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The validity of four-contact van der Pauw–Hall measurements of rectangularly shaped semiconductors with
anisotropic transport properties is investigated analytically, numerically, and experimentally. We show that the
carrier concentration is correctly measured using the van der Pauw technique without corrections. Furthermore,
the asymmetry in the resistance of the van der Pauw sample is related to the real transport asymmetry through
an analytically obtained formula. Thus, the mobility in both principal directions as well as the carrier density
can be obtained from van der Pauw data. Measurements of electron concentration and mobility using both the
Hall-bar and van der Pauw geometries in semiconductor coupled quantum-wire structures confirm this expec-
tation for different anisotropies.
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I. INTRODUCTION

Transport properties of isotropic semiconductors are con-
veniently measured with the van der Pauw(vdP) method.1 In
contrast to Hall-bar measurements, the vdP technique re-
quires only four sufficiently small contacts placed at the cir-
cumference of an arbitrarily shaped(but simply connected)
sample. The influence of contact size is taken into account by
correction factors.2 Transport properties of semiconductor
nanostructures can be anisotropic due to anisotropic effective
masses, structural corrugation in a two-dimensional electron
gas (2DEG),3 the presence of coupled quantum-wires,4,5 or
high Landau-level indices in a two-dimensional electron or
hole system.6,7 The analysis of vdP measurements for aniso-
tropic transport, however, is less than straightforward be-
cause the validity of the calculated carrier density is not ob-
vious and the magnitude of anisotropy is overestimated. For
example, transport measurements in high Landau levels of a
2DEG show an anisotropy of about 100 in vdP geometry, but
only 6 in Hall-bar geometry.6 In contrast to the vdP geom-
etry, the four-terminal resistances of a Hall-bar geometry di-
rectly reflect the actual resistivity in the direction of the bar.
A theoretical explanation of this discrepancy is given in Ref.
8, where the relation between anisotropies for both geom-
etries are analytically derived and formulas for the four-
terminal resistances are given. These were also experimen-
tally confirmed with structured lateral superlattices.9 A
general solution to the potential problem in an arbitrarily
shaped two-dimensional anisotropic medium is given in Ref.
10. With finite-element methods, the effect of a conductivity
anisotropy on Hall measurements was numerically calculated
for the van der Pauw method and square shaped geometry.11

(The significant dependence of Hall voltage on anisotropy
described in Ref. 11 is not, however, supported by either our
numerical calculations or our experimental results.)

The aim of the present paper is to investigate how aniso-
tropic transport properties can be obtained from the results of
van der Pauw measurements of a rectangularly shaped
sample. In Sec. II, the conductivity tensor describing the an-
isotropic microscopic(magneto)transport properties of the

material is defined, the van der Pauw geometry is presented,
and the usual procedure of obtaining isotropic transport pa-
rameters from vdP measurements is shown. Within this
framework, the four-terminal resistances for given micro-
scopic anisotropies areanalyticallycalculated for rectangular
samples without magnetic field in Sec. III. Numerical meth-
ods allow the calculations to also be extended to include a
magnetic field and for given arbitrary shapes. Thus, using
finite-element methods, the four-terminal resistances as well
as Hall voltages arenumericallycalculated by simulating the
experiment. These numerical and analytical results allow car-
rier concentration and mobility in samples with anisotropic
conductivity to be obtained from vdP data. This method is
applied to coupled quantum-wire structures with anisotropic
transport properties in Sec. IV. The experimental results of
both these measurement geometries are compared and dis-
cussed in Sec. V to assess the use of van der Pauw measure-
ments for characterizing anisotropic semiconductors.

