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We have analyzed the quasiclassical mechanism of magneto-oscillations in the ac conductivity and photo-
conductivity, related to non-Markovian dynamics of disorder-induced electron scattering. While the magneto-
oscillations in the photoconductivity are found to be weak, the effect manifests itself much more strongly in the
ac conductivity, where it may easily dominate over the oscillations due to the Landau quantization. We argue
that the damping of the oscillatory photoconductivity provides a reliable method of measuring the homoge-
neous broadening of Landau levels(single-particle scattering rate) in high-mobility structures.
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I. INTRODUCTION

An intriguing development in the study of a high-mobility
two-dimensional electron gas(2DEG) was the recent
observation1 of magneto-oscillations of the photoconductiv-
ity of a sample subjected to microwave radiation, as a func-
tion of the ratiov /vc. Herev andvc are the radiation fre-
quency and the cyclotron frequency, respectively.
Subsequent experiments,2–5 working with very-high-mobility
samples, yielded yet another dramatic discovery: for suffi-
ciently high radiation power, the minima of the oscillations
evolve into “zero-resistance states”; i.e., the dissipative resis-
tance of a sample becomes vanishingly small.

The nature of the oscillations in the photoconductivity
sph has raised a lot of interest. An important step was
made in Ref. 6, in which a direct connection between the
emergence of the zero-resistance states and the oscillations
was emphasized. Specifically, it was recognized thatwhat-
ever the nature of the oscillations, when they become so
large that the linear dc response theory yields a negativesph,
an instability is developed leading to the formation of do-
mains of counter-flowing currents and thus to the zero mea-
sured resistance. Following this approach, a key issue which
needs to be settled for understanding the experiments is the
microscopic mechanism of the oscillatory photoconductivity
(OPC).

Similarly to the conventional Shubnikov–de Haas
oscillations, the growing body of theoretical work is focused
on the oscillations of the density of states(DOS) induced
by the Landau quantization as an essential element of the
construction. The mechanism of the OPC identified in Ref. 7
and analyzed in detail in Ref. 8 hinges on the oscillations
of the DOS and is related to a radiation-induced change of
the electron distribution function in energy space,fs«d,
such thatfs«d oscillates with varying both« /vc andv /vc. A
hallmark of this contribution tosph is that it yields an am-
plitude of the OPC which is proportional to the inelastic
relaxation timetee due to electron-electron collisions(more
effective at low temperatures than electron-phonon scatter-
ing). Another mechanism of the OPC, based on the effect
of radiation on impurity scattering in the presence of the

Landau quantization, was suggested in Ref. 9(an earlier,
closely related variant of this approach was formulated in
Ref. 10). A systematical theory of this contribution tosph
was constructed in Ref. 11. Comparing the results of
Refs. 7 and 8, and Ref. 11, one sees that the mechanism7,8

dominates, i.e., leads to much stronger oscillations, iftee
@tq, wheretq is the single-particle relaxation time due to
impurity scattering. For typical experimental parameters, a
characteristic ratiotee/tq,102.8 Overall the results of Ref. 8
are in good agreement with the experimental data as regards
the behavior of sph in the range of parameters where
the OPC is not too strongly damped, i.e., where the experi-
mental efforts have been focused so far. In particular,
Ref. 8 explains the emergence of strong oscillations and,
in combination with Ref. 6, the formation of zero-resistance
regions.

While the agreement between theory and experiment is
very encouraging, the situation is not so clear in the experi-
mental limit of weak(strongly damped) oscillations. Central
to the identification of the microscopic mechanism of the
oscillations is, on top of their period and phase, the behavior
of their envelope with decreasing magnetic fieldB. For any
mechanism based on the DOS oscillations, the relation be-
tween the DOS and OPC damping factors is critically impor-
tant. The OPC7,8,11 is damped at lowB by a factor
exps−p /vctphd, where the ratiotph/tq=1/2 is adistinctive
feature not sensitive to microscopic details of either disorder
or weak inelastic interactions.12 However, as emphasized in
Ref. 7, the experimentally reported values oftq and tph do
not satisfy this relation, withtph noticeably larger thantq/2,
roughly by a factor of 10 in Ref. 3 and by a factor of 3 in
Ref. 2. Taken at face value, the difference would mean that
the amplitude of the OPC observed at smallB is orders of
magnitude higher than given by the mechanism based on the
Landau quantization, which might be considered as a hint
about a different origin of the OPC at smallB. Alternatively,
the experiments on the damping of Shubnikov–de Haas os-
cillations might overestimate the single-particle scattering
rate tq

−1, e.g., because of inhomogeneous(due to macro-
scopic inhomogeneities) broadening of Landau levels. To
resolve this dilemma, it is desirable to examine a range
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of mechanisms of the OPC in the absence of the DOS
oscillations.

