a paramagnetic “tooth” negy=0, while in the
second case altering changes the size of the diamagnetic
“tooth” nearqe=1/2.

The dependence of the persistent currenya0.3 on the
interaction parameteu is depicted in Fig. 7. Of course, an
alteration of other paramete#s, gy, f,, may also change the
picture of the current, but it is obvious that the modification
due ton is remarkable. The results fdi,=4N, are obtained
by the shift in eitheizy, or z, (see, e.g., Ref. 51

EZ(¢1M) = G(Zd) + Z,ZB,ZR, Z,u,) = G(ZtIerBvZRIZp, + 2)1
(70

and similarly forl@(®, ).

B. Ng=4Ng+1 and No=4Ngy+3 in the ground state

use the relation between the parameters of the TL model and

the Hubbard model at low densiti@s\,=\¢=1, v.=1+U,
vs=1-u, whereu=U/ vy andU is an interaction parameter
in the Hubbard model. Other parameters @=0.15, qq
=0.04,f,=0.11.

FIG. 6. Persistent currentglg vs flux ®/dg atu=0.0 and dif-
ferent values ofy (fixed u, Ne=4Ng+2).

First of all, we would like to remark that the ground state
with the odd electron numbeiN.=4Ny+1 or Ng=4Ny+3)
can be justified only for repulsive interactions at very low
temperaturest <U/L ~1yu (see, e.g., Ref. 51 for the discus-
sion). In this case we can formulate the selection rules in
terms of the functiors and thus obtain the following expres-
sion for the grand partition function:

E3(¢1M) = G(Z(I) + 112812R+ lvz ) + G(Z(ID + 1IZBIZR_ 112 )1

(71)
Eé((D,M) = GI(Z(-I) + 1,ZB,ZR+ 1,Z,LL)
+G' (2 + 12,27~ 1.2)). (72)
Respectively,
E3(®,p)
D, 2T 73
TR (79

In the noninteracting limit the grand partition function
(71) is proportional to
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FIG. 8. Persistent currentglg vs flux ®/dg atu=0.4 and dif-
ferent values ofy (fixed u, odd Np).

‘94( gzii» 7+) 94( %Tzév 7’—) ‘93( gzlé’ 7+> 93( %TZ,/;’ 7’—)

. 93(521;, %) 03(7—274, y_) 04(54; %) 04(75’4:, v—) :

2,
where y, =477 10127 gnd

Z _LtR Y7, , _Zo"R ZB"Z
PRT 2 7 2 "Bem 2 7

In the limit =0 the grand partition functiof71) is pro-
portional to

an o o o
94(Ezc1>= aé) ‘93(52&/33) 64(EZR= 0/31) 63(EZ,UJB§>
aw T an aa
+ 03(52(1,, aé) 04(525,32) HB(EZR, a:) 04(52”, C) .

If we put in this expressioaz=2z5=0 (no spin-orbit coupling
and no magnetic fiejdand as=g8s, we obtain the formula
equivalent to that derived in Ref. 51:

Ea(®,u) ~ [ 93( gzqh aﬁ') 94(2%3‘!)

+ 94<gzq,,ag‘> 93(7—274“ ,3;‘)] G Y

In Fig. 8 we present the persistent currentsia0.4 and

different values ofp, other parameters being the same as in. irent in a superconductor-

PHYSICAL REVIEW B 70, 165316(2004)

VI. CONCLUSIONS

We have demonstrated that the account of the higher ra-
dial subbands leads to the modification of the spectrum of
electrons in the ring geometry. In particular, the dispersion
relations obtained are characterized by two different Fermi
velocities. Therefore, in order to describe the joint effect of
the e-e interactions and spin-orbit coupling in ballistic rings
it is reasonable to consider the multicomponent Tomonaga-
Luttinger model. The interplay between the spin-orbit split-
ting, nonparabolicity of the spectruityy+# 0), e-e interac-
tions and parity effects is reflected in the spectral properties
of persistent currents. We have studied this within both ca-
nonical and grand canonical ensembles. Below we summa-
rize the basic features of persistent currents caused by the
subband nonparabolicity.

