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Anomalous phase in one-dimensional, multilayer, periodic structures with birefringent materials
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We have studied biaxial, birefringent, one-dimensional, multilayer structures and found a wavelength region
where the phase of one specific polarization component of the transmitted field increases with wavelength,
giving rise to unusual polarization dependent dispersive effects of the input beam. We discuss the conditions
that lead to these effects, and examine possible ways to enhance them.
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I. INTRODUCTION increases with wavelength, giving rise to unusual
Multilayer and photonic band-gap structures have man olarization-dependent, dispersive effects on the input beam.
interesting characteristics due to their inherent dispersiof/Nen this occurs, the result may be an anomalous spatial
properties. An example is presented in Ref. 1, where it i hift of the output beam, qualitatively reminiscent of the

discussed how to design thin-film multilayer structures tha |n(tjs_ cl’;mSh'féS preglctebd qur negz\tlve retfra::tgl? index
separate multiple wavelength channels with a single stack b r?sr?]”ahén?)?negzg% “é% eﬁotlgr?ic?scr ggloarl]tshg% eh a(ires;_per-
spatial dispersion, thus allowing compact, manufacturabl P P Y g

wavelength multiplexers and demultiplexers, beam steerind o o~ of the energy of the transmitted field. More recently
: 9 piexe PIEXETS, mphoteric refractiorthe ability to refract light and ballistic
dispersion-control devices, and superprism phenomena.

) o . electrons without reflection$as been reported for a class of
Extraordinary angle-sensitive light propagation, caBeel i efringent materials that appears to be readily available,
perprism phenomenorwas demonstrated at optical wave- {nat have both positive permittivity and permeabilityThe
length in three-dimension&BD) photonic crystals fabricated  jndex of refraction is matched on both sides of the interface,
on Si substraté;this effect together with wavelength sensi- and material growth techniques allow for the identification of
tivity is at least two orders of magnitude stronger than that of reflection symmetry plane, with 0% reflections losses, giv-
the conventional prism. In Ref. 2 the incident-angle depening rise to unusual transmission effects.
dence including negative refraction and multiple beam In what follows we study birefringent, multilayer, peri-
branching was interpreted from highly anisotropic dispersiorodic structures in the optical domain, in a wavelength range
surfaces derived by photonic band calculation. that shows the presence of an anomalous phase change as a
Recently, it has also become clear that dielectric structurefunction of wavelength in the transmission and reflection
with periodic variations on the scale of wavelength, i.e., phospectra. With the term anomalous phase here we mean that
tonic crystal$® may enable anomalous refraction the coefficient of transmission displays a phase with positive
behaviof5-8 giving rise to negative refraction of light simi- slope as a function of wavelength. Thus one can infer that
lar to the one predicted for left-handed materfafd. The  anomalous dispersive effects occur inside the structure as the
physical principles behind these unusual phenomena in pha&lectromagnetic energy is redistributed between the different
tonic crystals are based on complex Bragg scattering, and apolarization components, which lead to the spatial filtering
very different from those in a left-handed metamaterial. Forand anomalous shiftsn the direction of propagation. This
example, both negative refraction and subwavelength imagsehavior is found by applying the transfer-matrix methdd,
ing may be realized in photonic crystalsthoutemploying a  which we simplify here by applying a ray tracing method.
negative index or a backward wa{& Photonic crystals thus The energy exchange mechanism between the two polar-
represent another class of metamaterial with electromagnetization channels permitted by the birefringent materials and
properties not available in a conventional meditfi the difference in optical paths conspire to generate the
In this paper we will show that in the case of one-anomalous phase which causes the center of gravity of the
dimensional, multilayer photonic crystal structures suitablypeam to undergo a spatial anomalous shift away from the
constructed with birefringent layers, the phase of one specificefraction angle. The explanation of the beam shift associ-
polarization component of the transmitted field anomalouslhyated with a temporal translation in advance of the wave front,
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Ly oy FIG. 1. (Color) Representation
g of the field inside and outside the
Semispace o anisotropic layer. The two electric
Semispace i P fields inside the layer are the fields
in the two channels of the aniso-
Layer L tropic material. The input semi-
space is isotropic while the output
semispace is anisotropic.
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at a given polarization, is also presented. Although the predimensional, anisotropic, multilayered structures.

dicted shift in the proposed example appears to be rather Let us consider the simple situation represented in Fig. 1,
small, =1/ um, conditions may exist that would favor its where one birefringent layer is placed between two semis-
further enhancement by using crystals grown as pointed oytaces, one isotropi@t the left, on the side of the incoming

in Ref. 14. beam and theother anisotropic(at the right, at the output
side). An input plane wave is shown with linear polarization
Il. RAY METHOD TO STUDY ANISOTROPIC MEDIUM along thex direction, propagating along thedirection. The