In this article, we analyze a mechanism of the OPC
governed by quasiclassical memory effects. These are
related to non-Markovian correlations in electron
dynamics.13 We assume thatp /vctq@1 and completely
neglect weak oscillations of the DOS. The OPC induced by
the memory effects is not specific to any particular type
of disorder; however, below we concentrate on the following
two-component model,14 in which the memory effects
are particularly prominent. We assume that there is a
smooth random potential of remote donors that are separated
by a large spacerd@kF

−1, where kF is the Fermi wave
vector, from the 2DEG plane and, in addition, there are
rare short-range scatterers, e.g., residual impurities located at
or near the interface. We consider the casetS!tL, wheretS
and tL are the zero-B momentum relaxation times due
to the short-range scatterers and the long-range disorder,
respectively. From the experimental point of view, this
choice is motivated by reports(see, e.g., Ref. 15) that
the zero-B mobility in very-high-mobility structures is
frequently limited by residual impurities andtL /tS can be as
large as 10. AlthoughtS!tL in our model, we assume thattq
is determined by the smooth disorder; i.e.,tq.tL / s2kFdd2

!tS.
The article is organized as follows. First, in Sec. II, we

outline the approach to the photoconductivity based on the
Boltzmann equation. In Sec. III, we discuss the mechanism
of the photoconductivity related to electron-electron interac-
tions. In Sec. IV, we turn to the magneto-oscillations induced
by the memory effects. Our central results are presented in
Secs. V and VI. Section V deals with the oscillations in the
ac conductivity. Finally, in Sec. VI, we compare two mecha-
nisms of the oscillatory photoconductivity, quasiclassical and
quantum, related to the memory effects and the Landau
quantization, respectively.

II. PHOTOCONDUCTIVITY: ESSENTIALS

A necessary input to the calculation of thequasiclassical
OPC is the memory effects, discarded in the Boltzmann
equation. However, to set up a systematic formalism, it is
instructive to begin with a derivation ofsph within the con-
ventional kinetic theory. The Boltzmann equation for the dis-
tribution functiongsp,f ,td of electrons in momentum space
reads

Lgsp,f,td = − F ]P gsp,f,td, s1d

where L=]t+vc ]f− Iel− I in, F=−esEWdc+EWv cosvtd, EWdc is

the dc electric field,EWv is the ac field,f is the angle of the

momentump with respect to the direction ofEWdc, andIel and
I in are the elastic and inelastic collision integrals, respec-
tively.

We expand the distribution function at energy« in a
series: gsp,f ,td=onn gnns«dexpsinf+ invtd. Elastic colli-
sions lead to relaxation of angular harmonics withnÞ0;
in particular,Ielg1n=−t−1g1n, wheret is the momentum re-
laxation time. Inelastic electron-electron collisions tend to

equilibrate electrons among themselves, but are not capable
of establishing a steady-state dc photoconductivity. For
the quasiclassical OPC(in contrast to that based on the
DOS oscillations, cf. Ref. 8), the inelastic transitions
due to electron-electron interaction do not play any essential
role and will be neglected. To dissipate energy absorbed
from the ac field, we introduce coupling to a thermal bath,
e.g., to an equilibrium phonon system, characterized by a
relaxation timetin. Under the assumption that bothtin and
the momentum relaxation time due to the coupling to the
bath are much longer thant, the main role of the inelastic
scattering is to yield a slow relaxation of the isotropicsn
=0d part of g to the equilibrium Fermi distributionfF at a
bath temperatureT.

Expanding the nonequilibrium distribution function in
powers of the driving force, we have

g = o
m=0

s− L−1F ]pdmfF. s2d

A useful way of visualizing this solution of Eq.(1) at given
order inEdc andEv is by counting all possible couplings of
harmonicsgnn represented as points on thesn ,nd plane(Fig.
1). The dc field Edc couples nearest-neighbor harmonics
along then axis, gnn↔gn±1,n. We are interested here in the
linear (with respect toEdc) photoconductivitysph, so that
only one such link is allowed. The ac fieldEv couples har-
monics along diagonals,gnn↔gn±1,n±1 and gn±1,n71. The
propagatorL−1 is a diagonal matrix insn ,nd space. The static
longitudinal currentj =sphEdc, given by

j = −
e

2p"2 E d« p Re g10, s3d

is expressed throughg10; i.e., is given by a sum of all paths
starting at(0, 0) and ending at(1, 0). Already at ordersph
,OsEdc

0 Ev
2d, as many as nine different graphs arise, shown in

FIG. 1. Graphic representation of various contributions to the
photoconductivity[Eqs.(2) and(3)] in thesn ,nd space at the lowest
ordersph,OsEdc

0 Ev
2d.
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Fig. 1, to which one should add their counterparts mirrored
in the horizontal axis, which corresponds to the changev
→−v.

Our strategy for findingg10 is to select graphs involving
couplings whose strength diverges attin /t→`. These are
graphs returning to the point(0, 0) [graphs(a) and(b) in Fig.
1], which are proportional tosL−1d00. This means that to or-
derEv

2 the paths0,0d→ s1,1d→ s0,0d→ s1,0d (and its coun-
terparts in other quadrants) gives the main contribution to
sph for

tin @ t. s4d

The perturbative expansion in powers ofEv
2 proceeds by it-

erating the loops0,0d→ s1,1d→ s0,0d. In this way we arrive
at a simple relations±ivc+t−1dg±1,0=eEdc ]pf /2, where f
=g00 satisfies the closed equation

e2Ev
2

2m
]«fKv ]«fg + I inf = 0. s5d

The function Kv=Kv
+ +Kv

− which describes the absorption
rate at energy« is given by

2Kv
± =

«t

1 + sv ± vcd2t2 . s6d

The photoconductivity attin@t is thus completely deter-
mined by f; i.e., in this limit the ac field modifies the dc
current through the heating, as

sph = −
e2

2p"2 E d« K0 ]«f . s7d

The functionfs«d changes abruptly around the Fermi en-
ergy eF on a scale

Te = maxhT,Dhj, s8d

where

Dh = seEv l in/2dfKvseFd/K0seFdg1/2 s9d

and l in=vFfK0seFdtin /eFg1/2 is the inelastic length(vF is the
Fermi velocity). Note thattin in the regime of strong heating
sDh@Td should be found self-consistently withDh and thus
depends onEv.

