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The Anderson model of a twofold spin degenerate impurity level in the limit of infinite Coulomb repulsion,
U→`, coupled to one and two degenerate conduction bands or channels, is considered in pseudo-particle
representation. We extend the conserving T-matrix approximation(CTMA), a general diagrammatic approxi-
mation scheme based on a fully renormalized computation of two-particle vertex functions in the spin and in
the charge channel, to the calculation of thermodynamic and spectral properties. In the single-channel case, the
CTMA yields in the Kondo regime a temperature independent Pauli spin susceptibility for temperatures below
the Kondo temperatureTK and down to the lowest temperatures considered, reproducing the exact spin screen-
ing in the Fermi liquid state. The impurity spectral density appears to remain non-singular down to the lowest
temperatures, in agreement with Fermi liquid behavior. However, the unitarity sum rule, which is crucial for an
impurity solver like the CTMA to be applicable within dynamical mean field theories for strongly correlated
lattice models, is overestimated at the lowest temperatures. We argue that this shortcoming may be due to
numerical imprecision and discuss an appropriate scheme for its correction. In the two-channel case, the
spectral density calculated within CTMA exhibits qualitatively the correct non-Fermi liquid behavior at low
temperatures, i.e., a power law singularity.
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I. INTRODUCTION

Over the past two decades the problem of correlated elec-
trons on a lattice has emerged as a central theme of con-
densed matter theory. With the exception of one-dimensional
systems, there are no systematic analytical methods available
for solving models like the Hubbard model. A powerful ap-
proximation scheme is the dynamical mean field theory
(DMFT), in which the lattice problem is mapped onto an
effective single impurity Anderson model(SIAM), with self-
consistently determined properties of the conduction
electrons.1,2 It is a nontrivial task to solve these SIAMs. The
properties of real Kondo or mixed valence impurities in met-
als are of interest in their own right, with recent emphasis on
non-Fermi liquid behavior in multi-channel models.3–6 Vari-
ous methods have been successfully applied to solve these
models in certain parameter regimes. The Bethe ansatz(BA)
method allows one to calculate the thermodynamic proper-
ties of models with a flat conduction electron density of
states.7,8 Bosonization methods have been used to obtain, for
example, the finite-size spectrum of one- and two-channel
impurities.9 Conformal field theory is a powerful tool to ana-
lyze the low energy excitations of multi-channel models.10–12

The method of continuous unitary transformations13 has been
successfully applied to the Kondo model in the vicinity of
the Toulouse point.14 These analytical methods are comple-
mented by numerical methods like quantum Monte Carlo
(QMC) simulations(for not too low temperatures and mod-

erate U)15–17 and Wilson’s numerical renormalization group
(NRG) which has been very successful for not too large de-
generacies in the spin or charge channel.18–20

The difficulty with quantum systems of the Anderson im-
purity type is the strong on-site Hubbard repulsion, which
effectively constrains the quantum dynamics to a Hilbert
space with fixed impurity occupation number and makes
these problems inaccessible by straightforward perturbation
theory. It is, in particular, difficult to describe the weak cou-
pling (fluctuating local moment) behavior at high energies
and the strong coupling fixed point behavior, realized below
a strong coupling energy scale, typically the Kondo tempera-
ture TK, by a single technique. In view of possible applica-
tions as an “impurity solver” within DMFT methods or to
quantum impurity and quantum dot systems with a complex
local spectrum, an accurate method which does not rely on
integrability conditions or on the simplicity of the local or
conduction electron spectrum is highly desirable.

For that purpose we had proposed earlier a general dia-
grammatic approximation scheme.21 The starting point is a
pseudoparticle representation of the impurity level, where
the constrained dynamics are built into the very definition of
the quantum fields,22 and approximations conserving its in-
ternal symmetry are defined by means of Luttinger–Ward
functionals. The conserving approximation which incorpo-
rates the dominant, local spin and charge fluctuations on the
level of a fully renormalized calculation of the total two-
particle vertex(or T-matrix) has been termed the conserving
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T-matrix approximation(CTMA). In contrast to previous ap-
proximations like the non-crossing approximation
(NCA)23–25 and its extensions,26 the CTMA describes the
weak as well as the strong coupling behavior of the single-
channel SIAM correctly on the level of the pseudoparticle
propagators.21,27 However, physically observable spectral
properties had not yet been calculated because of their com-
putational complexity.

In this article we present CTMA results for the thermody-
namic and spectral properties of the SUsNd3SUsMd Ander-
son impurity model,N being the local spin degeneracy and
M the number of identical, conserved conduction channels.
We will focus on the single-channel Fermi liquid case(N
=2, M =1), although results for the two-channel non-Fermi
liquid sector of the model(N=2, M =2) will also be shown.
The spin susceptibility as well as the frequency dependence
of the impurity electron self-energy indicate that the spin-
screened Fermi liquid ground state of theN=2, M =1 SIAM
is indeed captured by CTMA. However, the unitarity sum
rule of the spectral density, which is vital for DMFT appli-
cations, is overestimated. A detailed inspection of the impu-
rity electron self-energy shows that this failure seems to
originate from an imprecise treatment of high-energy pro-
cesses, either due to numerical inaccuracy or due to CTMA
neglecting non-singular potential scattering terms, and that
such imprecision influences the low-energy behavior via the
Kramers-Kronig relation. Based on this analysis we propose
below a phenomenological correction scheme which imposes
the causality of the impurity self-energy, and which may thus
make the CTMA applicable as an impurity solver for DMFT
calculations. This approach amounts to adding an appropriate
potential scattering term to the real part of the impurity self-
energy, taken to be a temperature independent constant. We
will term this scheme the “effective potential scattering
method.”

The paper is organized as follows. We describe the con-
serving pseudoparticle technique in Sec. II, including several
physical and technical justifications of the CTMA. The de-
tailed CTMA self-consistent equations are given in the Ap-
pendix. The CTMA results for the temperature dependent,
static spin susceptibility and for the impurity spectrum are
presented in Secs. III and IV, respectively. Our effective po-
tential scattering correction scheme is discussed in detail at
the end of Sec. IV. In Sec. V, we compare the CTMA and
NCA result for the spectral density of the two-channel
SIAM, where the ground state is not a Fermi liquid. We
conclude with a discussion of the results in Sec. VI.

