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Mobility and carrier density in materials with anisotropic conductivity revealed by
van der Pauw measurements
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The validity of four-contact van der Pauw—Hall measurements of rectangularly shaped semiconductors with
anisotropic transport properties is investigated analytically, numerically, and experimentally. We show that the
carrier concentration is correctly measured using the van der Pauw technique without corrections. Furthermore,
the asymmetry in the resistance of the van der Pauw sample is related to the real transport asymmetry through
an analytically obtained formula. Thus, the mobility in both principal directions as well as the carrier density
can be obtained from van der Pauw data. Measurements of electron concentration and mobility using both the
Hall-bar and van der Pauw geometries in semiconductor coupled quantum-wire structures confirm this expec-
tation for different anisotropies.
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I. INTRODUCTION material is defined, the van der Pauw geometry is presented,
and the usual procedure of obtaining isotropic transport pa-
Transport properties of isotropic semiconductors are conrameters from vdP measurements is shown. Within this
veniently measured with the van der PadP) method! In  framework, the four-terminal resistances for given micro-
contrast to Hall-bar measurements, the vdP technique rescopic anisotropies aanalytically calculated for rectangular
quires only four sufficiently small contacts placed at the cir-samples without magnetic field in Sec. Ill. Numerical meth-
cumference of an arbitrarily shapebiut simply connected ods allow the calculations to also be extended to include a
sample. The influence of contact size is taken into account byhagnetic field and for given arbitrary shapes. Thus, using
correction factors. Transport properties of semiconductor finite-element methods, the four-terminal resistances as well
nanostructures can be anisotropic due to anisotropic effectivgs Hall voltages araumericallycalculated by simulating the
masses, structural corrugation in a two-dimensional electroaxperiment. These numerical and analytical results allow car-
gas(2DEG),? the presence of coupled quantum-wifésor  rier concentration and mobility in samples with anisotropic
high Landau-level indices in a two-dimensional electron orconductivity to be obtained from vdP data. This method is
hole systen®.” The analysis of vdP measurements for aniso-applied to coupled quantum-wire structures with anisotropic
tropic transport, however, is less than straightforward betransport properties in Sec. IV. The experimental results of
cause the validity of the calculated carrier density is not obhoth these measurement geometries are compared and dis-
vious and the magnitude of anisotropy is overestimated. Fogussed in Sec. V to assess the use of van der Pauw measure-

example, transport measurements in high Landau levels of sents for characterizing anisotropic semiconductors.
2DEG show an anisotropy of about 100 in vdP geometry, but

only 6 in Hall-bar geometr§.In contrast to the vdP geom-
etry, the four-terminal resistances of a Hall-bar geometry di- Il. DEFINITIONS

rectly reflect the actual resistivity in the direction of the bar. A two-dimensional anisotropic semiconductor without

Q,tr\;vehoer;a etliﬁlaerx eﬁ’ﬁﬂ;“%g:; etZlns gﬁgﬁf:g}g |fs Oglgﬁ?hlgssrzmagnetic field is characterized by the conductivity tensor
etries are analytically derived and formulas for the four- |:0'xx 0 }
terminal resistances are given. These were also experimen- o=
tally confirmed with structured lateral superlattied\
general solution to the potential problem in an arbitrarilywith principal conductivitiesr,,, oy, in the mutually perpen-
shaped two-dimensional anisotropic medium is given in Refdicular directionsx,y of the two-dimensional(2D) plane.
10. With finite-element methods, the effect of a conductivity Therefore, the resistivities,,,(€2) for transport in the prin-
anisotropy on Hall measurements was numerically calculatedipal directions, without magnetic field, can be expressed as
for the van der Pauw method and square shaped geofhetry.
(The significant dependence of Hall voltage on anisotropy p :L )
described in Ref. 11 is not, however, supported by either our I oy
numerical calculations or our experimental resylts. Their ratio

The aim of the present paper is to investigate how aniso-
tropic transport properties can be obtained from the results of
van der Pauw measurements of a rectangularly shaped
sample. In Sec. Il, the conductivity tensor describing the an- Pxx Tyy

isotropic microscopiamagnetgtransport properties of the is the conductivity anisotrop.
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FIG. 1. Simple rectangular geometry of sizgx L, with con- 10
tacts in the corners.