Turning to the evaluation ofsph under the assumption that
Te!eF, we first notice that a seemingly reasonable approxi-
mation that neglects the« dependence oft in the integrand
of Eq. (7) [normally,ts«d changes on a scale ofeF] yields an
identically zero photoresponse. Indeed, in that casesph is
equal to the static Drude conductivitys0

D independently of
the detailed shape offs«d, sinceed« « ]«f =−2p"2ne/m due
to particle number conservation(ne is the electron concen-
tration). It follows that the dependence oft on « should be
taken into account. It is worth mentioning that, contrary to a
naive expectation, this does not lead to any additional small-
ness ofsph sincets«d enters the result through expressions of
the type«]«tu«=«F

,t.

We do not discuss specific microscopic models of the in-
elastic coupling of electrons to a thermal bath, our purpose
here is to use the simplest possible representation ofI in. In a
conserving relaxation-time approximation

I inf = − tin
−1sf − fFd, s10d

where the«-independenttin
−1 is, in general, a functional of

fs«d, we get from Eqs.(5) and (7) for Te!eF,

sph − s0
D = sv

De2Ev
2tin

2m
K09 =

e2

2p"2Dh
2K09. s11d

HereK09=]«
2K0u«=eF

andsv
D is the zero-T dynamic Drude con-

ductivity, sv
D=e2KvseFd /2p"2. Note that the only source of

nonlinearity ofsph with respect to the ac field power in Eq.
(11) is a dependence oftin on Ev.

Alternatively, assuming the dominant role of soft inelastic
scattering with energy transfers much smaller thanT, we can
write I in in the Fokker-Planck(FP) form, as

I inf = ]« hBf]«f + T−1fs1 − fdgj, s12d

whereBs«d=ksd«d2Ws« ,d«dl /2 is the diffusion coefficient in
energy space,W is the corresponding rate of inelastic pro-
cesses, andk. . .l denotes averaging over the energy transfer
d«. Equation(5) then becomes first-order in]«, which gives
fs«d described by the Fermi distribution with the effective
electron temperature

Teff = T + DFP, s13d

where

DFP= e2Ev
2TKvseFd/2mBseFd, s14d

and

sph − s0
D =

e2

2p"2

p2

6
sTeff

2 − T2dK09

=
e2

2p"2

p2

6
s2T + DFPdDFPK09. s15d

The case of typical energy transfers,T may be qualitatively
described by either model withBseFdtin,TeT.

The microwave power and temperature dependences of
sph can be found from Eqs.(11) and (15) for a variety of
scattering mechanisms. If one assumes thattin is determined
by scattering on acoustic phonons via the piezoelectric inter-
action screened by the 2DEG, the characteristic energy trans-
fer is Te and tin

−1~Te
3. It then follows from Eq.(9) that the

heating atDh@T is characterized byTe~Ev
2/5. By using Eq.

(11) we get sph−s0
D~Ev

2T−3 for Dh!T and T-independent
sph−s0

D~Ev
4/5 otherwise.

Having identified the main contribution tosph in the limit
tin /t@1 [diagrams(a) and (b) in Fig. 1] it is instructive to
compare this contribution with that corresponding to other
diagrams[diagrams(c)–(i)]. While the former is related to
the heating of electrons by the ac field, the latter can be
regarded as an effect of radiation on the impurity scattering
and thus represents a classical analog of the quantum effect
considered in Refs. 9–11. Following the procedure given by
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Eqs.(2) and (3) and making use of the explicit matrix form

of the field operator,fF]pggnn=Fnn8
nn8gn8n8,

Fnn8
nn8 = −

1

2
dn,n8±1ssnn8 ·eEWnn8dF]p + sn8 − nd

n8

p
G ,

EWnn8 = EWdcdnn8 +
1

2
EWvdn,n8±1,

snn8 = ex + isn8 − ndey, s16d

one can readily calculate the photoconductivity at any desir-

able order in the fieldsEWdc andEWv (ex,y are the unit vectors
along thex,y axes). At the lowest order the photoconductiv-
ity sph,OsEdc

0 Ev
2d is given by the diagrams(a)–(i) in Fig. 1

(together with their counterparts in a lower half-plane,v→
−v). In the limit tin

−1!t−1!vc!v the result takes a simple
form

sph − s0
D =

1

8
s0

DSeEvvF

«Fv
D2

3 F2c1
tin

t
+ s5c1 + 4c2d + s3c1 + 2c2dcos 2fEG ,

s17d

wherec1=«t]«
2«t−1u«=«F

, c2=«t]«t−1u«=«F
are numbers(typi-

cally of order unity) determined by the type of disorder, and

fE is the angle betweenEWdc and EWv. The first term in the
square brackets corresponds to the diagrams(a) and (b) in
Fig. 1 and reproduces Eq.(11) in the limit of weak heating,
Dh!T. The terms5c1+4c2d corresponds to the diagrams(c),
(e), and (f). The polarization-dependent part, given by the
last term, originates from the diagrams(d) and (i) (in which
both diagonal links have the same direction along then axis).
Finally, the diagrams(g) and(h) give a contribution which is
smaller, compared to the diagrams(c)–(f) and (i), in the pa-
rameter 1/vctin!1 and is omitted in Eq.(18). One can
clearly see from Eq.(18) that in the limit tin /t@1, photo-
conductivity is dominated by the heating of electrons.

