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We have studied biaxial, birefringent, one-dimensional, multilayer structures and found a wavelength region
where the phase of one specific polarization component of the transmitted field increases with wavelength,
giving rise to unusual polarization dependent dispersive effects of the input beam. We discuss the conditions
that lead to these effects, and examine possible ways to enhance them.

DOI: 10.1103/PhysRevB.70.165107 PACS number(s): 42.70.Qs, 42.25.Lc, 42.30.Lr

I. INTRODUCTION

Multilayer and photonic band-gap structures have many
interesting characteristics due to their inherent dispersion
properties. An example is presented in Ref. 1, where it is
discussed how to design thin-film multilayer structures that
separate multiple wavelength channels with a single stack by
spatial dispersion, thus allowing compact, manufacturable
wavelength multiplexers and demultiplexers, beam steering,
dispersion-control devices, and superprism phenomena.

Extraordinary angle-sensitive light propagation, calledsu-
perprism phenomenon, was demonstrated at optical wave-
length in three-dimensional(3D) photonic crystals fabricated
on Si substrate;2 this effect together with wavelength sensi-
tivity is at least two orders of magnitude stronger than that of
the conventional prism. In Ref. 2 the incident-angle depen-
dence including negative refraction and multiple beam
branching was interpreted from highly anisotropic dispersion
surfaces derived by photonic band calculation.

Recently, it has also become clear that dielectric structures
with periodic variations on the scale of wavelength, i.e., pho-
tonic crystals,3–5 may enable anomalous refraction
behavior2,6–8 giving rise to negative refraction of light simi-
lar to the one predicted for left-handed materials.9–11 The
physical principles behind these unusual phenomena in pho-
tonic crystals are based on complex Bragg scattering, and are
very different from those in a left-handed metamaterial. For
example, both negative refraction and subwavelength imag-
ing may be realized in photonic crystalswithoutemploying a
negative index or a backward wave.7,8 Photonic crystals thus
represent another class of metamaterial with electromagnetic
properties not available in a conventional medium.12,13

In this paper we will show that in the case of one-
dimensional, multilayer photonic crystal structures suitably
constructed with birefringent layers, the phase of one specific
polarization component of the transmitted field anomalously

increases with wavelength, giving rise to unusual
polarization-dependent, dispersive effects on the input beam.
When this occurs, the result may be an anomalous spatial
shift of the output beam, qualitatively reminiscent of the
kinds of shifts predicted for negative refractive index
materials,10 and negative bending as demonstrated for super-
prism phenomena in 3D photonic crystals,2 although at ex-
penses of the energy of the transmitted field. More recently
amphoteric refraction(the ability to refract light and ballistic
electrons without reflections) has been reported for a class of
birefringent materials that appears to be readily available,
that have both positive permittivity and permeability.14 The
index of refraction is matched on both sides of the interface,
and material growth techniques allow for the identification of
a reflection symmetry plane, with 0% reflections losses, giv-
ing rise to unusual transmission effects.

In what follows we study birefringent, multilayer, peri-
odic structures in the optical domain, in a wavelength range
that shows the presence of an anomalous phase change as a
function of wavelength in the transmission and reflection
spectra. With the term anomalous phase here we mean that
the coefficient of transmission displays a phase with positive
slope as a function of wavelength. Thus one can infer that
anomalous dispersive effects occur inside the structure as the
electromagnetic energy is redistributed between the different
polarization components, which lead to the spatial filtering
and anomalous shiftsin the direction of propagation. This
behavior is found by applying the transfer-matrix method,15

which we simplify here by applying a ray tracing method.
The energy exchange mechanism between the two polar-

ization channels permitted by the birefringent materials and
the difference in optical paths conspire to generate the
anomalous phase which causes the center of gravity of the
beam to undergo a spatial anomalous shift away from the
refraction angle. The explanation of the beam shift associ-
ated with a temporal translation in advance of the wave front,
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at a given polarization, is also presented. Although the pre-
dicted shift in the proposed example appears to be rather
small, <1/ mm, conditions may exist that would favor its
further enhancement by using crystals grown as pointed out
in Ref. 14.

II. RAY METHOD TO STUDY ANISOTROPIC MEDIUM

To study one-dimensional layered structures different
mathematical methods have been developed. One of the most
often used methods is based on the transfer matrix, which
effectively solves the Helmholtz equation, and arrives at a
product of matrices from which transmission, reflection, and
fields can be obtained with the help of a computer.16,17 One
method that provides a direct link with the physical nature of
the system is the ray method. Each ray is followed as it is
transmitted and reflected at each interface. Then, summing
up all contributions from each interface with the proper
phase it provides quantities of interest, such as transmission,
reflection, and the field and its phase.