II. DEFINITIONS

A two-dimensional anisotropic semiconductor without
magnetic field is characterized by the conductivity tensor

s = Fsxx 0

0 syy
G s1d

with principal conductivitiessxx,syy in the mutually perpen-
dicular directionsx,y of the two-dimensional(2D) plane.
Therefore, the resistivitiesrxx,yysVd for transport in the prin-
cipal directions, without magnetic field, can be expressed as

rxx,yy =
1

sxx,yy
. s2d

Their ratio

A =
ryy

rxx
=

sxx

syy
s3d

is the conductivity anisotropyA.
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The measured quantities are four-terminal resistances
such as

RAD,BC ;
VBC

IAD
, s4d

with the voltageVBCsVd measured across contactsB andC,
and the currentIADsAd flowing through contactsA and D.
These resistances depend not only on the resistivity but also
on the actual geometry(including contact placement) of the
structure. Figure 1 shows the vdP geometry used in the
present study as well as by several others.7,11

The resistances measured in both transport directions are

Rxx ; RAD,BC andRyy ; RAB,DC. s5d

In isotropic materials, the resistivityr fulfills the van der
Pauw theorem1

expS− p
Rxx

r
D + expS− p

Ryy

r
D = 1, s6d

used to determine the resistivity from experimental data.
In order to determine the carrier density, a magnetic field

BsTd perpendicular to thexy plane is applied. Now the con-
ductivity tensor in a magnetic field is

s =
Ne

1 + mxmyB
2F mx − mxmyB

mxmyB my
G , s7d

with homogeneous 2D carrier densityNsm−2d (negative for
electrons) and mobilitiesmx,mysm2/Vsd (negative for elec-
trons) in the principal directionsx,y of the 2D plane. Equa-
tion (7) ignores the averaging of the individual tensor com-
ponents over energy. The four-terminal resistanceRAC,BD
measured with and without magnetic fieldB results in the
Hall coefficient

RH =
RAC,BDsBd − RAC,BDsB = 0d

B
. s8d

By symmetry, use of the other diagonalRBD,CA leads to the
same Hall coefficient. The carrier density relates to the Hall
coefficient by

N =
rH

eRH
s9d

with the Hall scattering factorrH which depends on the ac-
tual scattering processes of both principal transport direc-
tions. [In the case of the conductivity tensor defined in Eq.
(7), this factor is unity].

III. ANALYTICAL AND NUMERICAL RESULTS

The analytical result for the four-terminal resistanceRxx is
a functionfsrxx,ryy,Lx,Lyd given in Ref. 8 but for a different
geometry. This function is used to calculate12 Rxx for the
geometry considered here with the result that

Rxx = 2fsrxx,ryy,Lx,2Lyd

=
8

p
Îrxxryy o

n=odd+
Fn sinhSÎrxx

ryy

Ly

Lx
pnDG−1

. s10d

Ryy is given by exchanging allx andy in the above equation.
For convenience an effective anisotropy

Aeff =
ryy

rxx
SLx

Ly
D2

= ASLx

Ly
D2

s11d

is introduced.Aeff takes into account the conductivity aniso-
tropy A and the geometrical aspect ratio of the vdP structure,
and is identical toA for square geometry. Using Eqs.(10)
and (11), the anisotropy of the four-terminal resistance for
rectangular samples is

AvdP;
Ryy

Rxx
=

o
n=odd+

fn sinhsÎAeff
−1pndg−1

o
n=odd+

fn sinhsÎAeffpndg−1
. s12d

The four-terminal resistances and their anisotropy in our vdP
geometry are shown in Fig. 2 for a range of effective
anisotropies.

Voltages and resistances can be calculated numerically for
arbitrary geometries and arbitrary parameters(material prop-

FIG. 1. Simple rectangular geometry of sizeLx3Ly with con-
tacts in the corners.

FIG. 2. (Color online) Four-terminal resistancesR and their an-
isotropy AvdP vs effective anisotropyAeff, calculated analytically
(lines) and numerically(symbols).
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erties,B field, external voltages). Specifically, finite-element
methods are used to calculate the local electrostatic potential
Fsr d at the positionr in the 2D plane of the vdP structure.
The problem is solved for a rectangle(see Fig. 1) with the
magnetoconductivity tensorssBd defined in Eq.(7). The
form of the current density

j = sE = − s ¹ Fsr d, s13d

and the fact that there are no current sources/sinks inside the
structure,¹ ·j =0, results in the elliptic partial differential
equation for the potential, −¹ ·s¹F=0, to be solved for
points inside the structure. Boundary conditions are Neu-
mann type, i.e., no current flows normal to the boundary, at
all boundaries except for the bias contacts. The bias contacts
are used as source and drain for the current, and mathemati-
cally are Dirichlet-type boundaries atgivenconstant bias po-
tentials. From the resulting potential distribution, the local
current density is calculated according to Eq.(13). Then,
integrating the normal current density along a line that di-
vides the sample into two parts, each part containing one bias
contact, the total current in the sample is obtained. The four-
terminal resistances of the sample are now calculated by di-
viding the potential difference between the other two con-
tacts(corners) by the current.

