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We show that the slow dynamics of the fluorescence from a collection of colloidal quantum dots and the
intermittency observed in single quantum dots are intimately related. This system illustrates the importance of
uncovering dynamical behavior at the microscopic level for a proper understanding of ensemble phenomenol-
ogy. We propose a model that introduces lower and upper bounds to the on- and off-time power-law distribu-
tions in single-nanocrystal quantum-dot(QD) fluorescence intermittency statistics. We use Monte Carlo simu-
lations and analytical forms to quantitatively connect this single QD model to the fluorescence intensity decay
to a steady state that is observed in collections of QD’s. Inversely, we also show that experiments on collec-
tions of QD’s can be used to directly obtain upper bounds to the single-QD fluorescence intermittency power-
law statistics.
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Although advances in single-fluorophore spectroscopy1–3

have catalyzed detailed studies of individual fluorophores,
connecting the dynamical behavior of a collection of fluoro-
phores to that of the individual fluorophores is not always
apparent, yet the phenomenology observed at the ensemble
level must reflect the underlying microscopic dynamics. For
example, while fluorescence spectroscopy on single-colloidal
semiconductor quantum dots(QD’s) has uncovered interest-
ing fluorescence intermittency4,5 phenomena, the implica-
tions of this intermittency to observations at the ensemble
level have not been obvious. Inversely, it has not been clear
how observations at the ensemble level can contribute to our
understanding of the dynamics at the single-QD level. Yet
understanding this connection is likely to be very important
if we are to begin to understand the microscopic reasons for
intermittency and also because the performance of QD’s in
applications ranging from biological imaging6,7 to optoelec-
tronic devices8,9 increasingly appears to be strongly affected
by the intermittency. The working hypothesis for colloidal
QD’s is that the intermittency results as the QD switches
between an emissive, neutral state(bright or “on”) and a
nonemissive, ionized, charged state(dark or “off”).4,10–12

Probability distributions for the lengths of on(off) times
have been experimentally shown to follow power-law
statistics.4,5 Interestingly, the characteristic powers for the
on- (off-) time distributions have been observed to be similar
and insensitive to environmental changes.5 The measured
powers, in the absence of bounds to the time range of the
distribution, place the blinking effect in Lévy’s statistical re-
gime, where the mean and variance of the distribution
diverge.13 Upper bounds to the power law5 have been ob-
served only for the on times, but they must also exist for the
off times. Otherwise, the emission intensities of all collec-
tions of QD’s would eventually go to zero, which they do
not. Emission intensities do exhibit a decay in time, but to a
steady state. This decay has often been attributed to a per-
manent photochemical process. Although such processes can
and do occur, decays observed under our experimental con-

ditions are reversible. We show here that intermittency by
itself predicts and explains both the rate of decay and the
ultimate steady-state level. Indeed, the behavior of a collec-
tion of QD’s must reflect the underlying statistics of single
QD’s. This can be experimentally realized by exciting a col-
lection of QD’s that are immobile under the same conditions
of high excitation power used to observe single QD’s. Brok-
mannet al.14 have explained the experimental intensity de-
cay of a collection of QD’s from single-QD statistics by tak-
ing a slightly higher on-time power than off-time power,
which results in nonergodic behavior as expected from un-
bounded Lévy statistics, but this predicts a decay to zero
intensity. Here we show that the experimentally observed
intensity decay to a steady state in the fluorescence of a
collection of immobile QD’s implies that both on and off
times must have upper bounds in their distributions and re-
flects underlying ergodic behavior. In this work, we propose
a phenomenological model that introduces lower and upper
bounds to the on-(off-) time power-law distributions of
single-QD fluorescence intermittency. We use Monte Carlo
simulations and analytical studies to show that this model is
consistent with the intensity decay to a steady state observed
in collections of immobile QD’s. Finally, we show that pa-
rameters of the underlying single-QD phenomenological
model that would be inaccessible from single-QD experi-
ments can be obtained from experiments on collections of
QD’s.

