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We introduce a simple two-region model where the diffusion constant in a small region around each step on
a vicinal surface can differ from that found on the terraces. Steady-state results for this model provide a
physically suggestive mapping onto kinetic coefficients in the conventional sharp-step model, with a negative
coefficient arising from faster diffusion in the step region. A linear stability analysis of the resulting sharp-step
model provides a unified and simple interpretation of many experimental results for current-induced step
bunching and wandering instabilities on bott{13i1) and S{001) surfaces.
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Si surfaces heated with a direct electric current undergalependent forcé==e'E. However, it is not clear how to
striking morphological changes induced by step bunchingnodify this picture to account for the reversals in the stable
and step wandering instabilitiéd. These phenomena are of current direction at higher temperatures. Experinfehts/e
great interest not only because of possible applications foruled out the simplest explanation, a change of sign of the
directed growth and nanofabrication, but also as physical exeffective chargé,and it seems likely that different boundary
amples of pattern formation on largem) length scales in a conditions are needed to describe the wandering instaHllity.
system driven far from equilibrium by a weak and externally  To gain some insight we introduce here a simple model
controllable field. that can give a more detailed description of processes occur-

We present here a simple model that describes the intefing in the region around a step. The characteristic surface
play between the externally driven diffusion of adatoms byreconstructions seen on semiconductor surfaces strongly af-
the electric field, and the intrinsic modulations and anisofect surface diffusion rates and pathways. We expect a dif-
tropy of the diffusion pathways and the attachment kineticserent local reconstruction of bonds in the vicinity of a step.
on terraces and steps. It provides an interpretation of th&his suggests it could be profitable to view a step “dressed”
kinetic coefficients used in traditional step models and showsy its local reconstruction as definingegion of finite width
that negative kinetic coefficients can arise from faster diffu-s (of a few atomic spacinga) where adatoms undergo ef-
sion in the region around a step. Many features of the instafective diffusion with a diffusion constarid that can differ
bilities seen on Si surfaces can be understood from this pefrom D,, the value found elsewhere on the terrateBor

spective. o o Si(112) we can takeDg and D, as isotropic and assume the
Step bunching is seen on vicinal(811) surfaces when step region has a fixed widthat a given temperature.
the current is properly directed normal to the step3he Thus, a uniform vicinal $iL11) surface can be viewed as

uniform step train is initially stable when the current flows in an array of two-region units, made up of theh step region
the opposite direction. This instability has a mysterious deof width s and its neighboring lower terrace region, with
pendence on temperature, with three temperature ranges hgidth |,>s. We assume that the straight steps extend along
tween about 850 and 1300°C, where the stable and unstabige y direction and the step index increases in the positive

directions are reversed. Moreover, in temperature range lstep down direction, withx measured from the center of the
(about 1050-1150°after heating for several hours with a step region(see Fig. L

current in the nominally stablestep-down direction, the The biased diffusion flux of adatoms with densityakes
steps undergo wandering instabilitywith finite wavelength  the form:J,=-D,Vc,+D fc,, wherea=(t,s) indicates the
in-phase sinusoidal undulations in their positiéss. terrace or step regions arfie= F/kgT. (We neglect evapora-

Current-induced step bunching also occurs of0&)  tion and assume a constant positive effective changée
miscut along(110), but with some notable differences pre- first consider the steady-state solutions that arise when the
sumably arising from the alternatingl X 2) and (2xX1)  electric field is directed normal to the steps andfletf-X.
dimer reconstructions on adjacent equilibrium terraces. AWe can ignore the small effects of step motion on the steady-
low temperatures step bunching is found for current normastate adatom density field and determiniy simply requir-
to the steps irboth directions, but involving paired double ing V-J,=0 in each region, along with continuity afandJ
height stepg:#-6 at the fixed boundary at=s/2 between the step region and