The measured quantities are four-terminal resistances
such as FIG. 2. (Color onling Four-terminal resistancd® and their an-

isotropy A,gp Vs effective anisotropyAes, Calculated analytically

Vac (lines) and numerically(symbols.
Rapgc= 7", (4
IAD
N = AR (9)
with the voltageVg(V) measured across conta@sand C, B eRy

and the current,p(A) flowing through contact#\ and D. i . ]

These resistances depend not only on the resistivity but als\ef'th the Ha.II scattering factory wh|ch.de.pends on the ac-
on the actual geometrgincluding contact placemenof the t_ual scattering processes of both _prmmpal transport direc-
structure. Figure 1 shows the vdP geometry used in thiions. [In the case of the conduciivity tensor defined in Eq.
present study as well as by several otHefs. (7), this factor is unity.

The resistances measured in both transport directions are
I1l. ANALYTICAL AND NUMERICAL RESULTS

Rux= Rapsc andRyy = Ragpc- (5

In isotropic materials, the resistivity fulfills the van der
Pauw theorerh

The analytical result for the four-terminal resistamgis
a functionf(py, pyy, Lx, Ly) given in Ref. 8 but for a different
geometry. This function is used to calcufgt&R,, for the
geometry considered here with the result that

Re= 2f(pxs PyysLxs 2Ly)

exp(— 77§<> + ex;(— WBXY) =1, (6)
p p

used to determine the resistivity from experimental data.

In order to determine the carrier density, a magnetic fiel
B(T) perpendicular to they plane is applied. Now the con-
ductivity tensor in a magnetic field is

8 —— L -

= =Py 2 {n sinh( @(—Xwn)} . (10

T Pyy Lx

dRyy is given_by exchanging_aﬂ an_dy in the above equation.
For convenience an effective anisotropy

el
(7) P Pxx I-y Ly

is introduced A.; takes into account the conductivity aniso-
tropy A and the geometrical aspect ratio of the vdP structure,
and is identical toA for square geometry. Using EqggL0)

and (11), the anisotropy of the four-terminal resistance for
rectangular samples is

n=odd"

Ne [ Mx - MxMyB :| (1)

o=
1+ MxMyBZ HxiayB My

with homogeneous 2D carrier densi{m™2) (negative for
electrony and mobilities uy, u,(M?/V9) (negative for elec-
trong in the principal directionx,y of the 2D plane. Equa-
tion (7) ignores the averaging of the individual tensor com-
ponents over energy. The four-terminal resistafGg gp
measured with and without magnetic fiegklresults in the R

> [n Siﬂf‘(\"@ﬂ'ﬂ)]_l

n=odd"
Hall coefficient Agp= 2 = . 12
Rex 2 [n sinf‘(\«"Aeﬁﬂ-n)] 1
- Racep(B) ~Racgn(B=0) n=odd"

(8

B The four-terminal resistances and their anisotropy in our vdP
geometry are shown in Fig. 2 for a range of effective
By symmetry, use of the other diagorRiy ca leads to the anisotropies.
same Hall coefficient. The carrier density relates to the Hall Voltages and resistances can be calculated numerically for
coefficient by arbitrary geometries and arbitrary parametenaterial prop-

Ry
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TABLE I. Numerically calculated Hall coefficients for different conductivity anisotropies at a constant
carrier density oNe=1 C m™2.

A Racep(B=0)(2) Rac,ep(B=0.2 T)(€2) Ry(m?/C)
1 1x10°° 0.199 0.994

0.498 0.697 0.995
10 2.267 2.466 0.994
20 3.569 3.768 0.996
100 9.054 9.250 0.983

erties,B field, external voltages Specifically, finite-element the case with and without magnetic fieldrist sensitive to
methods are used to calculate the local electrostatic potentitthe anisotropy. For all anisotropies considered here, the vdP
d(r) at the positiorr in the 2D plane of the vdP structure. technique correctly determines the carrier density according
The problem is solved for a rectangleee Fig. 1 with the  to Eq.(9). (We find the same result for rectangularly shaped
magnetoconductivity tensow(B) defined in Eq.(7). The  structures. Our results contradict those of Ref. 11 which
form of the current density (also using finite-element methgdpredict considerable

