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Relationship between single quantum-dot intermittency and fluorescence intensity decays from
collections of dots
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We show that the slow dynamics of the fluorescence from a collection of colloidal quantum dots and the
intermittency observed in single quantum dots are intimately related. This system illustrates the importance of
uncovering dynamical behavior at the microscopic level for a proper understanding of ensemble phenomenol-
ogy. We propose a model that introduces lower and upper bounds to the on- and off-time power-law distribu-
tions in single-nanocrystal quantum-d@D) fluorescence intermittency statistics. We use Monte Carlo simu-
lations and analytical forms to quantitatively connect this single QD model to the fluorescence intensity decay
to a steady state that is observed in collections of QD's. Inversely, we also show that experiments on collec-
tions of QD’s can be used to directly obtain upper bounds to the single-QD fluorescence intermittency power-
law statistics.
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Although advances in single-fluorophore spectroséopy ditions are reversible. We show here that intermittency by
have catalyzed detailed studies of individual fluorophoresitself predicts and explains both the rate of decay and the
connecting the dynamical behavior of a collection of fluoro-ultimate steady-state level. Indeed, the behavior of a collec-
phores to that of the individual fluorophores is not alwaystion of QD’s must reflect the underlying statistics of single
apparent, yet the phenomenology observed at the ensemhb@D’s. This can be experimentally realized by exciting a col-
level must reflect the underlying microscopic dynamics. Forection of QD’s that are immobile under the same conditions
example, while fluorescence spectroscopy on single-colloidadf high excitation power used to observe single QD’s. Brok-
semiconductor quantum dot®D’s) has uncovered interest- mannet al!* have explained the experimental intensity de-
ing fluorescence intermittenty phenomena, the implica- cay of a collection of QD’s from single-QD statistics by tak-
tions of this intermittency to observations at the ensembléng a slightly higher on-time power than off-time power,
level have not been obvious. Inversely, it has not been cleawhich results in nonergodic behavior as expected from un-
how observations at the ensemble level can contribute to olsounded Lévy statistics, but this predicts a decay to zero
understanding of the dynamics at the single-QD level. Yeintensity. Here we show that the experimentally observed
understanding this connection is likely to be very importantintensity decay to a steady state in the fluorescence of a
if we are to begin to understand the microscopic reasons fatollection of immobile QD’s implies that both on and off
intermittency and also because the performance of QD’s itimes must have upper bounds in their distributions and re-
applications ranging from biological imagihgto optoelec- flects underlying ergodic behavior. In this work, we propose
tronic device® increasingly appears to be strongly affecteda phenomenological model that introduces lower and upper
by the intermittency. The working hypothesis for colloidal bounds to the on<{off-) time power-law distributions of
QD’s is that the intermittency results as the QD switchessingle-QD fluorescence intermittency. We use Monte Carlo
between an emissive, neutral stqt@ight or “on”) and a  simulations and analytical studies to show that this model is
nonemissive, ionized, charged stawark or “off").41%-12  consistent with the intensity decay to a steady state observed
Probability distributions for the lengths of offf) times in collections of immobile QD’s. Finally, we show that pa-
have been experimentally shown to follow power-lawrameters of the underlying single-QD phenomenological
statistics*® Interestingly, the characteristic powers for the model that would be inaccessible from single-QD experi-
on- (off-) time distributions have been observed to be similamments can be obtained from experiments on collections of
and insensitive to environmental changeshe measured QD'’s.
powers, in the absence of bounds to the time range of the Experimental time traces of fluorescence intermittency, by
distribution, place the blinking effect in Lévy’s statistical re- necessity, use a time binning process. We begin by showing
gime, where the mean and variance of the distributiorthat the measured statistics of @off) times are not funda-
diverge®® Upper bounds to the power |&vhave been ob- mentally affected by the choice of bin size, as long as it is
served only for the on times, but they must also exist for thesufficiently smaller than any experimentally observed long-
off times. Otherwise, the emission intensities of all collec-time bound. For the purposes of this discussion, we define an
tions of QD’s would eventually go to zero, which they do “intrinsic” intensity time trace as a time series of emitted
not. Emission intensities do exhibit a decay in time, but to gphotons prior to an experimental binning process. We use the
steady state. This decay has often been attributed to a pesimplifying assumption thatl) an off state is a charged state
manent photochemical process. Although such processes ctmat is “dark,” (2) a photon is emitted after each absorption
and do occur, decays observed under our experimental coprocess during an on state, a8l the shortest time scale is
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FIG. 1. (&) Small portion of a simulated intrinsic time trace, ‘3 1 104
constructed from the orfeff-) time power-law probability distribu- & 10*
tions of Eq.(1) as described in the text) Portion of the time trace :2, 1 106
[same portion as i@)] after rebinning with a bin size of 18 sec. S 10,
I R ) i . ' "
(c) Probability density distributions for on and off timésverlap 107 10° 107 402 107 100 10 1c210