For a squaresLx=Lyd, Rxx and Ryy were calculated with
both methods mentioned above, andRH was numerically cal-
culated. All calculations were done for different conductivity
anisotropiesA assumingmxùmy. For convenience of the nu-
merics, let Ne=1 cm−2, Îmxmy=1 m2/V s, therefore mx

=ÎA m2/V s, andmy=1/ÎA m2/V s. As bias voltage 1 V is
chosen, the magnetic field was set 0.2 T. The following
points should be noted:(1) The chosen bias voltage does not
influence the calculated four-terminal resistances because all
potentials and the current scale linearly with bias;(2) without
magnetic field, the chosen scale of mobility and the carrier
density do not limit the generality of our considerations as
they do not influence the potential distribution; and(3) for
the case with magnetic field, different scales ofmB lead to
the same Hall coefficientRH. Therefore, the results also ap-
ply to more realistic numbers by scaling the mobility or car-
rier density appropriately. The numerical calculations were
done using<30 000 triangles.

The results of the numerical calculation ofRH are given in
Table I. The corresponding potential distributions for isotro-
pic and anisotropicsA=2d cases with and without magnetic
field are shown in Fig. 3.

We conclude that the Hall voltage as difference between

the case with and without magnetic field isnot sensitive to
the anisotropy. For all anisotropies considered here, the vdP
technique correctly determines the carrier density according
to Eq. (9). (We find the same result for rectangularly shaped
structures.) Our results contradict those of Ref. 11 which
(also using finite-element methods) predict considerable
variations ofRH even for small anisotropies.

Table II and Fig. 2 display the analytically and numeri-
cally calculated results of the four-terminal resistances and
their anisotropy.

The numerical results confirm the analytical formula(10)
for all anisotropies considered here. For extreme anisotropies
sA=100d, however, the vdP anisotropy is too high to be prac-
tically measured and the accuracy is probably insufficient.
We can also verify both methods by putting the resulting
four-terminal resistances of the isotropic casesA=1d into the
van der Pauw theorem(6) and solving it forr. As a result a
resistivity of r=1 (that we put in as material property) is
retrieved, which means that our measurement gives us the
correct value. Moreover, in the anisotropic cases, the resis-
tivity r obtained from Eq.(6) equals the average resistivity

TABLE I. Numerically calculated Hall coefficients for different conductivity anisotropies at a constant
carrier density ofNe=1 C m−2.

A RAC,BDsB=0dsVd RAC,BDsB=0.2 TdsVd RHsm2/Cd
1 1310−5 0.199 0.994

2 0.498 0.697 0.995

10 2.267 2.466 0.994

20 3.569 3.768 0.996

100 9.054 9.250 0.983

FIG. 3. (Color online) Equivalent-potential distributions in vdP
geometry calculated for the same bias current and carrier density.
Left column B=0, right columnB=0.2 T, top rowA=1, bottom
row A=2. Bias potential is 1 V, 1 div=10 mV.
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rave= Îrxxryy s14d

in accordance with theoretical expectations.10 The numerical
calculations showed that, interestingly, the anisotropy of the
two-terminal resistances(RAD,AD and RAB,AB, i.e., bias volt-
age divided by total current) strongly underestimates the
conductivity anisotropy(1.22, 2.37, and 5.00 forA=2, 10,
and 100).

The important calculated results are how the conductivity
anisotropy is determined from the vdP resistance anisotropy
(10) and that the carrier density is correctly measured with
the vdP technique.

We determine the principal resistivities from measured
four-terminal vdP resistancesRxx,Ryy as follows:

(1) The effective anisotropyAeff is obtained from the an-
isotropy of measured four-terminal resistancesAvdP with the
help of Eq.(12).