The behavior in the lowest temperature range | 6181  the lower terrace region. In almost all cases of physical in-
is well described by a continuum diffusion model with non- terest, the field is sufficiently weak th#lt and fs are much
equilibrium boundary conditions at sharp-step edgeene  less than one, and the steady-state profiles are piecewise lin-
assumes that adatoms acquire a small positive effectivear.
charge € and undergo biased diffusibnfrom a field- In particular the steady-state terrace density is
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Stepn Stepn+l The general continuum boundary condition in the sharp-
Terrace n step model assumes small deviations from local equilibrium

and introduces lineakinetic coefficients kto relatec,” (or

¢, ), the limiting lower (or uppej terrace adatom density at
the step edge, to the associated terrace adatom flux into the
step,

D D

s

Cc
o —ﬁ-Jf:ki(Ef—ceo). 3
Here Ceq:cgc[lﬂ“x] with T" the capillary length(propor-
tional to the step stiffnessind « is the local step curvature.
For Si111) experiments are consistent with a symmetric
model, wherek, =k_=k.

In the usual quasistationary approximation, the diffusion
field with boundary conditions given by E¢B) is first cal-
0 2 y culated for fixed step positions, and then the step velocity is

— X 1 determined from the net local flux and mass conservation

FIG. 1. Geometry and density profile of the two-region model. veAc=1-[J7 =] - 9. (4)
The sloping solid lines in the upper part of the figure give the -l a2 . .
steady-state density profile as a function of distarciEom the Here A.C._Q N .'S ”le change |nAareaI density when an
center of the left step region, denoted by the vertical dashed Iineétom Jjoins th? SOI'd’JS,_ _DS&TCS"'DS(T'DCS denotes a tan-
Shown is a highly exaggerated profile for a downhill force and9€ntial or periphery diffusion flux along the step edgee
slower diffusion in the step region, yielding step bunching in rangeSharp-step analog of parallel diffusion in the step region of
lin Si(111). Also illustrated with the dashed-dot line is the extrapo- the two-region modg) andcs= c.s gives the effective num-
lation of the terrace profile to the center of the step region, thud€r of ledge atoms per unit step length with diffusion con-
determining the parametar” in Eq. (3). The lower part of the trolled by D rather tharD.
figure gives a side view of sharp equilibrium steps and their asso- It is natural to identify the terrace width in the appropriate

ciated step regions. sharp-step model with=I,+s and to relate the limiting ter-
race densityc,” in Eq. (3) to c?(O), the extrapolationof the
(112 =x)(R~- 1)sf two-region terrace profile in Eql) to the center of the step
0 0 . g X S
C(X) =Cgql 1 T T (R-Ds (1) region, as shown in Fig. 1. Relating parameters in discrete
+(R-1s and continuum models by extrapolation is well known in

other interface applicatiorig.

for s/2=x=<I-s/2, with a similar linear expression for Using these results and the flux from E@) in Eq. (3)

ca(x). The (constant adatom flux is given by we find to lowest order irf our basic result,
0 D 1
3(0) = DiCeqf | 2) —=d=-(R-Ds. (5)
o R-Ds k Z

This equation relates the fundamental parameReasd s of
Herel =l +s s the distance between the centers of adjacenthe simplest two-region model to the kinetic coefficiérin
step regionsR=D,/Ds is a key dimensionless parameter an equivalent sharp-step modal.
that describes the relative diffusion rates of adatoms in the Thus, a positive kinetic coefficieltcan arise fronslower
terrace and step regions, au&iqis the average equilibrium diffusion in the step regioR>1), in accordance with the
density wherf=0. This is also the density at the center of theysual picture of an attachment barrier in range I. Indeed, the
step(and terracgregion, so one can view the step region asextrapolated profile in Fig. 1 corresponds exactly to the lin-
comprised of a classical local equilibrium sharp stepcat ear steady-state profile analyzed in Ref. 7 if B5.is used to
=0 surrounded by a symmetric local region of widtivith @ relate parameters in the two models. Rs—1, we have
different diffusion constant, as illustrated in Fig. 1. k— oo, and we arrive at the local equilibrium boundary con-