ping open circlesfrom Eq. (1), used to generate the time traces in Log,, (1)
() and(b), with powers onotp—1=-1.5. (d) Probability density °
distributions for on(open trianglesand off (solid triangle$ times,

extracted from the rebinned trace, a small portion of which is shownon Tilrﬁésit(rgnz)l(gser:‘?reqtgl r?;??:g;ggﬁgg;“ﬁ:ésg'gurt:r?ansaggutze
in (b). The intensity threshold defining on times is set to zero. N R
n (b) I 4 ning I ! z (gray) (CdSeznS(core shell QD’s, and 2.5-nm-radius CdSe QD’s

) o ) _ (white). Their off-time distributions are indistinguishable on this
then determined by the excitation flux. This shortest timeyraph and plotted as a solid line. The dashed lines are fits using
scale becomes an operational measure of the lower bound gg. (2), giving 7,,=16.4, 7.8, and 2.7 sec, respectively. The bin size
the distributions of on(off) times. This intrinsic time trace in these experiments was T0sec. (b) Phenomenological half-
effectively has a bin size determined by the inverse value ofeaction schemes for the two switching channels between on and off
the excitation flux, returning a value of “1” if the QD is states, as described in the tegt) Calculated probability density
neutral(i.e., fluoresces when interrogajemt “0” if it is dark. distributions using Eq. (2) with 7,,=20, 5, and 2 sec,

As defined, the intrinsic time trace is then perfectly binary, asror=10° sec, andtg, =10 sec. The dotted box indicates the
shown in the trace of Fig.(&), obtained using a Monte Carlo experimental time range dfl0!, 10?] sec.(d) Calculated prob-
simulation described below. Rebinning this time trace, as isbility density distributions in the dotted box ¢f), renormalized
effectively done experimentally, diminishes its binary char-for comparison with the experimental data (@. () Probability
acteristic as shown in Fig(l). The new bin size then sets a density distributions for on timegopen triangles and off times
new operational lower bound for the ofoff-) time distribu-  (black triangley obtained from a simulated time trace using Monte
tions. On(off) times in the rebinned time trace are definedCarlo methods from Eq2), using 7o,=2 and 7110° sec, and re-
relative to an arbitrary intensity threshold. To explore thebinned(bin size=10" seq.

effects of rebinning and the choice of intensity threshold, we ) - o
simulate intrinsic time traces assuming bounded power-law(¢) (open circlegshows the probability density distributions

Log,,(t)

statistics for the distributions of ofoff) times: of on (off) times used to generate the intrinsic trace. The
) probability density distributions of on and off times extracted

Ponofn(Ddt=0 (t <torten), Ponorn()dt=0 (tonorn < 1), after rebinning are shown as open and solid triangles in Fig.

_ 1(d), using an intensity threshold set to 0 to define on and off

Pon(off)(1)dt = Conorpt #one™dt (to <t < tomacs)., events. Changing the intensity thresholds did not change the

measured power-law statistics. Simulations were also per-
@) formed to test different intrinsic power-law statistics with
where Ponor(t)dt are on- (off-) time probability density 0<tonorn <1, defined in the same rang&0™,10%] (seo.
functions, Cynor are normalization factors, and We found in every case that the intrinsic power-law statistics

[tonor  toreasr)] defines the time interval for which power-law Was preserved through the rebinning process.

statistics hold. Consistent with experimental 0bservationsateEf);g;”;neBtril O(;]v-\}tlaTIea\(/jvlz[tnIl?)lﬁloenrstiﬁqr:so?ri?srvggvitgtigivils-
we chose uonorn=0.5 (Refs. 10 and 11 and pure p 9 :

