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Oscillatory ac conductivity and photoconductivity of a two-dimensional electron gas:
Quasiclassical transport beyond the Boltzmann equation
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We have analyzed the quasiclassical mechanism of magneto-oscillations in the ac conductivity and photo-
conductivity, related to non-Markovian dynamics of disorder-induced electron scattering. While the magneto-
oscillations in the photoconductivity are found to be weak, the effect manifests itself much more strongly in the
ac conductivity, where it may easily dominate over the oscillations due to the Landau quantization. We argue
that the damping of the oscillatory photoconductivity provides a reliable method of measuring the homoge-
neous broadening of Landau levéssngle-particle scattering rgtén high-mobility structures.
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I. INTRODUCTION Landau quantization, was suggested in Refia@ earlier,
closely related variant of this approach was formulated in
An intriguing development in the study of a high-mobility Ref. 10. A systematical theory of this contribution @,
two-dimensional electron gag2DEG) was the recent was constructed in Ref. 11. Comparing the results of
observatioh of magneto-oscillations of the photoconductiv- Refs. 7 and 8, and Ref. 11, one sees that the mechafism
ity of a sample subjected to microwave radiation, as a funcdominates, i.e., leads to much stronger oscillationsr,if
tion of the ratiow/ ;. Here w and w; are the radiation fre- > 7., where 7, is the single-particle relaxation time due to
quency and the cyclotron frequency, respectivelyimpurity scattering. For typical experimental parameters, a
Subsequent experimerfts,working with very-high-mobility  characteristic ratio,/ 74~ 1028 Overall the results of Ref. 8
samples, yielded yet another dramatic discovery: for suffiare in good agreement with the experimental data as regards
ciently high radiation power, the minima of the oscillationsthe behavior ofoy, in the range of parameters where
evolve into “zero-resistance states”; i.e., the dissipative resishe OPC is not too strongly damped, i.e., where the experi-
tance of a sample becomes vanishingly small. mental efforts have been focused so far. In particular,
The nature of the oscillations in the photoconductivity Ref. 8 explains the emergence of strong oscillations and,
opn has raised a lot of interest. An important step wasin combination with Ref. 6, the formation of zero-resistance
made in Ref. 6, in which a direct connection between theegions.
emergence of the zero-resistance states and the oscillations While the agreement between theory and experiment is
was emphasized. Specifically, it was recognized thlaat-  very encouraging, the situation is not so clear in the experi-
ever the nature of the oscillations, when they become samental limit of weak(strongly dampegoscillations. Central
large that the linear dc response theory yields a negatiye to the identification of the microscopic mechanism of the
an instability is developed leading to the formation of do-oscillations is, on top of their period and phase, the behavior
mains of counter-flowing currents and thus to the zero meaef their envelope with decreasing magnetic fi@dFor any
sured resistance. Following this approach, a key issue whicilechanism based on the DOS oscillations, the relation be-
needs to be settled for understanding the experiments is theveen the DOS and OPC damping factors is critically impor-
microscopic mechanism of the oscillatory photoconductivitytant. The OP@®1! is damped at lowB by a factor
(OPO. exp(—7/ wcTyr), where the ratior,,/ 7,=1/2 is adistinctive
Similarly to the conventional Shubnikov—de Haasfeature not sensitive to microscopic details of either disorder
oscillations, the growing body of theoretical work is focusedor weak inelastic interactiod8.However, as emphasized in
on the oscillations of the density of statd30S) induced  Ref. 7, the experimentally reported valuesmgfand 7, do
by the Landau quantization as an essential element of theot satisfy this relation, with,, noticeably larger tham,/2,
construction. The mechanism of the OPC identified in Ref. Foughly by a factor of 10 in Ref. 3 and by a factor of 3 in
and analyzed in detail in Ref. 8 hinges on the oscillationsRef. 2. Taken at face value, the difference would mean that
of the DOS and is related to a radiation-induced change ofhe amplitude of the OPC observed at snialis orders of
the electron distribution function in energy spadés),  magnitude higher than given by the mechanism based on the
such thatf(e) oscillates with varying botle/w; andw/w.. A Landau quantization, which might be considered as a hint
hallmark of this contribution tar,, is that it yields an am-  about a different origin of the OPC at small Alternatively,
plitude of the OPC which is proportional to the inelastic the experiments on the damping of Shubnikov—de Haas os-
relaxation timer due to electron-electron collisiorisnore  cillations might overestimate the single-particle scattering
effective at low temperatures than electron-phonon scatterate 7., e.g., because of inhomogeneo(ie to macro-
ing). Another mechanism of the OPC, based on the effectcopic inhomogeneitig¢sbroadening of Landau levels. To
of radiation on impurity scattering in the presence of theresolve this dilemma, it is desirable to examine a range
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oscillations.