II. MODEL AND CONSERVING T-MATRIX
APPROXIMATION

We consider the SUsNd3SUsMd SIAM in the limit of
infinite Coulomb repulsion, implying that theN-fold degen-
erate impurity level(called d-level here), labeled by spins
=−N/2 , . . . , +N/2, is at most singly occupied. The empty
impurity state isM-fold degenerate, labeled bym̄=1, . . . ,M,
and is coupled to a corresponding degenerate degree of free-
dom in the conduction band, e.g.,z component of angular
momentum. In the pseudoparticle representation, the singly

occupied(empty) level is created by fermionic(bosonic) op-
erators fs

†sbm
†d, which satisfy the constraintQ=os fs

† fs

+om bm
†bm=1. The physical(or d) electron creation operator

on the impurity site isds
† =om̄ fs

†bm̄. The SUsNd3SUsMd
Anderson impurity Hamiltonian is then defined by

H = o
ksm

ekcksm
† cksm + o

s

ed,sfs
† fs

+ Vo
sm

sc0sm
† bm̄

† fs + H.c.d + lQ. s1d

Here,c0sm
† =ok cksm

† creates a conduction electron at the im-
purity siteR=0 anded,s=ed+sgmBB is the impurity level in
a magnetic fieldB, with mB andg=2 the Bohr magneton and
the Landé factor, respectively. The operatorbm̄ transforms
according to the conjugate representation of SUsMd. We de-
note the density of states(DOS) of the conduction electrons
at the Fermi energyeF by Ns0d and assume it to be structure-
less. (All numerical results were obtained for a Gaussian
DOS. Note, however, that our method works for arbitrarily
structured DOS.) Instead of the hybridizationV, we will fre-
quently useG=pNs0dV2 as a parameter of the model. In the
Kondo regime,G!ed where the low energy excitations re-
semble those of the Kondo model, the above Hamiltonian
has a dynamically generated strong coupling scale, the
Kondo temperatureTK, where perturbation theory breaks
down,

TK = DSNG

pD
DsM/Nd

expS−
puedu
NG

D , s2d

where 2D is the bandwidth of the conduction electron DOS.
The Hamiltonian(1) possesses a U(1) gauge symmetry with
respect to simultaneous transformations offs andbm̄ related
to the conserved chargeQ, l being the local gauge field. The
exact projection of the dynamics onto the Hilbert subspace
Q=1 is accomplished by taking a gauge with a time inde-
pendentl, re-defining the zero of the energy scale asv
→v+l, and lettingl→` in all expressions; see Ref. 28 and
the appendix of Ref. 20 for details of the projection tech-
nique. The charge conservation in conjunction with the con-
straint Q=1 implies an orthogonality catastrophe between
the Q=1 initial and theQ=0 final states, and leads to infra-
red threshold power-law behavior of the pseudoparticle
Green’s functionsGf,bsvd~v−af,b. In the Fermi liquid case,
M øN−1, the exponentsa f,b are closely related to the aver-
age impurity occupation numbernd via the Friedel sum
rule,29–31

a f = s2nd
2 − nd

2d/N, ab = 1 −nd
2/N. s3d

Approximation schemes for calculatingGf,b which violate
the gauge symmetry would, hence, violate the orthogonality
of initial and final states, and should be expected to give
incorrect results for physical quantities, even though certain
aspects of the Fermi liquid fixed point can be described by
symmetry-breaking approximations.32–38 Therefore, we take
great care to preserve the gauge symmetry. It can be recon-
ciled with the time independent choice of the gauge fieldl
necessary for theQ=1 projection by employing a conserving
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approximation, derived from a Luttinger-Ward generating
functional F.39,40 The local self-energiesSa, a= f ,b,c, de-
fined by

Gfs
−1svd = v − eds − l − S fsvd, s4d

Gb
−1svd = v − l − Sbsvd, s5d

Gcs
−1svd = Gc0s

−1 svd − Scssvd, s6d

whereGc0s
−1 svd=oksv−ekd−1, are generated by functional dif-

ferentiation ofF with respect to theself-consistentlyrenor-
malized Green‘s functionsSasvd=dF /dGasvd. As a result,
for any given approximation toF a set of self-consistent
nonlinear integral equations forS f and Sb is obtained,
which, in general, cannot be solved analytically but is ame-
nable to numerical solution. The central task is then to find
the correct generating functional which captures the essential
physics of the problem at hand.

Non-crossing approximation(NCA). The NCA is often
used for its computational simplicity to obtain a rough de-
scription, and it even captures the universal behavior inher-
ent to Kondo-type problems.41 However, the NCA recovers
the correct Kondo scaleTK only because of a fortunate com-
pensation of the neglect of spin-flipping logarithmic terms
and an incorrect logarithmic resummation of potential scat-
tering terms.42,43 Below TK it develops spurious infrared sin-
gularities in physical quantities. The NCA breaks down in a
magnetic fieldB even in the weak coupling regime( T.TK
and/orB.TK), producing, in addition to the two Zeeman-
split Kondo peaks a third, field independent resonance in the
impurity spectral density at the Fermi energy. It seems that
this spurious behavior originates from the incorrect treatment
of the potential scattering in NCA mentioned above. On the
level of auxiliary particles, the NCA does not give the correct
FL threshold exponents[(3)]; but insteada f

NCA=M / sN+Md,
ab

NCA=N/ sN+Md. It can be shown by power counting argu-
ments, usinga f

NCA+ab
NCA=1, that any self-consistent calcu-

lation involving only afinite number of skeleton self-energy
diagrams just reproduces the incorrect NCA exponents.

Conserving T-matrix approximation(CTMA). Hence, self-
energies and two-particle vertex functions must be com-
prised of aninfinite class of skeleton diagrams in order to
describe the Fermi liquid fixed point. Since the latter is a
consequence of the singlet formation between conduction
electron and impurity spin, it is natural to assume that higher
than two-particle correlations need not be considered in the
single-channel case. The total vertex functions of conduction
electronsscd and local degrees of freedom(pseudofermions
f, slave bosonsb) are then two-particle T-matrices which are
obtained from an infinite summation of irreducible parts via
Bethe–Salpeter equations. We use the smallness of the pa-
rameterVNs0d!1 to select the leading diagrams of the irre-
ducible parts. This results in the ladder approximation for the
total two-particle vertices shown in Fig. 1. The Luttinger-
Ward functional that generates by second functional differ-
entiation the vertex functions of Fig. 1 is constructed by
connecting the entry and exit points by Green’s function
lines and is shown diagrammatically in Fig. 2. The diagram

containing two(renormalized) boson lines is not a skeleton,
is already contained in the first(NCA) diagram via self-
consistency, and, hence, is omitted. The conserving approxi-
mation obtained in this way has been called conserving
T-matrix approximation(CTMA). The self-consistent equa-
tions for the vertex functions and self-energies to be solved
are given explicitly in Appendix A. Note that thef −c and the
b−c vertices in Figs. 1 and 2 describe spin and charge fluc-
tuations, respectively. Therefore the CTMA should provide a
good approximation not only in the Kondo, but also in the
mixed valence and empty impurity regimes.