Experimental time traces of fluorescence intermittency, by
necessity, use a time binning process. We begin by showing
that the measured statistics of on(off) times are not funda-
mentally affected by the choice of bin size, as long as it is
sufficiently smaller than any experimentally observed long-
time bound. For the purposes of this discussion, we define an
“intrinsic” intensity time trace as a time series of emitted
photons prior to an experimental binning process. We use the
simplifying assumption that(1) an off state is a charged state
that is “dark,” (2) a photon is emitted after each absorption
process during an on state, and(3) the shortest time scale is
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then determined by the excitation flux. This shortest time
scale becomes an operational measure of the lower bound to
the distributions of on(off) times. This intrinsic time trace
effectively has a bin size determined by the inverse value of
the excitation flux, returning a value of “1” if the QD is
neutral(i.e., fluoresces when interrogated) or “0” if it is dark.
As defined, the intrinsic time trace is then perfectly binary, as
shown in the trace of Fig. 1(a), obtained using a Monte Carlo
simulation described below. Rebinning this time trace, as is
effectively done experimentally, diminishes its binary char-
acteristic as shown in Fig. 1(b). The new bin size then sets a
new operational lower bound for the on-(off-) time distribu-
tions. On(off) times in the rebinned time trace are defined
relative to an arbitrary intensity threshold. To explore the
effects of rebinning and the choice of intensity threshold, we
simulate intrinsic time traces assuming bounded power-law
statistics for the distributions of on(off) times:

ponsof fdstddt = 0 st , tonsof fd
min d, ponsof fdstddt = 0 stonsof fd

max , td,

ponsof fdstddt = Consof fdt
−monsof fd−1dt stonsof fd

min , t , tonsof fd
max d,

s1d

where ponsof fdstddt are on- (off-) time probability density
functions, Consof fd are normalization factors, and
ftonsof fd

min ,tonsof fd
max g defines the time interval for which power-law

statistics hold. Consistent with experimental observations,
we chose monsof fd=0.5 (Refs. 10 and 11) and
tonsof fd
min =10−4 sec (the initial bin size). We arbitrarily set

tonsof fd
max =103 sec, an order of magnitude larger than the long-

est experimentally observed off time(itself restricted by the
length of an experimental time trace). Simulations were typi-
cally run to generate time traces spanning 33105 sec. Figure
1(a) shows a smalls6 secd snapshot of an intrinsic time trace
generated by this simulation. Figure 1(b) shows the same
snapshot after rebinning, with a bin size of 10−2 sec. Figure

1(c) (open circles) shows the probability density distributions
of on (off) times used to generate the intrinsic trace. The
probability density distributions of on and off times extracted
after rebinning are shown as open and solid triangles in Fig.
1(d), using an intensity threshold set to 0 to define on and off
events. Changing the intensity thresholds did not change the
measured power-law statistics. Simulations were also per-
formed to test different intrinsic power-law statistics with
0,monsof fd,1, defined in the same rangef10−4,103g ssecd.
We found in every case that the intrinsic power-law statistics
was preserved through the rebinning process.

Experimental on-time distributions are observed to devi-
ate from a pure power law at longer times. This deviation is
observed as a decay, or roll-off, away from the power law, or
as an abrupt cutoff of the power-law distribution if the time
trace is not long enough to statistically acquire enough of the
long on-time events in this decay. Figure 2(a) shows experi-
mental probability density distributions of on times(tri-
angles) and off times(straight line), collected from various
QD’s (Ref. 5) at room temperature. At low temperature
s10 Kd and low laser excitation flux,5 the on-time power law
was observed to extend as far as the off-time power law

FIG. 1. (a) Small portion of a simulated intrinsic time trace,
constructed from the on-(off-) time power-law probability distribu-
tions of Eq.(1) as described in the text.(b) Portion of the time trace
[same portion as in(a)] after rebinning with a bin size of 10−2 sec.
(c) Probability density distributions for on and off times(overlap-
ping open circles) from Eq. (1), used to generate the time traces in
(a) and (b), with powers −monsof fd−1=−1.5. (d) Probability density
distributions for on(open triangles) and off (solid triangles) times,
extracted from the rebinned trace, a small portion of which is shown
in (b). The intensity threshold defining on times is set to zero.