. variations ofRy even for small anisotropies.

j=oE=-aVa(r), (13) Table Il and Fig. 2 display the analytically and numeri-
and the fact that there are no current sources/sinks inside ti§@lly calculated results of the four-terminal resistances and
structure,V-j =0, results in the elliptic partial differential their anisotropy. . _
equation for the potential, #-aV®=0, to be solved for The nymerlcgl resultg confirm the analytical forml(ﬂﬁ)) .
points inside the structure. Boundary conditions are Neuyfor all anisotropies conS|dered_ here. qu extreme anisotropies
mann type, i.e., no current flows normal to the boundary, atA=100, however, the vdP anisotropy is too high to be prac-
all boundaries except for the bias contacts. The bias contactially measured and the accuracy is probably insufficient.
are used as source and drain for the current, and mathema¥ile can also verify both methods by putting the resulting
Ca”y are Dirich|et_type boundaries g[venconstant bias po- four-terminal resistances of the iSOtrOpiC CQAG 1) into the
tentials. From the resulting potential distribution, the localvan der Pauw theoreit®) and solving it forp. As a result a
current density is calculated according to E@3). Then, resistivity of p=1 (that we put in as material propeytys
integrating the normal current density along a line that di-retrieved, which means that our measurement gives us the
vides the sample into two parts, each part containing one biaggorrect value. Moreover, in the anisotropic cases, the resis-
contact, the total current in the sample is obtained. The fourtivity p obtained from Eq(6) equals the average resistivity
terminal resistances of the sample are now calculated by di-
viding the potential difference between the other two con- 7 B
tacts(corner$ by the current. E

For a squargl,=L,), R and R, were calculated with
both methods mentioned above, dgwas numerically cal-
culated. All calculations were done for different conductivity
anisotropiesA assumingu, = u,. For convenience of the nu-
merics, let Ne=1 cni2, Vuu,=1n?/V's, therefore u,
=JVAm?/V s, andu,=1/YA m?/V s. As bias voltage 1 V is
chosen, the magnetic field was set 0.2 T. The following
points should be noted1) The chosen bias voltage does not
influence the calculated four-terminal resistances because a
potentials and the current scale linearly with bi@y;without
magnetic field, the chosen scale of mobility and the carrier
density do not limit the generality of our considerations as
they do not influence the potential distribution; af®l for
the case with magnetic field, different scalesu® lead to
the same Hall coefficieriRy. Therefore, the results also ap-
ply to more realistic numbers by scaling the mobility or car-
rier density appropriately. The numerical calculations were
done using=30 000 triangles.

The results of the numerical calculationRjf are given in
Table I. The corresponding potential distributions for isotro-  FiG. 3. (Color onling Equivalent-potential distributions in vdP
pic and anisotropi¢A=2) cases with and without magnetic geometry calculated for the same bias current and carrier density.
field are shown in Fig. 3. Left column B=0, right columnB=0.2 T, top rowA=1, bottom

We conclude that the Hall voltage as difference betweemow A=2. Bias potential is 1 V, 1 div=10 mV.
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TABLE II. Four-terminal resistances and their anisotr@pyjp on a square without magnetic field for different conductivity anisotropies
A calculated numericallfNum.) and analytically(Analyt.).

A Pxx Pyy Ryx Q) Ryy Q) Aydp = yy/ Ryx
(Q) Q) Num. Analyt. Num. Analyt. Num. Analyt.
1 1 1 0.220 0.221 0.220 0.221 1.00 1.00
15 0.817 1.22 0.108 0.109 0.393 0.395 3.64 3.63
2 0.707 1.41 0.0604 0.0599 0.552 0.561 9.13 9.37
5 0.447 2.24 0.00447 0.00453 1.349 1.356 302 299
10 0.316 3.16 2.3x10% 2.47x 107 2.21 2.28 9334 9236
15 0.258 3.87 2.4%10° 2.65X107° 2.97 2.99 1.2K10° 1.13x10°
20 0.224 4.47 3.5810°° 4.03x10°° 3.57 3.59 1.0x10° 8.91x 1CP
100 0.1 10 1.x10 1.2x10718 9.05 9.12 5.3% 10 7.9x 103
Pave= \“”px—xpyy (14) transport directions and with contacts in the corrise Fig.