(2) With known aspect ratio, the conductivity anisotropy
A is calculated according to Eq.(11).

(3) Using the van der Pauw theorem(6), the average re-
sistivity rave=r is obtained from the measured four-terminal
resistances.

(4) The principal resistivities are now calculated fromA
andrave using Eqs.(3) and (14),

rxx = rave
ÎA−1 andryy = rave

ÎA. s15d

Numerically it is shown that the experimentally obtained
Hall coefficientRH [Eq. (8)] does notdepend on the aniso-
tropy. Therefore, it is used to determine the carrier density
the same way as for isotropic materials.

IV. EXPERIMENTAL RESULTS

To test the theoretical results for different anisotropies,
samples containing modulation-doped, self-organized,
coupled InAs quantum wires in InP(similar to those de-
scribed in Ref. 5) were grown by gas-source molecular-beam
epitaxy. These samples show a temperature-dependent con-
ductivity anisotropy with higher conductivity parallel to the
quantum wires. Hall bars(50 mm channel width) for both
principal transport directions and square-shaped vdP struc-
tures (200 mm edge length) with edges along the principal

transport directions and with contacts in the corners(see Fig.
1) were prepared on thesamepiece of sample by electron-
beam lithography and shallow mesa etching. Thus, it is en-
sured that both Hall-bar and vdP structures have the same
microscopic transport properties and can be readily com-
pared.

Transport measurements were performed with these struc-
tures at the same time in a temperature range of 10–320 K
thus varying the conductivity anisotropy. A constant dc bias
current of 1mA was chosen as a trade-off between minimiz-
ing sample heating and maintaining measurement accuracy.
Hall coefficients were measured in a magnetic field of 0.5 T.
For the Hall-bar case, the Hall coefficient was measured in
the Hall bar along the low-mobility direction. In a separate
measurement(not shown here) the Hall coefficients were si-
multaneously measured in Hall bars along both principal di-
rections. They agree within an uncertainty of ±3%.

The resistivitiesrxx,yy and two-dimensional carrier density
N were calculated from the data of the vdP measurements(as
described in the preceding section) and the Hall-bar measure-
ments separately. The results are given in Figs. 4 and 5. The
anisotropiesA andAvdP from Hall-bar and vdP measurement
range from 2.4 to 6.6 and 12 to 794, respectively.

V. DISCUSSION

Despite a change of anisotropy by a factor of almost 3, the
measured carrier densityN (Fig. 4) varies only slightly. This
variation ofN is considered to be independent of the aniso-
tropy. Moreover, for the entire anisotropy range, the carrier
density obtained by vdP measurement agrees very well with
the Hall-bar result, confirming our analytically obtained re-
sults. Both measurement methods are equally good to deter-
mine the Hall coefficient, also in anisotropic media.

The average resistivityrave from the Hall-bar results
agrees well with the resultr from the vdP measurement(Fig.
5).

With the vdP method, the quantitiesN andr measured so
far can be correctly obtained. This holds true even for arbi-
trary geometries.10 In contrast, the anisotropy of four-
terminal resistances depends also on the particular geometry,
even more crucially than on the conductivity anisotropy as

TABLE II. Four-terminal resistances and their anisotropyAvdP on a square without magnetic field for different conductivity anisotropies
A calculated numerically(Num.) and analytically(Analyt.).

A rxx ryy Rxx sVd Ryy sVd AvdP =Ryy/Rxx

sVd sVd Num. Analyt. Num. Analyt. Num. Analyt.