FIG. 2. (a) Experimental probability density distributions of the
on times (triangles) for 1.5-nm-radius(black) and 2.5-nm-radius
(gray) (CdSe)ZnS (core) shell QD’s, and 2.5-nm-radius CdSe QD’s
(white). Their off-time distributions are indistinguishable on this
graph and plotted as a solid line. The dashed lines are fits using
Eq. (2), giving ton=16.4, 7.8, and 2.7 sec, respectively. The bin size
in these experiments was 10−1 sec. (b) Phenomenological half-
reaction schemes for the two switching channels between on and off
states, as described in the text.(c) Calculated probability density
distributions using Eq. (2) with ton=20, 5, and 2 sec,
tof f=103 sec, andtonsof fd

min =10−4 sec. The dotted box indicates the
experimental time range off10−1, 102g sec. (d) Calculated prob-
ability density distributions in the dotted box of(c), renormalized
for comparison with the experimental data in(a). (e) Probability
density distributions for on times(open triangles) and off times
(black triangles) obtained from a simulated time trace using Monte
Carlo methods from Eq.(2), usington=2 andtof f103 sec, and re-
binned(bin size=10−1 sec).
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within the experimental window available. The deviation
from the power law implies that the on-time power-law sta-
tistics occurs in parallel with additional channels for charg-
ing the QD’s that effectively act as upper bounds to the
power law. These additional channels are affected by the
surface environment of the QD’s, the temperature, and the
excitation intensity.5 Protecting the surface of the QD’s in-
creases the probability of observing longer on times, delay-
ing the start of deviation from power-law statistics. Upper
bounds or deviations from power-law statistics for the off
times have not been observed experimentally. That is be-
cause these bounds are apparently significantly longer than
those for the on times, as is seen below in our analysis of
decays of collections of QD’s.

We now construct a phenomenological model that incor-
porates the experimental observations as follows. We con-
struct waiting time distributions with the half-reaction
schemes as seen in Fig. 2(b), where each half-reaction con-
sists of two parallel switching channels. One channel gives
rise to a power-law distribution[resulting, for example, from
an appropriate distribution of rate constantsk1s18d (Ref. 11)],
and the other, responsible for the upper bounds, is exponen-
tial with rate constantsk2s28d. The waiting time distributions
pnfsfndstddt, are the probability densities for observing a
switch from an on state to an off statesnfd or vice versasfnd
after residing in an on or off state for a timet. Consequently
pnfsfndstd=dPonsof fdstd /dt, where 1−Ponsof fdstd are the cumula-
tive distribution functions for on(off) times [i.e., the prob-
ability that a QD still remains “on”(“off” ) a time t after the
last switching event] and

1 − Ponsof fd = Consof fdt
−monsof fdexps− t/tonsof fdd

3stonsof fd
min , td, Ponsof fd = 0 st , tonsof fd

min d s2d

with monsof fd=0.5 to match experiments and withtonsof fd
min as

operationally defined lower bounds as described previously.
The exact values oftonsof fd

min do not affect our results, as long
as they are significantly smaller than both the length of a
complete time trace andton. The exponential term in the
probability distribution effectively acts as an upper bound to
the power law. The presence of a lower bound and the expo-
nential cutoff enables calculation of normalization factors
Consof fd. We use this model to fit the experimental data of Fig.
2(a) (dashed lines), extractington values of 16.4, 7.8, and
2.7 sec for 1.5-nm-radius(CdSe)ZnS [(core) shell] QD’s,
2.5-nm-radius(CdSe) ZnS QD’s, and 2.5-nm-radius CdSe
QD’s, respectively. Figure 2(c) shows calculated probability
density functionspnfsfndstd based on Eq.(2) with on- (off-)
time probability distributions created withton=20, 5, and
2 sec,tof f=103 sec[chosen to be larger than the experimen-
tally observed longest off-time in Fig. 2(a)], and tonsof fd

min

=10−4 sec. Restricting the data between 10−1 sec and 102 sec
and rescaling shows that the calculated probability densities
of Fig. 2(d) compare well with their corresponding experi-
mental counterparts in Fig. 2(a). These statistics are also ro-
bust to rebinning. An intrinsic time trace constructed using
Monte Carlo methods from Eq.(2) using ton=2 sec and
tof f=103 sec was rebinned using a bin size of 10−1 sec. The

on- (off-) time statistics of the rebinned time trace were then
obtained and plotted in Fig. 2(e), which closely matches the
experimental white triangle plot in Fig. 2(a).