) ) . birefringent materia(L) has the crystal axis as represented in

To study one-dimensional layered structures differentpe figure, rotated by some angle around ztdirection. The
mathematical methods have been developed. One of the mqghye s divided into two independent, linearly polarized
often used methods is based on the transfer matrix, whicjane waves travelling along with orthogonal electric fields
effectively solves the Helmholtz equation, and arrives at &long the axes labelex andy,. In terms of rays one may
product of matrices from which transmission, reflection, and, ;e that these waves are the result of the transmission of
fields can be obtained with the help of a comptfer.One e incident ray that passes through the interface between the
method that provides a direct link with the physical nature ofi,cident-wave semispadeand the layet.. Two waves, with
the system is the ray method. Each ray is followed as it igjifferent velocities, propagate inside the layeand reaching
transmitted gnd_ reflected at each interface. _Then, SUMMIN@e interface with the output-wave semispace to generate two
up all contributions from each interface with the properyansmitted waves and two reflected wave latter ones
phase.|t provides ql_Jantmes pf interest, such as transmissiofgt shown for simplicity. The subscripts in the symbols of
reflection, and the field and its phase. , __the electric field indicate the medium in which the rays

The propagation of each ray inside an isotropic material i$,-opagate and the component of the electric field with re-
easy to follow and define mathematically. The problem isgnect 1o the axis of the medium. The superscript denotes the
naturally more difficult if the material is anisotropic, becauseray associated with a particular patin the figure there is
every wave is divided into two waves of different polariza- only the number “one” because we are referring to the first

tions. However, the ray method can also be extended to thig;yersal ray inside the layer and at the output; other rays

case, with some modifications. In the present paper Wgih multiple reflections at each boundary would be succes-
present results that arise from an anomalous development vaely numberey

the phase of the field. If we consider the phase of the trans- e ransmitted and reflected field amplitudes at each in-

mission cpefficient of an igotropic, strictly periodic anq l0SS-terface are related to the input ray amplitude by the matrix
less multilayer structure, in most cases one would find thafg|ation

the phase is a monotonically decreasing function of wave-
length. Here we report that for the case of a structure com-
posed of anisotropic layers there is a range of wavelengths in
which the slope of the phase is positive, and therefore
anomalous. We therefore expect anomalous propagation ef-
fects to follow.

Here we apply the ray method to discuss the reason of the érl = ﬁn_éi, (1)
anomalous phase. The results even if not shown here are
consistent with matrix methott:1® Although the anomalous
phase can be obtained also in two- and three-dimension&ahere E=E; is the incoming field and the transmitted and
structures, for simplicity we limit our discussion to one- reflected amplitudes are

- -
El = E,
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By Eiy
respectively. With reference to Fig. 1 and using the ray
method we can soon find the analytical expression of the first o1z ik
transmitted ray across the slab as V2 =g aree
éé = ada Igi ) 3 ) allo! efkrd +ai2ﬂaﬁeik”d
i = odfafheud
whereA is the matrix that represents the propagation inside
the birefringent layet >
dkd Re
A— O eikLyd ’ (4)
whered is the thickness of layek. We write Eq.(3) in a
more explicit way to obtain
(Eéx) _ (aii aﬁﬁ)(e‘ktxd 0 )(ai{l af)(Ei)
e, e i/l o duefla o flo)
(5)
which yields the relation FIG. 2. Representation in the complex plane of the sum of the
. 111 kd . 21 120k d electric fields of the two channels of the anisotropic semispace in
(on) a ((aiL a €+ g seYY) E ) ®) output. The sum is referred to the first ray in output only.
el \(attafidod + aflafidu®) E )

smaller and smaller, and therefore, the anomalous phase that
e observe in the first ray at the output will be observed also
the spectrum of the total field and the physical explanation
of the phenomena is just the same.

Inspection of Fig. 2 and Ed6) suggests thanh order to
ave anomalous phaseis necessary that on both the chan-
nels,V; andV,, the electric fields have comparable ampli-
Qude. This means that the energy should be nearly equally

n (ng t060bta|n th? tOt?Lg'eld "tit ”t]e OUtpﬁjtﬁ i | split between the two paths, provided that the field compo-
S q_.( ).sugges S, at the output we will have o plane o . ity the longer optical path has a slightly smaller am-
waves with linear orthogonal polarizations that propagate in-

d dently of ther Th | h Fl'tude. This can be achieved when the optical axis of one of
ependently of one another. 1he anomalous phase can exigly, 4y birefringent media is rotated of about 40°—-45° with
for both polarization channels, although not in the sam

LT espect to the other one, and when optical paths between two
wavelength range. To explain this phenomenon we make re

. ) channels are nearly equal.
erence only to the channel,. We can see immediately from y €d

. X . . . Now we wish to understand how a multilayer structure
Eq. (6) that the first transmltteq ray is obtained by SUMMINg ., gifies the process of generation of the anomalous phase.
two complex terms, as shown in the complex plane in Fig. 2