The propagation of each ray inside an isotropic material is
easy to follow and define mathematically. The problem is
naturally more difficult if the material is anisotropic, because
every wave is divided into two waves of different polariza-
tions. However, the ray method can also be extended to this
case, with some modifications. In the present paper we
present results that arise from an anomalous development of
the phase of the field. If we consider the phase of the trans-
mission coefficient of an isotropic, strictly periodic and loss-
less multilayer structure, in most cases one would find that
the phase is a monotonically decreasing function of wave-
length. Here we report that for the case of a structure com-
posed of anisotropic layers there is a range of wavelengths in
which the slope of the phase is positive, and therefore
anomalous. We therefore expect anomalous propagation ef-
fects to follow.

Here we apply the ray method to discuss the reason of the
anomalous phase. The results even if not shown here are
consistent with matrix method.15,16 Although the anomalous
phase can be obtained also in two- and three-dimensional
structures, for simplicity we limit our discussion to one-

dimensional, anisotropic, multilayered structures.
Let us consider the simple situation represented in Fig. 1,

where one birefringent layer is placed between two semis-
paces, one isotropic(at the left, on the side of the incoming
beam) and theother anisotropic(at the right, at the output
side). An input plane wave is shown with linear polarization
along thex direction, propagating along thez direction. The
birefringent materialsLd has the crystal axis as represented in
the figure, rotated by some angle around thez direction. The
wave is divided into two independent, linearly polarized
plane waves travelling alongz, with orthogonal electric fields
along the axes labeledxL and yL. In terms of rays one may
argue that these waves are the result of the transmission of
the incident ray that passes through the interface between the
incident-wave semispacei and the layerL. Two waves, with
different velocities, propagate inside the layerL and reaching
the interface with the output-wave semispace to generate two
transmitted waves and two reflected waves(the latter ones
not shown for simplicity). The subscripts in the symbols of
the electric field indicate the medium in which the rays
propagate and the component of the electric field with re-
spect to the axis of the medium. The superscript denotes the
ray associated with a particular path(in the figure there is
only the number “one” because we are referring to the first
traversal ray inside the layer and at the output; other rays
with multiple reflections at each boundary would be succes-
sively numbered).

The transmitted and reflected field amplitudes at each in-
terface are related to the input ray amplitude by the matrix
relation

EW L
1 = aiLEW i ,

EW r
1 = biLEW i , s1d

where Ei =Eix is the incoming field and the transmitted and
reflected amplitudes are

FIG. 1. (Color) Representation
of the field inside and outside the
anisotropic layer. The two electric
fields inside the layer are the fields
in the two channels of the aniso-
tropic material. The input semi-
space is isotropic while the output
semispace is anisotropic.
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EW L
1 = SELx

1

ELy
1 D ; EW r

1 = SEix
1

Eiy
1 D , s2d

respectively. With reference to Fig. 1 and using the ray
method we can soon find the analytical expression of the first
transmitted ray across the slab as

EW o
1 = aLoDaiLEW i , s3d

whereD is the matrix that represents the propagation inside
the birefringent layerL

D = SeikLxd 0

0 eikLydD , s4d

whered is the thickness of layerL. We write Eq.(3) in a
more explicit way to obtain

SEox
1

Eoy
1 D = SaLo

11 aLo
12

aLo
21 aLo

22 DSeikLxd 0

0 eikLydDSaiL
11 aiL

12

aiL
21 aiL

22DSEi

0
D ,

s5d

which yields the relation

SEox
1

Eoy
1 D = SsaiL

11aLo
11eikLxd + aiL

21aLo
12eikLydd Ei

saiL
11aLo

21eikLxd + aiL
21aLo

22eikLydd Ei
D . s6d

This is the exact expression of the transmitted field due to
the first traversal ray when the input consists of a plane wave
with linear polarization along thex direction, as represented
in Fig. 1. This of course is not the total transmitted field, but
only the first traversal of the slab; it is then necessary to
superpose an infinite number of contributions from succes-
sive multiple reflections of the waves with the proper phase
in order to obtain the total field at the output.

As Eq. (6) suggests, at the output we will have two plane
waves with linear orthogonal polarizations that propagate in-
dependently of one another. The anomalous phase can exist
for both polarization channels, although not in the same
wavelength range. To explain this phenomenon we make ref-
erence only to the channel«ox. We can see immediately from
Eq. (6) that the first transmitted ray is obtained by summing
two complex terms, as shown in the complex plane in Fig. 2.
The two vectors in the sum rotate with different velocities.
For simplicity we now assume thatkLx =2pnLx /l0,kLy
=2pnLy /l0sn=Î«d. In this case the first vector in the sum
V1=aiL

11aLo
11eikLxd rotates in the complex plane at a lower rate

than the second vectorV2=aiL
21aLo

12eikLyd. The summation of
the two vectors will rotate around the center of the coordi-
nate axis and its phase will be approximately the phase of the
total output field. Theanomalous phaseis due to the differ-
ence of velocity between the two vectorsV1 and V2, and
from the difference in the length of the vectors. In fact if the
faster vector were longer than the slower vector, the anoma-
lous phase could not occur for any velocity of rotation of the
fast vector. To consider only the two vectorsV1 and V2 is
only a first approximation, but it is good enough to satisfac-
torily explain the generation of the anomalous phase. All
other contributions rotate in the complex plane with frequen-
cies that are multiples of the frequency of rotation of the two
main vectors represented in Fig. 2; their amplitudes become

smaller and smaller, and therefore, the anomalous phase that
we observe in the first ray at the output will be observed also
in the spectrum of the total field and the physical explanation
of the phenomena is just the same.