) ) ) ) ) 1) were prepared on theamepiece of sample by electron-

N accordance W|th theore“cal eXpeCtatléPlg'.he nume”cal beam ||thography and Sha”ow mesa etching_ Thusl it iS en-

calculations showed that, interestingly, the anisotropy of th&yred that both Hall-bar and vdP structures have the same

two-terminal resistance@Rap ap and Rap g, i-€., bias volt-  microscopic transport properties and can be readily com-

age divided by total currentstrongly underestimates the pared.

conductivity anisotropy(1.22, 2.37, and 5.00 foA=2, 10, Transport measurements were performed with these struc-

and 100. ~tures at the same time in a temperature range of 10-320 K
The important calculated results are how the conductivitthys varying the conductivity anisotropy. A constant dc bias

anisotropy is determined from the vdP resistance anisotropyyrrent of 1 wA was chosen as a trade-off between minimiz-

(10) and that the carrier density is correctly measured withing sample heating and maintaining measurement accuracy.

the vdP technique. o o Hall coefficients were measured in a magnetic field of 0.5 T.
We determine the principal resistivities from measuredror the Hall-bar case, the Hall coefficient was measured in
four-terminal vdP resistancé,,, Ry, as follows: the Hall bar along the low-mobility direction. In a separate

(1) The effective anisotrop® is obtained from the an- measuremeninot shown hergethe Hall coefficients were si-
isotropy of measured four-terminal resistanégg with the  multaneously measured in Hall bars along both principal di-

help of Eq.(12). rections. They agree within an uncertainty of +3%.
(2) With known aspect ratio, the conductivity anisotropy  The resistivities,,, and two-dimensional carrier density
A is calculated according to E@L1). N were calculated from the data of the vdP measuremnests

(3) Using the van der Pauw theoregi®), the average re- described in the preceding sectji@nd the Hall-bar measure-
sistivity pae=p is obtained from the measured four-terminal ments separately. The results are given in Figs. 4 and 5. The
resistances. anisotropieA andA,4p from Hall-bar and vdP measurement

(4) The principal resistivities are now calculated frafn range from 2.4 to 6.6 and 12 to 794, respectively.
and p,,. Using Egs(3) and(14),

/_— ’f_
Pxx = PaveVA ! andpyy= PaveVA. (15) V. DISCUSSION

Numeri_cglly it is shown that the experimentally obtgined Despite a change of anisotropy by a factor of almost 3, the
Hall coefficientRy, [Eq. (8)] does notdepend on the aniso- meaqured carrier density (Fig. 4) varies only slightly. This
tropy. Therefore, it is used to determine the carrier density,5jation ofN is considered to be independent of the aniso-
the same way as for isotropic materials. tropy. Moreover, for the entire anisotropy range, the carrier
density obtained by vdP measurement agrees very well with
the Hall-bar result, confirming our analytically obtained re-
sults. Both measurement methods are equally good to deter-

To test the theoretical results for different anisotropiesmine the Hall coefficient, also in anisotropic media.
samples containing modulation-doped, self-organized, The average resistivityp,, from the Hall-bar results
coupled InAs quantum wires in InBsimilar to those de- agrees well with the resuft from the vdP measuremegitig.
scribed in Ref. pwere grown by gas-source molecular-beam5).
epitaxy. These samples show a temperature-dependent con-With the vdP method, the quantitidsandp measured so
ductivity anisotropy with higher conductivity parallel to the far can be correctly obtained. This holds true even for arbi-
quantum wires. Hall barg50 um channel width for both  trary geometried® In contrast, the anisotropy of four-
principal transport directions and square-shaped vdP stru¢erminal resistances depends also on the particular geometry,
tures (200 um edge lengthwith edges along the principal even more crucially than on the conductivity anisotropy as