In this article, we analyze a mechanism of the OPC
governed by quasiclassical memory effects. These are
related to non-Markovian correlations in electron

of mechanisms of the OPC in the absence of the DOS @ .1 1, 1) @ @ @,1)

dynamicst® We assume thatr/w7q>1 and completely ©.0 (1,0 ©,0 (1,0 (1,0
neglect weak oscillati_ons of the DOS. The OPC .induced BY | 0y  @olenny @ @ @ W) @1
the memory effects is not specific to any particular type

of disorder; however, below we concentrate on the following
two-component modéft in which the memory effects
are particularly prominent. We assume that there is a

smooth random potential of remote donors that are separated 1,9 1,9 1,0
by a large spaced> k', where kg is the Fermi wave ©,1) @ ©,1) @ @ a1
vector, from the 2DEG plane and, in addition, there are

rare short-range scatterers, e.g., residual impurities located at
or near the interface. We consider the cas& 7, whererg
and 7, are the zer® momentum relaxation times due
to the short-range scatterers and the long-range disorder,
respectively. From the experimental point of view, this
choice is motivated by reportgsee, e.g., Ref. )5that FIG. 1. Graphic representation of various contributions to the
the zeroB mobility in very-high-mobility structures is photoconductivit){qus.(Z) and(3)] in the (v, n) space at the lowest
frequently limited by residual impurities angl/ 75 can be as order o~ O(EGES).
large as 10. Althoughs<< 7 in our model, we assume th
is determined by the smooth disorder; i.g,=~ 7 /(2kgd) equilibrate electrons among themselves, but are not capable
<7g of establishing a steady-state dc photoconductivity. For
The article is organized as follows. First, in Sec. Il, wethe quasiclassical OP@n contrast to that based on the
outline the approach to the photoconductivity based on th®O0S oscillations, cf. Ref. )8 the inelastic transitions
Boltzmann equation. In Sec. I, we discuss the mechanisndue to electron-electron interaction do not play any essential
of the photoconductivity related to electron-electron interacfole and will be neglected. To dissipate energy absorbed
tions. In Sec. IV, we turn to the magneto-oscillations inducedrom the ac field, we introduce coupling to a thermal bath,
by the memory effects. Our central results are presented if.g., to an equilibrium phonon system, characterized by a
Secs. V and VI. Section V deals with the oscillations in therelaxation timer,. Under the assumption that both and
ac conductivity. Finally, in Sec. VI, we compare two mecha-the momentum relaxation time due to the coupling to the
nisms of the oscillatory photoconductivity, quasiclassical andath are much longer than the main role of the inelastic
quantum, related to the memory effects and the Landagcattering is to yield a slow relaxation of the isotrogic
guantization, respectively. =0) part of g to the equilibrium Fermi distributiorfz at a
bath temperaturd.
Expanding the nonequilibrium distribution function in
powers of the driving force, we have

(1,0) | (-1,0) (1,0

1. PHOTOCONDUCTIVITY: ESSENTIALS

A necessary input to the calculation of theasiclassical i o
OPC is the memory effects, discarded in the Boltzmann g=2> (-L7'F g (2
equation. However, to set up a systematic formalism, it is m=0

instructive to begin with a derivation afy, within the con- A yseful way of visualizing this solution of Eq1) at given
ventional kinetic theory. The Boltzmann equation for the dis-order in&,, and &, is by counting all possible couplings of
tribution functiong(p, ¢,t) of electrons in momentum space harmonicsg,,, represented as points on the n) plane(Fig.
reads 1). The dc field & couples nearest-neighbor harmonics
— long thev axis, g, 0,.1 .- We are interested here in the
Lg(p,#,t) = —F dp g(p, ,1), ) @ : m < Goin e

9(p. 40 P o(P. 4D @ linear (with respect tofy,) photoconductivityoyy, so that
where L=d+wg dy=le=lin, F=—e(f4+E, Cosat), £ is  Only one such link is allowed. The ac field], couples har-
monics along diagonalsg,n«<+0,:1ns1 and g,4 n51. The

the dc electric fieldéw is the ac field,¢ is the angle of the i A L, .
. ST propagatot " is a diagonal matrix ifv,n) space. The static
momentump with respect to the direction ., andl, and longitudinal current = o€y, given by

l;, are the elastic and inelastic collision integrals, respec-

tively. ] e

We expand the distribution function at energyin a J:‘zﬂ,h_zfds p Reg, 3
series: g(p, ¢,t)=2,, 9,n(e)explivp+inwt). Elastic colli-
sions lead to relaxation of angular harmonics witk 0;  is expressed througln; i.e., is given by a sum of all paths

in particular, | 40,,=-7"1g;,, Wherer is the momentum re- starting at(0, 0) and ending at1, 0). Already at orderoy,
laxation time. Inelastic electron-electron collisions tend to~O(£5.£2), as many as nine different graphs arise, shown in
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Fig. 1, to which one should add their counterparts mirrored We do not discuss specific microscopic models of the in-
in the horizontal axis, which corresponds to the change elastic coupling of electrons to a thermal bath, our purpose

— — .

Our strategy for findingy,g is to select graphs involving
couplings whose strength diverges @t/ 7— . These are
graphs returning to the poig®, 0) [graphs(a) and(b) in Fig.
1], which are proportional t6L™%),0. This means that to or-
der &2 the path(0,0)—(1,1)—(0,0)— (1,0 (and its coun-
terparts in other quadrantgives the main contribution to
opn for

(4)

The perturbative expansion in powers&ﬁ proceeds by it-
erating the loo0,0) — (1,1 — (0, 0). In this way we arrive
at a simple relation(iwg+7)gs1 0= dpf/2, Where f
=(Qyo Satisfies the closed equation

Tin = 7.

