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The Anderson model of a twofold spin degenerate impurity level in the limit of infinite Coulomb repulsion,
U— o, coupled to one and two degenerate conduction bands or channels, is considered in pseudo-particle
representation. We extend the conserving T-matrix approxim&@diMA), a general diagrammatic approxi-
mation scheme based on a fully renormalized computation of two-particle vertex functions in the spin and in
the charge channel, to the calculation of thermodynamic and spectral properties. In the single-channel case, the
CTMAyields in the Kondo regime a temperature independent Pauli spin susceptibility for temperatures below
the Kondo temperatur and down to the lowest temperatures considered, reproducing the exact spin screen-
ing in the Fermi liquid state. The impurity spectral density appears to remain non-singular down to the lowest
temperatures, in agreement with Fermi liquid behavior. However, the unitarity sum rule, which is crucial for an
impurity solver like the CTMA to be applicable within dynamical mean field theories for strongly correlated
lattice models, is overestimated at the lowest temperatures. We argue that this shortcoming may be due to
numerical imprecision and discuss an appropriate scheme for its correction. In the two-channel case, the
spectral density calculated within CTMA exhibits qualitatively the correct non-Fermi liquid behavior at low
temperatures, i.e., a power law singularity.

DOI: 10.1103/PhysRevB.70.165102 PACS nuni®er71.10—w, 71.27+a, 71.28+d, 71.55-i

I. INTRODUCTION erate Y17 and Wilson’s numerical renormalization group
(NRG) which has been very successful for not too large de-
Over the past two decades the problem of correlated elegeneracies in the spin or charge charfet’

trons on a lattice has emerged as a central theme of con- The difficulty with quantum systems of the Anderson im-
densed matter theory. With the exception of one-dimensiongburity type is the strong on-site Hubbard repulsion, which
systems, there are no systematic analytical methods availabéffectively constrains the quantum dynamics to a Hilbert
for solving models like the Hubbard model. A powerful ap- space with fixed impurity occupation number and makes
proximation scheme is the dynamical mean field theorjthese problems inaccessible by straightforward perturbation
(DMFT), in which the lattice problem is mapped onto antheory. It is, in particular, difficult to describe the weak cou-
effective single impurity Anderson modeéblAM), with self-  pling (fluctuating local momentbehavior at high energies
consistently determined properties of the conductionand the strong coupling fixed point behavior, realized below
electrongi? It is a nontrivial task to solve these SIAMs. The a strong coupling energy scale, typically the Kondo tempera-
properties of real Kondo or mixed valence impurities in met-ture Ty, by a single technique. In view of possible applica-
als are of interest in their own right, with recent emphasis ortions as an “impurity solver” within DMFT methods or to
non-Fermi liquid behavior in multi-channel modét§.vari-  quantum impurity and quantum dot systems with a complex
ous methods have been successfully applied to solve thesecal spectrum, an accurate method which does not rely on
models in certain parameter regimes. The Bethe aniB#&ty  integrability conditions or on the simplicity of the local or
method allows one to calculate the thermodynamic propereonduction electron spectrum is highly desirable.
ties of models with a flat conduction electron density of For that purpose we had proposed earlier a general dia-
states:® Bosonization methods have been used to obtain, fogrammatic approximation scherfeThe starting point is a
example, the finite-size spectrum of one- and two-channgbseudoparticle representation of the impurity level, where
impurities? Conformal field theory is a powerful tool to ana- the constrained dynamics are built into the very definition of
lyze the low energy excitations of multi-channel modéig?  the quantum field$? and approximations conserving its in-
The method of continuous unitary transformatitrisas been ternal symmetry are defined by means of Luttinger—Ward
successfully applied to the Kondo model in the vicinity of functionals. The conserving approximation which incorpo-
the Toulouse point* These analytical methods are comple- rates the dominant, local spin and charge fluctuations on the
mented by numerical methods like quantum Monte Carldevel of a fully renormalized calculation of the total two-
(QMC) simulations(for not too low temperatures and mod- particle vertex(or T-matrix) has been termed the conserving
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T-matrix approximatiofCTMA). In contrast to previous ap- occupied(empty) level is created by fermionitbosonig op-
proximations like the non-crossing approximation erators fl(bL), which satisfy the constrainQ=x, flfo
(NCA)*?% and its extension®, the CTMA describes the +X, b'b,=1. The physicalor d) electron creation operator
weak as well as the strong coupling behavior of the singleon the impurity site isdl:zﬁf:rrb;. The SUN) X SU(M)
channel SIAM correctly on the level of the pseudoparticleAnderson impurity Hamiltonian is then defined by
propagatorg!?’ However, physically observable spectral

properties had not yet been calculated because of their com- H=>, ekcl(mck[m +> edy(,ff,f(,
putational complexity. kow o

In this article we present CTMA results for the thermody- +
namic and spectral properties of the (BlYxX SU(M) Ander- VX (Cgfwbﬁf”J' H.c)+ Q. @)
son impurity modelN being the local spin degeneracy and o
M the number of identical, conserved conduction channeléﬂere,cngzk cfiw creates a conduction electron at the im-
We will focus on the single-channel Fermi liquid ca@¢  purity sittR=0 andey ,= €4+ ogugB is the impurity level in
=2, M=1), although results for the two-channel non-Fermia magnetic fieldB, with ug andg=2 the Bohr magneton and
liquid sector of the modelN=2, M =2) will also be shown. the Landé factor, respectively. The operakgr transforms
The spin susceptibility as well as the frequency dependencaccording to the conjugate representation of 8l We de-
of the impurity electron self-energy indicate that the spin-note the density of stata®0S) of the conduction electrons
screened Fermi liquid ground state of the2, M=1 SIAM at the Fermi energy: by N(0) and assume it to be structure-
is indeed captured by CTMA. However, the unitarity sumless. (All numerical results were obtained for a Gaussian
rule of the spectral density, which is vital for DMFT appli- DOS. Note, however, that our method works for arbitrarily
cations, is overestimated. A detailed inspection of the impustructured DOS.Instead of the hybridizatiok, we will fre-
rity electron self-energy shows that this failure seems taquently usel’=7N(0)V? as a parameter of the model. In the
originate from an imprecise treatment of high-energy proKondo regimeI' < ¢4 where the low energy excitations re-
cesses, either due to numerical inaccuracy or due to CTMAemble those of the Kondo model, the above Hamiltonian
neglecting non-singular potential scattering terms, and thatas a dynamically generated strong coupling scale, the
such imprecision influences the low-energy behavior via th&ondo temperatureT,, where perturbation theory breaks
Kramers-Kronig relation. Based on this analysis we proposelown,
below a phenomenological correction scheme which imposes MIN)
the causality of the impurity self-energy, and which may thus T, = D(N—F) exp(— M) ?)
make the CTMA applicable as an impurity solver for DMFT K N[/’

calculations. This approach amounts to adding an appropriate . ) ,
potential scattering term to the real part of the impurity self-Where D is the bandwidth of the conduction electron DOS.