On a more formal level, the CTMA can be justified both
near the weak and near the strong coupling fixed points.
Expanding, in the weak coupling regime, the CTMA in terms
of bare, projected Green’s functionssB=0d, Gfs

0 svd
=1/sv± i0d ,Gb

0svd=1/sv+ed± i0d, it is seen that the CTMA
c-f vertex is exact up to leading logarithmic order, as seen in

FIG. 1. Diagrammatic representation of the Bethe-Salpeter
equations for the vertex functionsTscfd and Tscbd defining the
CTMA. Dashed, wiggly, and solid lines represent here and in the
following the renormalized pseudofermion, slave boson, and the
local conduction electron propagators, respectively. The external
lines are for clarity only and are not part of the vertices.

FIG. 2. Generating functional of the CTMA. The first diagram
corresponds to the NCA generating functional. Each diagram con-
tains exactly one closed auxiliary particle loop; diagrams with more
than one such loop vanish after projection ontoQ=1. The class of
CTMA diagrams beyond NCA is uniquely defined by the condition
that each conduction electron line spans exactly two bare three-
point hybridization vertices, as shown. The diagrams of the first and
of the second columns generate, by second functional derivative,
d2F /dGcdGf andd2F /dGcdGb, the spin and the charge fluctuation
T-matrices,Tscfd, Tscbd, respectively(Fig. 1).
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Fig. 3. Therefore, CTMA does incorporate the correct renor-
malization group(RG) flow in the weak coupling region.42 In
particular, logarithmic potential scattering terms, present in
each one of the diagrams of Fig. 3, cancel correctly when the
two diagrams are added. Therefore, we expect that the
CTMA correctly describes the Zeeman splitting of the
Kondo resonance even in a large magnetic field, in contrast
to the NCA, where only the first diagram of Fig. 3 is in-
cluded, and its logarithmic potential scattering part leads to a
spurious third peak at the the Fermi energyv=0 (see above).

By virtue of the self-consistent inclusion of self-energy
diagrams in the propagators of Fig. 1 the CTMA vertex not
only includes ladder but also parquet diagrams. Moreover, at
any given order ofself-consistentperturbation theory, the
CTMA includes all diagrams with the maximum number of
local spin and charge fluctuation processes in the sense of
principal diagrams. Since these are expected to be respon-
sible for the formation of the spin-singlet in the Kondo or
mixed valence regime, CTMA may be expected to capture
the physics of the strong coupling fixed point of the single-
channel SIAM as well. This will be shown by numerical
evaluation in the following sections.

III. SPIN SUSCEPTIBILITY

In this section we report the CTMA result for the static
impurity susceptibility

xisTd =UdM

dB
U

B=0
s7d

of the N=2, M =1 SIAM in the Kondo regime and compare
with NCA and Bethe ansatz results. Throughout the paper,
the evaluations in this regime will be done for the typical
parameter seted/D=−0.81,G /D=0.2. In Eq.(7), yielding a
low-temperature impurity occupation number ofnds.0.47
and TK=4.16310−4D. Other parameter sets in the Kondo
regime give similar results.M =gmBos sns is the impurity
magnetization,

nds = lim
l→`

E dve−bvIm Gfssv − i0d

E dve−bvImfos
Gfssv − i0d + Gbsv − i0dg

s8d

is the impurity occupation number with spins projected onto
Q=120,28 sb=1/kBTd, and the magnetic fieldB couples only

to the impurity spin(Eq. (1)). Expression(7) is equivalent to
the v=0 limit of the causal dynamical linear response sus-
ceptibility

xisT,v = 0d = − i E dtQstdkfM̂std,M̂s0dgl. s9d

This is readily shown from Eqs.(7) and (8), employing
d/dB=os sdGfs /dBdd /dGfs and

dGfs

dB
= Gfs

2 FsgmB + o
ss8

dS fs

dGfs8

dGfs8

dB G , s10d

which follows from the definition ofGfs,

dS fs

dGfs8
= gs,s8 s11d

is the irreducible four-point pseudofermion vertex. Any con-
serving approximation by construction fulfills the equiva-
lence of Eqs.(7) and (9), since it respects the Ward identity
(11). We choose to use Eq.(7), because it is computationally
less demanding than the correlation function Eq.(9).

Note that additional termsxbsTd and xibsTd arise, if B
couples also to the conduction electron spin.xbsTd is the
constant Pauli susceptibility of the conduction band and
xibsTd a mixing term correlating the impurity and the con-
duction electron magnetization. Since the latter is, for a flat
DOS, due to the electronic polarization at the bottom of the
band,xibsTd is usually negligible forT!D.

xisTd is of principal interest as an indicator of whether
CTMA captures the spin singlet Fermi liquid ground state of
the single-channel SIAM. The result is shown in Fig. 4.
While at exponentially high temperature, lnsT/TKd@1,
xisTd=s1/4dg2mB

2 /T, typical for a free, fluctuating local mo-
ment, xisTd shows T-independent Pauli behavior forT
&0.1TK and down to the lowestT considered, characteristic
for the completely spin-screened Fermi liquid state. By con-

FIG. 3. Diagrams containing the leading logarithmic contribu-
tions to thec-f vertex function. In contrast to Figs. 1 and 2, the lines
represent thebare Green’s functions here. a) Contribution from the
NCA generating functional, b) additional contribution from the
CTMA. Spurious logarithmic potential scattering terms cancel only
when both terms are added. Thec-b vertex has no logarithmic terms
and, hence, does not flow under perturbative RG.

FIG. 4. The static magnetic susceptibility as a function of tem-
perature. The temperature and the susceptibility scale are plotted in
units of the conventional Kondo temperatureTK

! Eq. (13), that leads
to the valueW=0.4128 for the Wilson number; see the text. The
CTMA curve agrees well with the exact BA result in both the high
temperature and in the strong coupling regimes, with only a small
spurious intermediate maximum in the crossover region.
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trast, the low- T behavior of the NCA is a power law,
xi

NCAsTd−xi
NCAs0d~−T1/3. At T=0, xisTd acquires the value

xis0d =
sgmBd2

4TL
, s12d

which defines the universal low-temperature scale,TL, of the
Kondo or Anderson model, related toTK by the Wilson num-
ber W=TK /TL.