. : ) .2 “For this we will slightly complicate the structure represented
The two vectors in the sum rotate with different velocities.. . . - - .
AR in Fig. 1 by inserting another anisotropic layer and by ana-
For simplicity we now assume tha,=2mn;,/Ao<<k, 9 y 9 pic fay y

_ 7 . . . lyzing this system using ray theol¥ig. 3). We have now
=2y /)1‘10(2_(}“8)' In this case the first vector in the sum g, anjisotropic layeré andB between two semispacesn-
Vi =aj @ rotates in hb Cgmflix plane at a lower rate qonjc semispace for the output and isotropic semispace
than the second vectdr,=aj «€“". The summation of j for the inpuy. We assume that the crystals of the two ma-
the two vectors will rotate around the center of the coordivejais A andB are rotated with respect to each other. In this

nate axis anq its phase will be approxi_mately the pha;e of th€ase the first ray at the input of layBris found by summing
total output field. Theanomalous phass due to the differ- 5 nfinite number of rays transmitted from multilayAr

ence of velocity between the two vector§ and Vy, and  jging the same notation as in E®), we can write the
from the difference in the length of the vectors. In fact if the expression for the first transmitted ray at the output
faster vector were longer than the slower vector, the anoMasemispace

lous phase could not occur for any velocity of rotation of the

fast vector. To consider only the two vectdvs and V, is

only a first approximation, but it is good enough to satisfac- -1 i -

torily explain the generation of the anomalous phase. All Eo= apoApaad | = AaBaidaBanl " AactiaEi, (7
other contributions rotate in the complex plane with frequen-

cies that are multiples of the frequency of rotation of the two

main vectors represented in Fig. 2; their amplitudes becomehere | is the unitary matrix I{%Cﬂ. We define a matrix M as

This is the exact expression of the transmitted field due t
the first traversal ray when the input consists of a plane wave,
with linear polarization along the direction, as represented
in Fig. 1. This of course is not the total transmitted field, but
only the first traversal of the slab; it is then necessary tq,
superpose an infinite number of contributions from succes
sive multiple reflections of the waves with the proper phas
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M = a | = AuBaid aBanl *Acia. (8)  spectral region the output beam will be advanced in time

. ) o . rather than being delayed or shifted in a direction opposite to
The matrix M is the transmission matrix for a Fabry-Peroty,a¢ expected from Snell’s law with positive refractive index.
formed by the semispacefrom which the incident wave  Thjs syperluminal-like phenomenon does not contradict the
arrives, the central layeh and the materiaB that is at the  hinciple of causality because there is a concomitant energy
output of the wave. The elements of the matrix M have gqgg in the forward direction yielding small transmission val-
functional dependence on the wavelength; all the considerjeg | short, the larger the slope of the anomalous phase is,

ations about the anomalous phase that apply to the singlgen the larger the time advance of a pulse or the spatial shift
slab system in Fig. 1 are also valid for the elements of thig the transverse profile will besee Appendix B

matrix. Equation(7) can be written in a more compact way

as

= = I1l. EXAMPLES
Es = anApME;, 9)

and expanding Eq9) and considering that the field in input we report in this section some examples that better clarify
is polarized along the axis, we obtain the analytical result; dls_cussed previously. We study a sys-
tem as represented in Fig. 1. All the results have been com-
= (M aiiekod + M o260 ]E, pared with result obtained using the matrix metfhband
' 21 ikd 22 ik d . (10 found them to be consistent with ours. The input wave enters
Eoy [l\/lllaboe bx® + M21aboe by ]EI . . . . . .
normally with linear polarization along the axis. The di-
The similarities between Eq10) and Eq.(6) are appar- electric index of the isotropic material in inputdés=1 while
ent. The vectors in the complex plane can have an anomaloudlBe material that constitutes the central layer has dielectric
phase that sum to the phase of the corresponding exponeimdices &,,=1.8, g,,=3.7, £,=2.0, and the output aniso-
tials in Eq.(10). This shows that a multilayer structure usu- tropic material has the dielectric tensor with eigenvalues
ally does not change the phenomenon of the generation af,x=3.0,5,,=1.7,8,,=2.0. The crystal of the central layer is
the anomalous phase. Instead, it seems to propagate the eftated by 40° around the axis, while the crystal of the
fect along through the interference phenomena inside eadmaterial at the output has the principal axis directed along
layer. Moreover, a change of value of the rotation anglethe directions of the Cartesian axis of the input material. In
among the optical axis of the crystal or the refractive indexthe graphs of Fig. 4 the phase of the output wave polarized
values can cause a wavelength shift of the anomalous phaséong thex direction (from the channele,,) is analyzed.
region. In the Appendix A we give the conditions that the Figure 4a) refers to the first ray at the output as reported in
parameters of a multilayer structure have to fulfil in order toEg. (6). In the graph of the phase a small anomalous behav-
obtain anomalous phase. ior in the phase is evident in the range of wavelengths be-
The anomalous phase displays interesting temporal antveen 3.5 and 4um. Figure 4b) represents the phase of the
spatial characteristics, because if we speak in terms of th@ave obtained as a sum of the first and the second output ray,
(spatial and temporaFourier transform of the field and re- which suggests that the anomalous phase amplifies; this
member that a transmission coefficient with a linear phaseneans that the contribution of the second ray is strong
negative slope, and constant amplitude gives a delay in timenough to modify the phase. In Fig(ch the phase for the
and a spatial shift in space, then we can immediately conwave obtained as a sum of the first three output rays is
clude that for a field tuned within the anomalous phase’'sshown. The figure is similar to Fig.(d); already the contri-
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@) @ b) @,
1.5»-——\; ‘ 1.5 T FIG. 4. The phase of the wave
. 3 i j 1 ! in output from channet, for two
os | anisotropic layers witm,=1, g
) { L~ =1.8,81y=3.7,8.,=2.0,80,=3.0,
o 5 3\] 2 1\5 soy::!..7, aoz:Z.Q. The crystal of
_0.5 I NS the first layer is rotated by 40°
AL [ | ‘ ANL L L around thez axis while the crystal
L. x : | 5 } | | ‘ of the material in output has the