energy, taken to be a temperature independent constant. W&€ Hamiltonian(1) possesses a(l) gauge symmetry with
will term this scheme the “effective potential scattering "€SP€ct o simultaneous transformations paindb;; related
method.” to the conserved chard@@ A being the local gauge field. The
The paper is organized as follows. We describe the COnexact_prOJectlon _of the dynar_nlcs onto the Hllbert_subspace
serving pseudoparticle technique in Sec. 11, including severa®=1 i accomplished by taking a gauge with a time inde-
physical and technical justifications of the CTMA. The de-Pendent\, re-defining the zero of the energy scale @s
tailed CTMA self-consistent equations are given in the Ap-— @*\, and letting\ — < in all expressions; see Ref. 28 and
pendix. The CTMA results for the temperature dependentN® appendix of Ref. 20 for details of the projection tech-
static spin susceptibility and for the impurity spectrum arenidue. The charge conservation in conjunction with the con-
presented in Secs. 11l and IV, respectively. Our effective po-Straint Q=1 implies an orthogonality catastrophe between
tential scattering correction scheme is discussed in detail &€ Q=1 initial and theQ=0 final states, and leads to infra-
the end of Sec. IV. In Sec. V, we compare the CTMA angred threshold power-law behavior of the pseudoparticle
NCA result for the spectral density of the two-channelGreen’s functionsG(w) e ™. In the Fermi liquid case,
SIAM, where the ground state is not a Fermi liquid. We M=<N-1, the exponenta, , are closely related to the aver-

conclude with a discussion of the results in Sec. VI. agle Zénlfl)“rity occupation numbery via the Friedel sum
rule 29-

Il. MODEL AND CONSERVING T-MATRIX ar=(2n5-ndIN, ap=1-n3N. (3

APPROXIMATION . . . . .
Approximation schemes for calculating;,, which violate

We consider the SIN) X SU(M) SIAM in the limit of  the gauge symmetry would, hence, violate the orthogonality
infinite Coulomb repulsion, implying that thé-fold degen-  of initial and final states, and should be expected to give
erate impurity levelcalled d-level herg labeled by spin  incorrect results for physical quantities, even though certain
=-N/2,...,+N/2, is at most singly occupied. The empty aspects of the Fermi liquid fixed point can be described by
impurity state isM-fold degenerate, labeled Qy=1, ... M, symmetry-breaking approximatiof%:38 Therefore, we take
and is coupled to a corresponding degenerate degree of fregreat care to preserve the gauge symmetry. It can be recon-
dom in the conduction band, e.@,component of angular ciled with the time independent choice of the gauge field
momentum. In the pseudoparticle representation, the singlgecessary for th®=1 projection by employing a conserving
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approximation, derived from a Luttinger-Ward generating
functional ®.2%4° The local self-energie¥ ,, a=f,b,c, de-

fined by
Gra(®) = 0= €4y~ A = Z(w),

Gy (w) ==\ - Sy(w),

Goo(®) = G, (@) = (),

(4)
(5
(6)
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FIG. 1. Diagrammatic representation of the Bethe-Salpeter
equations for the vertex function$©” and T(? defining the

whereG,(w) = (w-€) %, are generated by functional dif- ctya, Dashed, wiggly, and solid lines represent here and in the
ferentiation ofd® with respect to theself-consistentlyenor-  following the renormalized pseudofermion, slave boson, and the
malized Green's functiong (w)=86®/8G,(w). As a result, local conduction electron propagators, respectively. The external
for any given approximation t@b a set of self-consistent lines are for clarity only and are not part of the vertices.
nonlinear integral equations fok; and X, is obtained,
which, in general, cannot be solved analytically but is ame<€ontaining two(renormalizegl boson lines is not a skeleton,
nable to numerical solution. The central task is then to finds already contained in the firgNNCA) diagram via self-
the correct generating functional which captures the essentigbnsistency, and, hence, is omitted. The conserving approxi-
physics of the problem at hand. mation obtained in this way has been called conserving
Non-crossing approximatioiNCA). The NCA is often  T-matrix approximatiofCTMA). The self-consistent equa-
used for its computational simplicity to obtain a rough de-tions for the vertex functions and self-energies to be solved
scription, and it even captures the universal behavior inherare given explicitly in Appendix A. Note that tHe-c and the
ent to Kondo-type problenfd.However, the NCA recovers b-c vertices in Figs. 1 and 2 describe spin and charge fluc-
the correct Kondo scal€ only because of a fortunate com- tuations, respectively. Therefore the CTMA should provide a
pensation of the neglect of spin-flipping logarithmic termsgood approximation not only in the Kondo, but also in the
and an incorrect logarithmic resummation of potential scatmixed valence and empty impurity regimes.
tering terms*243Below T it develops spurious infrared sin-  On a more formal level, the CTMA can be justified both
gularities in physical quantities. The NCA breaks down in anear the weak and near the strong coupling fixed points.
magnetic fieldB even in the weak coupling regimer > T Expanding, in the weak coupling regime, the CTMA in terms
and/orB>Ty), producing, in addition to the two Zeeman- of bare, projected Green’s functions(B=0), G’ (w)
split Kondo peaks a third, field independent resonance in the 1/(w+i0),Gl(w)=1/(w+€4%i0), it is seen that the CTMA
impurity spectral density at the Fermi energy. It seems thag-f vertex is exact up to leading logarithmic order, as seen in
this spurious behavior originates from the incorrect treatment
of the potential scattering in NCA mentioned above. On the . T
level of auxiliary particles, the NCA does not give the correct a
FL threshold exponent§3)]; but insteada}“*=M/(N+M),
a“A=N/(N+M). It can be shown by power counting argu-
ments, usingy)“*+apy“*=1, that any self-consistent calcu-
lation involving only afinite number of skeleton self-energy
diagrams just reproduces the incorrect NCA exponents.
Conserving T-matrix approximatiqf€ TMA). Hence, self-
energies and two-particle vertex functions must be com-
prised of aninfinite class of skeleton diagrams in order to
describe the Fermi liquid fixed point. Since the latter is a
consequence of the singlet formation between conduction
electron and impurity spin, it is natural to assume that higher
than two-particle correlations need not be considered in the
single-channel case. The total vertex functions of conduction spin charge
electrons(c) and local degrees of freedofpseudofermions fluctuations
f, slave bosonb) are then two-particle T-matrices which are