With a phenomenological model for single-QD statistics
put forth, we now turn to the behavior of the fluorescence
intensity from collections of immobile and dilute(noninter-
acting) QD’s. Figure 3(a) shows intensity time traces from
two different samples of(CdSe)ZnS QD’s, normalized to the
initial intensity. The samples are in the dark untilt=0, when
they are then illuminated with the laser. Both samples show
fluorescence intensity decays, reaching steady-state values at
,680 and 3900 sec, respectively. The existence of a steady
state implies that the power-law distribution of off times
must also have an upper bound and that the system is er-
godic. Otherwise the intensity evolutions would statistically
“age,” decaying to zero, with all the QD’s displaying noner-
godic behavior by eventually residing in nearly infinitely
long off states. The intensity time trace of a collection of
immobile, dilute QD’s can be identically mapped onto the
probability of finding a single QD in an on state. We can
therefore analyze this ensemble experiment within the con-
text of our phenomenological model for the statistics of
single QD’s. We will proceed two ways. We will derive ana-
lytical expressions for the probability of finding a QD to be
“on,” and we will also simulate time traces for many indi-
vidual QD’s using Monte Carlo methods, and add these
traces together.

Analytical expressions for the probability of a QD being
“on” can be derived from the waiting time distributions
pnfsfndstd. This probability, defined asfonstd, can be expressed
in its Laplace transform13

fonssd = afnnssd + s1 − adf fnssd =
a + s1 − adpfnssd
1 − pfnssdpnfssd

1 − pnfssd
s

,

s3d

with

fnnssd =
1

1 − pfnssd · pnfssd
1 − pnfssd

s
,

f fnssd =
pfnssd

1 − pfnssdpnfssd
1 − pnfssd

s
, s4d

where fnnssd is the probability that a QD is “on” at timet,
given that it is “on” att=0, f fnstd is the probability that a QD
is “on” at time t, given that it is “off” at t=0, anda is the
proportion of QD’s that are “on” at timet=0. To solve for
fonssd, we divide the time into three regions as shown in Fig.
3(b): tonsof fd

min ! t,ton, ton! t,tof f, andtof f! t. The behavior
of fonstd in the initial time range 0ø t, tonsof fd

min , which is thus
far experimentally inaccessible, will be described elsewhere.
We obtain the following results, as explained below, where
ktonsof fdl is the expectation value for on(off) times:

fonstd > 0.5, tonsof fd
min ! t , ton,

fonstd ~ t−s1−mof fd, ton ! t , tof f,

RELATIONSHIP BETWEEN SINGLE QUANTUM-DOT… PHYSICAL REVIEW B 70, 165304(2004)

165304-3



fonstd =
ktonl

ktonl + ktof fl
, t @ tof f. s5d

When tonsof fd
min ! t,ton, fonstd is at a transient steady state

with fonstd>0.5 (Ref. 15) that results from ton
min= tof f

min.
When ton! t,tof f, an average value for on times can be
calculated, so that a small-s expansion from Eq.(3) gives
pnfssd,1−sktonl, while pfnstd is still a power law. Since the
on-time distribution converges while the off-time distribution
is still a power law in this region, the probabilityfonstd de-
cays like a power law with the power given as 1−mof f. Fi-
nally, whentof f

max! t, average values can be obtained for both
on and off times. Thenpnfsfndssd,1−sktonsof fdl and small-s
expansions yield a steady state which is the ratio of the av-
erage on time to the sum of average on and off times.

These analytical forms forfonstd are especially interesting
because they directly link the intensity time trace of a col-
lection of QD’s to the statistical parameters that describe the
phenomenology of single-QD on-(off-) time distributions. In
other words, experiments on collections of QD’s can be used
to extract the phenomenological parameters of single-QD
statistical models. This is particularly powerful because
experiments on collections of QD’s can access regimes(such