Equation(1) shows that the slope of the steady-state dengition with € =Ceq

sity profile is proportional taR-1)f. Thus, there are four  However, if diffusion isfasterin the step region than in
general types of profiles arising from a downhill folde>0)  the terrace regiofR< 1), we find a new regime with aega-
or uphill force (f <0) combined with faster diffusion in the tive kinetic coefficient. Equivalently, the characteristic length
terrace regior(R>1) or in the step regiotR<<1). We will  d=D,/k is negative, but witld=-s/2.
use these results to make a precise connection between theThe possibility of a negative kinetic coefficient in the
physically suggestive parameters of the two-region modepresence of a Schwoebel barrier was suggested by Politi and
and appropriate boundary conditions in an equivalent symvillain, ' but with no derivation or discussion of any physi-
metric sharp-step model giving the same steady-state terracal consequences. We argue here that negative kinetic coef-
profiles. Both bunching and wandering instabilities can therficients can play a key role in understanding current-induced
be readily described using this standard framework. instabilities on Si surfaces. This has quite different conse-
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quences than a model with permeable st@pSonsider a  bunching. Using parameters appropriate foil$i) we find
small perturbation ox,(y,t) = x,(y,t) -x3=ee?"¥*N¢+c c. that the most unstable wavelength is of orgen, in quali-

of the uniform step train. We report results for a linear sta-tative agreement with experiments.

bility analysis of the sharp-step model in the physically rel- Since only relative diffusion rates are important, one
evant limits of weak fieldgfl<1) and long wavelengths could imagine the diffusion rates changing again at higher

(gl<1). An instability arises from a positives=cw;(f, $) temperatures so thak>(_),. possibly describing range lll. In
+wy(q,f,$), where this scenario, the transitions between the different tempera-

ture ranges would be associated with local equilibrium be-
0 df havior asR passes through unity, where no step bunching or
w1 = QDtCeq(|+—2d)2(1 —C0s¢), (6)  wandering would be seen.
These ideas also provide an interpretation of electromi-
and gration results for the technologically important{@®I1) sur-
face miscut along110. At equilibrium, rather straighS,
@y = QDtcgqqz{— F[Z(l —cos¢) (| + E)qz} steps that run parallel to the dimer rows of the uppeer-
| +2d R race alternate with much rough8& steps that run perpen-
odl s dicular to the dimer rows of the uppBrterrace'® Moreover,
f|:_ } ) (7)  diffusion parallel to the dimer rows is up to a thousand times
faster at low temperaturés=or driven diffusion with a cur-
Step bunching is controlled by,;. A pairing instabilit rent normal to the steps we thus habg=- D, and we ex-
. p D g1 _ Y1 AP 9 y pect that this difference will dominate the physics of current-
with maximum amplitude ap=m is found fordf>0, or 4 o instabilities of $001)
R-1)f>0, using the two-region model parameters. Thus L . . .
( el 9 wo-reg P ' To apply our step-region ideas to this case, we imagine as
the profile illustrated in Fig. 1, produced by a step-downpefore that a classical local equilibrium step resides in the
current and slower diffusion in the step region, is unstable tqenter of each step region, but now let the downhill half-step
step bunching, consistent with the usual interpretdtioh  region differ from the uphill half-step region, and assume
range | in S{111). But a similar unstable profile arises from that diffusion in each half-step region is similar to that in the
a step-up currentf <0) along with anegative dor k. nearest adjacent terrace. DefiniRg= D}/ DY, with i=(A,B),
w, characterizes two-dimensioné2D) step wandering. we can letR' differ from unity, thus generating asymmetric
The first term in square brackets is always stabilizing and hakinetic coefficients. We require only thﬂSBB DQ, which
its minimum value for in-phase wandering with=0. The seems quite reasonable sind@f>D;. Thus DZ-DA
next term, proportional to the field, has two contributions.=¢8DE-D{) with £5=0. Special cases of this model in-
The first, proportional toD,codfe?, describes a Mullins—  clude classical local equilibrium steps, wh&&=R®=1, and
Sekerka or Bales—Zangwill instabiliy/induced by the ter- a symmetric step model whetﬁ:DQ.
race density field fordf>0. But as shown above, step  Experiments show that when a direct current is applied to
bunching occurs under these same conditions. Wandering @f configuration of alternating, andS; steps, the steps move
the bunched steps is generally suppressed, as is seen expétfi-opposite directions and step pairs form. With a downhill
mentally in range | of §iL11). current one finds double heiglty steps(consisting of an
However, the second contribution, proportional toupperS; step and a lowefS, step with a very narrowA
Dscgqsfqz, represents an alternate and quite general mechaerrace trapped in betwegseparated by widB terraces; the
nism for step wandering that is operative whenever there is equivalent configuration witD , steps and widé terraces is
downhill force (f >0). Downhill step perturbations are am- seen for an uphill current. On continued exposure to current,
plified by a field-driven downhill flux of adatoms along the a step bunching instability of the double height steps is seen
step edge with steady-state density per unit step length afler current ineither direction at low temperaturés.
proximated bycgzcgqs. Using Eq.(5) we see that the last The initial step pairing can be most easily understood by
term in Eq.(7) is always positive even wheth<<0 and the calculating the velocity of steps in a configuration of equally
Mullins—Sekerka contribution is stabilizing. spaced straigh$, andS; stepst® Using the flux given by Eq.
Consider now the implications of these results for(2) with the appropriate values @f, and Eq.(4) we find that
Si(111). The low-temperature experiments are well ex-the initial velocity of anS; step can be written asg
plained by slower diffusion in the step region, consistent=Kag(DE-D)f, whereK,g is positive and symmetric if
with the usual picture of an attachment barfigkt higher ~ andB. The initial velocity of anS, step is given by the same
temperatures in range Il we suppose that changes in recofermula whenA andB are swapped and hence has the oppo-
struction could result in faster diffusion in the step region,site sign. Thus, for positivé, B terraces grow and terraces
implying a negatived or k in the sharp-step model. Bunch- shrink. Given the great difference mf‘ andD?, this process
ing, then, is predicted fof <0, and step wandering fér>0,  will continue(as is shown by a general analysis with unequal
in agreement with experimedtand computer simulatiohs  terrace width® ) until the terraces have very different sizes,
of such a model. The negative kinetic coefficient reverses thwith the final widthl’ of the narrowA terrace in théDg step
bunching direction, which allows the general wandering in-probably controlled by step repulsidfignot taken into ac-
stability from a downhill force to be easily seen. Indekd0  count in this version of our model
andf> 0 represents thenly case where step wandering oc- To explain the continued bunching of the double height
curs with current in the opposite direction to that giving stepsteps, we use the two-region model, with major terraces