obtained from an |nf|n!te summation of ireducible parts V'acorresponds to the NCA generating functional. Each diagram con-
Bethe—Salpeter equations. We use the_smallness of the PRins exactly one closed auxiliary particle loop; diagrams with more
ram.eter\/N(O)<1' to select.the leading dlagrams Of. the irre- than one such loop vanish after projection o@e 1. The class of
ducible parts. This results in the ladder approximation for thecT\a diagrams beyond NCA is uniquely defined by the condition
total two-particle vertices shown in Fig. 1. The Luttinger- that each conduction electron line spans exactly two bare three-
Ward functional that generates by second functional differpoint hybridization vertices, as shown. The diagrams of the first and
entiation the vertex functions of Fig. 1 is constructed byof the second columns generate, by second functional derivative,
connecting the entry and exit points by Green’s functions®®/8G.6G; and 8®/ 8G.6Gy, the spin and the charge fluctuation
lines and is shown diagrammatically in Fig. 2. The diagramT-matrices, T?, T(®, respectively(Fig. 1).

FIG. 2. Generating functional of the CTMA. The first diagram
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FIG. 3. Diagrams containing the leading logarithmic contribu- =
tions to thec-f vertex function. In contrast to Figs. 1 and 2, the lines 001}
represent thare Green’s functions here,) &ontribution from the T
NCA generating functional, )badditional contribution from the 050 | T/
CTMA. Spurious logarithmic potential scattering terms cancel only
when both terms are added. Tewd vertex has no logarithmic terms
and, hence, does not flow under perturbative RG.

0.00

d.l 1 1‘0 100
Fig. 3. Therefore, CTMA does incorporate the correct renor- T/t

malization grougRG) flow in the weak coupling regioff.In _ FIG. 4. The static magnetic susceptibility as a function of tem-
particular, logarithmic potential scattering terms, present irherature. The temperature and the susceptibility scale are plotted in
each one of the diagrams of Fig. 3, cancel correctly when th@nits of the conventional Kondo temperatdieEq. (13), that leads

two diagrams are added. Therefore, we expect that thg the valuew=0.4128 for the Wilson number; see the text. The
CTMA correctly describes the Zeeman splitting of the CTMA curve agrees well with the exact BA result in both the high
Kondo resonance even in a large magnetic field, in contrasemperature and in the strong coupling regimes, with only a small
to the NCA, where only the first diagram of Fig. 3 is in- spurious intermediate maximum in the crossover region.

cluded, and its logarithmic potential scattering part leads to a

spurious third peak at the the Fermi enetgy0 (see above  tg the impurity spin(Eq. (1)). Expression(7) is equivalent to

By virtue of the self-consistent inclusion of self-energy the =0 limit of the causal dynamical linear response sus-
diagrams in the propagators of Fig. 1 the CTMA vertex notceptipility

only includes ladder but also parquet diagrams. Moreover, at

any given order ofself-consisteniperturbation theory, the o O

CTMA includes all diagrams with the maximum number of X(To=0)=-i | di®O{M1),MO)D. 9
local spin and charge fluctuation processes in the sense of _ _
principal diagrams. Since these are expected to be respoihis is readily shown from Egs(7) and (8), employing
sible for the formation of the spin-singlet in the Kondo or d/dB=%, (dG;,/dB)é/ Gy, and

mixed valence regime, CTMA may be expected to capture 4G
the physics of the strong coupling fixed point of the single- dG, =G2 | ogu +> 02, 4G (10)
channel SIAM as well. This will be shown by numerical dB fo 5 o 9G4y dB |’

evaluation in the following sections.

which follows from the definition ofG;,,
Ill. SPIN SUSCEPTIBILITY

In this section we report the CTMA result for the static o _ Yool (11
impurity susceptibility Gty
dm is the irreducible four-point pseudofermion vertex. Any con-
xi(T) = B (7)  serving approximation by construction fulfills the equiva-
B=0

lence of Eqs(7) and(9), since it respects the Ward identity
of theN=2, M=1 SIAM in the Kondo regime and compare (11). We choose to use E), because it is computationally
with NCA and Bethe ansatz results. Throughout the papeless demanding than the correlation function 8.
the evaluations in this regime will be done for the typical Note that additional termg,(T) and x;,(T) arise, if B
parameter se¢;/D=-0.81,I'/D=0.2. In Eq.(7), yielding a  couples also to the conduction electron spig(T) is the
low-temperature impurity occupation number mf,=0.47  constant Pauli susceptibility of the conduction band and
and T¢=4.16x 107“D. Other parameter sets in the Kondo y;,(T) a mixing term correlating the impurity and the con-
regime give similar resultdM=gugX,, on, is the impurity  duction electron magnetization. Since the latter is, for a flat

magnetization, DOS, due to the electronic polarization at the bottom of the
band, x;,(T) is usually negligible folT<D.
fdwe'ﬁ“’lm Giolw—i0) xi(T) is of principal interest as an indicator of whether
Ngo = lim CTMA captures the spin singlet Fermi liquid ground state of
7 A the single-channel SIAM. The result is shown in Fig. 4.

f dwe ﬁwlm[zaGfU(“’ ~i0) + Gylw - 'O)] While at exponentially high temperature, (TiTy)>1,
®) xi(T)=(1/4)g?u3/ T, typical for a free, fluctuating local mo-
ment, x;(T) shows T-independent Pauli behavior fof
is the impurity occupation number with spinprojected onto < 0.1Tx and down to the lowesI considered, characteristic
Q=12028(B=1/kgT), and the magnetic fielB couples only  for the completely spin-screened Fermi liquid state. By con-
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trast, the low-T behavior of the NCA is a power law, with good quantitative precision. It is the resulting absence
XVCAT) = xNCA(0) =« —TY3, At T=0, x;(T) acquires the value of spin flip scattering at energies beldiy that is responsible
) for the Fermi liquid behavior near the strong coupling fixed
(9ue)” (12) point of the single-channel Kondo or Anderson model.

4T, Therefore, one may conjecture that the CTMA captures the
Fermi liquid nature of the lowT excitations as well, with
well defined quasiparticles which should become visible in
dynamical quantities like the impurity spectral density and
the self-energy. This expectation is further supported by the
fact that the CTMA does indeed reproduce the correct Fermi
liquid threshold exponents on the level of the auxiliary par-
ticle dynamics!