In Sec. IV we have shown that in the rings with the fixed
electron number persistent currents #p£ 0 do not change a
lot compared to the casg=0. The reason for that is the
specific selection rule dictated by the particle conservation in
the system. On the other hand, in the rings with fixed chemi-
cal potential we have observed considerable modifications.
Thus, for the even number of electrons in the ground state
we have obtained the generation of new harmonics and com-
plication of the current shape. We have observed how the
picture changes if we vary the effective Coulomb interaction
parameter, while fixing the effective nonparabolicity pa-
rametery, and vice versa, and found these changes remark-
able. The modification of the current in the case of odd num-
ber of particles in the ground state appears to be even more
drastic: varyingn we can perform the transition from dia-
magnetic to paramagnetic behavior at the flux valdes
=0,2Dy/4,£Dy/2,... . This makes the current essentially
different from that derived from the parabolic dispersion re-
lations for the same parity. We therefore conclude that the
nonparabolicity of the single particle electron spectrum pro-
duces a deep entanglement of the repulsion and spin-
orbit coupling parameters, and this leads to the new features
of the current, which can be detected experimentally.

Recently, there has been the certain development in fab-
rication of toroidal carbon nanotub&sand in the study of
persistent currents in such systethsSince the electronic
spectrum in carbon nanotubes deviates considerably from the
parabolic shape, we expect our results to be applicable in
such realization as well, provided the selection rules are
properly modified.

Finally, we would like to mention that a certain analogy
between the persistent current in a TL ring and the Josephson
quantum wire-superconductor

the evenN, case. One can observe that in the presence qfction exists. The effects of thehiral symmetry breaking

n# 0 the persistent current is modified considerably. In par
ticular, the effects of SO coupling show up in the grand

(i.e., of the nonparabolicity of electron spectrum in a TL wire
with strong Rashba couplingn the Josephson current in the

canonical ensemble in the ring with odd number of electrong,;a, system have been recently studied in Ref. 56.
in the ground state, in contrast to the ring with fixed odd

number of electrons where such effects are abfssd Eq.

(54)]. Due ton # 0 there also happen transitions between the

diamagnetic and paramagnetic behavior atlg
=0,+£1/4,£1/2,..., and forsome particular value ofy
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The following identity also holds

APPENDIX A: PROPERTIES OF THE JACOBIAN THETA 4
FUNCTIONS 2 62,9 6(22.7) 6:(25,7) 6,(2,)
i=1
We use the following definition of the Jacobian theta , , ) ,
functions® =205(2,7)05(%,7)05(25,7) 03(23, ), (A12)
o where
— 14 _ 1\n N(n+1) o
61(z,7) =2 EO( DYV sin2n+ 1)z, (A1) _utn nty , 45, nu
1,27 - 1 £347 -
' 2 2 ' 2 2
- ) In Ref. 50 one can also find useful expressions for the
_ 14 (n+1)
0x(z.7) =2y EO 4 sin(2n+ 1)z, (A2) logarithmic derivatives; (z, y)/ 6,(z, y).
0x(2,7)=1+2> ynz cos Az, (A3) APPENDIX B: TOPOLOGICAL CONSTRAINTS FOR
n=1 FIXED CHEMICAL POTENTIAL
" The topological constraints formulated in Ref. 52 fay
_ a2 =4Ny+2 electrons in the ground state lead to the following

Ozy)=1+ Zg’l( 1)™" cos &z (A4) possible combinations dfl., N, Js, Ng}:
Note that an alternative definition exists which uses the dif- {4n, 4m, 4ng, Amg},
ferent argumentz— 7z

Functions#; and 4, are periodic under the shift— z+, {4nc+2,4m. + 2,4ns+ 2,4mg + 2},

while #; and 6, change their signs. Note also that
{4n, + 2,4m. + 2,4n,,4m¢},
a a
93(Z+ 5,7) = 04z, 7),0z<2+ Em) == 6:(z).
{4n.,4m;,4ng + 2,4m, + 2},
Making Poisson resummation, it is easy to prove the use-

ful formulas {4n,4mc + 2,4ng,4mg + 2},
_§" gak+2? = \Ees(wz, el (A5) {4ng,4mc+ 2,40+ 2,4md},
o {4n;+ 2,4m., 4ng, 4mg + 2},
k:E_m (- Dkgralk+2” = \/g O(mz, &™) (AB) {4n,+ 2,4m,.4n, + 2,4md,
From the relations {4n.+ 1,4m;+ 1,4n,+ 1,4m,+ 1},
A2 =0z 0z, (AD) {(4n+3,4m+ 3,40+ 3, 4m+ 3,
it is easy to deduce that {4n.+1,4m. + 1,4ns+ 3,4m + 3},

93(221,’)"11) 03(22,, 7’3) +0(22,, 7/11) 02(22, 7‘2‘) {4n. + 3,4m + 3,40+ 1,4m + 1}
C ’ ’ S ’ ]

1 1
= 5‘93(21:3’1) 05(25,v2) + 504(21, Y1) 04(22,72), (A8) {4n,+ 1,4m,+ 3,40, + 1,4m+ 3},