2

2mw(98[K‘*’ 3. f1+1,,f=0.

5

here is to use the simplest possible representatidp.dh a
conserving relaxation-time approximation

linf==7.1f=fg), (10)

where thee-independent,* is, in general, a functional of

f(e), we get from Eqgs(5) and(7) for T<eg,

DezgiTin K! = e

0~ 27Tﬁ2
HereKg=2Kol.-. anday, is the zeroT dynamic Drude con-
ductivity, e®=€?K (er) /2772 Note that the only source of
nonlinearity ofo,, with respect to the ac field power in Eq.
(11) is a dependence af, on &,

Alternatively, assuming the dominant role of soft inelastic
scattering with energy transfers much smaller tliawe can

Oph~ cr([)) =0, AﬁKg. (11

2m

write 1;, in the Fokker-PlanckFP) form, as

linf = a9, {B[a,f+ T (1 -]}, (12

The functionK,=K? +K_ which describes the absorption whereB(s) =((5)2W(e , 8¢))/2 is the diffusion coefficient in

rate at energy is given by

ET

1+(w* w)’? ©

2K? =

The photoconductivity atr,> 7 is thus completely deter-

mined by f; i.e., in this limit the ac field modifies the dc

current through the heating, as

e
Oph= —%Jde Ko d.f. (7

The functionf(e) changes abruptly around the Fermi en-

ergy ez on a scale
Te=maxXT, A}, (8)
where
Ap= (€€, if2)[K,,(€r)/Kol )T 9

andli,=ve[Ko(ep) 7in/ ]2 is the inelastic lengtlivg is the

energy space\V is the corresponding rate of inelastic pro-
cesses, and...) denotes averaging over the energy transfer
de. Equation(5) then becomes first-order i), which gives
f(e) described by the Fermi distribution with the effective
electron temperature

Tert =T+ App, (13
where
App=E2TK,,(ep)/2mB(ep), (14
and
€ .
Oph~ ‘78 = Zﬂ,hzg(-rgff - TA)Kg
€ ,
= 27-,-,’12?(21- + App) ApKGp. (15

The case of typical energy transferd may be qualitatively
described by either model witB(eg) 7, ~ TeT.
The microwave power and temperature dependences of

Fermi velocity. Note thatr, in the regime of strong heating oy can be found from Eqg11) and (15) for a variety of

(Ap>T) should be found self-consistently witky, and thus
depends orf,,.

scattering mechanisms. If one assumes tjds determined
by scattering on acoustic phonons via the piezoelectric inter-

Turning to the evaluation af,, under the assumption that action screened by the 2DEG, the characteristic energy trans-
Te<<er, we first notice that a seemingly reasonable approxifer is T, and 7,1 T3, It then follows from Eq.(9) that the

mation that neglects the dependence of in the integrand
of Eq. (7) [normally, 7(e) changes on a scale ef] yields an
identically zero photoresponse. Indeed, in that cageis
equal to the static Drude conductivityg independently of
the detailed shape dfs), sincefds & d,f=—27%°n/m due
to particle number conservatian, is the electron concen-
tration). It follows that the dependence afon ¢ should be

heating atA,> T is characterized b= £%°. By using Eq.
(11) we getoyy—og*ELTS for A,<T and T-independent
Oon— 05 = EX® otherwise.

Having identified the main contribution @, in the limit
7in/ 71 [diagrams(a@) and(b) in Fig. 1] it is instructive to
compare this contribution with that corresponding to other
diagrams[diagrams(c)—(i)]. While the former is related to

taken into account. It is worth mentioning that, contrary to athe heating of electrons by the ac field, the latter can be
naive expectation, this does not lead to any additional smallregarded as an effect of radiation on the impurity scattering
ness ofoy, sincer(e) enters the result through expressions ofand thus represents a classical analog of the quantum effect
the typesa87|€=8F~ T. considered in Refs. 9-11. Following the procedure given by
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Egs.(2) and(3) and making use of the explicit matrix form glected above, in which one should similarly change

of the field operator{Fapg],,nzF:;:gv,n,, — Tefre At onv T, the terms inop, coming from these quan-
tum corrections may easily become larger than the classical
w1 - , V' contribution(15), as we now demonstrate.
Fow __Eév,v’il(svv’ ~€&ny)| dpt (V' = V)E ' For high-mobility samples, we are mostly interested in

