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We introduce a simple two-region model where the diffusion constant in a small region around each step on
a vicinal surface can differ from that found on the terraces. Steady-state results for this model provide a
physically suggestive mapping onto kinetic coefficients in the conventional sharp-step model, with a negative
coefficient arising from faster diffusion in the step region. A linear stability analysis of the resulting sharp-step
model provides a unified and simple interpretation of many experimental results for current-induced step
bunching and wandering instabilities on both Sis111d and Sis001d surfaces.
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Si surfaces heated with a direct electric current undergo
striking morphological changes induced by step bunching
and step wandering instabilities.1,2 These phenomena are of
great interest not only because of possible applications for
directed growth and nanofabrication, but also as physical ex-
amples of pattern formation on largesmmd length scales in a
system driven far from equilibrium by a weak and externally
controllable field.

We present here a simple model that describes the inter-
play between the externally driven diffusion of adatoms by
the electric field, and the intrinsic modulations and aniso-
tropy of the diffusion pathways and the attachment kinetics
on terraces and steps. It provides an interpretation of the
kinetic coefficients used in traditional step models and shows
that negative kinetic coefficients can arise from faster diffu-
sion in the region around a step. Many features of the insta-
bilities seen on Si surfaces can be understood from this per-
spective.

Step bunching is seen on vicinal Sis111d surfaces when
the current is properly directed normal to the steps.1,2 The
uniform step train is initially stable when the current flows in
the opposite direction. This instability has a mysterious de-
pendence on temperature, with three temperature ranges be-
tween about 850 and 1300°C, where the stable and unstable
directions are reversed. Moreover, in temperature range II
(about 1050–1150°C) after heating for several hours with a
current in the nominally stable(step-down) direction, the
steps undergo awandering instabilitywith finite wavelength
in-phase sinusoidal undulations in their positions.2,3

Current-induced step bunching also occurs on Sis001d
miscut alongk110l, but with some notable differences pre-
sumably arising from the alternatings132d and s231d
dimer reconstructions on adjacent equilibrium terraces. At
low temperatures step bunching is found for current normal
to the steps inboth directions, but involving paired double
height steps.2,4–6

The behavior in the lowest temperature range I of Sis111d
is well described by a continuum diffusion model with non-
equilibrium boundary conditions at sharp-step edges7 if one
assumes that adatoms acquire a small positive effective
charge e* and undergo biased diffusion8 from a field-

dependent forceF=e*E. However, it is not clear how to
modify this picture to account for the reversals in the stable
current direction at higher temperatures. Experiments2 have
ruled out the simplest explanation, a change of sign of the
effective charge,9 and it seems likely that different boundary
conditions are needed to describe the wandering instability.10

To gain some insight we introduce here a simple model
that can give a more detailed description of processes occur-
ring in the region around a step. The characteristic surface
reconstructions seen on semiconductor surfaces strongly af-
fect surface diffusion rates and pathways. We expect a dif-
ferent local reconstruction of bonds in the vicinity of a step.
This suggests it could be profitable to view a step “dressed”
by its local reconstruction as defining aregionof finite width
s (of a few atomic spacingsa) where adatoms undergo ef-
fective diffusion with a diffusion constantDs that can differ
from Dt, the value found elsewhere on the terraces.11 For
Sis111d we can takeDs andDt as isotropic and assume the
step region has a fixed widths at a given temperature.

Thus, a uniform vicinal Sis111d surface can be viewed as
an array of two-region units, made up of thenth step region
of width s and its neighboring lower terrace region, with
width l t@s. We assume that the straight steps extend along
the y direction and the step index increases in the positivex
(step down) direction, withx measured from the center of the
step region(see Fig. 1).

The biased diffusion flux of adatoms with densityc takes
the form:Ja=−Da¹ca+Dafca, wherea=st ,sd indicates the
terrace or step regions andf ;F /kBT. (We neglect evapora-
tion and assume a constant positive effective charge.) We
first consider the steady-state solutions that arise when the
electric field is directed normal to the steps and letf ; f ·x̂.
We can ignore the small effects of step motion on the steady-
state adatom density field and determinec by simply requir-
ing ¹ ·Ja=0 in each region, along with continuity ofc andJ
at the fixed boundary atx=s/2 between the step region and
the lower terrace region. In almost all cases of physical in-
terest, the field is sufficiently weak thatf l t and fs are much
less than one, and the steady-state profiles are piecewise lin-
ear.