05221, %)) 05(225, ¥3) — 02221, 1) 02225, 75) {4n.+1,4m+ 3,4ns+ 3,4mg + 1},
1 1
=5 03(21,v1) 04(22, v2) + > 04(21,71) 05(22,72). (A9) {4n.+ 3,4m. + 1,4ng+ 3,4m + 1},
Moreover, fory;=y,=1vy {4n;+ 3,4m;+ 1,4ns+ 1,4m + 3}. (B1)
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Therefore, we have to perform 16 differenbconstrained
summations oveng, mg, ns, Mg from —o to .
Let us define for convenience the functiqisee Ref. 58

0

fi(zpzg)= > € 'om@mlT (B2)
Ng,Me=—
fo(zrz,) = 2 €'on®z)T, (B3)

Ng M=~
where

Z 2 Zs 2
hl(ZCInZB):}\c(nc_Z) +Vs<ms_z>

Zp Z
+217<nc—2>(ms—f>,
z )2
4

Z Z
o)

and we must demanei\ .— 77> 0 andv A~ 77> 0 to ensure

the convergence of the series in E¢B2) and (B3). Note

that the functiond; andf, have period 4 in each argument.
If we introduce

2
hZ(ZRvZ,u) = As( Ns— %) + Vc(mc -

9(Zp,28,2r,2,)
=[f1(zg,25) + 1(Zp + 2,25+ 2)]
X[f2(zr,2,) + fozr+ 2,2, + 2) ] + [f1(Z9,25 + 2)
+11(zp +2,28) [f2(zr,2, + 2) + fo(zr + 2,2) ],

PHYSICAL REVIEW B 70, 165316(2004)

In the limit »=0 the sumf(zp,z5) +f1(zp+2,25+2) is
proportional to

T o T v
93(211» ac) 93(223:[35) + 94(211» ac) 94(Zzsiﬁs> ,

while f1(zp+2,25) +f1(z4,25+2) is proportional to

ar a ar s
Ha(zzcba ac) 94(223:,33> + as(zzcbv ac) 94(22&,35) )

wherea, and 35 are given by Eq(69). Similar relations hold
for f,. Using Egs.(A8) and(A9), one can establish the ex-
pression(68).

For the odd number of electrons in the ground state one
can also establish the selection rules and calculate the grand
partition function. In terms of the functio@ it is presented
in Eq. (71). An alternative way to expresgs(®,u) is to
introduce

G(2,28,20,2,) = §(Z0,28,20,2,)
+Q(zp+ 1,25+ 1,23+ 1,2, + 1),

(B6)
where
(29,28, 2, 2,)
=9(zp + 1,23, +1,2) +9(Zp + 1,23, - 1,2,)
=T1(20,28) To(2r2,) (B7)

then it becomes easy to see that the grand partition function q
an

equals

G(24:28,2r,2,) = 9(Zp,28, 2R, 2,)
+ g(z(b + 112B+ 1IZR+ 112 + 1)

(B4)
We can also define
, |
£1(Zp Z8) = o 2 [No(dng—2) + 7(4ms = Z5)]
ZTnc,ms
X e"ohl(vaZB)/T, (B5)

as well asg’ andG’ replacingf, by f; in the above defini-
tions.
In the noninteracting limit

1+7 Zpt+275)°
hy(2,20) == (rwc+rns——4 B)

1-9 Zp=2)\°

e

So, we can transfornm;, mg by a modular transformation.
Similarly, we can proceed with, andng, m..

Ti(2028) = F1(zg + 1,28) + 1(20 + 1,25+ 2)
+ (2 +3,25) + f1(Zp + 3,25+ 2),

To2r,2,) = foz+ 1,2,) + Folzr+ 1,2, + 2)

+fy(zz+3,2,) +fo(zz+ 3,2, + 2).

One can show that the functiof@and?2 have period 2 in
each argument and equal to

?1(2(1),25): > el
g, g=—o°

(B8)

fozpz)= 3 el
Mg Mg=—o

(B9)

where
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- 1 _ +1 2 _ 2
hy(zg,28) = Z[Ac(nc_ —) + Vs<ms_ Z_ZB>

~ 1 -
hy(zg, Z/.L) = Z [ )\s< Ns—

PHYSICAL REVIEW B 70, 165316(2004)

In the noninteracting limit

- 1+p(. _ zZp+zg+1\?
hy(2p,28) = (nc+ms— . )
8 2
1- -Zg+1)?
+ W<ﬁc_~ Lo~ ) ,
8 2

and we transformm,, Mg by a modular transformation. Simi-
larly, we proceed witth, andTg, M.. The limit =0 for f;
andf, is straightforward.
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