The comparison of the CTMA result with exact methods
like NRG18 or BA7,8,44can be made quantitative. The dimen-
sionless quantityx̄isT/TKd=xisTd / sg2mB

2 /TKd is known to be
a universal function ofT/TK (i.e., independent of the micro-
scopic parameters of the Hamiltonian), with x̄is0d=W. Self-
consistent approaches like NCA or CTMA reproduce this
universality, since they include a resummation of the loga-
rithmic terms of perturbation theory.45 In comparing the
CTMA and the BA results one must, however, observe, that
the breakdown scale of perturbation theory,TK, depends on
its precise definition. Therefore, care must be taken that the
same definition ofTK is used for both the CTMA and the
exact method. In Wilson’s original work on the Kondo
model,18 a Kondo temperatureTK

! was defined such that in
the high temperature expansion ofxisTd all terms of
OslnsT/TK

!d−2d cancel each other. Rasul and Hewson46–48

used the same criterion for the SIAM and found for the
Kondo temperature,

TK
! =

1

2p
expS1 + C −

1

2N
DÎ D

uedu
TK, s13d

whereC=0.5772157 is Euler’s constant. With this definition,
the universal Wilson number was found to beW=0.4128.
Using the same definition, we find within CTMA(Fig. 4),

WsCTMAd = TK
!xis0d/mB

2 = 0.462. s14d

In the BA method,TK is defined in a somewhat different way
due to a different cutoff scheme, resulting in a Wilson num-
ber WBA =expsC+1/4d /p3/2<0.41078,44 (for N=2). There-
fore, in the BA curve forx̄isT/TKd we rescaleTK such that
x̄is0d obtains Wilson’sT=0 value W=0.4128 (Fig. 4). As
seen from the figure, the CTMA result for the static suscep-
tibility is in strikingly good quantitative agreement with the
BA result not only forT.TK

! , but also in the strong coupling
region,T&0.1TK

! . This shows that the CTMA describes the
low-energy excitations around the Fermi liquid fixed point
even quantitatively correctly at least in a thermodynamic
quantity like the magnetic susceptibility. From the general
properties of conserving approximations, one may expect the
same to be true for dynamical quantities as well. This will be
investigated in the next section.

IV. DYNAMICAL PROPERTIES

The Pauli behavior of the impurity susceptibility calcu-
lated in the previous section shows that the spin structure of
the low-T excitations captured by the CTMA free energy
functional is such that it describes the complete screening of
the impurity spin by the conduction electrons correctly even

with good quantitative precision. It is the resulting absence
of spin flip scattering at energies belowTK that is responsible
for the Fermi liquid behavior near the strong coupling fixed
point of the single-channel Kondo or Anderson model.
Therefore, one may conjecture that the CTMA captures the
Fermi liquid nature of the low-T excitations as well, with
well defined quasiparticles which should become visible in
dynamical quantities like the impurity spectral density and
the self-energy. This expectation is further supported by the
fact that the CTMA does indeed reproduce the correct Fermi
liquid threshold exponents on the level of the auxiliary par-
ticle dynamics.21

The quantities of prime interest, e.g., for DMFT are the
impurity electron Green’s function,

Gdssv ± i0d =
1

v − ed ± iG − Sdssv ± i0d
, s15d

and the interaction part of the self-energy,Sdssvd, in the
spin-screened case,N=2, M =1. The Fermi liquid theory im-
plies certain exact low-energy properties, which the CTMA
results must be compared to, namely the unitarity limit for

the impurity spectral density at the Fermi levelÃdss0d, the

half width G̃ and positionẽd of the Kondo resonance, as well
as the low-energy behavior of ImSdssvd,

Ãdss0d =
sin2spndsd

pG
, T = 0, s16d

G̃ =
4

pW
sin2spndsdTK

! , s17d

ẽd =
2

pW
sins2pndsdTK

! , s18d

Im Sdssv − i0d = aG
v2 + spTd2

TK
2 , s19d

a =
p4W2

8e3/2+2C

sR− 1d2

sin2spndsd
uedu
D

, s20d

whereR=2 is the Wilson ratio. The proof of these relations
is compiled in Appendix B.

A. CTMA solution and Fermi liquid behavior

For the computation ofGdssvd within the CTMA, ob-
serve that it is related to the single-particle conduction elec-
tron T-matrix,tcssvd=V2Gdssvd, where, after projection onto
Q=1 only diagrams with a single pseudoparticle loop, i.e.,
irreducible diagrams, remain. In the conserving scheme it is,
therefore, constructed as

Gdssvd =
1

V2 lim
l→`

1

Qsld
dF

dGcssvd
. s21d

The corresponding CTMA diagrams are shown in Fig. 5, and
the details about their evaluation are given in Appendix A.
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It is worth noting that, by definition, the impurity electron
propagator is equivalent to thef-b-“particle-hole” correlation

function, Gdsstd=−ikT̂hb†stdfsstdfs
†s0dbs0djl. This might

seem to offer another possibility of calculatingGds using the
irreduciblef-b vertexG fb=d2F /dGfsdGb. However, any dia-
gram of thef-b particle-holecorrelator constructed in this
way contains necessarily two pseudoparticle loops, and,
hence, vanishes by projection. Therefore, in CTMA thef-b
correlation function is comprised of the(NCA-like) f-b
bubble diagram only, which is clearly not sufficient to re-
cover the Fermi liquid strong coupling fixed point. We note
in passing that the non-trivial contributions toG fb comprising
the full Gd are generated from free energy diagrams which
contain more than one pseudoparticle loop, but are not con-
tained in CTMA. As a conclusion, in CTMAGdssvd must be
calculated unambiguously using Eq.(21).

The CTMA results for the d-electron spectral function,
Adssvd=Im Gdssv− i0d /p are shown in Figs. 6 and 7 forT
=TK andT=0.01TK, respectively, together with its decompo-
sition into thef-b bubble contribution(First diagram in Fig.
5) and the vertex corrections(second and third diagrams in
Fig. 5). Notably, even at elevated temperature,T=TK, the
vertex corrections are not negligible. ForT→0 the f-b
bubble develops an infrared power law divergence
~uvuaf+ab−1. Since for our parameter set in the Kondo regime
the exponenta f +ab−1=<0.056 is rather small, and the
pseudoparticle exponents, Eq.(3), are obtained asymptoti-
cally, this singularity starts to develop forT=0.01TK merely

as a discontinuity in the slope ofAdssvd. Most important,
however, the totald-electron spectral function does not show

any infrared singularity on the scale ofT, and the widthG̃
and position ẽd of the Kondo resonance are in excellent
agreement with the Fermi liquid predictions, Eqs.(17) and
(18), given the uncertainty in these quantities arising from
the fact that the Kondo resonance deviates from the Lorent-
zian shape forv.TK (see Appendix B). In contrast, the uni-
tarity limit, Eq. (16), is significantly violated in Fig. 7. To
investigate the origin of this failure, we plot in Fig. 8 the
imaginary part of the interaction self-energySdssv− i0d. It is
seen that even at the lowest temperature the CTMA result
does not develop any singularity, in contrast to NCA. How-
ever, the position of the minimum of ImSdssv− i0d is incor-
rectly shifted to a negative frequencyv0 of OsTKd, where
Im Sdssv0− i0d acquires a spurious negative value. Even at
the lowestT considered, ImSdssv− i0d showssv−v0d2 be-
havior for uv−v0u&TK (Fig. 8). Its prefactor, determined

FIG. 5. Diagrams defining thed-electron Green’s function
within CTMA. For details of their evaluation see Appendix A.