The quantities of prime interest, e.g., for DMFT are the

impurity electron Green’s function,

Xxi(0) =

which defines the universal low-temperature sc@je of the
Kondo or Anderson model, related T@ by the Wilson num-
ber W= TK/TL'

The comparison of the CTMA result with exact methods
like NRG!® or BA”844can be made quantitative. The dimen-
sionless quantity;(T/Ty) = xi(T)/(g?u3/ Tx) is known to be
a universal function off / T (i.e., independent of the micro-
scopic parameters of the Hamiltonjamith x;(0)=W. Self-
consistent approaches like NCA or CTMA reproduce this
universality, since they include a resummation of the loga- Gy (wi0) = 1
rithmic terms of perturbation theofy. In comparing the AP €+l -2, (w+i0)’
CTMA and the BA results one must, however, observe, that
the breakdown scale of perturbation thedFy, depends on and the interaction part of the self-energy,(w), in the
its precise definition. Therefore, care must be taken that thepin-screened casd=2, M=1. The Fermi liquid theory im-
same definition ofT is used for both the CTMA and the plies certain exact low-energy properties, which the CTMA
exact method. In Wilson’s original work on the Kondo results must be compared to, namely the unitarity limit for
model!® a Kondo temperaturd@y was defined such that in the impurity spectral density at the Fermi lev&l,(0), the
the h|gh* Egmperature expansion gf(T) all terms of half width T and positioréy of the Kondo resonance, as well
O(In(T/T{)™) cancel each other. Rasul and Hew¥off s the low-energy behavior of 18y, (w),
used the same criterion for the SIAM and found for the

(15

Kondo temperature, ~ Siré(mngy,)
g Au(0) = =, T=0, (16)
L1 1 D m
Ti=——exp 1+C-— |/ —Tk, (13
2w 2N A . 2
whereC=0.5772157 is Euler’s constant. With this definition, = WVSIHZ(WH"")TK' 17
the universal Wilson number was found to Wé=0.4128.
Using the same definition, we find within CTM&ig. 4), 2
€= ——sin(2mngy,) Tk, (18
WCTMA) = T3 (0)/42 = 0.462. (14) 7 aw dol K
In the BA method;T is defined in a somewhat different way w2+ (T)?
due to a different cutoff scheme, resulting in a Wilson num- Im Sg(w=i0)=al————, (19)
ber WBA=exp(C+1/4)/ w32~ 0.41024* (for N=2). There- Tk
fore, in the BA curve fory;(T/Tx) we rescaleT such that
%i(0) obtains Wilson'sT=0 value W=0.4128 (Fig. 4). As a W (R-1) |ef (20)

seen from the figure, the CTMA result for the static suscep- T gedlrx sirf(my,) D’
tibility is in strikingly good quantitative agreement with the _ _ . )
BA result not only forT > T%, but also in the strong coupling yvhereR;Z is the W|Isgn ratio. The proof of these relations
region, T=0.1T%. This shows that the CTMA describes the 1S compiled in Appendix B.
low-energy excitations around the Fermi liquid fixed point
even quantitatively correctly at least in a thermodynamic
quantity like the magnetic susceptibility. From the general
properties of conserving approximations, one may expect the For the computation 0fG4,(w) within the CTMA, ob-
same to be true for dynamical quantities as well. This will beserve that it is related to the single-particle conduction elec-
investigated in the next section. tron T-matrix,t.,(w) =V2Gy,(w), where, after projection onto
Q=1 only diagrams with a single pseudoparticle loop, i.e.,
irreducible diagrams, remain. In the conserving scheme it is,

A. CTMA solution and Fermi liquid behavior

IV. DYNAMICAL PROPERTIES therefore, constructed as
The Pauli behavior of the impurity susceptibility calcu- 1 1 5P
lated in the previous section shows that the spin structure of Gyolw) = Wilm 00 (@)’ (21)
— 00 co

the low-T excitations captured by the CTMA free energy
functional is such that it describes the complete screening ofhe corresponding CTMA diagrams are shown in Fig. 5, and
the impurity spin by the conduction electrons correctly evernthe details about their evaluation are given in Appendix A.
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FIG. 5. Diagrams defining thel-electron Green’s function
within CTMA. For details of their evaluation see Appendix A.
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It is worth noting that, by definition, the impurity electron Ll s i
propagator is equivalent to tHeb-“particle-hole” correlation le
function, Gdg(t):—i(T{b*(t)f(,(t)ff,(O)b(O)}). This might S
seem to offer another possibility of calculatig, using the w/Tk

irreduciblef-b vertexI's,= 8°®/ 5G;,6G,. However, any dia- _ _ _ .
FIG. 7. CTMA impurity spectral function and decomposition

gram of thef-b particle-holecorrelator constructed in this into f-b bubble and vertex contributions for the same parameters as
way contains necessarily two pseudoparticle loops, and P

hence, vanishes by projection. Therefore, in CTMA fHe in Fig. 6, but atT=0.01T. The exact values fohy(0), I', &, Egs.
correlation function is comprised of théNCA-like) f-b (1818, are displayed for comparison.
bubble diagram only, which is clearly not sufficient to re-
cover the Fermi liquid strong coupling fixed point. We note .
in passing that the non-trivial contributionsltg, comprising hOW(.ever, the tF)taIi-eI?ctron spectral function does r?ot SNhOW
the full G, are generated from free energy diagrams whichany infrared singularity on the scale &f and the widthl’
contain more than one pseudoparticle loop, but are not cor@nd position’e; of the Kondo resonance are in excellent
tained in CTMA. As a conclusion, in CTM&S,(w) must be ~ agreement with the Fermi liquid predictions, E¢7) and
calculated unambiguously using E@J). (18), given the uncertainty in these quantities arising from
The CTMA results for the d-electron spectral function, the fact that the Kondo resonance deviates from the Lorent-
Ag,(®)=Im Gy, (w—i0)/ 1 are shown in Figs. 6 and 7 far  Zian shape fow>Ty (see Appendix & In contrast, the uni-
=T, andT=0.01T,, respectively, together with its decompo- trity limit, Eq. (16), is significantly violated in Fig. 7. To
sition into thef-b bubble contributior(First diagram in Fig. nvestigate the origin of this failure, we plot in Fig. 8 the
5) and the vertex correctionsecond and third diagrams in iMmaginary part of the interaction self-energy,(w=i0). Itis
Fig. 5. Notably, even at elevated temperatufe; Ty, the ~ S€en that even at the lowest temperature the CTMA result
vertex corrections are not negligible. Far—0 the f-p ~ does not develop any singularity, in contrast to NCA. How-
bubble develops an infrared power law divergenceeVer. the position of the minimum of 1By, (w=-i0) is incor-
x| w|*r* 571, Since for our parameter set in the Kondo regimerectly shifted to a negative frequeney, of O(Ty), where
the exponenta;+a,—1=~0.056 is rather small, and the M Z4,(wo—i0) acquires a spurious negative value. Even at
pseudoparticle exponents, E(®), are obtained asymptoti- the lowestT considered, InEg,(w=i0) shows(w-w)? be-
cally, this singularity starts to develop fa=0.01Tx merely  havior for |w—wo|<Ty (Fig. 8). Its prefactor, determined

as a discontinuity in the slope &g,(w). Most important,

6 : 0.6
1 — T=2Tg
: ——=~ bubble wrsemnee T = Ty
: —-— FC vertex c===T=05Tk
) ‘ ===~ BC vertex oal ——-T=016Tk
3 oaf ' —— CTMA —-— NCA, T=0.16Tk
=< b a —— Fermi liquid (T = 0)
4 T~
=
f e ‘1 3
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FIG. 8. Correlation part of the physicdtelectron self-energy