Inspection of Fig. 2 and Eq.(6) suggests thatin order to
have anomalous phaseit is necessary that on both the chan-
nels, V1 and V2, the electric fields have comparable ampli-
tude. This means that the energy should be nearly equally
split between the two paths, provided that the field compo-
nent with the longer optical path has a slightly smaller am-
plitude. This can be achieved when the optical axis of one of
the two birefringent media is rotated of about 40°–45° with
respect to the other one, and when optical paths between two
channels are nearly equal.

Now we wish to understand how a multilayer structure
modifies the process of generation of the anomalous phase.
For this we will slightly complicate the structure represented
in Fig. 1 by inserting another anisotropic layer and by ana-
lyzing this system using ray theory(Fig. 3). We have now
two anisotropic layersA andB between two semispaces(an-
isotropic semispaceo for the output and isotropic semispace
i for the input). We assume that the crystals of the two ma-
terialsA andB are rotated with respect to each other. In this
case the first ray at the input of layerB is found by summing
an infinite number of rays transmitted from multilayerA.
Using the same notation as in Eq.(3), we can write the
expression for the first transmitted ray at the output
semispace

EW o
1 = aboDbaabfI − DabaiDababg−1DaaiaEW i , s7d

where I is the unitary matrix I=u 1 0
0 1u. We define a matrix M as

FIG. 2. Representation in the complex plane of the sum of the
electric fields of the two channels of the anisotropic semispace in
output. The sum is referred to the first ray in output only.
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M = aabfI − DabaiDababg−1Daaia. s8d

The matrix M is the transmission matrix for a Fabry-Perot
formed by the semispacei from which the incident wave
arrives, the central layerA and the materialB that is at the
output of the wave. The elements of the matrix M have a
functional dependence on the wavelength; all the consider-
ations about the anomalous phase that apply to the single
slab system in Fig. 1 are also valid for the elements of this
matrix. Equation(7) can be written in a more compact way
as

EW o
1 = aboDbMEW i , s9d

and expanding Eq.(9) and considering that the field in input
is polarized along thex axis, we obtain

SEox
1

Eoy
1 D = SfM11abo

11eikbxd + M21abo
12eikbydgEi

fM11abo
21eikbxd + M21abo

22eikbydgEi
D . s10d

The similarities between Eq.(10) and Eq.(6) are appar-
ent. The vectors in the complex plane can have an anomalous
phase that sum to the phase of the corresponding exponen-
tials in Eq.(10). This shows that a multilayer structure usu-
ally does not change the phenomenon of the generation of
the anomalous phase. Instead, it seems to propagate the ef-
fect along through the interference phenomena inside each
layer. Moreover, a change of value of the rotation angle
among the optical axis of the crystal or the refractive index
values can cause a wavelength shift of the anomalous phase
region. In the Appendix A we give the conditions that the
parameters of a multilayer structure have to fulfil in order to
obtain anomalous phase.

The anomalous phase displays interesting temporal and
spatial characteristics, because if we speak in terms of the
(spatial and temporal) Fourier transform of the field and re-
member that a transmission coefficient with a linear phase,
negative slope, and constant amplitude gives a delay in time
and a spatial shift in space, then we can immediately con-
clude that for a field tuned within the anomalous phase’s

spectral region the output beam will be advanced in time
rather than being delayed or shifted in a direction opposite to
that expected from Snell’s law with positive refractive index.
This superluminal-like phenomenon does not contradict the
principle of causality because there is a concomitant energy
loss in the forward direction yielding small transmission val-
ues. In short, the larger the slope of the anomalous phase is,
then the larger the time advance of a pulse or the spatial shift
of the transverse profile will be(see Appendix B).