Tph at not too low temperatureébr/A> 1. In this “ballistic”
regime, the most importarit-dependent term in the conduc-
- - 1- S i ;
Env = EqcOny + =€ niss tivity at zeroB, for the limiting case of short-range disorder
2 ' (r— 79), is related to screening of the disorder by Friedel
oscillations, which translates into & and s-dependent
S, =e+i(V —v)ey, (16) renormalization of the elastic scattering rate. This quantum
. - _interaction-induced term is given Yy, = a(€?/ mh?) Trs.16
one can readily calculzite the Qhotoconductlwty atany OleS'rHerea is the interaction coupling constant, equal to unity for
able order in the field§yc and £, (e are the unit vectors the Coulomb interactiofunder the assumption th&f! is
along thex,y axeg. At the lowest order the photoconductiv- mych smaller than the static screening lepgRemarkably,
ity opn~ O(£3£2) is given by the diagram@—(i) in Fig. 1 Ao is linear in T/er, in contrast to the classical
(together with their counterparts in a lower half-plase;»  T-dependent term, which is quadratic THer. Substituting
~w). In the limit 7, ' < 7’ < w,< w the result takes a simple T— T, in Aoy, yields an interaction-induced term in the

form photoconductivity, Aoy, = a(€?/ mh?)(Teg—T) 75, Where Teg
1 eE,up |2 —-T=Arp is given by Eq.(14). For finite B, assuming thal
Oph~ o0 = —U(?(—F) >fiwg,fil 7, this term inoy, reads
e e? 1- wzré
_ Aogp=a——Te—N1s 555" 18
X [chﬁ +(5¢, + 4c,) + (3¢, + 2¢,)cos 2pg |, Ph 7Tﬁ2( et =T (1 + wird)? (18)
T

17) This result is obtained by inverting the resistivity tensor for

which the leadindgfor T>fw.,%/ 7) interaction-induced cor-
whereclzsrdﬁsr‘1|€:8F, 02:87'357'_1|8:8F are numberstypi- rection to p,, is B independent, while that tp,, may be
cally of order unity determined by the type of disorder, and neglected. It follows from the comparison of E¢$5) and
e is the angle betweeédc and gw_ The first term in the _(18) that this quantum contribgtion to the photoconductivi'gy
square brackets corresponds to the diagréansnd (b) in is much Iarggr than the classma}I one pr_ovilded the effecuve
Fig. 1 and reproduces E@lL1) in the limit of weak heating, temPperature is lowTe;< aer), which is satisfied for~1in-
A,<T. The term(5c, +4c,) corresponds to the diagrar, ~ the whole range of temperatures in a degenerate Fermi sys-
(e), and (f). The polarization-dependent part, given by thet€m. Thus, suff_|C|entIy strong interactions have the effect of
last term, originates from the diagrardy and (i) (in which ~ 9reatly enhancing the photoconductivity.
both diagonal links have the same direction alongtiagis). _ For stronger magnetic field§iw.>T), another mecha-
Finally, the diagramsg) and(h) give a contribution which is Nism of the interaction-induced photoconductivity becomes
smaller, compared to the diagraw—f) and(i), in the pa-  relevant, related to the mterpl%(ypf quasiclassical memory
rameter 1l.r,<1 and is omitted in Eq(18). One can €ffects and electron-electron interactions. For the two-
clearly see from Eq(18) that in the limit 7,/ 7> 1, photo- ~ cOmponent model of disorder, assuming, as above, that
conductivity is dominated by the heating of electrons. <7, the T-dependent correction to the conductivity is

Avi~ a(€1h) (1 1 9 YA(T7g/h) 217 With numerical fac-

tors included, this yields a contribution to the photoconduc-

I1l. INTERACTION-INDUCED PHOTOCONDUCTIVITY tivity given by
In the above, we have neglected inelastic electron- A e 3§(3/2)(TL>1/2T;#/2—T_1/2 19
electron collisions, whose role is not essential for the quasi- ph wh 1672\ 7g (rdh)*?

classical OPC, but have also ignored the renormalization of

the elastic scattering rate by electron-electron interactions. Comparing Eqs(18) and (19), one sees that the latter
The latter approximation, which fits in with the conventional Mechanism gives a larger contribution dg, in the whole
approach to photoconductivity, in fact misses an importantémperature rangé=<#wc. At T~fiw, the te””ﬂ(19)1i/$2 still
contribution tooy,;, Recall that the change of the conductiv- larger than that given by Eq18) by a factor(wen)"*> 1.

ity due to radiation at;,> r comes mainly from the heating. With increasing T, however, the memory-effects-induced
It is most illuminating to focus on the model of Eqé2) and  correction falls off rapidly, as exp4m*T/w), so that afT
(15), within which oyp—og is simply proportional toTz;  ~fiwdn(wer) a crossover to Eq18) occurs.

-T2 Clearly, this contribution tar,, is associated with the V. MAGNETO-OSCILLATIONS DUE TO MEMORY
term in the Drude conductivity that is quadratic in the small ’ )

parameterT/ez. SubstitutingTe; for T in the Drude term EFFECTS

yields oy, given by Eq.(15). On the other hand, there are ~ The photoconductivity obtained in Secs. Il and Il exhib-
T-dependent quantum corrections to the conductivity, neits the cyclotron resonance but shows no oscillations with
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varying o/ w.. Let us now incorporate the memory effects.
To this end, we have to step back to write the Liouville
equation not yet averaged over positions of impurities. More
precisely, for the two-component model of disordspeci-

fied in Sec. ), we average only over smooth disorder and

S@(0) = - ﬁ j g—i f de'c0S $D,,(0;h, &' )cOS &,
S/s

(27)

represent the Liouville operator as

L=Lo+ 6L —ljp, (20)

whereD ,(0; ¢, ¢') is the Fourier transform inof the prob-
ability density to return with a direction of specified by’
if one starts at an anglé.. Let us now focus on the case
wets> 1. In this limit, D ,(0; ¢, ¢’) is sharply peaked ap

wherel, includes the effect of scattering on smooth disorder:¢, and, introducing the total probability of returR

and is given by

Lo = dy+ VYV, + wedy— 705, (21)

and sL=-3, IRi(r) is a sum of collision operators for short-

range impurities located at poinfy. We have to keep ih,
the spatial-gradient terrfv is the velocity.
Averaging the solution of Eq1) overR; with L given by