FIG. 6. CTMA and NCA results for the local spectral density Im X4,(w) calculated in CTMA for various temperatures and
Ay (o) for €s/D=-0.81,I'/D=0.2 atT=T¢=6.1610D. The de- ¢;/D=-0.81, I'/D=0.2. For the lowest temperature showh,
composition of the CTMA result inté-b bubble and vertex correc- =0.16T, the NCA result(dot-dashed lingis shown for compari-
tions arising fromT®" (fc vertex and T® (bc vertey is also  son, showing the cusp-like infrared singularity typical for NCA.
shown. The NCA shows an incorrectly large shift of the Kondo The bold solid line centered at the origin representsith® behav-
peak of O(Tk) toward positive frequencies, which is corrected by ior expected for our parameter set based on Fermi liquid theory,
CTMA, see the text. Egs.(19) and (20).

165102-6



DYNAMICAL PROPERTIES OF THE ANDERSON.

—— T=0.16Tx
——= 0.02440 (v — wo)/Tx)”

1 10

(w - w(])/TK

0.1 100

FIG. 9. Loglogg plot of Im 34, (w=i0) = Im 34, (wp—i0) ver-
sus frequencyw—wq)/ Tk, for T=0.16T. w, is the position of the
minimum of Im34,(w—i0) in Fig. 8. The dashed line is the fit to
the low-frequency quadratic behavior of My, (w—i0) and repre-
sents the functiory:0.0244Qw—wo)leﬁ; see the text.

from our parameter set from Fig. 9 as 0.0R44s in excel-
lent agreement with the exact Fermi liquid valual’

=0.023D (Egs.(19) and(20)). The temperature dependence on

of the minimum of ImX,,(w-i0) is analyzed in Fig. 10.
Again, the CTMA solution show$? behavior from the low-
est T considered up to T=Tgk, ImZ3y,(wy—i0)
=al(#T/Tx)? where the prefactoBl'=0.01D is of the
same order of the exact vali@a&', although roughly a factor
of 2 too small.

To summarize our analysis, the?, T? behavior of the
impurity electron self-energy, which stems from the low-

energy excitations and is at the heart of the Fermi quuidt

theory, is even quantitatively reproduced by the CTMA with-

out spurious singularities. However, the location of this mini-

mum atw=0 and the exact unitary valuk,,(0) of the im-

of the impurity self-energy.4,(w) and, hence, for an appli-
cation as an impurity solver within DMFTAs will be dis-

PHYSICAL REVIEW B 70, 165102(2004)

— CTMA
~—— NCA

15 |

7w Age(w) D
wAg(w) D

0.5 |

0
0.5 0
w/D
FIG. 11. CTMA(solid line) and NCA(dotted ling result for the
local spectral density in the empty impurity regineg/D=+0.81,
I'/D=0.2 for T=1.010*D. The resulting occupation per spin is
Nng,=0.037. The insets show the CTM#eft pane) and the NCA
(right pane) spectral functions over the complete band width.

attributed to an incorrect treatment of non-singular potential
scattering processes at high energies; Tx. We will pro-
pose a corresponding correction scheme in the next subsec-

We conclude the present subsection by considering briefly
another test case of Fermi liquid behavior, the empty orbital
regime. In this case thd-electron density of states consists
of only one broadened, unoccupied single-particle resonance
at a renormalized impurity leved;> 0 far above the Fermi
energy. In the pseudoparticle representation, the empty-
impurity case is still a non-trivial strongly correlated prob-
lem because of the operator constrant1. Figure 11 shows
he NCA and the CTMA spectral density fey/D=+0.81,
I'/D=0.2. NCA is well known to fail badly in this case,
producing a spurious, singular peak @t0, which arises
from the x-ray-like divergences of the pseudoparticle

- . ! ; SGreen’s functions. In the CTMA solution, the vertex correc-
crucial to avoid a non-causal behavior of the correlation parf

ions tend to cancel the infrared peak of fhb bubble. Pre-
sumably, the wiggles visible in the CTMA spectrum are due
to numerical imprecision, but may also be due to a system-

cussed below in more detail, both of these failures can bgicaly imperfect cancellation of infrared divergent terms. In

1

0.1

- Im(E(wWwin(T), T') — X(wp, 0))/D

T/Tx

FIG. 10. Logglog;g plot of the minimum value of the imagi-
nary part of the self-energy, 1By, (0=wmin(T),T)=IM 2y (w
=wg, T=0.01Ty) versusT/Tk. wmin(T) is the position of the mini-
mum for a given temperatufe see Fig. 8. Quadratic ili behavior
is clearly visible for T<Tk. The dashed line is given by
=0.01D(7 T/ Tx)2

any case, the CTMA does not produce any definite peak
structure atw=0, significantly improving the description of
the Fermi liquid behavior in the empty orbital regime.

B. Effective potential scattering correction

Within the pseudoparticle technique, it is a non-trivial
task to separate the single-particle hybridization pErtof
the total impurity self-energy, from the interaction contribu-
tion, 2 4,(w), since the hybridization is an interaction term in
this representation, Eql). Hence, while the auxiliary par-
ticle method is designed for a systematical treatment of the
low-energy spin scattering processes, it is difficult to accu-
rately calculate the non-singular potential scattering part of
the total impurity self-energy

SO w) = w+ € — €5~ Ggolw) ! (22)
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FIG. 13. Real and imaginary part of the total impurity self-

FIG. 12. CTMA spectral functions with a constant potential energyzfj‘ﬁ(w—io), corrected by the effective potential scattering

scattering term added to the real parBgf,(w—i0) according to the method. The curvature of IB'%(w—i0) at the Fermi energy does

effective potential scattering method; see the text. No Iow-energ;hot change considerably froM=0.16Tx down to T=0.01Ty. The
singularity occurs, and the unitarity limiarrow) is accurately ful- small bump in the curve fof=0.01Ty at positivew is attributed to

filled at the lowest temperatures. numerical inaccuracy. Awv=0,T—0, Im Egﬁ(o—io) assumes the
effective hybridizationl'¢¢t=~0.13D, somewhat smaller than the
=i+ 34, (w), (23)  exact valud'=0.2D. Tef¢ is to be subtracted from IR (w-i0) in
order to obtain the interaction part of the local self-energy.