principal axis directed along the
directions of the Cartesian axis.
(a) gives the phase of the first ray
in output.(b) represents the phase
of the wave obtained as a sum of
! the first and the second traversal
USRS TSRS || SSRS. W s ING A N - rays at output(c) is represents the
| Van phase for the wave obtained as a
3\] N sum of the first three rays at the
S | output.(d) represents the phase of
B the output field with all the rays
included for the structure.

Mpum)

Apm) N ' Aum)

bution of the third ray is so small that its influence on theis 30° with respect to the axis. The index axis of the first
final sum can be neglected. The last figure, Figl)4repre-  crystal is aligned to the reference frarfiey,z), while the
sents the phase of the whole output field from the structuresecond crystal is rotated with respect to the first one by 30°
polarized along the axis, and is substantially similar to Fig. around thez axis. If we analyze the phase of the wave at the
4(c). The matrix method applied to this example confirms theoutput in the channek,, we obtain the graph of Fig. 6,
behavior shown in Fig. @). which shows an anomalous phase in the range of the wave-
We now consider a periodic stack with ten peri¢Big. 5) lengths from 0.520 to 0.522m. The 30° value for optical
formed with a unit cell composed of two birefringent layers axis’s rotation is the value which maximize the anomalous
with dielectric constantse,,=3, £1y=6, £1,=4 ande,,=7,  phase for this specific example.
e2y=5, £5,=4, respectively. The thicknesses of the two layers  In what follows we present results obtained with the “ray”
are both 0.5um. The input beam has a cylindrical Gaussianmethod and verified with the matrix methdmore details
section(in thexy plane, the axis of the cylinder is theaxis.  of the numerical calculation in space and time are presented
The beam propagates in a transversal way irxityglane, the in this section are discussed in Appendix B.
polarization is linear, normal to the beam and to yhaxis. To study the effects of the anomalous phase on the trans-
The input and output media are vacuum. The incidence anglgerse structure of the input wave we fixed the wavelength of
. the beam at=0.5207um, thus inside the anomalous re-
L gion. The input beam is a Gaussian beam with a finite spread

y z 0.0

ool ]\ ul \
C N INA \
@ N A\ \

FIG. 5. Simple system that uses an anisotropic multilayer to \
create an anomalous phase in the output field. The periodic structur 0.0 \ \ \

/
P
g

has ten periods, formed by two birifrangent layers with dielectric \
constantse, =3, e1y=6, 81,=4, £5=7, £5y=5, &2,=4, the thick- 0.01 \ \ \
ness of the two layers are both QuBn, the wave in input is a beam

with cylindrical section(on thexy plane Gaussian, the axis of the 0.0
cylinder is they axis. The beam propagates in a transversal way on 0.5 051 051 051 051 05 052 052 052 052 0.5
thexz plane; the polarization will be linear, normal to the beam and AMpm)

to they axis. The input and output medium is vacuum. The incident

angle is 30° with respect to theaxis. While the second crystal is FIG. 6. (Color) The phase of the output wave in chanag], for
rotated with respect to the first one by 30° around Zlzis. the system of Fig. 5.
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FIG. 7. (Color) Field behavior in channel,, along thex axis for the case of Fig. 5 with a wavelengtk0.5207 um. (a) input Gaussian
beam,(b) output Gaussian bear(;) transmission spectrum of the multilayéd) intensity of incident, reflected, and transmitted beam: the
output transmitted beam has been normalized to the transmission value in order to be visualized.