=[d¢'D,(0;¢,¢'), we finally get
3@(w) = - P,/nsrs. (29)

A return-induced correction to the effective scattering
rate, which comes according to E@8) from ReP,,, yields,
away from the cyclotron resonance, oscillations of the ab-
sorption rate through a correction to the functidp(eg) [cf.

Eg. (20) can be done systematically along the lines of Ref.Eq_ ®)],
14: a classical diagram technique is formulated by means of

the free propagatdrgl and the disorder correlation function
(6L(r)éL(r")). We proceed by representing the average

AKE(ep) = — (ee/2ngrARe P, /(0 + wy)?. (29)

dThe oscillatory part oK ,(eg) leads toclassicaloscillations

propagatorL ) =(Lo+M-1;,)"* in terms of the self-energy

operatorM. Equationg5)—(7) are then reproduced within
Eq. (6), given by

iz 1'[1+ S(w), (22)
whereX = [(d¢/2m)nMn andn=v/|v|. To first order indL,

3W=-ng f dr f (dgp/2mnlg (r)n. (23

By definition, nsfdrIRi(r)n=—nr§1, so that we haves®

:rgl, which yields the Drude result for the total scattering

rate 7 =7 '+ rg*. Expanding nowM to second order idL,

we obtain the leading correction B that is due to the

memory effects:

2(2)(w):—nsj erdr’J g—(ﬁani(r)Dw(r—r’)IRi(r’)n,
(24)

or more explicitly

de [ do [ do' [ do’
(2 — [ e B et B o
3@ (w) = 47Tn5f drf dr f or| 20 27 f Y.

X Ccos ¢| Ri(r ’ qs!ZZ))Dw(r -r ,1’&!?"5,)

X Ig(r',¢',¢')cos &', (25)
where the propagator
D=(Lo+ 7)™ (26)

is taken in thew representation. Most importantly, the
dispersion oD leads to oscillations of?(w) with a period
Wg.

To find 3@ (w), we first note that, sinckg (r) as a func-
tion of r falls off fast beyond a small vicinity oR;, one can
put r=r’ in the argument ofD, in Egs. (24) and (25).
3@ (w) is then given by

of the linear ac conductivit}?
(30

and being substituted in Eg&)—(7), to those ofoy,. To first
order infi, the classical oscillatory correction tg,, reads

A O.(C)

A(rfjch) o
D D
w

Oph~ 0p o

AO’ES) =-o°ReP,/ngrs,

ReP,
NsTs

(31

It is worth noting once more that both the smooth correction
aph—ag and the oscillatory contributionzt\oécg are propor-
tional to the inelastic times,.

In the above, we have analyzed the oscillatory correction
to the self-energy in terms of the return probabilRy,. In
fact, there are other contributions to the OPC that are not
reduced to the self-energy corrections and cannot be repre-
sented through®,,. To illustrate this point, it is convenient to
switch to a more conventiongtual) representation of the
diagrams in Fig. 1, now with lines corresponding to the
propagators and vertices representing the field operélt6éys
as shown in Fig. 2. The diagraa) in Fig. 2 reproduces the
graph (a) in Fig. 1. The diagram Fig. (B) represents the
oscillatory correction tooy, of the self-energy typdEq.
(31)]. Both diagramga) and(b) in Fig. 2 contain the inelas-
tic propagator(L™Y)0=7, at zero momentuny, which is
much larger than all other propagatofk;?),, with at least
one of the indicesy,n#0. By contrast, the diagranx),
which exemplifies an oscillatory vertex correctiondg, is
not proportional tor;,, because of largg running along the
internal propagator®(q, w) [defined in Eq(26)]. The vertex
type corrections, which are of the same order in all of the
diagrams(a)—(i), are thus by a factor,,/ 7 smaller than the
self-energy contributiog31).