III. INTERACTION-INDUCED PHOTOCONDUCTIVITY

In the above, we have neglected inelastic electron-
electron collisions, whose role is not essential for the quasi-
classical OPC, but have also ignored the renormalization of
the elastic scattering rate by electron-electron interactions.
The latter approximation, which fits in with the conventional
approach to photoconductivity, in fact misses an important
contribution tosph. Recall that the change of the conductiv-
ity due to radiation attin@t comes mainly from the heating.
It is most illuminating to focus on the model of Eqs.(12) and
(15), within which sph−s0

D is simply proportional toTeff
2

−T2. Clearly, this contribution tosph is associated with the
term in the Drude conductivity that is quadratic in the small
parameterT/eF. SubstitutingTeff for T in the Drude term
yields sph given by Eq.(15). On the other hand, there are
T-dependent quantum corrections to the conductivity, ne-

glected above, in which one should similarly changeT
→Teff. At low T, the terms insph coming from these quan-
tum corrections may easily become larger than the classical
contribution(15), as we now demonstrate.

For high-mobility samples, we are mostly interested in
sph at not too low temperaturesTt /"@1. In this “ballistic”
regime, the most importantT-dependent term in the conduc-
tivity at zeroB, for the limiting case of short-range disorder
st→tSd, is related to screening of the disorder by Friedel
oscillations, which translates into aT- and «-dependent
renormalization of the elastic scattering rate. This quantum
interaction-induced term is given byDsint=ase2/p"2dTtS.

16

Herea is the interaction coupling constant, equal to unity for
the Coulomb interaction(under the assumption thatkF

−1 is
much smaller than the static screening length). Remarkably,
Dsint is linear in T/eF, in contrast to the classical
T-dependent term, which is quadratic inT/eF. Substituting
T→Teff in Dsint yields an interaction-induced term in the
photoconductivity,Dsph=ase2/p"2dsTeff−TdtS, where Teff

−T=DFP is given by Eq.(14). For finite B, assuming thatT
@"vc," /t, this term insph reads

Dsph = a
e2

p"2sTeff − TdtS

1 − vc
2tS

2

s1 + vc
2tS

2d2 . s18d

This result is obtained by inverting the resistivity tensor for
which the leading(for T@"vc," /t) interaction-induced cor-
rection to rxx is B independent, while that torxy may be
neglected. It follows from the comparison of Eqs.(15) and
(18) that this quantum contribution to the photoconductivity
is much larger than the classical one provided the effective
temperature is lowsTeff!aeFd, which is satisfied fora,1 in
the whole range of temperatures in a degenerate Fermi sys-
tem. Thus, sufficiently strong interactions have the effect of
greatly enhancing the photoconductivity.

For stronger magnetic fieldss"vc@Td, another mecha-
nism of the interaction-induced photoconductivity becomes
relevant, related to the interplay17 of quasiclassical memory
effects and electron-electron interactions. For the two-
component model of disorder, assuming, as above, thattS
!tL, the T-dependent correction to the conductivity is
Dsint,ase2/"dstL /tSd1/2sTtS/"d−1/2.17 With numerical fac-
tors included, this yields a contribution to the photoconduc-
tivity given by

Dsph = − a
e2

p"

3zs3/2d
16p3/2 S tL

tS
D1/2Teff

−1/2 − T−1/2

stS/"d1/2 . s19d

Comparing Eqs.(18) and (19), one sees that the latter
mechanism gives a larger contribution tosph in the whole
temperature rangeT&"vc. At T,"vc, the term(19) is still
larger than that given by Eq.(18) by a factorsvctLd1/2@1.
With increasing T, however, the memory-effects-induced
correction falls off rapidly, as exps−4p2T/vcd, so that atT
,"vclnsvctLd a crossover to Eq.(18) occurs.

IV. MAGNETO-OSCILLATIONS DUE TO MEMORY
EFFECTS

The photoconductivity obtained in Secs. II and III exhib-
its the cyclotron resonance but shows no oscillations with
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varying v /vc. Let us now incorporate the memory effects.
To this end, we have to step back to write the Liouville
equation not yet averaged over positions of impurities. More
precisely, for the two-component model of disorder(speci-
fied in Sec. I), we average only over smooth disorder and
represent the Liouville operator as

L = L0 + dL − I in, s20d

whereL0 includes the effect of scattering on smooth disorder
and is given by

L0 = ]t + v¹r + vc]f − tL
−1]f

2 , s21d

anddL=−oi IRi
sr d is a sum of collision operators for short-

range impurities located at pointsRi. We have to keep inL0
the spatial-gradient term(v is the velocity).