which involves hybridization processes at high energies of

order e4. Technically speaking, the=0 value of ImEfj‘f}(w) missing only part of the potential scattering contributions.
is influenced by both the real and the imaginary part ofThe corresponding imaginary part of the total impurity self-
Gg,(0), and hence by the high-energy features of the specenergy, Eq(22), is shown in Fig. 13. Again, the Fermi liquid
trum through the Kramers-Kronig relation. Obtaining the behavior, Eq(19), is well obeyed. The minimum value of
precise values of the real and imaginary part&[§f(0-i0)  Im =&, (w=i0) approaches for T—~0 the value I
would therefore require calculating the high-energy features®0.13D instead of the exact limif'=0.2D. As discussed
of the local spectrum to a precision better thafi.. Clearly, —above, we attribute this to an inaccurate treatment of single-
this is a formidable task, both with respect to numerical prearticle hybridization processes within CTMA. Note how-
cision and to diagrammatical systematics: Since any potergVer, that for the DMFT algorithfronly the interaction part
tial scattering term gives a non-singular, energy independentd.(@) of the self-energy is important. In the auxiliary par-
contribution toEfﬁ(O), it is unlikely that a class of principal ticle method it is obtained from the impurity Green function
diagrams can be identified that reproduces the correct valugy the subtractior® y,(w—i0) =2 (w=0) =T, whereZ

On the other hand, the class of CTMA diagrams does deiS given by Eq.(22), and its imaginary part remains strictly
scribe the correa?, T2 behavior, reflecting the correct low- Nnon-negative.

energy many-body dynamics.

Based on these considerations, we propose a simple, phe-
nomenological scheme to incorporate the correct potential
scattering contributions. It amounts to adding an appropriate To complete the discussion of dynamical quantities we
frequency and temperature independentstantAe to the  calculate the local spectral function of the two-channbl
real part of S5Y(w). It has the effect of shifting the zero of =2, M=2) Anderson model. Here the low-temperature fixed
the frequency scale in all quantities, and in particular inpoint is of a distinct non-Fermi liquid natut&,involving a
Im 34,(w), by virtue of the self-consistené§.ThereforeAe  non-vanishing zero-point entrop(T=0)=kgIn\2, and a
can be chosen such that B0 the minimum of Im¥4,(w  logarithmic divergence of the static susceptibilify(T) =
-i0) is obtained atw=0 in accordance with Fermi liquid -In T/Ty, signaling a non-degenerate ground state and over-
behavior, Eq(19). In the CTMA solution the position of the screening of the local spin, respectivély®
minimum of Im34,(w) does not significantly change with For the two-channel Kond¢2CK) model, the effective
temperature foif <0.2Ty, see Fig. 8, as expected from the low-energy model of the two-channel SIAM, it has been
Fermi liquid behavior, Eq(19). Hence, we have determined shown using conformal field thedfythat the local spectrum
Ae from the solution aff=0.16T to fulfill the Fermi liquid  has a cusp at the Fermi leve\?“K(w)—A2CK(0) < —| w|*2.
condition above. The results for the impurity spectral func-The weight of this power law becomes asymmetrical for
tion corrected in this way is displayed for varioisn Fig. >0 andw <0, when the particle-hole symmetry is broken,
12. It shows accurate agreement with the unitarity limit, evere.g., by an additional potential scattering term. This weight
though this was not directly implied by our adjustment pro-asymmetry is analogous to the shift of the Kondo resonance
cedure. This can be seen as a further indication that CTMA in the single-channel case. Extrapolating the Fermi liquid
correctly captures the Fermi liquid dynamics of the problemyresults of Appendix B to the two-channel SIAM, the weight

V. TWO-CHANNEL KONDO BEHAVIOR
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havior of physical quantities correctly. It is, thus, the first
I lome st diagrammatic method that captures both the low-energy
Fermi liquid behavior and the high-temperature properties of
guantum impurity problems of the single-channel Anderson
model type on the same footifig.In particular the CTMA
describes the static spin susceptibility in the Kondo regime
correctly for all temperatures. The Wilson number obtained
within CTMA is in remarkably good agreement with the ex-
act one. We also showed that the physit@lectron spectral
density in the single-channel cagd=2, M=1) is able to
mend most of the deficiencies of the NCA in the Kondo and
empty orbital regime of the model. Especially, no spurious
0 s - : s infrared singularities occur. The deviation of the CTMA so-
- 1 3 5 7 . . . e
w/T lution from the exact unitarity limiting value for the spectral
density at the Fermi level could be traced back to an insuf-
FIG. 14. CTMA results for the impurity spectral density of the ficiently accurate treatment of high energy potential scatter-
two-channel SIAM, withe;=—0.81D, I'=0.2D at various tempera- ing processes. To correct this deficiency, we have proposed a
tures. The NCA result is shown for comparison. Thg'? cusp  phenomenological method by adding an appropriate, effec-
develops at the Fermi level, with a weight asymmetry due to potentive potential scattering terrfie to the real part of the impu-
tial scattering. The inset shows the spectrum over a wider frequencsity self-energy, and defining an effective single-particle hy-

range. bridization ratel'¢ss. As a result, all essential Fermi liquid
properties are fulfilled without spurious non-causal behavior.
asymmetry may be expected to be ©fTx/¢y). Very re- Finally, we comment on the prospects for future applica-