III. EXAMPLES

We report in this section some examples that better clarify
the analytical results discussed previously. We study a sys-
tem as represented in Fig. 1. All the results have been com-
pared with result obtained using the matrix method,17 and
found them to be consistent with ours. The input wave enters
normally with linear polarization along thex axis. The di-
electric index of the isotropic material in input is«i =1 while
the material that constitutes the central layer has dielectric
indices «Lx =1.8, «Ly =3.7, «Lz=2.0, and the output aniso-
tropic material has the dielectric tensor with eigenvalues
«ox=3.0,«oy=1.7,«oz=2.0. The crystal of the central layer is
rotated by 40° around thez axis, while the crystal of the
material at the output has the principal axis directed along
the directions of the Cartesian axis of the input material. In
the graphs of Fig. 4 the phase of the output wave polarized
along thex direction (from the channel«ox) is analyzed.
Figure 4(a) refers to the first ray at the output as reported in
Eq. (6). In the graph of the phase a small anomalous behav-
ior in the phase is evident in the range of wavelengths be-
tween 3.5 and 4mm. Figure 4(b) represents the phase of the
wave obtained as a sum of the first and the second output ray,
which suggests that the anomalous phase amplifies; this
means that the contribution of the second ray is strong
enough to modify the phase. In Fig. 4(c) the phase for the
wave obtained as a sum of the first three output rays is
shown. The figure is similar to Fig. 4(b); already the contri-

FIG. 3. (Color) Representation
of the field that is inside and out-
side two anisotropic layers.
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bution of the third ray is so small that its influence on the
final sum can be neglected. The last figure, Fig. 4(d), repre-
sents the phase of the whole output field from the structure,
polarized along thex axis, and is substantially similar to Fig.
4(c). The matrix method applied to this example confirms the
behavior shown in Fig. 4(d).

We now consider a periodic stack with ten periods(Fig. 5)
formed with a unit cell composed of two birefringent layers
with dielectric constants:«1x=3, «1y=6, «1z=4 and«2x=7,
«2y=5, «2z=4, respectively. The thicknesses of the two layers
are both 0.5mm. The input beam has a cylindrical Gaussian
section(in thexy plane), the axis of the cylinder is they axis.
The beam propagates in a transversal way in thexzplane, the
polarization is linear, normal to the beam and to they axis.
The input and output media are vacuum. The incidence angle

is 30° with respect to thez axis. The index axis of the first
crystal is aligned to the reference framesx,y,zd, while the
second crystal is rotated with respect to the first one by 30°
around thez axis. If we analyze the phase of the wave at the
output in the channel«ox we obtain the graph of Fig. 6,
which shows an anomalous phase in the range of the wave-
lengths from 0.520 to 0.522mm. The 30° value for optical
axis’s rotation is the value which maximize the anomalous
phase for this specific example.

In what follows we present results obtained with the “ray”
method and verified with the matrix method;17 more details
of the numerical calculation in space and time are presented
in this section are discussed in Appendix B.

To study the effects of the anomalous phase on the trans-
verse structure of the input wave we fixed the wavelength of
the beam atl=0.5207mm, thus inside the anomalous re-
gion. The input beam is a Gaussian beam with a finite spread

FIG. 4. The phase of the wave
in output from channel«ox for two
anisotropic layers withni =1, «Lx

=1.8, «Ly =3.7, «Lz=2.0, «ox=3.0,
«oy=1.7, «oz=2.0. The crystal of
the first layer is rotated by 40°
around thez axis while the crystal
of the material in output has the
principal axis directed along the
directions of the Cartesian axis.
(a) gives the phase of the first ray
in output.(b) represents the phase
of the wave obtained as a sum of
the first and the second traversal
rays at output.(c) is represents the
phase for the wave obtained as a
sum of the first three rays at the
output.(d) represents the phase of
the output field with all the rays
included for the structure.

FIG. 5. Simple system that uses an anisotropic multilayer to
create an anomalous phase in the output field. The periodic structure
has ten periods, formed by two birifrangent layers with dielectric
constants:«1x=3, «1y=6, «1z=4, «2x=7, «2y=5, «2z=4, the thick-
ness of the two layers are both 0.5mm, the wave in input is a beam
with cylindrical section(on thexy plane) Gaussian, the axis of the
cylinder is they axis. The beam propagates in a transversal way on
thexzplane; the polarization will be linear, normal to the beam and
to they axis. The input and output medium is vacuum. The incident
angle is 30° with respect to thez axis. While the second crystal is
rotated with respect to the first one by 30° around thez axis.

FIG. 6. (Color) The phase of the output wave in channel«ox, for
the system of Fig. 5.
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in the transverse wave vector k, that represents all the plane
waves with the same wavelengthl=0.5207mm. If the input
Gaussian beam is sufficiently wide in space, the beam does
not diffract and the spatial spectrum will be narrow enough
to lie well within the range of the anomalous phase. As dis-
cussed in Appendix B, the output beam polarized in the plane
xz undergoes an anomalous shift associated to the temporal
shift of the wave front. In Fig. 7(a) the input field distribution
on thex axis is shown, and Fig. 7(b) shows the shifted output
field whose center has moved in the direction of the negative
x. The output field amplitude is much smaller than the input
field; Fig. 7(c) which shows the transmission of the structure.
In Fig. 7(d) we show the intensity plot for incident, reflected,
and transmitted polarized beam: the output transmitted beam
is normalized to the transmission value for better visualiza-
tion.