i - . L observed as a decay, or roll-off, away from the power law, or
tonorn=10"* sec (the initial bin sizg. We arbitrarily set .75 abrupt cutoff of the power-law distribution if the time
tonotn=10° sec, an order of magnitude larger than the long-race is not long enough to statistically acquire enough of the
est experimentally observed off tingigself restricted by the long on-time events in this decay. Figur@Rshows experi-
length of an experimental time trac&imulations were typi- mental probability density distributions of on timéi-
cally run to generate time traces spanning B sec. Figure angles and off times(straight ling, collected from various
1(a) shows a smal{6 seg snapshot of an intrinsic time trace QD’s (Ref. 5 at room temperature. At low temperature
generated by this simulation. Figurgbl shows the same (10 K) and low laser excitation fluXthe on-time power law
snapshot after rebinning, with a bin size of 18ec. Figure was observed to extend as far as the off-time power law
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within the experimental window available. The deviation on- (off-) time statistics of the rebinned time trace were then
from the power law implies that the on-time power-law sta-obtained and plotted in Fig.(®, which closely matches the
tistics occurs in parallel with additional channels for charg-experimental white triangle plot in Fig(a.
ing the QD’s that effectively act as upper bounds to the With a phenomenological model for single-QD statistics
power law. These additional channels are affected by theut forth, we now turn to the behavior of the fluorescence
surface environment of the QD's, the temperature, and thetensity from collections of immobile and diluf@oninter-
excitation intensity. Protecting the surface of the QD’s in- acting QD’s. Figure 3a) shows intensity time traces from
creases the probability of observing longer on times, delaytwo different samples afCdSezZnS QD’s, normalized to the
ing the start of deviation from power-law statistics. Upperinitial intensity. The samples are in the dark untl0, when
bounds or deviations from power-law statistics for the offthey are then illuminated with the laser. Both samples show
times have not been observed experimentally. That is befluorescence intensity decays, reaching steady-state values at
cause these bounds are apparently significantly longer thar680 and 3900 sec, respectively. The existence of a steady
those for the on times, as is seen below in our analysis oftate implies that the power-law distribution of off times
decays of collections of QD’s. must also have an upper bound and that the system is er-
We now construct a phenomenological model that incor-godic. Otherwise the intensity evolutions would statistically
porates the experimental observations as follows. We corfage,” decaying to zero, with all the QD’s displaying noner-
struct waiting time distributions with the half-reaction godic behavior by eventually residing in nearly infinitely
schemes as seen in Figb®, where each half-reaction con- long off states. The intensity time trace of a collection of
sists of two parallel switching channels. One channel givesmmobile, dilute QD’s can be identically mapped onto the
rise to a power-law distributiofresulting, for example, from probability of finding a single QD in an on state. We can
an appropriate distribution of rate constak{g, (Ref. 1], therefore analyze this ensemble experiment within the con-
and the other, responsible for the upper bounds, is exponeitext of our phenomenological model for the statistics of
tial with rate constantt,,:. The waiting time distributions ~ single QD’s. We will proceed two ways. We will derive ana-
Paiim(Ddt, are the probability densities for observing a lytical expressions for the probability of finding a QD to be

switch from an on state to an off staftef) or vice versafn) “(?CT’" IandD\{ve Wi." alfvlo sitmulcatel time ;[rrla(;es for dmagé/ it?]di'
after residing in an on or off state for a tinheConsequently vidual QD's using Monte Carlo methods, and a ese

_ traces together.
Pnitn) (1) =dPonotn (1) /dt, where 1P 05 (1) are the cumula- . . . .
tive distribution functions for or{off) times[i.e., the prob- Analytical expressions for the probability of a QD being

o . A , “on” can be derived from the waiting time distributions
ability t_hat_a QD still remains “onl{“off” ) a timet after the Putirn(1). This probability, defined ak,(t), can be expressed
last switching evertand .

in its Laplace transforat
1- Pon(off) = Con(off)t_'%n(o")exfi_ t/7'or|(off))
a+ (1= a)pi(s) 1 = pnrls)
1-pm(S)pai(s) s
With wono=0.5 to match experiments and wit}i;, as (3)

operationally defined lower bounds as described previousI)(,.vith
The exact values affyi,, do not affect our results, as long
as they are significantly smaller than both the length of a 1 1-pni(s)
complete time trace anel,, The exponential term in the fan(S) = 1 - pen(S) - Pae(9) s
probability distribution effectively acts as an upper bound to " "
the power law. The presence of a lower bound and the expo- 1-p(9)
nential cutoff enables calculation of normalization factors fin(s) = Pn(S) PnrtS (4)
Conoff)- We use this model to fit the experimental data of Fig. 1-pin(S)pni(s) s
2(a) (dashed lines extracting 7., values of 16.4, 7.8, and
2.7 sec for 1.5-nm-radiusCdSeznS [(core) shell] QD’s,
2.5-nm-radius(CdSe ZnS QD’s, and 2.5-nm-radius CdSe
QD’s, respectively. Figure(2) shows calculated probability : ) o o