The functionP,, for w7 > 1 is most directly evaluated by
using Eq.(21), which represents the time evolution ¢fas a
diffusion process with a white noise spectrumdpp. This
approach is justified for not too strorigy namely, for§>d,
where(see Appendix
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1o o1 10 2\1/2 |1/2
F00 F01 FIO 1+(1+X)
-« - - F)=|—77———1| , FO)=1. 37
(a) < < - (x) [ 2100 (0) (37
(L) (L g (L), . . .
4 Note that the amplitude of the peaks in E86) falls off with
10 01 -~ 10 decreasingw, Or increasingw as a power law, namely, as
Fo Fo ’ * Fi 3 i illati
(b) - - — - )« wz/ w. The power-law suppression of the oscillations crosses
(Y, (Y (CY, D) (LY over into the exponential damping only for very large
° ° " . m(wl w)?> wer, when one can neglect all terms in Eg4)
-q but the first one, which gives
//”10 ;1\\\ 10 0.2 270 2aT
(©) —a—r Fo o N T ReP, = (@ "2) cos—exp| - . (38)
2T We W¢

(L) D@0 D@0 Do) (L),
It is worth noting that, because of the conditiegrs> 1, the
FIG. 2. Diagrams describing the memory effects in the photo-term Tél in Eq. (35 may be neglected in the damping factor
conductivity opy: oscillatory self-energyb) and vertex(c) correc-  of Eq.(38), so that the exponential damping is determined by
tions to the smooth part) of oy, the momentum relaxation time for scattering off the long-
range disorder.

6= 27" en l(wer )¥? (32

V. OSCILLATORY AC CONDUCTIVITY:

is a mean-square fluctuation of the guiding center of a cyclo-
QUASICLASSICAL VERSUS QUANTUM

tron orbit after one cyclotron revolutioftherwise adiabatic

drift dynamics is developgd The probability density Now we compare the classical oscillatory ac conductivity
P(X.,X) for particles on the Fermi surface to be scattered,© given by Egs.(30), (36), and (38), with the quantum
from the starting point on a cyclotron orbit by a distange cgntribution o9 calculated in Ref. 7. Let us represan(f)
across the orbit and a distanggalong it in time 2m/w¢ IS {or weak damping at=Nw, as @
then given by the anisotropic Gaussian distribution with av-
erages(x? )=(x?)/3=né?/2 (see Appendix Summing over
multiple cyclotron revolutions, we thus expreBg as

© _ D a 12
0, lw=Ne,. = 0p| 1 ——— (w7 , 39
w| N C |: \r37TN5( C L) :| ( )
o where§ is given by Eq(32) and we have introduced a char-
P, =2 dt '@ [0, ve(t - 2n/wy)].  (33)  acteristic size of the short-range impuritias (ngpre) ™2 It

n=1J - follows that, apart from the harmonics numérthe ampli-
tude of the oscillations is given by the product of a small

Note that once the particle hits a short-range impurity, itsfactor a/é and a large factofw.r)"2 In the exponential
guiding center is shifted by a distance of the order of thedamping regimeaff) is re-written as

cyclotron radius. As a result the contribution of such trajec-

© 2
tories to the return probability can be neglected and only Jo__ 1—_1coszﬂex;{— (ﬂ) 3w } (40)
noncolliding orbits should be taken into account, which is o? VT d o w.) wer |’

expressed by the exponential factor exprsg). Equation

(33) gives oscillations oP, as e/, is varied, as so that the pre-exponential factor is simply givenady. An

important point to notice is that the damping in E40) is
characterized solely by the long transport time for scattering
__ 1 1 _2mn . off the smooth disorder. On the other hand, the envelope of
P, = > —=ex (io+D)|, (34 sorf d, th :
e the quantum oscillations of the ac conductivity is determined
by the single-particle timey, as

NTTUEOn=1 VN

whose damping with decreasifyis characterized by o9 27w 20
—5=1+2 cos—exp(— ) (41)
o, wg WeTy
3(w)* 1
I'= o \w) T (85 (this equation is valid for 2T> %/, for smallerT see Ref.
T\ W¢ Ts 7)
In the limit of weak dampings "< w., we perform the Note the difference in the sign of the oscillatory terms:

summation in Eq(34) by means of Poisson’s formula to there is an shift of the quantum and classical oscillations
represent R€&, as a series of sharp peaks centeredvat with respect to each other. Another difference is that the

=Nw,. A peak ato=Naw, is of the fornt° damping of the classical oscillationsdsdependent, in con-
trast to the quantum case. One sees that, despite the small
w3r - Neo factoral/ 8, the classical oscillations may be stronger than the
ReP,= —= L2 f( C), (36)  quantum ones since in high-mobility structures<_and
2\3mvEw I the quantum oscillations are damped much more strongly.
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FIG. 3. Quasiclassica[laff), Eq. (40)] and quantun{af), Eq.
(41)] oscillatory ac conductivitynormalized to the Drude conduc-
tivity o5) vs wc/w for w/2m=100 GHz, 7=0.6 ns, 7/7,=50,
75/ 7.=0.1,a/ 6=0.25 atw./w=1/2.

The behavior of the two contributions to the oscillatory ac
conductivity is illustrated in Fig. 3.

VI. MECHANISMS OF THE OSCILLATORY
PHOTOCONDUCTIVITY: QUASICLASSICAL VERSUS
QUANTUM

Having found the classical contributioﬂoffh) to the
OPC [Egs. (31), (36), and (38)], let us compare it with
the quantum oscillatory contributioﬁo(‘ﬂ])]v8 related to the
oscillations of the DOS. Using Eq$3?1), (35), and (38)
and omitting numerical factors, we write down the essentia
factors in Aaffh) for 7" = w, for the case of noninteracting
electrons:

2 2
o €€LE\a 27w o\ 37
Aol ~ o€ﬁ<L> —cos—exp[— (—) :
T\ €w / O ¢ We/ WTL

(42
(0

The sign OfAcrph in Eq. (42) depends on that df; [see Eq.
AD)].