Now we analyze another example where we have an an-
isotropic multilayer structure with an anomalous phase in the
spectrum and we show that an input pulse peak exits the
structure before the entire wave has entered in the structure.
This case is often called superluminal or photon tunneling

and the output pulse is described by negative times. We con-
sider a periodic structure withthree periods, everyone
formed by two layers with the following dielectric constants:
«1x=2, «1y=4, «1z=1, and «2x=3, «2y=6, «2z=1, respec-
tively, the semispaces in input and output are the vacuum,
while the second crystal is rotated of 45° with respect to the
first one around thez axis, as represented in Fig. 3, where
only two layers are shown. The thickness is 0.1mm for the
first layer and 0.17mm for the second layer, the total thick-
nesss0.81mmd is much shorter than the width of the input
Gaussian wave packet, given by

Gsx,z,td = e−x2/s2sx
2de−sz − ctd2/s2sz

2d, s11d

referring to the axes shown in Fig. 3. The origin of the axes
is fixed at the entrance of the structuresz=0d, and the beam
moves along thez axis. We fix the constants in Eq.(11) as
sx=10 mm, sz=8.9437mm, and study the output wave at
the time t=0. The calculation has been performed in the
following way (details are presented in Appendix B): first we
calculate at thez=0 plane, the Fourier transform of the input

FIG. 7. (Color) Field behavior in channel«ox along thex axis for the case of Fig. 5 with a wavelengthl=0.5207mm. (a) input Gaussian
beam,(b) output Gaussian beam,(c) transmission spectrum of the multilayer,(d) intensity of incident, reflected, and transmitted beam: the
output transmitted beam has been normalized to the transmission value in order to be visualized.
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pulse in the space and time domains; then we calculate the
product of the transformed pulse with the transmission(as
function of frequency and wave vector k); we apply the
“propagator” in space; after that we calculate again the Fou-
rier transform in space and time in the planez=z0 (where
z0ùd); and finally we get the field inz=z0 and at the time
t=0. In Fig. 8(a) the output phase along thex2-axis (axisx of
the layer two) when in input we have a wave with linear
polarization along they1 axis (axis y of the layer one) is
shown. The dispersion plot in figure displays an anomalous
phase band between the wavelengthsl=0.52mm and l
=0.54mm. The central frequency of the Gaussian wave is
l=0.53mm and the entire range of principal frequencies of
the Gaussian pulse is around the anomalous phase. The nor-
malized to the transmission value output wave(in order to be
visualized), together with the input pulse(it is visualized
only the input and no the reflected pulse) and the space filled
by the multilayer are shown in Fig. 8(b), where one can
discern that the wave appears at the output before it enters
the input. This, however, comes at a cost of a very low trans-
mission energy. Note that we have normalized to unity the
output wave because its amplitude is so low that one would
not be able to see it on the same scale as the input field. We
observe that no spatial distortion of the polarized beam oc-
curs. In Fig. 8(c) we graph the amplitude of the transmission
spectrum that put into evidence that in the range of the
anomalous phase we need to have a low transmission to
maintain the causality principle.

IV. CONCLUSIONS

We have shown that it is possible to construct an aniso-
tropic, one-dimensional, multilayer geometry for which, in a
given range of wavelengths and polarization, the phase of the
transmitted field has a positive slope as a function of wave-
length. This behavior is explained by adopting the simple ray
method. Several specific examples are discussed for dielec-
tric values not attributable to any specific material, however,
realistic enough to demonstrate that birefringent layers intro-
duce an anomalous phase that leads to anomalous shifts of
the center of gravity of the beam, but with considerable re-
duction of the transmission coefficient. The anomalous phase
results are obtained without the need to invoke contradictory
refraction rules. A polarized beam propagating under condi-
tions of anomalous phase travels through the structure with-
out distortion provided its bandwidth lies within the anoma-
lous dispersion region. Our numerical simulations confirm
the results. Finally we note that the effect is already present
in structures composed of only one layer over on an aniso-
tropic semispace.

APPENDIX A

In this appendix we demonstrate the conditions under
which the anomalous phase in one polarization is found in
the output. We use as an example a structure built with two
anisotropic layers with vacuum on the both sides, as repre-
sented in Fig. 3. We begin considering only the first ray that
traverses through the structure(Fig. 3); from the figure it is

clear that only at the interface between the two layers we can
have the mix of energy between the two permitted channels
of the two anisotropic layers and so obtain anomalous phase
in the output wave.

FIG. 8. (Color) Gaussian input wave in a multilayer structure.
(a) Phase of the output.(b) Contour plot(amplitude) of the input
and output wave in the propagationy-z plane within the middle the
space for the multilayer, the output has been normalized to the
transmission, it has been plotted only the input pulse and not the
reflected one.(c) Transmission spectrum.

ANOMALOUS PHASE IN ONE-DIMENSIONAL,… PHYSICAL REVIEW B 70, 165107(2004)

165107-7



If we study the output field behavior of the first ray that
traverses the medium and the conditions under which this
gives an anomalous phase, then we can extend these consid-
erations to the total wave that includes a superposition of
multiple rays at the output. Once we find the anomalous
phase in the first-traversal ray, usually we have the same
behavior in the total output field, because the other rays un-
dergo reflections and have smaller amplitudes. So the first
ray contributes the largest portion of energy of the total out-
put wave.