cently, the auxiliary particle threshold exponents for the two-tions of the CTMA. At the expense of being numerically
channel Anderson model have been calculated using the Bévolved, the CTMA combines two features which are non-
the ansat?? It was shown that the exponents, like in the trivial to fulfill by one single technique: flexibility and sys-
single-channel case, are functions of the local valence. ~ tematic treatment of the low-energy excitations withaut
The Bethe ansatz solution shows that the 2CK groundloCassumptions about the nature of the ground state. These
state involves intricate correlations between both conductiof¢atures may make the CTMA an attractive method for more
channels and the local spin. Thus, one would expect that in @mplicated impurity problems, such ad) the self-
diagrammatic treatment three-particle correlation functiongonsistent quantum impurity problem that arises within the
are needed, and that CTMA, which involves only two- DMFT schemé, (2) quantum impurities with complex or-
particle T-matrices, is not able to capture the correct 2CKbital structure; these arise also in cluster and cellular exten-
ground state. Indeed, in the multi-chantil=2) case NCA ~ sions of the DMFT>°" (3) quantum impurity problems
as well as CTMA give incorrect, valence independent auxil-Which may exhibit a Fermi liquid instability. As a diagram-
iary particle threshold exponents as given in Se€3 Bur-  Matic method, the CTMA is readily generalized for an arbi-
prisingly, however, NCA correctly reproduces qualitatively trary, energy dependent conduction electron DOS arising
the leading low-energy singularities of physical quantitiesfrom _the self-consistent I_DMFT scheme. In gddmon., the case
like the susceptibility® or the local density of statédn Fig.  Of finite Coulomb repulsiod must be considered, in order
14 we show the CTMA solutions for the impurity spectral t0 account for the upper Hubbard band and, e.g., to describe
function of the two-channel SIAM in comparison to the the metal-insulator transition in the Hubbard model near half
NCA result, both showing dw|*2 cusp. The cusp of the filling. I'g requires treating the bare charge fluctl_Jatpn pro-
NCA curve has a strong weight asymmetry, which is presum¢€sses involving the empty and the doubly occupied impurity
ably an overestimation, like in the Fermi liquid cagég. 6.  State in a symmetrical way. On an NCA-like level
This is significantly improved by the CTMA solutions. How- (Symmetrized-U NCA, SUNCH this has been implemented
ever, as mentioned above, we believe that a systematical dél Ref. 58, see also Ref. 59, and the corresponding Symme-
scription of the 2CK behavior would require an extension offrized, finite-U CTMA(SUCTMA) equations are reproduced

the CTMA to include three-particle correlation functions.  in Ref. 28. The SUCTMA essentially amounts to calculating,
in addition to CTMA, the ladder diagrams of heavy bosons

VI. SUMMARY representing the doubly occupied impurity state. Hence, the
' evaluations appear numerically manageable. Treating a more
To conclude, we have extended the analysis of the coneomplex impurity orbital structure requires introducing an
serving T-matrix approximation to thermodynamical and dy-individual auxiliary boson or fermion field for each charge
namical properties. It had been demonstrated earlier that fand spin configuration of the impurity. Multi-orbital impuri-
the single-channel Anderson impurity model the CTMA cap-ties have recently been treated using NCA-like
tures the correct spin-screened Fermi liquid ground state oapproximation$?®6! The fact that the number of impurity
the level of the auxiliary particle dynamics, signaled by theconfigurations increases roughly exponentially with the num-
Fermi liquid exponents of the auxiliary particle propagatorsber of orbitals will, however, limit the CTMA und SUCTMA
for all fillings.? In the present work we have shown that theto problems with not a too large number of local orbitals. On
CTMA also describes the Fermi liquid strong coupling be-the other hand, because of the systematical treatment of low-
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) N+l - ) FIG. 15. Diagrammatic representation of the
T =, VA - 5 Ve integral equations comprising the T-matrices that
. - -_______F. e - enter in the expressions for the auxiliary particle
T0 T’

self-energies, see the text for details.
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energy excitations, the CTMA should at least be sensitive tdytically continued four-point vertice3©? and T?. Due to
instabilities of the Fermi liquid ground state due to, e.g., athe fact that the first diagram in Fig. 1 does not lead to a
quantum critical point. Future developments are planned t@roper vertex contribution, we start the summation with the

explore the possibility of these applications. two-rung diagram. In order to include the proper channel and
spin summations with enter even-rung and odd-rung dia-
ACKNOWLEDGMENTS grams differently, it is necessary to solve for the ladders with
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vided by SFB 195 and by SFB 608 of the DFG. tracted before calculating the self-energies. The resulting
equations are diagrammatically depicted in Fig. 15. We label

the external frequencies of the fourpoint vertia#s” and
V() sych that the firs{secong argument denotes the in-

In the following we present a compilation of the CTMA (out-)going frequency of the pseudo-particle propagator and
equations which determine the imaginary part of the imputhe third frequency labels the center of mass-frequency
rity propagatorGy, the auxiliary particle self-energi€s and  propagating through the ladder; see Fig. 15. The vertex func-
3, and the basic building block of the CTMA, i.e., the ana-tions are therefore given by

APPENDIX A: CTMA EQUATIONS

S r i

VIEVOLG g i, 1) = 1P o i, 1Q) £ NGO B

> Gpuliog +ief—iQ,)
o
X Gro(iwn) G, (iQ = i)V EDDE( o i), i€)),

cut
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. 7N(0)/ B,

and

VIO i o, i, 1) = 110 (1w, 10,1 ) +

v

X Gb,u.(l (1);.:) Ggwr

r

WV

7N(0)

n

After analytical continuation to the real axis the T-matrices
obey the following linear Fredholm integral equations of the

second kind:
+ + d
VB 0", Q) = 110V, 0", Q) £ (- F)f ZHe-Q)
' ' ar

X Gbﬂ(w +e— Q)
X Gy, ()AL, (Q - OV (e, 0’ ),

11Dk, 0", Q) = I % e - Q)Gp(w+s-Q)
or aN@©0)) = “
X Gy,(8)AY, (Q = £)Gyp, (0 +&~Q)
(A3)

and
+ + d
Vi (w,0",0) =10 (0,0, Q) £ (+1) f Zfe-0Q)
a

X Gi(w+e - Q)Gb#(e)Agm(e -Q)
XV(V?E)&)U(S,(D,,Q),
I'? de
(ch)(x)o ’ - _ - -
I;V (w,0",Q) = 2NO) 7Tf(s )G (w+e
- )Gy, (e)AY, (e = WGy, (0 +e-Q).

(A4)

In order to simplify the expressions for the self-energies

and, it proves useful to introduce

NCA (ch) (cb)

from T(®) and T,

NCA
Zﬁvm””’

PHYSICAL REVIEW B 70, 165102(2004)

r \21
10w, i 1) = = (—) /—32 Goulion + i = 100Gy (i0)GY, (10— i) Gy,liwn +if =10y, (A1)

r1

N©O) ,32 Groliwn +iwy =iy

"
@n

(iwp = 1QIVED D (0t i), i),

2
1
107 (i o o 1 Q) = = (—) EE Groliwn + i) = 1Q)Gp, (0l GY, (i) = iQ) Gy liw) +iw)—i). (A2)

v/

N+1 N-1
7ien = N2 ene) M= Lytenc) _yyeen,
2 2
N+1 N-1
T = et - S yeno - e,
and

Teb MT‘l\/(cb)u) P ML e - pgyen.
7o = M= L e - ML e e

Then we obtain for the analytically continued advan¢ied
— w—i0=w) self-energiegFig. 16):

S1o(@) =2HN(0) + 2 (0) + 2P (w),  (A5)

Spu(@) =S (@) + 3 0(0) + 30 (w)  (AB)

with

SINCA () = MTY, f d—;f(— e)Aglm(e)GbM(w - €,
n
SN (w) = NI J d—;f(e>A2W(e)Gfa(w+ e,

30(w) =M f d—;f(e— )A€ - )X TNO) T (0, w, €),

FIG. 16. Auxiliary particle self-energie¥¢
and 3y The first diagram is the NCA contribu-
tion, where however fully CTMA-renormalized
Green functions have to be used. The second and
third diagrams constitute the vertex corrections
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continuation of the external frequencies. In the contour inte-
grals around conduction line cuts we have us@@lw)
=(Um)Im G, (0=i0)/N(0).