. . . proportion of QD’s that are “on” at timé=0. To solve for
grinesIL{JEQSIIE;%)?:tfr?b(Stigi:egr;:tezq(vii)th\i”t—hzgn_5(o:n)d fon(S), we divide the time into three regions as shown in Fig.

n— , y . #Min < z z H

2 sec,7,= 10 sec[chosen to be larger than the exp_erimen-sfcbf)' t‘;”(‘,’”);té :’?”’l :fm<t< TO”'&aTiZ?Tf]ift' T:(? ::gh?r\]nor
tally observed longest off-time in Fig.(@], and thy .o © on(t) in the initial time range onoff) WNICN IS TS

=10 sec. Restricting the data betweerii8ec and 19sec far experimentally inaccessible, will be described elsewhere.

and rescaling shows that the calculated probability densitie%t\/e obtain the following results, as explained below, where

of Fig. 2d) compare well with their corresponding experi- onofn) i the expectation value for ooff) times:
mental counterparts in Fig(&. These statistics are also ro-
bust to rebinning. An intrinsic time trace constructed using
Monte Carlo methods from Eqg2) using 7,,=2 sec and
To1t=10° sec was rebinned using a bin size of 16ec. The fon(t) oe 7M1 <t < 7oy,

X(tgnrl(noff) <1), Poorn=0 (< tg’ri?off)) 2) for(8) = afi(s) + (1 — a)fip(s) =

wheref,(s) is the probability that a QD is “on” at timg
given that it is “on” att=0, f;,(t) is the probability that a QD
is “on” at timet, given that it is “off” att=0, and«a is the

fon(t) = 0.5, tgg?off) <t < Tg,
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FIG. 3. (a) Normalized fluorescence intensity time traces from two collections of diff¢@uiEeZnS (core) shell QD’s with core radii
of 2.5 nm(black and gray: (b) Plot of the analytical form foff,(t) [Eq. (3)]. (c) Log-log plots of the experimental intensity time traces in
(a). The beginning and end points of the power-law decays for the two plots are indicated by arrows pointing up for the beginning points and
pointing down for the end points, respectively. These points are obtained as the intersections of the two slopes. These points experimentally
determiner,, and 7o¢1. (d) Intensity time traces obtained from adding 5000 different time traces generated using Monte Carlo simulations.
The smooth solid lines are the experimental datéajrfor comparison(e) Log-log plots of the simulated intensity time traces(é with
plots in(c) overlayed(f) Observed fluorescence intensity recovery after an initial decay, as described in the text, obtained from a collection
of 2.4-nm radiugCdSeznS (core) shell QD’s. The arrow indicates the time when continuous excitation was stopped.

(tor as long effective time traces or low laser flux intensitidgst
forl(t) = o+t t> 7ot (5  are inaccessible with single-QD experiments. The main
° off result is thatf,(t) should behave as a power law for
min . . Ton<<t<7o¢ @and should level out to a constant defined by
When ooty <t<7on forll) is at & transient steady state - onq - "for t> 7 . This is confirmed experimentally by
with fo()=0.5 (Ref. 15 that results fromti "=t  taking the experimental decays of Figiagand replotting
When 7,,<t< 7., an average value for on times can bethem on a log-log scale in Fig.(8. After an initial flat
calculated, so that a smalexpansion from Eq(3) gives  region, the two curves show a power-law decay with a power
Pni(s) ~ 1 =s(ty, While psy(t) is still a power law. Since the of approximately —0.5as expected from single-QD statis-
on-time distribution converges while the off-time distribution tics) starting att~14 and 110 sec afte=0 sec. After pass-
is still a power law in this region, the probabilify,(t) de-  ing these transition points &t- 14 and 110 sec, the two plots
cays like a power law with the power given as sz Fi- g(neglrértl?e?a/éitgyfggearggi\gﬁg 'aa";’ g:;gﬁz(t)e?jngﬁgg'lo' hseec
max o R - , .
nally, whentg;;*<t, average values can be obtained for bOthbeginning(l4 and 110 sacand end(680 and 3900 seaf

n and off times. Th ~1-s(t nd small . .
on and off times. Therngs(S) Slonorp) and smalls - 2 power-law regime thus correspond to experimental val-
expansions yield a steady state which is the ratio of the av,