Figure 3 depicts how the two layers are oriented. We
maintain the same direction for the principal axis«iz si
=a,bd and rotate only around thez axis. The two rotations
have the anglesfa and fb for layer A and B, respectively.
The plane wave in input is linear polarized with a rotation of
the electric field round thez axis with valuefp, it arrives at

the interface with normal incidence, so that the channels per-
mitted by the anisotropic materials are those of the principal
axis«ix and«iy si =a,bd. We can write the expression for the
first ray in output as

EW o1 = aboDbaabDaaiaScossfpd
sinsfpd

D . sA1d

This is a vector because we have two polarizations in output
for the two channels of the second layer. We can expand
formula (A1) and obtain the analytical expression for the
field along thexo axis that we choose with the same direction
of the xb axis. So we obtain

Etx = es2ipdbnbxd/lsAes2ipdanaxd/l + Bes2ipdanayd/ld , sA2d

with the coefficientsA andB written as

A =
8Cosffa − fbgCosffpgnaxnbxsnay + nbyd

s1 + naxds1 + nbxdhSinffa − fbg2naynby + nbxsCosffa − fbg2nay + nbyd + naxsnay + Sinffa − fbg2nbx + Cosffa − fbg2nbydj

B =
− 8 Sinffa − fbgSinffpgnaynbxsnax + nbyd

s1 + nayds1 + nbxdhSinffa − fbg2naynby + nbxsCosffa − fbg2nay + nbyd + naxsnay + Sinffa − fbg2nbx + Cosffa − fbg2nbydj
sA3d

Eq. (A1) can be written as

Etx = Aeisa/ld + Beisb/ld, sA4d

wherea andb are given by

a = 2pSdanax + dbnbx

da + db
Dsda + dbd

(A5)

b = 2pSdanay + dbnbx

da + db
Dsda + dbd.

If we want to find the anomalous phase in the output field
due to the first-traversal ray, we need to calculate the phase
of Eq. (A4). If an anomalous region exists for the phase, the
function must have a maximum and minimum, so we have to
search for these points.

To find the stationary points in the phase function we can
observe that for the arctangent function we may write

d

dl
tg−1sfd =

1

1 + fsxd2

df

dl
. sA6d

The stationary points for the arctangent are the same of those
of the function that is in the argument. To calculate the sta-
tionary points of the phase of Eq.(A4) we can calculate the
function f =fImsfdg /Resfd of Eq. (A4) and apply Eq.(A6).
So we have

f =

ASinFa

l
G + BSinFb

l
G

ACosFa

l
G + BCosFb

l
G , sA7d

and

df

dl
= −

A2a + B2b + ABsa + bdCosFa − b

l
G

l2SACosFa

l
G + BCosFb

l
GD2 . sA8d

Imposing the conditiondf /dl=0 we have the solutions

l =
sa − bd

ArccosF− A2a − B2b

ABsa + bd G + 2np

n P Z. sA9d

To have solutions in the real space it is necessary that the
argument inside the arc cosine is smaller than +1 and bigger
than −1.

− 1 ,
− A2a − B2b

ABsa + bd
, 1. sA10d

This condition set all parameters whose values contribute to
the definition of “anomalous phase region.” We can expand
the expression of the arccosine’s argument to obtain
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− A2a − B2b

ABsa + bd
= s16Cosffa − fbgCosffpgCscf2sfa − fbdg2Cscf2fpg2Sinffa − fbgSinffpgd

Ãˆda†Cosffa − fbg2Cosffpg2nax
3 nay

4 + Cosffa − fbg2Cosffpg2nax
3 nby

2

+ 2Cosffa − fbg2Cosffpg2nax
3 naynbys1 + nbyd

+ Cosffa − fbg2Cosffpg2nax
3 nay

2 f1 + nbys4 + nbydg

+ nay
3 Sinffa − fbg2Sinffpg2nax

4 + Sinffa − fbg2Sinffpg2nby
2 + h1 + Cosf2sfa − fbdgCosf2fpgnax

3 s1 + nbyd

+ 2Sinffa − fbg2Sinffpg2naxnbys1 + nbyd + Sinffa − fbg2Sinffpg2nax
2 s1 + nbys4 + nbyddj‡

+ dbnbx†Sinffa − fbg2Sinffpg2nax
4 nay

2 + Sinffa − fbg2Sinffpg2nay
2 nby

2 + 2Sinffa − fbg2Sinffpg2nax
3 nay

2 s1 + nbyd

+ 2Sinffa − fbg2Sinffpg2naxnay
2 nbys1 + nbyd

+ nax
2
„Cosffa − fbg2Cosffpg2nay

4 + Cosffa − fbg2Cosffpg2nby
2

+ 2Cosffa − fbg2Cosffpg2nay
3 s1 + nbyd + 2Cosffa − fbg2Cosffpg2naynbys1 + nbyd + 1