In particular the steady-state terrace density is
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ct
0sxd =ceq

0 F1 −
sl/2 − xdsR− 1dsf

l + sR− 1ds G s1d

for s/2øxø l −s/2, with a similar linear expression for
cs

0sxd. The (constant) adatom flux is given by

J0sld =
Dtceq

0 f l

l + sR− 1ds
. s2d

Here l ; l t+s is the distance between the centers of adjacent
step regions,R;Dt /Ds is a key dimensionless parameter
that describes the relative diffusion rates of adatoms in the
terrace and step regions, andceq

0 is the average equilibrium
density whenf =0. This is also the density at the center of the
step(and terrace) region, so one can view the step region as
comprised of a classical local equilibrium sharp step atx
=0 surrounded by a symmetric local region of widths with a
different diffusion constant, as illustrated in Fig. 1.

Equation(1) shows that the slope of the steady-state den-
sity profile is proportional tosR−1df. Thus, there are four
general types of profiles arising from a downhill forcesf .0d
or uphill force sf ,0d combined with faster diffusion in the
terrace regionsR.1d or in the step regionsR,1d. We will
use these results to make a precise connection between the
physically suggestive parameters of the two-region model
and appropriate boundary conditions in an equivalent sym-
metric sharp-step model giving the same steady-state terrace
profiles. Both bunching and wandering instabilities can then
be readily described using this standard framework.

The general continuum boundary condition in the sharp-
step model assumes small deviations from local equilibrium
and introduces linearkinetic coefficients k± to relatec̄t

+ (or
c̄t

−), the limiting lower (or upper) terrace adatom density at
the step edge, to the associated terrace adatom flux into the
step,

7n̂ ·Jt
± = k±sc̄t

± − ceqd. s3d

Here ceq=ceq
0 f1+Gkg with G the capillary length(propor-

tional to the step stiffness) andk is the local step curvature.7

For Sis111d experiments are consistent with a symmetric
model, wherek+=k−=k.

In the usual quasistationary approximation, the diffusion
field with boundary conditions given by Eq.(3) is first cal-
culated for fixed step positions, and then the step velocity is
determined from the net local flux and mass conservation

vnDc = n̂ · fJt
− − Jt

+g − ]tJs. s4d

Here Dc=V−1.a−2 is the change in areal density when an
atom joins the solid,Js=−Ds]tcs+Dsst̂ ·fdcs denotes a tan-
gential or periphery diffusion flux along the step edge(the
sharp-step analog of parallel diffusion in the step region of
the two-region model), andcs.ceqs gives the effective num-
ber of ledge atoms per unit step length with diffusion con-
trolled by Ds rather thanDt.

It is natural to identify the terrace width in the appropriate
sharp-step model withl = l t+s and to relate the limiting ter-
race densityc̄t

+ in Eq. (3) to ct
0s0d, the extrapolationof the

two-region terrace profile in Eq.(1) to the center of the step
region, as shown in Fig. 1. Relating parameters in discrete
and continuum models by extrapolation is well known in
other interface applications.12

Using these results and the flux from Eq.(2) in Eq. (3),
we find to lowest order inf our basic result,

Dt

k
; d =

1

2
sR− 1ds. s5d

This equation relates the fundamental parametersR ands of
the simplest two-region model to the kinetic coefficientk in
an equivalent sharp-step model.13

Thus, a positive kinetic coefficientk can arise fromslower
diffusion in the step regionsR.1d, in accordance with the
usual picture of an attachment barrier in range I. Indeed, the
extrapolated profile in Fig. 1 corresponds exactly to the lin-
ear steady-state profile analyzed in Ref. 7 if Eq.(5) is used to
relate parameters in the two models. AsR→1, we have
k→`, and we arrive at the local equilibrium boundary con-
dition with c̄t

±=ceq.
However, if diffusion isfaster in the step region than in

the terrace regionsR,1d, we find a new regime with anega-
tive kinetic coefficient. Equivalently, the characteristic length
d=Dt /k is negative, but withdù−s/2.