Averaging the solution of Eq.(1) overRi with L given by
Eq. (20) can be done systematically along the lines of Ref.
14: a classical diagram technique is formulated by means of
the free propagatorL0

−1 and the disorder correlation function
kdLsr ddLsr 8dl. We proceed by representing the averaged
propagatorkL−1l=sL0+M − I ind−1 in terms of the self-energy
operatorM. Equations(5)–(7) are then reproduced witht in
Eq. (6), given by

t−1 = tL
−1 + Ssvd, s22d

whereS=esdf /2pdnMn andn=v / uvu. To first order indL,

Ss1d = − nSE drE sdf/2pdnIRi
sr dn. s23d

By definition, nSedr IRi
sr dn=−ntS

−1, so that we haveSs1d

=tS
−1, which yields the Drude result for the total scattering

ratet−1=tL
−1+tS

−1. Expanding nowM to second order indL,
we obtain the leading correction toS that is due to the
memory effects:

Ss2dsvd = − nSE drE dr 8E df

2p
nIRi

sr dDvsr − r 8dIRi
sr 8dn,

s24d

or more explicitly

Ss2dsvd = − 4pnSE drE dr 8E df

2p
E df̃

2p
E df̃8

2p
E df8

2p

3 cosfIRi
sr ,f,f̃dDvsr − r 8,f̃,f̃8d

3 IRi
sr 8,f̃8,f8dcosf8, s25d

where the propagator

D = sL0 + tS
−1d−1 s26d

is taken in thev representation. Most importantly, thev
dispersion ofD leads to oscillations ofSs2dsvd with a period
vc.

To find Ss2dsvd, we first note that, sinceIRi
sr d as a func-

tion of r falls off fast beyond a small vicinity ofRi, one can
put r =r 8 in the argument ofDv in Eqs. (24) and (25).
Ss2dsvd is then given by

Ss2dsvd = −
2

nStS
2E df

2p
E df8cosfDvs0;f,f8dcosf8,

s27d

whereDvs0;f ,f8d is the Fourier transform int of the prob-
ability density to return with a direction ofv specified byf8
if one starts at an anglef. Let us now focus on the case
vctS@1. In this limit, Dvs0;f ,f8d is sharply peaked atf
=f8 and, introducing the total probability of returnPv

=edf8Dvs0;f ,f8d, we finally get

Ss2dsvd = − Pv/nStS
2. s28d

A return-induced correction to the effective scattering
rate, which comes according to Eq.(28) from RePv, yields,
away from the cyclotron resonance, oscillations of the ab-
sorption rate through a correction to the functionKvseFd [cf.
Eq. (6)],

DKv
±seFd = − seF/2nStS

2dRe Pv/sv ± vcd2. s29d

The oscillatory part ofKvseFd leads toclassicaloscillations
of the linear ac conductivity,19

Dsv
scd = − sv

DRe Pv/nStS, s30d

and being substituted in Eqs.(5)–(7), to those ofsph. To first
order inEv

2, the classical oscillatory correction tosph reads

Dsph
scd

sph − s0
D =

Dsv
scd

sv
D = −

Re Pv

nStS
. s31d

It is worth noting once more that both the smooth correction
sph−s0

D and the oscillatory contributionDsph
scd are propor-

tional to the inelastic timetin.
In the above, we have analyzed the oscillatory correction

to the self-energy in terms of the return probabilityPv. In
fact, there are other contributions to the OPC that are not
reduced to the self-energy corrections and cannot be repre-
sented throughPv. To illustrate this point, it is convenient to
switch to a more conventional(dual) representation of the
diagrams in Fig. 1, now with lines corresponding to the
propagators and vertices representing the field operators(16),
as shown in Fig. 2. The diagram(a) in Fig. 2 reproduces the
graph (a) in Fig. 1. The diagram Fig. 2(b) represents the
oscillatory correction tosph of the self-energy type[Eq.
(31)]. Both diagrams(a) and(b) in Fig. 2 contain the inelas-
tic propagatorsL−1d00=tin at zero momentumq, which is
much larger than all other propagators,sL−1dnn with at least
one of the indicesn ,nÞ0. By contrast, the diagram(c),
which exemplifies an oscillatory vertex correction tosph, is
not proportional totin, because of largeq running along the
internal propagatorsDsq,vd [defined in Eq.(26)]. The vertex
type corrections, which are of the same order in all of the
diagrams(a)–(i), are thus by a factortin /tS smaller than the
self-energy contribution(31).

The functionPv for vctL@1 is most directly evaluated by
using Eq.(21), which represents the time evolution off as a
diffusion process with a white noise spectrum of]tf. This
approach is justified for not too strongB, namely, ford@d,
where(see Appendix)
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d = 2p1/2vFtL/svctLd3/2 s32d

is a mean-square fluctuation of the guiding center of a cyclo-
tron orbit after one cyclotron revolution(otherwise adiabatic
drift dynamics is developed). The probability density
pnsx' ,xid for particles on the Fermi surface to be scattered
from the starting point on a cyclotron orbit by a distancex'

across the orbit and a distancexi along it in time 2pn/vc is
then given by the anisotropic Gaussian distribution with av-
erageskx'