2h1 + Cosf2sfa

− fbdgCosf2fpgjnay
2 f1 + nbys4 + nbydg‡…‰

/naxs1 + naxdnays1 + naydfdasnax + nayd + 2dbnbxgsnax + nbydsnay + nbyd. sA11d

Equation(A11) is not simple but it gives the analytical ex-
pression and the conditions to generate anomalous phase in
the system, as a function of the physical parameters of the
geometry, such as refraction indexes, polarization of the in-
put plane wave, thickness of the two layers, and the relative
rotation of the two crystals of the corresponding layers,
therefore a suitably selection of the above mentioned param-
eters allows the geometry to manifest “anomalous phase” for
the transmission function.

APPENDIX B

The numerical calculations presented as examples have
been performed adopting the following method. Let us con-
sider a medium of extensiond, along thez axis (as in Fig. 1
and in Fig. 3), with an input surface atz=0, and output
surface atz=d, and an input polarized field whose scalar
amplitude isVsx,y,z=0,td traveling along thez axis. The
field on the output surface will beVsx,y,d,td. For a linear
medium we can apply the Fourier analysis atz=0 andz=d,
respectively, so that

Vskx,ky,z= 0,vd =E
−`

`

E
−`

`

E
−`

`

Vsx,y,z

= 0,tdeisvt−kxx−kyyddv dx dy , sB1ad

and

Vskx,ky,z= d,vd =E
−`

`

E
−`

`

E
−`

`

Vsx,y,z

= d,tdeisvt−kxx−kyyddv dx dy. sB1bd

The transfer matrix method set the link between output and
input field

Vskx,ky,z= d,vd = Tskx,ky,vdVskx,ky,z= 0,vd, sB2d

where the complex functionTskx,ky,vd contains all the in-
formation on the geometry of the structure. Then the output
field is obtained performing the inverse Fourier transform in
the space-time domain.

Now let us consider a paraxial input field; if the transmis-
sion Tskx,ky,vd for a first approximation and for a specific
range of frequencies can be written asTskx,ky,vd= uTueiw, uTu
being constant, one may expand the phase in a Taylor series
around specific values ofv and k:Tskx,ky,vd= uTueisw0+dfd.
Retaining only the first term of the phase expansion, we have

Vskx,ky,z= d,vd = Vskx,ky,z= 0,vdTskx,ky,vd

> Vskx,ky,z= 0,vdT0e
+iav, sB3d

a being the slope of the phase in the spectral region of in-
terest andT0= uTueisw0d. With this hypothesis, the output field
in the time domain will be

Vskx,ky,z= d,td =E
−`

`

Vskx,ky,z= 0,vdT0e
+iave−ivtdv

= T0Vskx,ky,z= 0,t − ad. sB4d

So the output field is simply related to the field in input, but
shifted in time(i.e., advanced or delayed) depending on the
slope of the phase and with the amplitude scaled by the value
of the transmission coefficientT0. By applying again the
Fourier transform on the transversek components, we have
finally the expression of the output field given by
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Vsx,y,z= d,td =E
−`

`

E
−`

`

T0Vskx,ky,z= 0,t − adeiskxx+kyyddkxdky

= T0Vsx,y,z= 0,t − ad. sB5d

The output field atz=d is equal, with a scale factorT0, to the
input field in z=0, only if a=0, otherwise on the output
surface we will have the same input field suitably shifted in
time: delayed ifa.0, or advanced ifa,0. Then when an
anomalous phase occurs we obtain an output wave that is
simply a copy of the input field, with a superluminal time
shift depending on the phase slope and with the amplitude
scaled by the transmission coefficient value.

We present now a simple picture enabling us to compute
the lateral shift of the beam. For the sake of clarity we will
treat only a two-dimensional problem and neglect they de-
pendence. In order to compute the lateral shift, we need to
compare the beam finite profile of both the output transmit-
ted beam and the incident beam wave in the planex-z at z
=d andz=0 att=0 [Fig. 9(a)]. Let us consider an input beam

of Gaussian shapeVnsx,z,td=e−sx2d/2sx
2
eisv0t−kzd impinging on

the input surface in thex-z plane with a certain anglew

Vsx8,z8,td = e−fs− z8 sin w + x8 coswd2g/2sx
2
eisv0t−z8k cosw−x8k sin wd

beingH z= z8 cosw + x8 sinw

x = − z8 sinw + x8 cosw
J

If we namez8 asz andx8 asx we have

Vsx,z,td = e−fs− z sin w + x coswd2g/2sx
2
eisvt−zk cosw−xk sin wd,

sB5ad

assumingkx=k sinw and kz=k cosw and redefining a new
s2=sx

2k2, we can represents Eq.(B5a) as

Vsx,z,td = Gskzx − kxzdeisvt−kxx−kzzd, sB6d

where G is the Gaussian function Gskzx−kxzd
=efs−zkx+xkzd

2g/2s2
. By adopting the same calculation presented

before, we have the input beam atz=0 andt=0 as

Vsx,z= 0,t = 0d = Gskzxde−ikxx. sB7d

Under the same hypothesis presented before, i.e., with a
phase of the transmission represented in terms of a series
expansion aroundk and with a linear slope, after some alge-
bra, at timet=0 we have the field at thez=d interface given
by