FIG. 6. CTMA and NCA results for the local spectral density
Adssvd for ed/D=−0.81, G /D=0.2 atT=TK=6.1610−4D. The de-
composition of the CTMA result intof-b bubble and vertex correc-
tions arising fromTscfd (fc vertex) and Tscbd (bc vertex) is also
shown. The NCA shows an incorrectly large shift of the Kondo
peak ofOsTKd toward positive frequencies, which is corrected by
CTMA; see the text.

FIG. 7. CTMA impurity spectral function and decomposition
into f-b bubble and vertex contributions for the same parameters as

in Fig. 6, but atT=0.01TK. The exact values forAdss0d, G̃, ẽd, Eqs.
(16)–(18), are displayed for comparison.

FIG. 8. Correlation part of the physicald-electron self-energy
Im Sdssvd calculated in CTMA for various temperatures and
ed/D=−0.81, G /D=0.2. For the lowest temperature shown,T
=0.16TK, the NCA result(dot-dashed line) is shown for compari-
son, showing the cusp-like infrared singularity typical for NCA.
The bold solid line centered at the origin represents theT=0 behav-
ior expected for our parameter set based on Fermi liquid theory,
Eqs.(19) and (20).
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from our parameter set from Fig. 9 as 0.0244D, is in excel-
lent agreement with the exact Fermi liquid value,aG
=0.0239D (Eqs.(19) and(20)). The temperature dependence
of the minimum of ImSdssv− i0d is analyzed in Fig. 10.
Again, the CTMA solution showsT2 behavior from the low-
est T considered up to T.TK, Im Sdssv0− i0d
= ãGspT/TKd2, where the prefactorãG=0.013D is of the
same order of the exact valueãG, although roughly a factor
of 2 too small.

To summarize our analysis, thev2, T2 behavior of the
impurity electron self-energy, which stems from the low-
energy excitations and is at the heart of the Fermi liquid
theory, is even quantitatively reproduced by the CTMA with-
out spurious singularities. However, the location of this mini-
mum atv=0 and the exact unitary valueAdss0d of the im-
purity spectral density are not reproduced. The latter is
crucial to avoid a non-causal behavior of the correlation part
of the impurity self-energySdssvd and, hence, for an appli-
cation as an impurity solver within DMFT.2 As will be dis-
cussed below in more detail, both of these failures can be

attributed to an incorrect treatment of non-singular potential
scattering processes at high energies,v@TK. We will pro-
pose a corresponding correction scheme in the next subsec-
tion.

We conclude the present subsection by considering briefly
another test case of Fermi liquid behavior, the empty orbital
regime. In this case thed-electron density of states consists
of only one broadened, unoccupied single-particle resonance
at a renormalized impurity leveled.0 far above the Fermi
energy. In the pseudoparticle representation, the empty-
impurity case is still a non-trivial strongly correlated prob-
lem because of the operator constraintQ=1. Figure 11 shows
the NCA and the CTMA spectral density fored/D= +0.81,
G /D=0.2. NCA is well known to fail badly in this case,
producing a spurious, singular peak atv=0, which arises
from the x-ray-like divergences of the pseudoparticle
Green’s functions. In the CTMA solution, the vertex correc-
tions tend to cancel the infrared peak of thef-b bubble. Pre-
sumably, the wiggles visible in the CTMA spectrum are due
to numerical imprecision, but may also be due to a system-
atically imperfect cancellation of infrared divergent terms. In
any case, the CTMA does not produce any definite peak
structure atv=0, significantly improving the description of
the Fermi liquid behavior in the empty orbital regime.

B. Effective potential scattering correction

Within the pseudoparticle technique, it is a non-trivial
task to separate the single-particle hybridization partiG, of
the total impurity self-energy, from the interaction contribu-
tion, Sdssvd, since the hybridization is an interaction term in
this representation, Eq.(1). Hence, while the auxiliary par-
ticle method is designed for a systematical treatment of the
low-energy spin scattering processes, it is difficult to accu-
rately calculate the non-singular potential scattering part of
the total impurity self-energy

Sds
totsvd = v + eF − ed − Gdssvd−1 s22d

FIG. 9. Log10-log10 plot of Im Sdssv− i0d−Im Sdssv0− i0d ver-
sus frequency,sv−v0d /TK, for T=0.16TK. v0 is the position of the
minimum of Im Sdssv− i0d in Fig. 8. The dashed line is the fit to
the low-frequency quadratic behavior of ImSdssv− i0d and repre-
sents the functiony=0.02440sv−v0d2/TK

2; see the text.

FIG. 10. Log10-log10 plot of the minimum value of the imagi-
nary part of the self-energy, ImSdssv=vminsTd ,Td−Im Sdssv
=v0,T=0.01TKd versusT/TK. vminsTd is the position of the mini-
mum for a given temperatureT; see Fig. 8. Quadratic inT behavior
is clearly visible for T&TK. The dashed line is given byy
=0.013DspT/TKd2.

FIG. 11. CTMA(solid line) and NCA(dotted line) result for the
local spectral density in the empty impurity regime,ed/D= +0.81,
G /D=0.2 for T=1.010−4D. The resulting occupation per spin is
nds=0.037. The insets show the CTMA(left panel) and the NCA
(right panel) spectral functions over the complete band width.
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=iG + Sdssvd, s23d

which involves hybridization processes at high energies of
ordered. Technically speaking, thev=0 value of ImSds

totsvd
is influenced by both the real and the imaginary part of
Gdss0d, and hence by the high-energy features of the spec-
trum through the Kramers-Kronig relation. Obtaining the
precise values of the real and imaginary parts ofSds

tots0−i0d
would therefore require calculating the high-energy features
of the local spectrum to a precision better than,TK. Clearly,
this is a formidable task, both with respect to numerical pre-
cision and to diagrammatical systematics: Since any poten-
tial scattering term gives a non-singular, energy independent
contribution toSds

tots0d, it is unlikely that a class of principal
diagrams can be identified that reproduces the correct value.
On the other hand, the class of CTMA diagrams does de-
scribe the correctv2, T2 behavior, reflecting the correct low-
energy many-body dynamics.

Based on these considerations, we propose a simple, phe-
nomenological scheme to incorporate the correct potential
scattering contributions. It amounts to adding an appropriate
frequency and temperature independentconstantDe to the
real part of Sds

totsvd. It has the effect of shifting the zero of
the frequency scale in all quantities, and in particular in
Im Sdssvd, by virtue of the self-consistency.49 Therefore,De
can be chosen such that atT=0 the minimum of ImSdssv
− i0d is obtained atv=0 in accordance with Fermi liquid
behavior, Eq.(19). In the CTMA solution the position of the
minimum of Im Sdssvd does not significantly change with
temperature forT&0.2TK, see Fig. 8, as expected from the
Fermi liquid behavior, Eq.(19). Hence, we have determined
De from the solution atT=0.16TK to fulfill the Fermi liquid
condition above. The results for the impurity spectral func-
tion corrected in this way is displayed for variousT in Fig.
12. It shows accurate agreement with the unitarity limit, even
though this was not directly implied by our adjustment pro-
cedure. This can be seen as a further indication that CTMA
correctly captures the Fermi liquid dynamics of the problem,

missing only part of the potential scattering contributions.
The corresponding imaginary part of the total impurity self-
energy, Eq.(22), is shown in Fig. 13. Again, the Fermi liquid
behavior, Eq.(19), is well obeyed. The minimum value of
Im Sds

totsv− i0d approaches for T→0 the value Gef f

<0.139D instead of the exact limitG=0.2D. As discussed
above, we attribute this to an inaccurate treatment of single-
particle hybridization processes within CTMA. Note how-
ever, that for the DMFT algorithm2 only the interaction part
Sdssvd of the self-energy is important. In the auxiliary par-
ticle method it is obtained from the impurity Green function
by the subtractionSdssv− i0d=Sds

totsv−0d− iGef f, whereStot

is given by Eq.(22), and its imaginary part remains strictly
non-negative.