) . ues for the average single QD phenomenological constants
erage on time to the sum of average on and off imes. - "4q 7 . This represents the first experimental observa-
These analytical forms fafi,(t) are especially interesting {ion of an effective upper bound for the length of off times.
because they directly link the intensity time trace of a col-As an illustration of the significance of this result, we esti-
lection of QD’s to the statistical parameters that describe thénate that it would require a single-QD intensity time trace
phenomenology of single-QD oueff-) time distributions. In  that is ~10° sec(2 week$ long to extract such a value of
other words, experiments on collections of QD’s can be used,;;~ 3900 sec. The steady-state saturation intensities for
to extract the phenomenological parameters of single-QR> 7 are obtained experimentally &g=0.10 and 0.13 for
statistical models. This is particularly powerful becausethe two curves, which compares well with the prediction of
experiments on collections of QD’s can access regifsesh  Eq. (3), which, using the experimentally determined values
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for 7o, and 7, predictslg,=0.12 and 0.14, respectivel§.  to quantitatively correlate the properties of single QD's to the
We have observed and measured effective upper bounds febservation of intensity decays in collections of QD’s, under
on and off times and steady-state saturation intensities fafonditions where permanent photochemical darkening pro-
many other QD samples, indicating that our model appeargesses appears to be insignificant. Most importantly, with
to be quite general for colloidal QD's. , _ these bounds, a collection of QD’s behaves theoretically and
_ To further complete t_he picture, we S|mulat¢ the 'nte,ns'tyexperimentally as an ergodic system. The upper bounds for
time trace of a collection of QD's by summing the time ff times, inaccessible with single-QD experiments, have
traces of many individual QD's. We use the valuesgfand  peen consistently observed in fluorescence time traces from
Tott €Xperimentally obtained above to generate mtensny t'”_“?nany other collections of QD’s. The presence of a steady
traces for 5000 QD's by Monte Carlo methods, using a bingiate at longer times in the fluorescence traces is fundamen-

. ; : :
size of 10° sec. The summation of these traces is shown iRy gifferent from the nonergodicity claimed in previous

Figs. 3d) and 3e). The simulated time traces overlap well \yorks14 \We have shown that experiments on collections of
with the experimental traces. The intensity fluctuations obyps can now also be used to extract parameters of

served in the simulated traces are consequences of the finig,41e-QD statistics that could not have been obtained other-
number of QD's in the collection, with each QD blinking.  yjse These new parameters are likely to have a microscopic
If the experimental intensity decays of collections OfQDsorigin. A systematic exploration of how these parameters

in Fig. 3 are the result of underlying single-QD statistics,yary as a function of local QD environment may be the key
then this intensity decay should be reversible. This is illusyg (nderstanding intermittency at the microscopic level. Fi-
trated in Fig. ). The initial intensity decay in the presence nally, this study provides an understanding of the photodark-

of continuous excitation is first observed. The excitation 'ightening process of collections of chromophores, a process that
was removed at=1400 seqmarked by an arroyy and the s often unclear in its origins, based on the dynamics of
fluorescence intensity was then sampled with short excnatloging|e chromophores.

events. The intensity as shown inside a circle is observed to
have almost completely recovered after 6400 sec. This re- We thank the NSF funde@rant No. CHE-011137(MIT
covery also indicates that the switch from an off to an onHarrison Spectroscopy Laboratory for support and use of its
state need not be light induced. facilities. This research was funded in part through the NSF-
In conclusion, we have shown that bounds to the powerMaterials Research Science and Engineering Center program
law probability distributions for on and off times in QD (Grant No. DMR-021328Q by the Department of Energy
blinking statistics are critical in understanding fluorescencéGrant No. DE-FG02-02ER459Y4 and by the Packard
intermittency in these fluorophores. These bounds allow u§oundation(Grant No. 2001-17717
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that lasts whiletgne <t < 7o, With a value determined only by
tM" and tT". This transient steady state results from the high
probability of short on and off times. This fast switching be-
tween on and off times establishes a steady state with an inten-
sity value determined by the rattf}"/t"" and by the exponent

for the power laws for the on and off times. Since ¢ arbi-
trarily sett™"=t™" in our paper and2) set the on and off times

to have the same power-law statisti€s,(toyosn <t < 707 =0.5,

0 01 would result infon(the i <t< 7op) #0.5.

16Note that Eq(3) hasl(t=0)=0.5, while we normalized Fig. 3 to

havel(t=0)=1.0. This is taken into account in our comparison.