As shown in Sec. lll, unless the electron-electron interac

PHYSICAL REVIEW B 70, 165305(2004)

hw.<T<hwJln(w:7 ), there is an exponentially fast cross-
over between the two regimes. The regime most
relevant to the experimerts is that of high temperature,
T=%hw. It is worth noting that Eqs(42) and (43) remain
valid in the regime of strong heating as well, provided
the effective electron temperatufg [Eq. (9)] is substituted
for T.

For convenience, we also reproduce here“ﬂf in the
case of overlapping Landau levels; specifically, ot w|
= w. in the regime linear with respect to the microwave
power[see Eq(17) of Ref. 7 or Eq.(8) of Ref. 8; here we

omit numerical factors
2

|

The electron-electron scattering ti?nereeocT;2 (up to a
logarithmic factoy depends on the effective electron
temperaturel, [Eg. (9)]. Although both contribution§Egs.
(43) and(44)] have the same period i/ w,, crucial distinc-
tions are clear.

Firstly, their phases are shifted by 2. Secondly, despite
both contributions being proportional to a certain inelastic
relaxation time, they are different in that the amplitude of
A(r(?} is limited by 7. (which at lowT is much shorter than
the electron-phonon scattering tilmevhereas the classical
ferm is not sensitive to the inelastic electron-electron scatter-
Ing in any essential wad§ and is proportional to the energy
relaxation time[7,, in Egs.(10) and (43)], limited by cou-
pling to the external batlgphonons$. It follows that in the
limit of small T the ratio of the amplitudes of the OPC,
classical-to-quantum, contains a lafGelependent factor
Tinl Tes Which may be easily as large as*1The sensitivity
of Aa(‘jf to electron-electron collisions stems from the fact
that the quantum contribution is due to a radiation-induced
change of the distribution functiof{e) that oscillates with

65va

fw?

21

(,L)CTq

w . 2Tw
—SIn
W¢

D Tee

(@ _ _
Aoph op
T e

(44)

bothe and w. By contrast, the classical contributiaktr(cg is

tion is extremely weak, the largest contribution to the smoottssociated with an oscillatory term in the characteristic elec-

part of o, comes from the interaction correction to the con-
ductivity. For T=#AwJlnY4w.r), the main interaction-
induced term in the smooth part of;, is given by Eq.(18)
and, according to Eq31), this yields in turn the main term
in the oscillating parTAoffr:. Settinga~1 (long-range Cou-

lomb interaction, we have
exp{— ( ) }

(43)

which is larger than the noninteracting p@iEq. (42)] by a
factor eg/T.

For T<fiw,, the main contribution tooy, is related
to the interaction correction given by Eq19), which
yields the oscillatory partAo(Cg similar (in terms of the
phase of the oscillations and their damping factéo
that in Eqg. (43) but multiplied by a large factor
(w7 )%/ (T7./%)%2. In the intermediate range of temperature,

237

W T

b Tin (englz/a))zg 27w

0}
Ad9 ~ & —
ph 0 €|:T

e We

tron temperature; i.e., with a smooth partf¢£), which os-
cillates with w only?*

Thirdly, the dependences of the envelope of the OPC on
w, w,, and the degree of disorder are quite different. The
most important point is that although there is a small factor
xetin Eq. (43), in addition to another small factar 8, the
dampingof the classical term is much weaker than that of
Aa(‘ffocexp(—Zw/wcrq). Indeed, the exponential damping of
AaEﬂ is governed byr [Eq.(43)], which is far larger thamy,
in high-mobility samples. It is only that in the limit of very
low B that thewg3 factor in the exponent of Eq43) sup-
presses the classical OPC more effectively than the linear in
;' Dingle factor in the quantum case.

It is important to stress that the amplitude of the classical
OPC in units of the dark conductivity is not large under the
conditions of the experiments on the zero-resistance states.
Indeed, the pre-exponential factor of E43) may be written
as(rg(Aﬁ/eFT)(a/ o) for the regime linear with respect to the
microwave power. Now, the crossover to the regime of
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strong heating occurs when the classical OPC is still smallpf the oscillatory photoconductivity provides a reliable
namely, the ratioAa(Ch)/ag is of order (T/er)(a/8) <102  method of measuring the homogeneous broadening of Lan-