1 1 1 0.220 0.221 0.220 0.221 1.00 1.00

1.5 0.817 1.22 0.108 0.109 0.393 0.395 3.64 3.63

2 0.707 1.41 0.0604 0.0599 0.552 0.561 9.13 9.37

5 0.447 2.24 0.00447 0.00453 1.349 1.356 302 299

10 0.316 3.16 2.37310−4 2.47310−4 2.21 2.28 9334 9236

15 0.258 3.87 2.45310−5 2.65310−5 2.97 2.99 1.213105 1.133105

20 0.224 4.47 3.50310−6 4.03310−6 3.57 3.59 1.023106 8.913105

100 0.1 10 1.7310−14 1.2310−13 9.05 9.12 5.331014 7.931013
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discussed later. In our experiment the geometry was very
precisely defined using lithography. Figure 4 shows a quite
good agreement of the anisotropies but not as well as the
other quantities. This also affects the calculated principal re-
sistivities (see Fig. 5) because they are calculated with the
anisotropy and the average resistivity. A possible reason for
the deviation is the four-terminal resistance in the high-
mobility direction (seeRxx in Fig. 2), which drops quickly
with increasing anisotropies. This makes precise measure-
ments more difficult and is regarded as the limiting factor of
accuracy in our experiment. For more complex(nonrectan-
gular) geometries, finite-element methods, as presented here,
can be used to numerically calculate a relation between con-
ductivity anisotropy and anisotropy of four-terminal resis-
tances to substitute Eq.(12).

Special care has to be taken of the geometry in order to
measure the conductivity anisotropy accurately. In Eq.(11)
this is obvious with thesLy/Lxd2 factor as opposed torxx/ryy.
The Hall-bar geometry is more forgiving as the relevant
lengths(channel width, distance of the voltage probes) just
like the conductivity anisotropy, enter linearly into the aniso-
tropy of the four-terminal resistances. The geometry consists
of the contacts and the shape of the transport structure. The
contacts have to be at the edge of the structure as a precon-
dition for vdP measurements, the position must be well de-
fined (e.g., in the corners of the rectangle), and the contacts
should be as small as possible. The size of the contacts is an
additional uncertainty to the effective contact position be-
cause it is not necessarily known which part of the contact
microscopically reaches the conducting layer in the alloying
process. With lithography, contacts can be made small and
placed outside the vdP structure such as voltage probes of a
Hall bar.

Using a rectangular geometrysLxÞLyd can help us to
increase the measurement accuracy of the vdP anisotropy
substantially by tuning the effective anisotropyAeff closer to
unity. For example, a conductivity anisotropy range of 1
øA1,A,A2 can be turned into an effective anisotropy
range of 1/ÎA1A2,Aeff,ÎA1A2 by using an aspect ratio of
Lx/Ly=Î4A1A2.

There are also general disadvantages of the vdP method
compared to the Hall-bar method. The failure of one contact
renders the vdP structure unusable. Also, macroscopic de-
fects can disturb the current paths in the vdP structure, thus
drastically changing the effective geometrical anisotropy.
The vdP method cannot discriminate this effect against the
conductivity anisotropy. On the other hand, Hall bars with
multiple voltage probes for each transport direction can help
us to find out problems with macroscopic defects, and alter-
native contacts can be used in case of a contact failure.

VI. CONCLUSION

To conclude, we have described in detail how to accu-
rately characterize rectangularly shaped structures with an-
isotropic conductivity using van der Pauw–Hall measure-
ments. An analytical correction is presented to obtain the
anisotropy of the conductivity from the measured resis-
tances. It was further shown through a numerical calculation
that the Hall coefficient is, in fact, correctly obtained from
the vdP data. Combining these two results, the vdP data can
be used to obtain the sheet carrier concentration as well as
the mobilities in the two principal directions. This aniso-
tropic correction technique was tested on coupled quantum-
wire structures with temperature-dependent anisotropy. For
all investigated anisotropies, the corrected vdP results agree
with those measured using Hall-bar structures. Thus, over a
wide range of anisotropies, the corrected vdP technique is an
accurate and convenient alternative to the Hall-bar geometry.
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FIG. 4. (Color online) Conductivity anisotropyA and carrier
density N obtained from Hall-bar measurements(solid symbols,
solid lines) and van der Pauw measurements(open symbols, dotted
lines) at different temperatures. The data pointA2t is the anisotropy
of the two-terminal resistance of the vdP measurement. The error
bars ofN visualize a relative error of±3%. Thelines are to guide
the eye.

FIG. 5. (Color online) Resistivities of both principal directions
and average resistivity obtained from Hall-bar measurements(solid
symbols, solid lines) and van der Pauw measurements(open sym-
bols, dotted lines) at different temperatures. The error bars visualize
a relative error of±5%. Thelines are to guide the eye.
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