in the transverse wave vector k, that represents all the plarend the output pulse is described by negative times. We con-
waves with the same wavelengtix 0.5207um. If the input  sider a periodic structure witlthree periods, everyone
Gaussian beam is sufficiently wide in space, the beam doé&srmed by two layers with the following dielectric constants:
not diffract and the spatial spectrum will be narrow enoughe,,=2, £,,=4, &;,=1, and £,,=3, &,=6, £,,=1, respec-

to lie well within the range of the anomalous phase. As dis+ively, the semispaces in input and output are the vacuum,
cussed in Appendix B, the output beam polarized in the planghile the second crystal is rotated of 45° with respect to the
xz undergoes an anomalous shift associated to the temporgyst one around the axis, as represented in Fig. 3, where
shift of the wave front. In Fig. (&) the input field distribution  only two layers are shown. The thickness is rh for the

on thex axis is shown, and Fig.(B) shows the shifted output first layer and 0.17.m for the second layer, the total thick-
field whose center has moved in the direction of the negativ@ess(0.81 um) is much shorter than the width of the input

X, The output fiel_d amplitude is much _smaller than the inputg5ssian wave packet, given by

field; Fig. 7c) which shows the transmission of the structure.

In Fig. 7(d) we show the intensity plot for incident, reflected, G(x,z,H) = e‘X2/<2¢f§>e-(Z - ct)Z/(Z«ri), (11)

and transmitted polarized beam: the output transmitted beam

is normalized to the transmission value for better visualizareferring to the axes shown in Fig. 3. The origin of the axes

tion. is fixed at the entrance of the structe=0), and the beam
Now we analyze another example where we have an armoves along the axis. We fix the constants in E¢ll) as

isotropic multilayer structure with an anomalous phase in ther, =10 um, ¢,=8.9437um, and study the output wave at

spectrum and we show that an input pulse peak exits ththe timet=0. The calculation has been performed in the

structure before the entire wave has entered in the structuréllowing way (details are presented in Appendix: Brst we

This case is often called superluminal or photon tunnelingcalculate at the=0 plane, the Fourier transform of the input
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pulse in the space and time domains; then we calculate th

product of the transformed pulse with the transmisgias
function of frequency and wave vecton;kwe apply the

“propagator” in space; after that we calculate again the Fou-

rier transform in space and time in the plarez, (where
Z,=d); and finally we get the field iz=z, and at the time
t=0. In Fig. §a) the output phase along tlxg-axis (axisx of
the layer twg when in input we have a wave with linear
polarization along they; axis (axis y of the layer ong is

shown. The dispersion plot in figure displays an anomalous

phase band between the wavelengis0.52 um and A\

=0.54 um. The central frequency of the Gaussian wave is
A=0.53 um and the entire range of principal frequencies of
the Gaussian pulse is around the anomalous phase. The nc

malized to the transmission value output wawveorder to be
visualized, together with the input pulsét is visualized
only the input and no the reflected pulsand the space filled
by the multilayer are shown in Fig.(l8, where one can

discern that the wave appears at the output before it enter
the input. This, however, comes at a cost of a very low trans-
mission energy. Note that we have normalized to unity the
output wave because its amplitude is so low that one wouldx(um) 0
not be able to see it on the same scale as the input field. W

PHYSICAL REVIEW B 70, 165107(2004)

(@

observe that no spatial distortion of the polarized beam oc- 5
curs. In Fig. 8c) we graph the amplitude of the transmission
spectrum that put into evidence that in the range of the 10
anomalous phase we need to have a low transmission ti
maintain the causality principle. 15 R
-20 -10 0 10 20

IV. CONCLUSIONS

We have shown that it is possible to construct an aniso-
tropic, one-dimensional, multilayer geometry for which, in a
given range of wavelengths and polarization, the phase of the 04
transmitted field has a positive slope as a function of wave-
length. This behavior is explained by adopting the simple ray
method. Several specific examples are discussed for dielec 03
tric values not attributable to any specific material, however, Tox 0.25
realistic enough to demonstrate that birefringent layers intro-

. 0.2
duce an anomalous phase that leads to anomalous shifts «
the center of gravity of the beam, but with considerable re- G
duction of the transmission coefficient. The anomalous phas¢ 0.1

results are obtained without the need to invoke contradictory 0.05
refraction rules. A polarized beam propagating under condi-
tions of anomalous phase travels through the structure with
out distortion provided its bandwidth lies within the anoma-

(b)
0.5
0.45

0.35

075

()

lous dispersion region. Our numerical simulations confirm

the results. Finally we note that the effect is already present
0

in structures composed of only one layer over on an anis
tropic semispace.

APPENDIX A

FIG. 8. (Color) Gaussian input wave in a multilayer structure.
(a) Phase of the outputb) Contour plot(amplitudg of the input

and output wave in the propagatigre plane within the middle the
space for the multilayer, the output has been normalized to the
transmission, it has been plotted only the input pulse and not the
reflected one(c) Transmission spectrum.