IV. EXPERIMENTAL RESULTS
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N(cm'z) Special care has to be taken of the geometry in order to
12 measure the conductivity anisotropy accurately. In @4)
1.7x10 1 this is obvious with théL, / L,)? factor as opposed ta,,/ Pyy-
1 6x10" The Hall-bar geor_netry [s more forgiving as the rglevant
‘ i lengths(channel width, distance of the voltage proppsst
1 510" like the conductivity apisotropy, enter linearly into the anisp-
: i tropy of the four-terminal resistances. The geometry consists
1 of the contacts and the shape of the transport structure. The
14x1075 contacts have to be at the edge of the structure as a precon-
o ] dition for vdP measurements, the position must be well de-
1:3x107 fined (e.g., in the corners of the rectangland the contacts
o | should be as small as possible. The size of the contacts is an
1.2x107 additional uncertainty to the effective contact position be-

cause it is not necessarily known which part of the contact
microscopically reaches the conducting layer in the alloying
process. With lithography, contacts can be made small and
placed outside the vdP structure such as voltage probes of a

FIG. 4. (Color onling Conductivity anisotropyA and carrier
density N obtained from Hall-bar measuremensolid symbols,

solid lineg and van der Pauw measuremedpen symbols, dotted . Using a rectangular geometry (L, #Ly) can help us o
lines) at different temperatures. The data potgt is the anisotropy increase the measurement accuracy of the vdP anisotropy

of the two-terminal resistance of the vdP measurement. The erropuPStantially by tuning the effective anisotropy closer to
bars ofN visualize a relative error af3%. Thelines are to guide UNity. For example, a conductivity anisotropy range of 1
the eye. <A;<A<A, can be turned into an effective anisotropy

range of 1HAA,<Ag< VAA, by using an aspect ratio of

Hall bar.

discussed later. In our experiment the geometry was ver IL=9AA,
precisely defined using lithography. Figure 4 shows a quite™' -y~ ‘7172 )
good agreement of the anisotropies but not as well as the | €€ are also general disadvantages of the vdP method

other quantities. This also affects the calculated principal re(_:ompared to the Hall-bar method. The failure of one contact

sistivities (see Fig. 5 because they are calculated with therenders the vdP structure unusable. Also, macroscopic de-

anisotropy and the average resistivity. A possible reason foflects can disturb the current paths in the vdP structure, thus

the deviation is the four-terminal resistance in the high_drastically changing the e_ffec_:ti\_/e geometrical anis_otropy.
mobility direction (seeR,, in Fig. 2), which drops quickly The vdl? metho_d cannot discriminate this effect against lthe
with increasing anisotropies. This makes precise measur&_onductlwty anisotropy. On the other handz Ha_II bars with

ments more difficult and is regarded as the limiting factor Ofmult|pl_e voltage probes fo_r each tranqurt direction can help
accuracy in our experiment. For more compleonrectan- us to find out problems with macroscopic defects, and alter-

gulan geometries, finite-element methods, as presented her@?‘t've contacts can be used in case of a contact failure.

can be used to numerically calculate a relation between con-

ductivity anisotropy and anisotropy of four-terminal resis- VI. CONCLUSION

tances to substitute E@L2).

To conclude, we have described in detail how to accu-

PlQ) rately characterize rectangularly shaped structures with an-
6000-] LB B B isotropic conductiyity using _van_der Pauw—Hall measure-
i i ments. An analytical correction is presented to obtain the
5000 ] anisotropy of the conductivity from the measured resis-
4000 . - tances. It was further shown through a numerical calculation
3000— \*\;g;-\ :!:_' that the Hall coefficient is, in fact, correctly obtained from
= = the vdP data. Combining these two results, the vdP data can
2000 — be used to obtain the sheet carrier concentration as well as
1500 Ngorooan e V] the mobilities in the two principal directions. This aniso-
- o tropic correction technique was tested on coupled quantum-
1000 pyyw ] wire structures with temperature-dependent anisotropy. For
500 — 7 all investigated anisotropies, the corrected vdP results agree

with those measured using Hall-bar structures. Thus, over a
wide range of anisotropies, the corrected vdP technique is an
accurate and convenient alternative to the Hall-bar geometry.

FIG. 5. (Color onling Resistivities of both principal directions
and average resistivity obtained from Hall-bar measurem@otgl
symbols, solid linesand van der Pauw measureme(dpen sym-
bols, dotted linepat different temperatures. The error bars visualize
a relative error of:5%. Thelines are to guide the eye.
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