The possibility of a negative kinetic coefficient in the
presence of a Schwoebel barrier was suggested by Politi and
Villain,14 but with no derivation or discussion of any physi-
cal consequences. We argue here that negative kinetic coef-
ficients can play a key role in understanding current-induced
instabilities on Si surfaces. This has quite different conse-

FIG. 1. Geometry and density profile of the two-region model.
The sloping solid lines in the upper part of the figure give the
steady-state density profile as a function of distancex from the
center of the left step region, denoted by the vertical dashed lines.
Shown is a highly exaggerated profile for a downhill force and
slower diffusion in the step region, yielding step bunching in range
I in Sis111d. Also illustrated with the dashed-dot line is the extrapo-
lation of the terrace profile to the center of the step region, thus
determining the parameterc̄t

+ in Eq. (3). The lower part of the
figure gives a side view of sharp equilibrium steps and their asso-
ciated step regions.
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quences than a model with permeable steps.10 Consider a
small perturbationdxnsy,td;xnsy,td−xn

0=«evt+iqy+inf+c.c.
of the uniform step train. We report results for a linear sta-
bility analysis of the sharp-step model in the physically rel-
evant limits of weak fieldssf l !1d and long wavelengths
sql!1d. An instability arises from a positivev=v1sf ,fd
+v2sq, f ,fd, where

v1 = VDtceq
0 4df

sl + 2dd2s1 − cosfd, s6d

and

v2 = VDtceq
0 q2H− GF2s1 − cosfd

l + 2d
+ Sl +

s

R
Dq2G

+ fF 2dl

l + 2d
+

s

R
GJ . s7d

Step bunching is controlled byv1. A pairing instability
with maximum amplitude atf=p is found for df.0, or
sR−1df .0, using the two-region model parameters. Thus,
the profile illustrated in Fig. 1, produced by a step-down
current and slower diffusion in the step region, is unstable to
step bunching, consistent with the usual interpretation7 of
range I in Sis111d. But a similar unstable profile arises from
a step-up currentsf ,0d along with anegative dor k.

v2 characterizes two-dimensional(2D) step wandering.
The first term in square brackets is always stabilizing and has
its minimum value for in-phase wandering withf=0. The
next term, proportional to the field, has two contributions.
The first, proportional toDtceq

0 dfq2, describes a Mullins–
Sekerka or Bales–Zangwill instability15 induced by the ter-
race density field fordf.0. But as shown above, step
bunching occurs under these same conditions. Wandering of
the bunched steps is generally suppressed, as is seen experi-
mentally in range I of Sis111d.

However, the second contribution, proportional to
Dsceq

0 sfq2, represents an alternate and quite general mecha-
nism for step wandering that is operative whenever there is a
downhill force sf .0d. Downhill step perturbations are am-
plified by a field-driven downhill flux of adatoms along the
step edge with steady-state density per unit step length ap-
proximated bycs

0=ceq
0 s. Using Eq.(5) we see that the last

term in Eq.(7) is always positive even whend,0 and the
Mullins–Sekerka contribution is stabilizing.

Consider now the implications of these results for
Sis111d. The low-temperature experiments are well ex-
plained by slower diffusion in the step region, consistent
with the usual picture of an attachment barrier.7 At higher
temperatures in range II we suppose that changes in recon-
struction could result in faster diffusion in the step region,
implying a negatived or k in the sharp-step model. Bunch-
ing, then, is predicted forf ,0, and step wandering forf .0,
in agreement with experiments2 and computer simulations17

of such a model. The negative kinetic coefficient reverses the
bunching direction, which allows the general wandering in-
stability from a downhill force to be easily seen. Indeedd,0
and f .0 represents theonly case where step wandering oc-
curs with current in the opposite direction to that giving step

bunching. Using parameters appropriate for Sis111d we find
that the most unstable wavelength is of ordermm, in quali-
tative agreement with experiments.

Since only relative diffusion rates are important, one
could imagine the diffusion rates changing again at higher
temperatures so thatd.0, possibly describing range III. In
this scenario, the transitions between the different tempera-
ture ranges would be associated with local equilibrium be-
havior asR passes through unity, where no step bunching or
wandering would be seen.

These ideas also provide an interpretation of electromi-
gration results for the technologically important Sis001d sur-
face miscut alongk110l. At equilibrium, rather straightSA

steps that run parallel to the dimer rows of the upperA ter-
race alternate with much rougherSB steps that run perpen-
dicular to the dimer rows of the upperB terrace.16 Moreover,
diffusion parallel to the dimer rows is up to a thousand times
faster at low temperatures.2 For driven diffusion with a cur-
rent normal to the steps we thus haveDt

B@Dt
A, and we ex-

pect that this difference will dominate the physics of current-
induced instabilities of Sis001d.