Once the pseudo-particle Green functions have been self-
consistently calculated, physical properties can be deter-
mined. In order to construct the local Green function from

FIG. 17. Diagrammatic representation of the equation for thethe basic building block of our theory, the fourpoint vertices
local d-electron Green function. The first diagram is the NCA con-T(¢) gnd T(¢Y \we note that the Bethe- Salpeter equations

tribution. As described in the text, because of the analytical StrUCabove y|e|d either fu”y advanced or fu”y retarded
ture of the Adsigma it is necessary to multiply with a rung at eachr. matrices,

end of the vertex functlonS’Ef;), Vii) , as shown in the last two

diagrams on the right-hand side. Hence the sum of these diagrams

contains at least four rungs, i.e., the three-rung term must be added TRRRw, ' ,Q) = T(iw — 0 +i0,i0’ — o' +i0,
separatelysecond diagram on the right-hand side.

iQ— Q+i0) (A7)
d
S (@) = - MFJ Ej —f(e w)f(e - w)
or
X Ag(w - G)Gb(E)WN(O)T(ZCb)(G, €,et+te —w)
XAS(w - €)Gy(€"), T"Aw,0',0)=T(lio— 0-i0,i0’ — o' —i0,
and IQ—>Q—IO) (A8)
de The local spectral density however requires the determi-
=-NI _f(f w)f(e' - w) nation of TRRA w, w’, Q). Therefore, its calculation is more
- involved. We construcTRRYw,w’,)) by adding two rungs
X A€~ w)Gf(f)WN(O)Tz (€€ e+ € ~w) to each of the diagrams ifi? and T(°®. This then turns for
XAS(e’ — )Gq(€), example the two-rung diagram into a four-rung ladder. In

order to include all contributmg diagrams, it is then neces-

d sary to employ the T—matrlce\$(+) andV'® instead ofTc"
E(Cb)( )=-N _6f( - ) 0w — €) X wN(0)T'P (ch) . . *)

bu \@) = €~ w)A(w =€ X TN(O)T (0,0, 6), and T'°® and, in addition, the three-rung diagram has to be
added, see Fig. 17. The equation for the advanced spectral

where the vertex functions follow froﬁﬁ(lc,;) and T(f,g) after  function after projection onto the physical subspace then fol-

performing the frequency summations and analyticalows as

0
Ag (@) = AT (o )+N()lf dz )f deJ deof (€1 =B f (€~ DA, (€~ €A, (E - &)

XIM{Gy,(€1) Gy, (€2)Gp(€r + €2 =€)} - IM{Gy,(€ ~ @) Gp(€1 ~ )Gz~ w)}

f(w) ; dé']_‘fOO dfzf(é'l _E)f(ez _E)Ag(ru(é_ El)

N+1
XAC()',LL(E EZ)Im{ Gf(r(el)Gf(r(EZ) |: 5 Vifo' o' (611 621‘2) + ; . V(—:TU',O"(EJ-’ 62,~6)i| }

o _B} % o
XIm{GfU(E—w)Gbﬂ(el—w)Gbﬂ(ez—a))}+f dEf(e_ )f delj dezf(el—~6)f(62—’E)Agw(el—'é)AgW(ez—'E)

M-1 -~ M+1 ~
X Im{ Gb,u,(el)Gb;/,(€2) : |:T ' Vii,gu',(r(ell €2, E) + 2 ’ \/E?U,U(El’ €2, 6):| }

XIM{Gp, (€ + 0) G, (€& + )Gy (€ + w)}} : (A9)
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with the quasiparticle weight=(1-d24,/dw|,-0) %, the Green’s
function can be written fofw|, T=<T,
AN 0 = [ dee T o+ ) (0 ,
Gyolwi0) = ———, (B6)
= Aro(&)Apule — w)]. (A10) 0-€xil
with €;=7 ep+ €4+ Re 24, (0)], I'=z. z can be expressed in
APPENDIX B: FERMI LIQUID RELATIONS terms of the strong coupling parameters of the Anderson

model by equating th&=0 spin susceptibility, Eq.12), with
the Pauli susceptibility of a Fermi liquid of quasiparticles
with weight z, x(0)=(gug)?A4,/Z,

In this appendix we compile some exact Fermi liquid
properties for thal-electron Green'’s functiofN=2, M=1),

1

Gyolw+i0) = . —.  (B1) _ ATgsin(mng,)

d w+e—e+il -2, (w+i0) Z_—TrFW ; (B7)

The interaction contributior®y,(w+i0) to the self-energy
O X and hence,
obeys the Fermi liquid relations
~ 4
2+ T 2 — . *
Im Sy (0+i0)=al ———1 T(;T S wT=T.. (B2 ['=—ySim(ma,) Te. (B8)

K
Combining Egs.(B4), (B6), and (B8) the position of the

Kondo resonance relative tg is given by

0

Jd

f dw Ed“GdU(w):O,TZO. (B3)
o Jdw

2
€= —Wsin(Zq-rnd,,)TE. (B9)
These imply the Friedel sum ruley,(0)=§,, with ny,(0) the .
impurity occupation aff=0 and §, the scattering phase at The exact prefactaa of the quadratic behavior of Iy, (w)

the Fermi energy, has been calculated for the Anderson model using direct per-
turbation theory to infinite order in the on-site repulsion

cot 5, = L‘j"(o)__ (B4 U264 One obtains at T=0, &Im 3y, (w—i0)/dw?
Im Gy,(0 +i0) =] 90,0 Ag,(0)]3, where y(0,0) is the full, local two
The impurity spectral density at the Fermi energy0, T  €lectron vertex function at the Fermi energy andTat0.
=0 follows from Egs(B1), (B2), and(B4) as Using a Ward identity? it can be related to the quasiparticle
density of statesAy,(0)/z and expressed ag(0,0)=(R
Ay = llm Gu(0-0= sinf(ng,) (B5) -1)/[zA,(0)], whereR=2 is the Wilson ratio. Hence, taking
T dor I into account Eq(13), we obtain for the prefactor in E¢B2),
The Fermi liquid relations also determine the widthposi- a= W (R-1) @ (B10)
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