V. TWO-CHANNEL KONDO BEHAVIOR

To complete the discussion of dynamical quantities we
calculate the local spectral function of the two-channel( N
=2, M =2) Anderson model. Here the low-temperature fixed
point is of a distinct non-Fermi liquid nature,10 involving a
non-vanishing zero-point entropy,SsT=0d=kBlnÎ2, and a
logarithmic divergence of the static susceptibility,xsTd~
−ln T/TK, signaling a non-degenerate ground state and over-
screening of the local spin, respectively.11,50

For the two-channel Kondo(2CK) model, the effective
low-energy model of the two-channel SIAM, it has been
shown using conformal field theory51 that the local spectrum
has a cusp at the Fermi level,A2CKsvd−A2CKs0d~−uvu1/2.
The weight of this power law becomes asymmetrical for
v.0 andv,0, when the particle-hole symmetry is broken,
e.g., by an additional potential scattering term. This weight
asymmetry is analogous to the shift of the Kondo resonance
ẽd in the single-channel case. Extrapolating the Fermi liquid
results of Appendix B to the two-channel SIAM, the weight

FIG. 12. CTMA spectral functions with a constant potential
scattering term added to the real part ofSdssv− i0d according to the
effective potential scattering method; see the text. No low-energy
singularity occurs, and the unitarity limit(arrow) is accurately ful-
filled at the lowest temperatures.

FIG. 13. Real and imaginary part of the total impurity self-
energySds

totsv− i0d, corrected by the effective potential scattering
method. The curvature of ImSds

totsv− i0d at the Fermi energy does
not change considerably fromT=0.16TK down to T=0.01TK. The
small bump in the curve forT=0.01TK at positivev is attributed to
numerical inaccuracy. Atv=0,T→0, Im Sds

tots0−i0d assumes the
effective hybridizationGef f<0.139D, somewhat smaller than the
exact valueG=0.2D. Gef f is to be subtracted from ImSds

totsv− i0d in
order to obtain the interaction part of the local self-energy.
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asymmetry may be expected to be ofOsTK /edd. Very re-
cently, the auxiliary particle threshold exponents for the two-
channel Anderson model have been calculated using the Be-
the ansatz.52 It was shown that the exponents, like in the
single-channel case, are functions of the local valence.

The Bethe ansatz solution shows that the 2CK ground
state involves intricate correlations between both conduction
channels and the local spin. Thus, one would expect that in a
diagrammatic treatment three-particle correlation functions
are needed, and that CTMA, which involves only two-
particle T-matrices, is not able to capture the correct 2CK
ground state. Indeed, in the multi-channelsM ù2d case NCA
as well as CTMA give incorrect, valence independent auxil-
iary particle threshold exponents as given in Sec. II.53 Sur-
prisingly, however, NCA correctly reproduces qualitatively
the leading low-energy singularities of physical quantities
like the susceptibility53 or the local density of states.6 In Fig.
14 we show the CTMA solutions for the impurity spectral
function of the two-channel SIAM in comparison to the
NCA result, both showing auvu1/2 cusp. The cusp of the
NCA curve has a strong weight asymmetry, which is presum-
ably an overestimation, like in the Fermi liquid case(Fig. 6).
This is significantly improved by the CTMA solutions. How-
ever, as mentioned above, we believe that a systematical de-
scription of the 2CK behavior would require an extension of
the CTMA to include three-particle correlation functions.

VI. SUMMARY

To conclude, we have extended the analysis of the con-
serving T-matrix approximation to thermodynamical and dy-
namical properties. It had been demonstrated earlier that for
the single-channel Anderson impurity model the CTMA cap-
tures the correct spin-screened Fermi liquid ground state on
the level of the auxiliary particle dynamics, signaled by the
Fermi liquid exponents of the auxiliary particle propagators
for all fillings.21 In the present work we have shown that the
CTMA also describes the Fermi liquid strong coupling be-

havior of physical quantities correctly. It is, thus, the first
diagrammatic method that captures both the low-energy
Fermi liquid behavior and the high-temperature properties of
quantum impurity problems of the single-channel Anderson
model type on the same footing.54 In particular the CTMA
describes the static spin susceptibility in the Kondo regime
correctly for all temperatures. The Wilson number obtained
within CTMA is in remarkably good agreement with the ex-
act one. We also showed that the physicald-electron spectral
density in the single-channel case(N=2, M =1) is able to
mend most of the deficiencies of the NCA in the Kondo and
empty orbital regime of the model. Especially, no spurious
infrared singularities occur. The deviation of the CTMA so-
lution from the exact unitarity limiting value for the spectral
density at the Fermi level could be traced back to an insuf-
ficiently accurate treatment of high energy potential scatter-
ing processes. To correct this deficiency, we have proposed a
phenomenological method by adding an appropriate, effec-
tive potential scattering termde to the real part of the impu-
rity self-energy, and defining an effective single-particle hy-
bridization rateGef f. As a result, all essential Fermi liquid
properties are fulfilled without spurious non-causal behavior.