To apply our step-region ideas to this case, we imagine as
before that a classical local equilibrium step resides in the
center of each step region, but now let the downhill half-step
region differ from the uphill half-step region, and assume
that diffusion in each half-step region is similar to that in the
nearest adjacent terrace. DefiningRi ;Dt

i /Ds
i , with i =sA,Bd,

we can letRi differ from unity, thus generating asymmetric
kinetic coefficients. We require only thatDs

BùDs
A, which

seems quite reasonable sinceDt
B@Dt

A. Thus Ds
B−Ds

A

=js
ABsDt

B−Dt
Ad with js

ABù0. Special cases of this model in-
clude classical local equilibrium steps, whereRA=RB=1, and
a symmetric step model whereDs

B=Ds
A.

Experiments show that when a direct current is applied to
a configuration of alternatingSA andSB steps, the steps move
in opposite directions and step pairs form. With a downhill
current one finds double heightDB steps(consisting of an
upper SB step and a lowerSA step with a very narrowA
terrace trapped in between) separated by wideB terraces; the
equivalent configuration withDA steps and wideA terraces is
seen for an uphill current. On continued exposure to current,
a step bunching instability of the double height steps is seen
for current ineither direction at low temperatures.2,6

The initial step pairing can be most easily understood by
calculating the velocity of steps in a configuration of equally
spaced straightSA andSB steps.18 Using the flux given by Eq.
(2) with the appropriate values ofDt and Eq.(4) we find that
the initial velocity of an SB step can be written asvB
=KABsDt

B−Dt
Adf, whereKAB is positive and symmetric inA

andB. The initial velocity of anSA step is given by the same
formula whenA andB are swapped and hence has the oppo-
site sign. Thus, for positivef, B terraces grow andA terraces
shrink. Given the great difference inDt

B andDt
A, this process

will continue(as is shown by a general analysis with unequal
terrace widths19 ) until the terraces have very different sizes,
with the final widthl8 of the narrowA terrace in theDB step
probably controlled by step repulsions18 (not taken into ac-
count in this version of our model).

To explain the continued bunching of the double height
steps, we use the two-region model, with major terraces
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separated by a double height step, which we treat as a single
effective step region. However, a minor terrace now resides
in the center of the effective step region, and we must take
this into account in our extrapolation analysis leading to Eq.
(5). We can proceed as before if we note that the effective
equilibrium density in the centerc̄eq

0 is linearly modified by
the weak field from its valueceq

0 at the “real” local equilib-
rium step near the lower boundary of the effective step re-
gion, so thatc̄eq

0 =ceq
0 f1− fsl8+sd /2g. Thus the analog of Eq.

(5) is13

d̄i ;
Dt

i

k̄i
=

1

2
FRi − S2 +

l8

s
DGs, s8d

where the overbar denotes a double step parameter.
As shown above, with a step-down currentsf .0d B ter-

races grow andDB steps form. According to Eq.(6), step
bunching occurs whendf.0. Thus, continued bunching of

the DB steps requires thatd̄B in Eq. (8) is greater than zero,
or RB.2+l8 /s. (Note that a local equilibrium assumption18

with RB=1 can give step pairing, but is inconsistent with

further step bunching.) With step-up currentsf ,0d A ter-
races grow andDA steps form. Continued bunching now re-

quires thatd̄A is negative, or RA,2+l8 /s. This inequality
can be satisfied even ifRA.1, and depending on the value of
l8, could hold under rather general conditions. At higher tem-
peratures we expect values ofRi closer to unity due to ther-
mal fluctuations. IfRB becomes less than 2+l8 /s at some
higher temperature, then Sis001d could exhibit behavior
much like range II of Sis111d, with bunching only for a
step-up current, due to the(effective) negative coefficient for
the DA step. Step wandering of theDB steps from a step-
down current, suppressed by the bunching at lower tempera-
tures, would also be expected.

Generalizations of these ideas and applications to experi-
ments where the current is directed at an angle to the steps,6

along with comparison to results of Monte Carlo simulations,
will be presented elsewhere.19 We are grateful to Ted Ein-
stein, Oliver Pierre-Louis, and Ellen Williams for helpful dis-
cussions. This work was supported by the NSF MRSEC un-
der Grant No. DMR 00-80008.
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