In this appendix we demonstrate the conditions under
which the anomalous phase in one polarization is found in
the output. We use as an example a structure built with twalear that only at the interface between the two layers we can
anisotropic layers with vacuum on the both sides, as repredave the mix of energy between the two permitted channels
sented in Fig. 3. We begin considering only the first ray thabf the two anisotropic layers and so obtain anomalous phase

traverses through the structugieig. 3); from the figure it is

in the output wave.
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If we study the output field behavior of the first ray that the interface with normal incidence, so that the channels per-
traverses the medium and the conditions under which thisitted by the anisotropic materials are those of the principal
gives an anomalous phase, then we can extend these consitkis e, ande;, (i=a,b). We can write the expression for the
erations to the total wave that includes a superposition ofirst ray in output as
multiple rays at the output. Once we find the anomalous
phase in the first-traversal ray, usually we have the same E —u Aparad (cos(%)) (A1)
behavior in the total output field, because the other rays un- 01~ ThoTbTabTaTa sin(¢yp) /-

dergo reflections and have smaller amplitudes. So the first = | o ]
ray contributes the largest portion of energy of the total out-This is a vector because we have two polarizations in output
put wave. for the two channels of the second layer. We can expand

Figure 3 depicts how the two layers are oriented. Weformula (A1) and obtain the analytical expression for the
maintain the same direction for the principal axs (i field along thex, axis that we choose with the same direction
=a,b) and rotate only around theaxis. The two rotations ©f theX, axis. So we obtain
have the anglegh, and ¢y, for layer A and B, respectively. E,, = €A\ (A2 mdanadh 1 Bl2imdaa)N) - (A2)
The plane wave in input is linear polarized with a rotation of
the electric field round the axis with valuedy, it arrives at ~ with the coefficientsA andB written as

A= 8CO$ Pa~ ¢b]Coi ¢p] naxnbx(nay + nby)
(1 + nax)(l + nbx){Sir{QSa_ (ﬁb]znaynby + nbx(coi‘ﬁa_ ¢b]2nay+ nby) + nax(nay+ Sir[¢a_ ¢b]2nbx + Coi(ﬁa_ ¢b]2nby)}

B= —8 Sif¢a- ¢b:|8ir{¢p]naynbx(nax+ nby)
(1 + nay)(l + nbx){Sir{¢a_ (ﬁb]znaynby + nbx(coi‘ﬁa_ ¢b]2nay+ nby) + nax(nay+ Sir[¢a_ ¢b]2nbx + Coi(ﬁa_ ¢b]2nby)}

(A3)
[
Eqg. (Al) can be written as
o AD ASin{%] +BSin[§]
E,. = A + B8N, (Ad) f= 5T (A7)
o
where« and 8 are given by ACO{XJ ¥ BCOS{XJ
and
o= 2{%)@; dy)
b _
: (A5) g Aa+BB+ABat B)Co{%g}
d.Nay + dyh —=- (A8)
=2 M) d.+dy). 2
A W( dg+ dy (0a+ db) o )\Z(ACO % +BCo f )

If we want to find the anomalous phase in the output f'eldlmposing the conditiordf/d\=0 we have the solutions
due to the first-traversal ray, we need to calculate the phase

of Eq. (A4). If an anomalous region exists for the phase, the (a=Pp)
function must have a maximum and minimum, so we have to A= ~Na-B nez.  (A9)
search for these points. Arcco{—J +2n7r
To find the stationary points in the phase function we can AB(a +p)
observe that for the arctangent function we may write To have solutions in the real space it is necessary that the
argument inside the arc cosine is smaller than +1 and bigger
d, 1 df than -1
—tg () = ——— . (AB) an —L1.
d\ 1+f(x)d\
- A’a-B’B
The stationary points for the arctangent are the same of those -1< m <1. (A10)

of the function that is in the argument. To calculate the sta-

tionary points of the phase of EGA4) we can calculate the This condition set all parameters whose values contribute to
function f=[Im(f)]/Re(f) of Eq. (A4) and apply Eq(A6).  the definition of “anomalous phase region.” We can expand
So we have the expression of the arccosine’s argument to obtain
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“Na-Bp_ (16C0$ s~ $,]COS b ]CSA2( s~ by PCE26h,12Sin hg ~ hp1Sin b))
AB(a+ B)
X{dLCod ¢~ ¢p]°Cod I3, + Cog s~ bp]*Cog P3G,
+2C0$ o~ Pp]2Cog y]2N3Nay Ny (1 + 1)
+ Cog o= d]?COL oI55 [1 + Ny (4 + 1]
+n3,Sin by — BpI2Sin 1N, + SiMlpa = ]Sl o125, +{1 + Co$2(ha~ ) ICOF 2, I3, (1 + 1)
+ 2Sir] o = b 2SI o) Ny (1 +Ny) + SN b = 2SI g PnZ(1 + Ny (4 + )}
+ Ao SInl s = 12 Sinl o Pn,n3, + Sirl s — oS 25, + 2Sir b = o ?Sin b Pn3n3(1 + 1)
+2Sir ¢~ ]S NGy Ny (1 + )
+15,(Cod b~ $J’Cog N3 + Cog o~ p1°Cog o) n,
+2C0$ by — Pp]2Cog 23 (1 +Npy) + 2C0§ by~ Bp]2COF b 2Ny Ny (1 + ) + 5{1 + CO$2( by
~ ) ]Cog 2, I3 [1 + 1y (4 + 1) 1))}