Finally, we comment on the prospects for future applica-
tions of the CTMA. At the expense of being numerically
involved, the CTMA combines two features which are non-
trivial to fulfill by one single technique: flexibility and sys-
tematic treatment of the low-energy excitations withoutad
hoc assumptions about the nature of the ground state. These
features may make the CTMA an attractive method for more
complicated impurity problems, such as(1) the self-
consistent quantum impurity problem that arises within the
DMFT scheme;2 (2) quantum impurities with complex or-
bital structure; these arise also in cluster and cellular exten-
sions of the DMFT;55–57 (3) quantum impurity problems
which may exhibit a Fermi liquid instability. As a diagram-
matic method, the CTMA is readily generalized for an arbi-
trary, energy dependent conduction electron DOS arising
from the self-consistent DMFT scheme. In addition, the case
of finite Coulomb repulsionU must be considered, in order
to account for the upper Hubbard band and, e.g., to describe
the metal-insulator transition in the Hubbard model near half
filling. It requires treating the bare charge fluctuation pro-
cesses involving the empty and the doubly occupied impurity
state in a symmetrical way. On an NCA-like level
(Symmetrized-U NCA, SUNCA), this has been implemented
in Ref. 58, see also Ref. 59, and the corresponding Symme-
trized, finite-U CTMA(SUCTMA) equations are reproduced
in Ref. 28. The SUCTMA essentially amounts to calculating,
in addition to CTMA, the ladder diagrams of heavy bosons
representing the doubly occupied impurity state. Hence, the
evaluations appear numerically manageable. Treating a more
complex impurity orbital structure requires introducing an
individual auxiliary boson or fermion field for each charge
and spin configuration of the impurity. Multi-orbital impuri-
ties have recently been treated using NCA-like
approximations.60,61 The fact that the number of impurity
configurations increases roughly exponentially with the num-
ber of orbitals will, however, limit the CTMA und SUCTMA
to problems with not a too large number of local orbitals. On
the other hand, because of the systematical treatment of low-

FIG. 14. CTMA results for the impurity spectral density of the
two-channel SIAM, withed=−0.81D , G=0.2D at various tempera-
tures. The NCA result is shown for comparison. Theuvu1/2 cusp
develops at the Fermi level, with a weight asymmetry due to poten-
tial scattering. The inset shows the spectrum over a wider frequency
range.
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energy excitations, the CTMA should at least be sensitive to
instabilities of the Fermi liquid ground state due to, e.g., a
quantum critical point. Future developments are planned to
explore the possibility of these applications.
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APPENDIX A: CTMA EQUATIONS

In the following we present a compilation of the CTMA
equations which determine the imaginary part of the impu-
rity propagatorGd, the auxiliary particle self-energiesS f and
Sb and the basic building block of the CTMA, i.e., the ana-

lytically continued four-point verticesTscfd andTscbd. Due to
the fact that the first diagram in Fig. 1 does not lead to a
proper vertex contribution, we start the summation with the
two-rung diagram. In order to include the proper channel and
spin summations with enter even-rung and odd-rung dia-
grams differently, it is necessary to solve for the ladders with
alternating signs as well. As already mentioned in the main
text the two-rung diagrams, that is the inhomogeneous parts
I scfd and I scbd of (A1) and (A2) lead to self-energy contribu-
tions which are already included in the NCA. Hence, in order
to avoid over-counting these non-skeletons have to be sub-
tracted before calculating the self-energies. The resulting
equations are diagrammatically depicted in Fig. 15. We label
the external frequencies of the fourpoint verticesVscfd and
Vscbd such that the first(second) argument denotes the in-
(out-)going frequency of the pseudo-particle propagator and
the third frequency labels the center of mass-frequency
propagating through the ladder; see Fig. 15. The vertex func-
tions are therefore given by

Vs,t
scfds±dmsivn,ivn8,iVnd = Is,t

scfdmsivn,ivn8,iVnd ±
G

pNs0d
1

b
o
vn9

Gbmsivn + ivn9 − iVnd

3Gfssivn9dGcmt
0 siVn − ivn9dVt,s

scfds±dmsivn9,ivn8,iVnd,

FIG. 15. Diagrammatic representation of the
integral equations comprising the T-matrices that
enter in the expressions for the auxiliary particle
self-energies, see the text for details.
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Is,t
scfdmsivn,ivn8,iVnd = − S G

pNs0dD
2 1

b
o
vn9

Gbmsivn + ivn9 − iVndGfssivn9dGcmt
0 siVn − ivn9dGbmsivn8 + ivn9 − iVnd, sA1d

and

Vm,n
scbds±dssivn,ivn8,iVnd = Im,n

scbdssivn,ivn8,iVnd ±
G

pNs0d
1

b
o
vn9

Gfssivn + ivn9 − iVnd

3Gbmsivn9dGcns
0 sivn9 − iVndVn,m

scbds±dssivn9,ivn8,iVnd,

Im,n
scbdssivn,ivn8,iVnd = − S G

pNs0dD
2 1

b
o
vn9

Gfssivn + ivn9 − iVndGbmsivn9dGcns
0 sivn9 − iVndGfssivn8 + ivn9 − iVnd. sA2d

After analytical continuation to the real axis the T-matrices
obey the following linear Fredholm integral equations of the
second kind:

Vs,t
scfds±dmsv,v8,Vd = Is,t

scfds±dmsv,v8,Vd ± s− GdE d«

p
fs« − Vd

3Gbmsv + « − Vd

3Gfss«dAcmt
0 sV − edVt,s

scfds±dmse,v8,Vd,

Is,t
scfds±dmsv,v8,Vd =

G2

pNs0dE d«

p
fs« − VdGbmsv + « − Vd

3Gfss«dAcmt
0 sV − «dGbmsv8 + « − Vd

sA3d

and

Vm,n
scbds±dssv,v8,Vd = Im,n

scbds±dssv,v8,Vd ± s+ GdE d«

p
fs« − Vd

3Gfssv + « − VdGbmsedAcns
0 se − Vd

3Vn,m
scbds±dss«,v8,Vd,

Im,n
scbds±dssv,v8,Vd = −

G2

pNs0dE d«

p
fs« − VdGfssv + «

− VdGbms«dAcns
0 s« − VdGfssv8 + « − Vd.

sA4d

In order to simplify the expressions for the self-energiesS f,s
andSb it proves useful to introduce

T1
scfd =

N + 1

2
Vscfds+d +

N − 1

2
Vscfds−d − NIscfd,

T2
scfd =

N + 1

2
Vscfds+d −

N − 1

2
Vscfds−d − I scfd,

and

T1
scbd =

M − 1

2
Vscbds+d +

M + 1

2
Vscbds−d − MI scbd,

T2
scbd =

M − 1

2
Vscbds+d −

M + 1

2
Vscbds−d − I scbd.

Then we obtain for the analytically continued advancedsiv
→v− i0;vd self-energies(Fig. 16):

S fssvd = S fs
sNCAdsvd + S fs

scfdsvd + S fs
scbdsvd, sA5d

Sbmsvd = Sbm
sNCAdsvd + Sbm

scfdsvd + Sbm
scbdsvd sA6d

with

S fs
sNCAdsvd = MGo

m
E de

p
fs− edAcms

0 sedGbmsv − ed,

Sbm
sNCAdsvd = NGo

s
E de

p
fsedAcms

0 sedGfssv + ed,

S fs
scfdsvd = ME de

p
fse − vdAc

0se − vd3pNs0dT1
scfdsv,v,ed,

FIG. 16. Auxiliary particle self-energiesS f

and Sb: The first diagram is the NCA contribu-
tion, where however fully CTMA-renormalized
Green functions have to be used. The second and
third diagrams constitute the vertex corrections
from Tsfcd andTsbcd.
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S fs
scbdsvd = − MGE de

p
E de8

p
fse − vdfse8 − vd

3Ac
0sv − edGbsedpNs0dT2

scbdse,e8,e + e8 − vd

3Ac
0sv − e8dGbse8d,

and

Sbm
scfdsvd = − NGE de

p
E de8

p
fse − vdfse8 − vd

3Ac
0se − vdGfsedpNs0dT2

scfdse,e8,e + e8 − vd

3Ac
0se8 − vdGfse8d,

Sbm
scbdsvd = − NE de

p
fse − vdAc

0sv − ed 3 pNs0dT1
scbdsv,v,ed,

where the vertex functions follow fromT1/2
scfd and T1/2

scbd after
performing the frequency summations and analytical

continuation of the external frequencies. In the contour inte-
grals around conduction line cuts we have usedAc