2 l=kxi
2l /3=nd2/2 (see Appendix). Summing over

multiple cyclotron revolutions, we thus expressPv as

Pv = o
n=1
E

−`

`

dt e−isv−i/tSdtpnf0,vFst − 2pn/vcdg. s33d

Note that once the particle hits a short-range impurity, its
guiding center is shifted by a distance of the order of the
cyclotron radius. As a result the contribution of such trajec-
tories to the return probability can be neglected and only
noncolliding orbits should be taken into account, which is
expressed by the exponential factor exps−t /tSd. Equation
(33) gives oscillations ofPv asv /vc is varied, as

Pv =
1

ÎpvFd
o
n=1

1
În

expF−
2pn

vc
siv + GdG , s34d

whose damping with decreasingB is characterized by

G =
3

2tL
S v

vc
D2

+
1

tS
. s35d

In the limit of weak damping,pG!vc, we perform the
summation in Eq.(34) by means of Poisson’s formula to
represent RePv as a series of sharp peaks centered atv
=Nvc. A peak atv.Nvc is of the form20

Re Pv =
vc

3tL

2Î3pvF
2v

FSv − Nvc

G
D , s36d

Fsxd = F1 + s1 + x2d1/2

2s1 + x2d G1/2

, Fs0d = 1. s37d

Note that the amplitude of the peaks in Eq.(36) falls off with
decreasingvc or increasingv as a power law, namely, as
vc

3/v. The power-law suppression of the oscillations crosses
over into the exponential damping only for very large
psv /vcd2@vctL, when one can neglect all terms in Eq.(34)
but the first one, which gives

Re Pv =
svctLd3/2

2pvF
2tL

cos
2pv

vc
expS−

2pG

vc
D . s38d

It is worth noting that, because of the conditionvctS@1, the
term tS

−1 in Eq. (35) may be neglected in the damping factor
of Eq. (38), so that the exponential damping is determined by
the momentum relaxation time for scattering off the long-
range disorder.

V. OSCILLATORY AC CONDUCTIVITY:
QUASICLASSICAL VERSUS QUANTUM

Now we compare the classical oscillatory ac conductivity
sv

scd, given by Eqs.(30), (36), and (38), with the quantum
contributionsv

sqd calculated in Ref. 7. Let us representsv
scd

for weak damping atv=Nvc as

usv
scduv=Nvc

= sv
DF1 −

a
Î3pNd

svctLd1/2G , s39d

whered is given by Eq.(32) and we have introduced a char-
acteristic size of the short-range impuritiesa=snSvFtSd−1. It
follows that, apart from the harmonics numberN, the ampli-
tude of the oscillations is given by the product of a small
factor a/d and a large factorsvctLd1/2. In the exponential
damping regime,sv

scd is re-written as

sv
scd

sv
D = 1 −

a
Îp d

cos
2pv

vc
expF− S v

vc
D2 3p

vctL
G , s40d

so that the pre-exponential factor is simply given bya/d. An
important point to notice is that the damping in Eq.(40) is
characterized solely by the long transport time for scattering
off the smooth disorder. On the other hand, the envelope of
the quantum oscillations of the ac conductivity is determined
by the single-particle timetq, as

sv
sqd

sv
D = 1 + 2 cos

2pv

vc
expS−

2p

vctq
D s41d

(this equation is valid for 2pT@" /tq, for smallerT see Ref.
7).

Note the difference in the sign of the oscillatory terms:
there is ap shift of the quantum and classical oscillations
with respect to each other. Another difference is that the
damping of the classical oscillations isv dependent, in con-
trast to the quantum case. One sees that, despite the small
factora/d, the classical oscillations may be stronger than the
quantum ones since in high-mobility structurestq!tL and
the quantum oscillations are damped much more strongly.

FIG. 2. Diagrams describing the memory effects in the photo-
conductivity sph: oscillatory self-energy(b) and vertex(c) correc-
tions to the smooth part(a) of sph.
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The behavior of the two contributions to the oscillatory ac
conductivity is illustrated in Fig. 3.

VI. MECHANISMS OF THE OSCILLATORY
PHOTOCONDUCTIVITY: QUASICLASSICAL VERSUS

QUANTUM

Having found the classical contributionDsph
scd to the

OPC [Eqs. (31), (36), and (38)], let us compare it with
the quantum oscillatory contributionDsph

sqd,7,8 related to the
oscillations of the DOS. Using Eqs.(31), (35), and (38)
and omitting numerical factors, we write down the essential
factors in Dsph

scd for pG*vc for the case of noninteracting
electrons:

Dsph
scd , s0

Dtin

t
SeEvvF

eFv
D2a

d
cos

2pv

vc
expF− S v

vc
D2 3p

vctL
G .

s42d

The sign ofDsph
scd in Eq. (42) depends on that ofK09 [see Eq.

(11)].
As shown in Sec. III, unless the electron-electron interac-

tion is extremely weak, the largest contribution to the smooth
part of sph comes from the interaction correction to the con-
ductivity. For T*"vcln

1/2svctLd, the main interaction-
induced term in the smooth part ofsph is given by Eq.(18)
and, according to Eq.(31), this yields in turn the main term
in the oscillating partDsph

scd. Settinga,1 (long-range Cou-
lomb interaction), we have

Dsph
scd , s0

Dtin

t

seEvvF/vd2

eFT

a

d
cos

2pv

vc
expF− S v

vc
D2 3p

vctL
G ,

s43d

which is larger than the noninteracting part[Eq. (42)] by a
factor eF /T.