/nax(l + nax)nay(l + nay)[da(nax+ nay) + 2dbnbx](nax+ nby)(nay+ nby)- (All)

Equation(A11) is not simple but it gives the analytical ex- V(K Ky, 2= d, @) = T(Ke, Ky, 0) V(K Ky, 2= 0,0),  (B2)
pression and the conditions to generate anomalous phase in
the system, as a function of the physical parameters of the

geometry, such as refraction indexes, polarization of the inwhere the complex functiofi(k,,ky, ) contains all the in-

put plane wave, thickness of the two layers, and the relativéormation on the geometry of the structure. Then the output
rotation of the two crystals of the corresponding layers,field is obtained performing the inverse Fourier transform in
therefore a suitably selection of the above mentioned paranihe space-time dor_naln. o _ _ _

eters allows the geometry to manifest “anomalous phase” for Now let us consider a paraxial input field; if the transmis-

the transmission function. sion T(ky,ky, w) for a first approximation and for a _specific
range of frequencies can be written®(&,,k,, ) =[T|€'?, |T|
APPENDIX B being constant, one may expand the phase in a Taylor series

The numerical calculations presented as examples hawound specific values ab and k:T(ky,ky, ) =|T|e/¢o*o%),
been performed adopting the following method. Let us conRetaining only the first term of the phase expansion, we have
sider a medium of extensiah along thez axis(as in Fig. 1

and in Fig. 3, with an input surface ar=0, and output Vik k.z= “V(k. k.z= Tk k
surface atz=d, and an input polarized field whose scalar (kaky,z=d,) =Vlkoky2 O’L_O) (kky, )
amplitude isV(x,y,z=0,t) traveling along thez axis. The = V(Kky,ky,z=0,0)Toe™*?, (B3)

field on the output surface will b¥(x,y,d,t). For a linear
medium we can apply the Fourier analysisza0 andz=d, 4 being the slope of the phase in the spectral region of in-

respectively, so that terest andl,=|T|€*0). With this hypothesis, the output field
© o o in the time domain will be
V(kx,ky,z:O,w):fffv(x,y,z
) T - - — Hawq—iot
— O,t)e'(wt_kxx_kyy)dw dx dy, (Bla) V(k)(l ky,Z d,t) f V(kxyky,z O,w)Toe e ' “'dw
and -
. =ToV(kyky,z=0,t - ). (B4)
V(kyky,z=d,0) :f f fV(x,y,z So the output field is simply related to the field in input, but
T T Too shifted in time(i.e., advanced or delaygdepending on the

= d, )& @KV dg, dx dy. (B1b) slope of the ph_as_e and With 'the amplitude spaled by the value

' ' of the transmission coefficienty,. By applying again the
The transfer matrix method set the link between output andFourier transform on the transverkecomponents, we have
input field finally the expression of the output field given by
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% V(x, y.Z= —VI(xl,t = 0) PBG
Vixyz=d) = f f ToV(kky,z= 0.t - @) 9V dk,dk,

—o0 —00

=TV(X,y,z=0,t - ). (B5)

The output field az=d is equal, with a scale factd, to the e
input field in z=0, only if =0, otherwise on the output y A z
surface we will have the same input field suitably shifted in R
time: delayed ifa>0, or advanced ix<<0. Then when an g g
anomalous phase occurs we obtain an output wave that i ) z=d —
simply a copy of the input field, with a superluminal time / V(x,y,z=d,t =0)
shift depending on the phase slope and with the amplitude
scaled by the transmission coefficient value. V(x,y,z=0,t=0)
We present now a simple picture enabling us to compute
the lateral shift of the beam. For the sake of clarity we will @
treat only a two-dimensional problem and neglect yhee-
pendence. In order to compute the lateral shift, we need tc
compare the beam finite profile of both the output transmit-
ted beam and the incident beam wave in the plaizeat z

=d andz=0 att=0 [Fig. 9@)]. Let us consider an input beam N

2 . "

of Gaussian shap¥,(x,z,t)=e 29%g(@k2 impinging on >
the input surface in thg-z plane with a certain angle /N \

v

mispace i .
Semisp Semispace o

z

System s
V(X' 7' t) - e—[(— 7' sing +x’ cos @)Z]IZoiei(wot—z’k cos e-x'k sin ¢)
_ z=7 cosg+Xx' sing z=0 z=d
being L, ,
Xx=-27'sing+x' cose I T
If we namez’ asz andx’ asx we have ’ V(x,y,z=-V]ol], t=0) l | V(x,y,z=0,t=0) ]
V(x,2,t) = gl(-zsing+xcos ¢)2]/2(r§ei(wt—zk cos g—xk sin ¢) b
(B5a) FIG. 9. (a) Graphical representation of the later spatial shift in