as long effective time traces or low laser flux intensities) that
are inaccessible with single-QD experiments. The main
result is that fonstd should behave as a power law for
ton! t,tof f and should level out to a constant defined by
ton andtof f for t@tof f. This is confirmed experimentally by
taking the experimental decays of Fig. 3(a) and replotting
them on a log-log scale in Fig. 3(c). After an initial flat
region, the two curves show a power-law decay with a power
of approximately −0.5(as expected from single-QD statis-
tics) starting att,14 and 110 sec aftert=0 sec. After pass-
ing these transition points att,14 and 110 sec, the two plots
begin to deviate from a power law att,680 and 3900 sec
and enter steady-state regions, as predicted by Eq.(3). The
beginning(14 and 110 sec) and end(680 and 3900 sec) of
the power-law regime thus correspond to experimental val-
ues for the average single QD phenomenological constants
ton and tof f. This represents the first experimental observa-
tion of an effective upper bound for the length of off times.
As an illustration of the significance of this result, we esti-
mate that it would require a single-QD intensity time trace
that is ,106 sec (2 weeks) long to extract such a value of
tof f,3900 sec. The steady-state saturation intensities for
t@tof f are obtained experimentally asIsat=0.10 and 0.13 for
the two curves, which compares well with the prediction of
Eq. (3), which, using the experimentally determined values

FIG. 3. (a) Normalized fluorescence intensity time traces from two collections of different(CdSe)ZnS (core) shell QD’s with core radii
of 2.5 nm(black and gray). (b) Plot of the analytical form forfonstd [Eq. (3)]. (c) Log-log plots of the experimental intensity time traces in
(a). The beginning and end points of the power-law decays for the two plots are indicated by arrows pointing up for the beginning points and
pointing down for the end points, respectively. These points are obtained as the intersections of the two slopes. These points experimentally
determineton andtof f. (d) Intensity time traces obtained from adding 5000 different time traces generated using Monte Carlo simulations.
The smooth solid lines are the experimental data in(a) for comparison.(e) Log-log plots of the simulated intensity time traces in(d) with
plots in (c) overlayed.(f) Observed fluorescence intensity recovery after an initial decay, as described in the text, obtained from a collection
of 2.4-nm radius(CdSe)ZnS (core) shell QD’s. The arrow indicates the time when continuous excitation was stopped.
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for ton and tof f, predictsIsat=0.12 and 0.14, respectively.16

We have observed and measured effective upper bounds for
on and off times and steady-state saturation intensities for
many other QD samples, indicating that our model appears
to be quite general for colloidal QD’s.

To further complete the picture, we simulate the intensity
time trace of a collection of QD’s by summing the time
traces of many individual QD’s. We use the values ofton and
tof f experimentally obtained above to generate intensity time
traces for 5000 QD’s by Monte Carlo methods, using a bin
size of 10−1 sec. The summation of these traces is shown in
Figs. 3(d) and 3(e). The simulated time traces overlap well
with the experimental traces. The intensity fluctuations ob-
served in the simulated traces are consequences of the finite
number of QD’s in the collection, with each QD blinking.

If the experimental intensity decays of collections of QD’s
in Fig. 3 are the result of underlying single-QD statistics,
then this intensity decay should be reversible. This is illus-
trated in Fig. 3(f). The initial intensity decay in the presence
of continuous excitation is first observed. The excitation light
was removed att=1400 sec(marked by an arrow), and the
fluorescence intensity was then sampled with short excitation
events. The intensity as shown inside a circle is observed to
have almost completely recovered after 6400 sec. This re-
covery also indicates that the switch from an off to an on
state need not be light induced.

In conclusion, we have shown that bounds to the power-
law probability distributions for on and off times in QD
blinking statistics are critical in understanding fluorescence
intermittency in these fluorophores. These bounds allow us

to quantitatively correlate the properties of single QD’s to the
observation of intensity decays in collections of QD’s, under
conditions where permanent photochemical darkening pro-
cesses appears to be insignificant. Most importantly, with
these bounds, a collection of QD’s behaves theoretically and
experimentally as an ergodic system. The upper bounds for
off times, inaccessible with single-QD experiments, have
been consistently observed in fluorescence time traces from
many other collections of QD’s. The presence of a steady
state at longer times in the fluorescence traces is fundamen-
tally different from the nonergodicity claimed in previous
works.14 We have shown that experiments on collections of
QD’s can now also be used to extract parameters of
single-QD statistics that could not have been obtained other-
wise. These new parameters are likely to have a microscopic
origin. A systematic exploration of how these parameters
vary as a function of local QD environment may be the key
to understanding intermittency at the microscopic level. Fi-
nally, this study provides an understanding of the photodark-
ening process of collections of chromophores, a process that
is often unclear in its origins, based on the dynamics of
single chromophores.
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