+_
I+2d R
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separated by a double height step, which we treat as a singfarther step bunching.With step-up currentf<0) A ter-
effective step region. However, a minor terrace now residegaces grow and, steps form. Continued bunching now re-
in the center of the effective step region, and we must tak%uires thatd® is negative or R*<2+|'/s. This inequality

this into account in our extrapola_ltion analysis leading to Edcan be satisfied even®* > 1, and depending on the value of
(5). We can proceed as before if we note that the effectivg: cqyid hold under rather general conditions. At higher tem-
equilibrium density in the centesl is linearly modified by peratures we expect values Rf closer to unity due to ther-
the weak field from its valucegq at the “real” local equilib- 51 fluctuations. IfRB becomes less than 24s at some
rium step near the lower boundary of the effective step rhigher temperature, then (8D1) could exhibit behavior

; 70 — 0 ’
gion, so thatte,=Ced 1 ~f(I"+5)/2]. Thus the analog of EQ. ch fike range Il of SiL11), with bunching only for a

icl3
®)1s step-up current, due to thieffective) negative coefficient for
_ o 1] . |’ the D, step. Step wandering of theg steps from a step-
=1="|R- (2 +—> S, (8)  down current, suppressed by the bunching at lower tempera-
K tures, would also be expected.
where the overbar denotes a double step parameter. Generalizations of these ideas and applications to experi-

As shown above, with a step-down currght-0) B ter-  ments where the current is directed at an angle to the $teps,
races grow andg steps form. According to Eq6), step  along with comparison to results of Monte Carlo simulations,
bunching occurs whedf>0. Thus, continued bunching of il be presented elsewhet® We are grateful to Ted Ein-
the Dg steps requires that® in Eq. (8) is greater than zero, stein, Oliver Pierre-Louis, and Ellen Williams for helpful dis-
or RB>2+1"/s. (Note that a local equilibrium assumptién cussions. This work was supported by the NSF MRSEC un-
with RB=1 can give step pairing, but is inconsistent with der Grant No. DMR 00-80008.
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