) ) o the x-z plane in the case of anomalous pha&g.Graphical repre-
assur‘glr;gkxzksmgo and k,=k cose and redefining a new sentation of the refraction of an extended and focalized for an
o?=05K?, we can represents E(B5a) as anomalous phase of the transmission of the geormetned sys-

; tem s), equivalent to the one expected for a “negative refractive
V(x,2,1) = Gkx - kxz)el(m_kxx_kZZ)’ (B6) index’)’ mgterial. P ’

where G is the Gaussian function G(kx-ka) We can conclude that, due to the temporal translation in-
=e("zkrxo)*l/20" By adopting the same calculation presentedtroduced by the medium dispersion, we have an equivalent

before, we have the input beamzt0 andt=0 as spatial translation of the beam along thaxis whose ampli-
ikx tude depends od and ong, i.e., towards the top or bottom
V(x,2=0,t=0) = G(kx)e™". (B7)  of the axis depending on the sign @f toward the top of the

Under the same hypothesis presented before, i.e., with %ams for >0, and towards the botiom far<0 (anoma-

hase of the transmission represented in terms of a seriga> phase region as plotted in Fig. Shis spatial transla-
P ) ; P §dn does not contradict Snell’'s lagthe plane wave never
expansion around and with a linear slope, after some alge-

e ) . - undergoes a negative refraction in order to be on the same
bra, at timet=0 we have the field at the=d interface given  qjge of the normal at the interface as the incident beamd

by the usual refraction laws, only introduce an “apparent” nega-
e — _ — A — tive refraction associated to the temporal and spatial transla-
Vz=dt=0)= _TOV(X’Z_ vat=0)= TOG(kZ)f . tion of the beanisee Fig. 9 where we consider a PBho-
- ke a)e etk = T G(k,x — ko a)e e ke tonic band gap or multilaygrmedium whose refraction is

(B8) anomalous, according to the properties of the phase of the
transmission as discussed before; the dotted arrows simulate
wherev is the phase velocity, we have that E§8) is the  the ray trajectory in “negative refractive index medium,” this
same as EqB7) with a spatial shifk,va/k, along thex axis s just a graphical representation of the Figd)7 where the
of the Gaussian field envelope. This is the amount of spatialeflected field has been omitfed
shift of the beam along axis produced by the linear phase  The consequence can be summarized in Fip): or a
dispersion of the geometry. system with anomalous phase in the paraxial limit, if we
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consider a focused beam along thaxis (F is the focug, the  of the surfacez=d; the focal pointF’ is produced in the
front phase surface @0 and atz=—|alv will be found at same way as in the case of a “negative refractive index”
z=d and att=0, with an amplitude modified by the PBG medium. The plot is just a graphical representation and not a
transmission, all waves on the right side of the front phaseesult of a numerical simulation therefore any reflected field
surfacet=0 and atz=-|ajv, will be found on the right side has been omitted.

*FAX: +39 06 442 40 183. Electronic address: 1°J. B. Pendry, Phys. Rev. Let85, 3966(2000).

concita.sibilia@uniromal.it 1R, A. Shelby, D. R. Smith, and S. Schultz, Scien2e2, 77

1M. Gerken and D. A. B. Miller, Appl. Opt42, 1330(2003. (2001).

2H. Kosaka, T. Kawashima, A Tomita, M. Notomi, T. Tamamura, 12 Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Opt.
T. Sato, and S. Kawakami, Phys. Rev.38, R10096(1998. Express11, 746(2003.

3E. Yablonovitch, Phys. Rev. Let68, 2059(1987).

4S. John, Phys. Rev. Let68, 2486(1987.

5J. D. Joannopoulos, R. D. Meade, and J. N. WiRngtonic Crys-
tals: Molding the Flow of Light(Princeton University Press,

133, Foteinopoulou, E. N. Economou, and C. M. Soukoulis, Phys.
Reuv. Lett. 90, 107402(2003.
14y, Zhang, B. Fluegel, and A. Mascarenhas, Phys. Rev. 1St

Princeton, NJ, 1995 15 157404(2093' . o ’
M. Notomi, Phys. Rev. B62, 10 696(2000. A. Mandatori, C. Sibilia, M. Centini, G. D’Aguanno, M. Berto-
7C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, lotti, M. Scalora, M. Bloemer, and C. M. Bowden, J. Opt. Soc.
Phys. Rev. B65, 201104(2002). Am. B 20, 504(2003.
8C. Luo, S. G. Johnson, and J. D. Joannopoulos, Appl. Phys. Letf:’M. Born and E. Wolf,Principles of OpticgPergamon Press, Ox-
81, 2352(2002. ford, 1965.
9V. G. Veselago, Usp. Fiz. NauR2, 517 (1968 [Sov. Phys. Usp. ’P. Yeh and A. Yariv,Optical Waves in Layered Medigwiley,
10, 509 (1968)]. New York, 1988.

165107-11