For T!"vc, the main contribution tosph is related
to the interaction correction given by Eq.(19), which
yields the oscillatory partDsph

scd similar (in terms of the
phase of the oscillations and their damping factor) to
that in Eq. (43) but multiplied by a large factor
svctLd2/ sTtL /"d3/2. In the intermediate range of temperature,

"vc!T!"vclnsvctLd, there is an exponentially fast cross-
over between the two regimes. The regime most
relevant to the experiments1–5 is that of high temperature,
T*"vc. It is worth noting that Eqs.(42) and (43) remain
valid in the regime of strong heating as well, provided
the effective electron temperatureTe [Eq. (9)] is substituted
for T.

For convenience, we also reproduce hereDsph
sqd in the

case of overlapping Landau levels; specifically, foruv±vcu
*vc in the regime linear with respect to the microwave
power [see Eq.(17) of Ref. 7 or Eq.(8) of Ref. 8; here we
omit numerical factors]:

Dsph
sqd , − s0

Dtee

t
SeEvvF

"v2 D2
v

vc
sin

2pv

vc
expS−

2p

vctq
D .

s44d

The electron-electron scattering time8 tee~Te
−2 (up to a

logarithmic factor) depends on the effective electron
temperatureTe [Eq. (9)]. Although both contributions[Eqs.
(43) and(44)] have the same period inv /vc, crucial distinc-
tions are clear.

Firstly, their phases are shifted byp /2. Secondly, despite
both contributions being proportional to a certain inelastic
relaxation time, they are different in that the amplitude of
Dsph

sqd is limited by tee (which at lowT is much shorter than
the electron-phonon scattering time), whereas the classical
term is not sensitive to the inelastic electron-electron scatter-
ing in any essential way18 and is proportional to the energy
relaxation time[tin in Eqs. (10) and (43)], limited by cou-
pling to the external bath(phonons). It follows that in the
limit of small T the ratio of the amplitudes of the OPC,
classical-to-quantum, contains a large-T-dependent factor
tin /tee, which may be easily as large as 102. The sensitivity
of Dsph

sqd to electron-electron collisions stems from the fact
that the quantum contribution is due to a radiation-induced
change of the distribution functionfs«d that oscillates with
both « andv. By contrast, the classical contributionDsph

scd is
associated with an oscillatory term in the characteristic elec-
tron temperature; i.e., with a smooth part offs«d, which os-
cillates withv only.21

Thirdly, the dependences of the envelope of the OPC on
v, vc, and the degree of disorder are quite different. The
most important point is that although there is a small factor
~eF

−1 in Eq. (43), in addition to another small factora/d, the
dampingof the classical term is much weaker than that of
Dsph

sqd~exps−2p /vctqd. Indeed, the exponential damping of
Dsph

scd is governed bytL [Eq. (43)], which is far larger thantq
in high-mobility samples. It is only that in the limit of very
low B that thevc

−3 factor in the exponent of Eq.(43) sup-
presses the classical OPC more effectively than the linear in
vc

−1 Dingle factor in the quantum case.
It is important to stress that the amplitude of the classical

OPC in units of the dark conductivity is not large under the
conditions of the experiments on the zero-resistance states.
Indeed, the pre-exponential factor of Eq.(43) may be written
ass0

DsDh
2/eFTdsa/dd for the regime linear with respect to the

microwave power. Now, the crossover to the regime of

FIG. 3. Quasiclassical[sv
scd, Eq. (40)] and quantum[sv

sqd, Eq.
(41)] oscillatory ac conductivity(normalized to the Drude conduc-
tivity sv

D) vs vc/v for v /2p=100 GHz, t=0.6 ns, t /tq=50,
tS/tL=0.1, a/d=0.25 atvc/v=1/2.
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strong heating occurs when the classical OPC is still small;
namely, the ratioDsph

scd /s0
D is of order sT/eFdsa/dd&10−2.

This should be contrasted with the quantum OPC, which
may become large(and thus lead to the zero-resistance
states) when the heating may be still negligible. For the re-
gime of strong heating, when the effective electron tempera-
tureTe*T, the amplitude of the classical OPC shows a sub-
linear growth with increasing microwave power and may be
estimated ass0

DsTe/eFdsa/dd. In particular, for the piezoelec-
tric mechanism of the energy relaxation due to electron-
phonon coupling, the classical OPC grows asEv

2/5 [see the
discussion below Eq.(15)]. We conclude that, because of the
slow growth with increasing microwave power, the charac-
teristic ratioDsph

scd /s0
D can hardly exceed the level of a few

percent in the current experiments. That is to say, the zero-
resistance states are related to thequantumOPC. The most
favorable conditions for the observation of the classical OPC
should be realized if the quantum contribution to the OPC is
strongly damped, which means sufficiently large 2p /vtq
*7. For a high-mobility sample withtq,3 ps, this would
requirev /2p&50 GHz.