0svd
=s1/pdIm Gcms

0 sv− i0d /Ns0d.
Once the pseudo-particle Green functions have been self-

consistently calculated, physical properties can be deter-
mined. In order to construct the local Green function from
the basic building block of our theory, the fourpoint vertices
Tscfd and Tscbd, we note that the Bethe-Salpeter equations
above yield either fully advanced or fully retarded
T-matrices,

TRRRsv,v8,Vd ; Tsiv → v + i0,iv8 → v8 + i0,

iV → V + i0d sA7d

or

TAAAsv,v8,Vd ; Tsiv → v − i0,iv8 → v8 − i0,

iV → V − i0d. sA8d

The local spectral density however requires the determi-
nation of TRRAsv ,v8 ,Vd. Therefore, its calculation is more
involved. We constructTRRAsv ,v8 ,Vd by adding two rungs
to each of the diagrams inTscfd andTscbd. This then turns for
example the two-rung diagram into a four-rung ladder. In
order to include all contributing diagrams, it is then neces-
sary to employ the T-matricesVs±d

scfd andVs±d
scbd instead ofTscfd

and Tscbd and, in addition, the three-rung diagram has to be
added, see Fig. 17. The equation for the advanced spectral
function after projection onto the physical subspace then fol-
lows as

Ad,ssvd = Ad,s
sNCAdsvd +

Ns0d
p2G FÈ`

dẽ
e−bẽ

fsvd È
`

de1È`

de2fse1 − ẽdfse2 − ẽdAcsm
0 sẽ − e1dAcsm

0 sẽ − e2d

3ImhGfsse1dGfsse2dGbse1 + e2 − ẽdj · ImhGfssẽ − vdGbse1 − vdGbse2 − vdj

+ È`

dẽ
e−bẽ

fsvd È
`

de1È`

de2fse1 − ẽdfse2 − ẽdAcsm
0 sẽ − e1d

3Acsm
0 sẽ − e2dImHGfsse1dGfsse2dFN − 1

2
·V+,s,s8

cf se1,e2,ẽd +
N + 1

2
·V−,s,s8

cf se1,e2,ẽdGJ
3ImhGfssẽ − vdGbmse1 − vdGbmse2 − vdj+ È`

dẽ
e−bẽ

fs− vd È
`

de1È`

de2fse1 − ẽdfse2 − ẽdAcsm
0 se1 − ẽdAcsm

0 se2 − ẽd

3ImHGbmse1dGbmse2d ·FM − 1

2
·V+,s,s

cb se1,e2,ẽd +
M + 1

2
·V−,s,s

cb se1,e2,ẽdGJ
3ImhGbmsẽ + vdGfsse1 + vdGfsse2 + vdjG , sA9d

FIG. 17. Diagrammatic representation of the equation for the
local d-electron Green function. The first diagram is the NCA con-
tribution. As described in the text, because of the analytical struc-
ture of the Adsigma it is necessary to multiply with a rung at each
end of the vertex functionsVs±d

scfd, Vs±d
scbd, as shown in the last two

diagrams on the right-hand side. Hence the sum of these diagrams
contains at least four rungs, i.e., the three-rung term must be added
separately(second diagram on the right-hand side.)
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with

Ad,s
sNCAdsvd =E d«e−b«fAfssv + «dAbms«d

− Afss«dAbms« − vdg. sA10d

APPENDIX B: FERMI LIQUID RELATIONS

In this appendix we compile some exact Fermi liquid
properties for thed-electron Green’s function( N=2, M =1),

Gdssv ± i0d =
1

v + eF − ed ± iG − Sdssv ± i0d
. sB1d

The interaction contributionSdssv± i0d to the self-energy
obeys the Fermi liquid relations

Im Sdssv ± i0d = aG
v2 + spTd2

TK
2 ,v,T & TK, sB2d

E
−`

0

dv
] Sds

] v
Gdssvd = 0,T = 0. sB3d

These imply the Friedel sum rule,ndss0d=ds, with ndss0d the
impurity occupation atT=0 andds the scattering phase at
the Fermi energyeF,

cot ds =
Re Gdss0d

Im Gdss0 + i0d
. sB4d

The impurity spectral density at the Fermi energyv=0, T
=0 follows from Eqs.(B1), (B2), and(B4) as

Ads =
1

p
Im Gdss0 – 0d =

sin2spndsd
pG

. sB5d

The Fermi liquid relations also determine the widthG̃, posi-
tion ẽd, and spectral weightz of the Kondo resonance. Using

the quasiparticle weightz=s1−]Sds /]vuv=0d−1, the Green’s
function can be written foruvu ,T&TK,

Gdssv ± i0d =
z

v − ẽd ± iG̃
, sB6d

with ẽd=zfeF+ed+ReSdss0dg, G̃=zG. z can be expressed in
terms of the strong coupling parameters of the Anderson
model by equating theT=0 spin susceptibility, Eq.(12), with
the Pauli susceptibility of a Fermi liquid of quasiparticles
with weight z, xs0d=sgmBd2Ads /z,

z=
4TK

!sin2spndsd
pGW

, sB7d

and hence,

G̃ =
4

pW
sin2spndsdTK

! . sB8d

Combining Eqs.(B4), (B6), and (B8) the position of the
Kondo resonance relative toeF is given by

ẽd =
2

pW
sins2pndsdTK

! . sB9d

The exact prefactora of the quadratic behavior of ImSdssvd
has been calculated for the Anderson model using direct per-
turbation theory to infinite order in the on-site repulsion
U.62–64 One obtains at T=0, ]2Im Sdssv− i0d /]v2

=pugs0,0du2fAdss0dg3, where gs0,0d is the full, local two
electron vertex function at the Fermi energy and atT=0.
Using a Ward identity,62 it can be related to the quasiparticle
density of statesAdss0d /z and expressed asgs0,0d=sR
−1d / fzAdss0dg, whereR=2 is the Wilson ratio. Hence, taking
into account Eq.(13), we obtain for the prefactor in Eq.(B2),

a =
p4W2

8e3/2+2C

sR− 1d2

sin2spndsd
uedu
D

. sB10d
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