Vsx,z= d,t = 0d = T0Vsx,z= va,t = 0d = T0Gskzx

− kxvade−iskxx+kzvad = T0Gskzx − kxvade−ikxxe−ikzva,

sB8d

wherev is the phase velocity, we have that Eq.(B8) is the
same as Eq.(B7) with a spatial shiftkxna /kz along thex axis
of the Gaussian field envelope. This is the amount of spatial
shift of the beam alongx axis produced by the linear phase
dispersion of the geometry.

We can conclude that, due to the temporal translation in-
troduced by the medium dispersion, we have an equivalent
spatial translation of the beam along thex axis whose ampli-
tude depends ond and ona, i.e., towards the top or bottom
of the axis depending on the sign ofa: toward the top of the
x axis for a.0, and towards the bottom fora,0 (anoma-
lous phase region as plotted in Fig. 5). This spatial transla-
tion does not contradict Snell’s law(the plane wave never
undergoes a negative refraction in order to be on the same
side of the normal at the interface as the incident beam) and
the usual refraction laws, only introduce an “apparent” nega-
tive refraction associated to the temporal and spatial transla-
tion of the beam[see Fig. 9 where we consider a PBG(pho-
tonic band gap or multilayer) medium whose refraction is
anomalous, according to the properties of the phase of the
transmission as discussed before; the dotted arrows simulate
the ray trajectory in “negative refractive index medium,” this
is just a graphical representation of the Fig. 7(d), where the
reflected field has been omitted].

The consequence can be summarized in Fig. 9(b): for a
system with anomalous phase in the paraxial limit, if we

FIG. 9. (a) Graphical representation of the later spatial shift in
the x-z plane in the case of anomalous phase.(b) Graphical repre-
sentation of the refraction of an extended and focalized for an
anomalous phase of the transmission of the geometry(named sys-
tem s), equivalent to the one expected for a “negative refractive
index” material.
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consider a focused beam along thez axis(F is the focus), the
front phase surface att=0 and atz=−uauv will be found at
z=d and at t=0, with an amplitude modified by the PBG
transmission, all waves on the right side of the front phase
surfacet=0 and atz=−uauv, will be found on the right side

of the surfacez=d; the focal pointF8 is produced in the
same way as in the case of a “negative refractive index”
medium. The plot is just a graphical representation and not a
result of a numerical simulation therefore any reflected field
has been omitted.

*FAX: 139 06 442 40 183. Electronic address:
concita.sibilia@uniroma1.it

1M. Gerken and D. A. B. Miller, Appl. Opt.42, 1330(2003).
2H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura,

T. Sato, and S. Kawakami, Phys. Rev. B58, R10096(1998).
3E. Yablonovitch, Phys. Rev. Lett.58, 2059(1987).
4S. John, Phys. Rev. Lett.58, 2486(1987).
5J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic Crys-

tals: Molding the Flow of Light(Princeton University Press,
Princeton, NJ, 1995).

6M. Notomi, Phys. Rev. B62, 10 696(2000).
7C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry,

Phys. Rev. B65, 201104(2002).
8C. Luo, S. G. Johnson, and J. D. Joannopoulos, Appl. Phys. Lett.

81, 2352(2002).
9V. G. Veselago, Usp. Fiz. Nauk92, 517 (1968) [Sov. Phys. Usp.

10, 509 (1968)].

10J. B. Pendry, Phys. Rev. Lett.85, 3966(2000).
11R. A. Shelby, D. R. Smith, and S. Schultz, Science292, 77

(2001).
12C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Opt.

Express11, 746 (2003).
13S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, Phys.

Rev. Lett. 90, 107402(2003).
14Y. Zhang, B. Fluegel, and A. Mascarenhas, Phys. Rev. Lett.91,

157404(2003).
15A. Mandatori, C. Sibilia, M. Centini, G. D’Aguanno, M. Berto-

lotti, M. Scalora, M. Bloemer, and C. M. Bowden, J. Opt. Soc.
Am. B 20, 504 (2003).

16M. Born and E. Wolf,Principles of Optics(Pergamon Press, Ox-
ford, 1965).

17P. Yeh and A. Yariv,Optical Waves in Layered Media(Wiley,
New York, 1988).

ANOMALOUS PHASE IN ONE-DIMENSIONAL,… PHYSICAL REVIEW B 70, 165107(2004)

165107-11