The above analysis shows that the classical OPC cannot
possibly explain the experimentally reported strong devia-
tions of the ratiotph/tq from 1/2, the value predicted by the
theory of the quantum OPC, as discussed in Sec. I. We thus
argue that the experiments on the damping of Shubnikov–de
Haas oscillations might strongly overestimate the single-
particle scattering ratetq

−1. One of the reasons could be the
presence of macroscopic inhomogeneities leading to an in-
homogeneous broadening of Landau levels, which might be
by far larger than the homogeneous broadening given bytq

−1

and measured in the photoconductivity experiments(such a
possibility was mentioned in Ref. 1). We suggest that mea-
suring the damping of the OPC provides a reliable means
of extracting tq

−1 from the magneto-oscillations, free from
the effect of the additional inhomogeneous damping charac-
teristic to the Shubnikov–de Haas measurements. The
method based on the OPC is particularly useful in high-
mobility samples, wheretq

−1 is small, so that in the conven-
tional Shubnikov–de Haas measurements one has to go to
fairly low temperatures to separate the impurity-induced
damping from that related to the thermal smearing of the
Fermi surface.

VII. CONCLUSIONS

In summary, we have analyzed the quasiclassical mecha-
nism of magneto-oscillations in the ac conductivity and pho-
toconductivity, related to non-Markovian dynamics of
disorder-induced scattering of electrons in high-mobility
structures. We have calculated the leading contribution asso-
ciated with a radiation-induced change of the electron distri-
bution function, which is proportional to the inelastic
(electron-phonon) relaxation time. We have found that the
quasiclassical oscillations in the photoconductivity are weak
under the conditions of current experiments. Therefore, the
zero-resistance states and the strong oscillations that have
been observed in the experiments are likely due to the quan-
tum mechanism of Refs. 7 and 8. We argue that the damping

of the oscillatory photoconductivity provides a reliable
method of measuring the homogeneous broadening of Lan-
dau levels (single-particle scattering ratetq

−1) in high-
mobility structures(which also resolves the dilemma posed
in Sec. I: the analysis of the damping of Shubnikov–de Haas
oscillations apparently gives overestimated values oftq

−1 due
to an inhomogeneous broadening).

On the other hand, we have identified a range of param-
eters within which the quasiclassical mechanism yields os-
cillations of the photoconductivity that may dominate at
small B over those based on the Landau quantization. In
addition to the different low-B damping factor, the quasiclas-
sical oscillations are shifted in phase byp /2 with respect to
the quantum oscillations[see Eqs.(43) and (44)]. We have
also shown that the quasiclassical magneto-oscillations in
the ac conductivityare much stronger than in the photocon-
ductivity and may easily compete with the quantum
oscillations.7
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APPENDIX: RETURN PROBABILITY IN A MAGNETIC
FIELD

The return probabilityPv [Eq. (28)] can be directly evalu-
ated by using the quasiclassical propagatorD=sL0+tS

−1d−1

[Eq. (26)]. In this appendix, we present a different, more
illustrative way to derivePv. We recall that the Liouville
operatorL0 [Eq. (21)] represents the time evolution of the
direction of the electron velocityn=v / uv u =s−sin f ,cosfd
as a combination of the cyclotron motion and the angle dif-
fusion due to scattering off smooth disorder. The random part
x of the anglef is characterized by a white noise spectrum
of ]tx:

fstd = f0 + vct + xstd,

k]txstd]t8xst8dl =
2

tL
dst − t8d. sA1d

In what follows we calculate the mean-square fluctuation of
the guiding center of cyclotron motiond, Eq. (32), and
mean-square shifts of an electron along and across the cyclo-
tron orbit aftern cyclotron periods att=nTc=2p n/vc. For
definiteness, let the guiding center be initially placed at the
origin, Rst=0d=s0,0d, and the electron coordinate and ve-
locity be r st=0d=sRc,0d, vst=0d=s0,vFd, respectively(Rc

=vF /vc is the cyclotron radius). Using Eq.(A1) we get the
mean-square shifts of the position of guiding centerR and
the fluctuating anglex in time t=nTc:
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kRx
2l =KSE

0

nTc

dtRccosfstd]txstdD2L
=

2Rc
2

tL
E

0

nTc

dt cos2fstd = Rc
2nTc

tL
,

kRy
2l = kRx

2l,

kx2l =KSE
0

nTc

dt ]txstdD2L =
2 n Tc

tL
. sA2d

The diffusion approximation is valid as long as the rms shift
of the guiding center after one cyclotron revolutionsn=1d
exceeds the characteristic length scale of the random poten-
tial,

d = fkRx
2l + kRy

2lg1/2 = RcS 4p

vctL
D1/2

@ d. sA3d

In the same manner, we calculate the mean square of electron
shifts along and across the cyclotron orbit,xi ;yst=n Tcd

=e0
nTcdtvF cosfstd and x';xst=nTcd−Rc=−e0

nTcdt vF

3sin fstd, respectively, as

kx'
2 l =KSE

0

nTc

dt vF cossvctdE
0

t

dt8]t8xst8dD2L = kRx
2l,

kxi
2l = ksRy + Rc xd2l = kRy

2l + Rc
2kx2l. sA4d

It follows that fluctuations along the cyclotron orbit are en-
hanced with respect to those across the orbit,kxi

2l=3kx'
2 l

=3nd2/2, and we arrive at the anisotropic electron distribu-
tion aftern cyclotron revolutions, given by

pnsx',xid =
1

Îpnd
expS−

x'
2

n d2D 1
Î3p n d

expS−
xi

2

3 n d2D ,

sA5d

which enters Eq.(33) for the return probability.
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