This should be contrasted with the quantum OPC, whictdau levels (single-particle scattering rateral) in high-
may become larggand thus lead to the zero-resistancemobility structuregwhich also resolves the dilemma posed
statey when the heating may be still negligible. For the re-in Sec. I: the analysis of the damping of Shubnikov—de Haas
gime of strong heating, when the effective electron temperaoscillations apparently gives overestimated valueg;bblue
ture T,=T, the amplitude of the classical OPC shows a sub{o an inhomogeneous broadening

linear growth with increasing microwave power and may be On the other hand, we have identified a range of param-
estimated ang(Te/eF)(a/ ). In particular, for the piezoelec- eters within which the quasiclassical mechanism yields os-
tric mechanism of the energy relaxation due to electroncillations of the photoconductivity that may dominate at
phonon coupling, the classical OPC growsg%g’ [see the small B over those based on the Landau quantization. In
discussion below Eq15)]. We conclude that, because of the addition to the different lonB damping factor, the quasiclas-
slow growth with increasing microwave power, the charac-Sical oscillations are shifted in phase by2 with respect to
teristic ratioAc'y/of can hardly exceed the level of a few theé quantum oscillationfsee Eqs(43) and (44)]. We have
percent in the current experiments. That is to say, the zer@!S0 shown that the quasiclassical magneto-oscillations in
resistance states are related to thmntumOPC. The most theac conductivityare much stronger than in the photocon-
favorable conditions for the observation of the classical OPcluctivity and may easily compete with the quantum
should be realized if the quantum contribution to the OPC oscillations!

strongly damped, which means sufficiently large/2,

=7. For a high-mobility sample with,~ 3 ps, this would

requirew/ 2w =50 GHz. ACKNOWLEDGMENTS
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homogeneous broadening of Landau levels, which might be
by far larger than the homogeneous broadening givem;by
and measured in the photoconductivity experiméatseh a
possibility was mentioned in Ref)1We suggest that mea-
suring the damping of the OPC provides a reliable means The return probability?, [Eq.(28)] can be directly evalu-

of extracting 7,* from the magneto-oscillations, free from ated by using the quasiclassical propagdbot(Ly+ )t

the effect of the additional inhomogeneous damping charagEq. (26)]. In this appendix, we present a different, more
teristic to the Shubnikov—de Haas measurements. Thglustrative way to deriveP,. We recall that the Liouville
method based on the OPC is particularly useful in high-operatorL, [Eq. (21)] represents the time evolution of the
mobility samples, where:-? is small, so that in the conven- direction of the electron velocitp=v/|v| =(-sin ¢, cos ¢)
tional Shubnikov—-de Haas measurements one has to go & a combination of the cyclotron motion and the angle dif-
fairly low temperatures to separate the impurity-inducedfusion due to scattering off smooth disorder. The random part
damping from that related to the thermal smearing of they of the angle¢ is characterized by a white noise spectrum
Fermi surface. of dx:

APPENDIX: RETURN PROBABILITY IN A MAGNETIC
FIELD

VIIl. CONCLUSIONS PO = dot ot + x(0),
In summary, we have analyzed the quasiclassical mecha- 2
nism of magneto-oscillations in the ac conductivity and pho- (G x(t')) = — &t = t'). (A1)
toconductivity, related to non-Markovian dynamics of -
disorder-induced scattering of electrons in high-mobility In what follows we calculate the mean-square fluctuation of
structures. We have calculated the leading contribution asséhe guiding center of cyclotron motiod, Eg. (32), and
ciated with a radiation-induced change of the electron distrimean-square shifts of an electron along and across the cyclo-
bution function, which is proportional to the inelastic tron orbit aftern cyclotron periods at=nT.=2m n/w.. For
(electron-phononrelaxation time. We have found that the definiteness, let the guiding center be initially placed at the
quasiclassical oscillations in the photoconductivity are wealorigin, R(t=0)=(0,0), and the electron coordinate and ve-
under the conditions of current experiments. Therefore, théocity be r(t=0)=(R.,0), v(t=0)=(0,vg), respectively(R,
zero-resistance states and the strong oscillations that hawer/w. is the cyclotron radius Using Eq.(Al) we get the
been observed in the experiments are likely due to the quamnean-square shifts of the position of guiding ceriReand
tum mechanism of Refs. 7 and 8. We argue that the dampinthe fluctuating angle in time t=nT:
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=[0Tedtve cos(t) and  x, =x(t=nT)-R.=—[7edt vg
Xsin ¢(t), respectively, as

nT. 2
(R = ( f dtRccos¢(t)atx(t))
0
2 nTg
:ﬁf dt cos’-¢(t):R§n—T°,
T Jo L 0

nT; t 2
04) = ( f dt v cogwt) f dt'm(t')) =(RD),
0

¢y =((Ry+R; x)?) =(R) + R(?). (A4)

(R)=(RY,
n T,
(A2) It follows that fluctuations along the cyclotron orbit are en-

nTe 2 2
(x> = ( f dt r?tx(t)) =
0 L . p >
hanced with respect to those across the or(bqji}=3(x D
The diffusion approximation is valid as long as the rms shift=3ns?/2, and we arrive at the anisotropic electron distribu-
of the guiding center after one cyclotron revolutiam=1)  tion aftern cyclotron revolutions, given by
exceeds the characteristic length scale of the random poten-
2
{55
3né&)’

el Pa(X %) = iexp(— i)#ex
M \Vmns n & V”En )
(A5)

A 1/2
5=[<R§>+<R§>]1’2:Rc(w—n) >d.  (A3)

In the same manner, we calculate the mean square of electron
shifts along and across the cyclotron orbif=y(t=n T,)  which enters Eq(33) for the return probability.
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