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In Maxwellian electrodynamics, specific properties of the responses to external fields are included in con-
stitutive equations. For noncentrosymmetric semiconductors, spin conductivity can be expressed in terms of
the contribution of electric-dipole transitions between spin-split spectrum branches to the dielectric function. In
a dissipationless regime, a spin current driven by an external electric field is tantamount to a background
current in an equilibrium system with a reduced symmetry. The importance of transients and gradients for
efficient spin-flux injection is emphasized.
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The growing interest in using the electron(hole) spin de-
gree of freedom in semiconductor spintronics1 and impress-
ing progress in the experimental study of spin-charge cou-
pling through spin orbit(SO) interaction2 stimulated active
research in nonequilibrium spin populations and spin cur-
rents in semiconductor microstructures. The problems with
achieving efficient electrical spin injection from ferromag-
netic electrodes, including the effect of stray magnetic fields
around them, stimulated developing the concept of all-
semiconductor spintronics that does not include any mag-
netic elements and is based on specially engineered spin in-
jectors using SO coupling; a number of related ideas has
been put forward.3 An adiabatic pump for spin currents4 and
a Stern-Gerlach type experiment with a SO beam splitter5

have been reported; both techniques require an external mag-
netic field. Independently, an optical technique for a con-
trolled injection of spin populations and spin currents has
been proposed,6 and the injection of a pure spin current(with
no net charge current and no net spin injected) has been
reported.7 The concept of spin-polarized currents also turned
out highly productive for metals8 and was applied to the
spin-transfer induced switching of nanomagnets.

Several proposals for electrical injecting spin-currents
into nonmagnetic materials that require neither magnetic
fields nor ferromagnetic materials have been put forward re-
cently. Governaleet al.9 and Mal’shukovet al.10 calculated
spin currents driven by ac electric fields, while Murakamiet
al.11 and Sinovaet al.12 proposed dissipationless spin cur-
rents driven by a dc electric field. The subject is of active
interest, and an appropriate understanding of the nature of
spin currents and their potentialities for spintronics is a chal-
lenging task.

The notion of spin current asthe transport of electron
spinsin a real space sounds alien to the standard Maxwellian
electrodynamics; the “magnetization current”c curl M has a
different nature and is a part of the charge current. In what
follows, I establish a relation between the spin conductivity
and the dielectric function. To keep the calculations and the
results as easy as possible, I restrict myself by free electrons.
Such an approach allows one to pinpoint the specific details
of the band structure and specific electronic transitions that
are responsible for spin currents, and discuss the essence of
these currents in the framework of the standard band theory.
It also allows one to identify the electric-field driven dissi-

pationless spin currents11,12 as theequilibrium background
spin currents13 that develop in the system when it is sub-
jected to a proper pyroelectric deformation.

Because spin currents are not conserved in systems with a
SO interaction, their definition is somewhat arbitrary. I apply
the generally accepted and physically appealing definition of
the SC pseudotensorJi j ,

Ji j =
1

2o
l
E d2k

s2pd2klusiv jskd + v jskdsiull, s1d

establish its relation to the dielectric function, and discuss
the basic conditions for the generation oftransport spin cur-
rents. Herek andv are the electron momentum and the ve-
locity operator, respectively,s is the vector of Pauli matri-
ces,i , j are Cartesian coordinates, withi indicating the spin
component andj the transport direction, andl numerates the
spectrum branches. ForT=0, the integration should be per-
formed inside the proper part of the Fermi surface. It is an
important property of the crystals lacking the inversion cen-
ter that SO interaction splits every energy band into two
branches. Below, calculations are performed for a SO-split
band of two-dimensional(2-D) electrons with a Rashba SO
interaction.15 A similar approach to 3-D Luttinger holes16 in
a diamond type semiconductor will be also discussed.

In what follows,(i) frequency dependencies of the dielec-
tric function esvd and spin conductivitySsvd will be found,
(ii ) a relation between them established, and(iii ) it will be
shown thatSsvd is directly related to the contribution to the
real part of esvd coming from the region of thek-space
where the lower branch is populated and the upper one is
empty.

The standard Hamiltonian of a 232 SO problem is

HR = "2k2/2m+ ass 3 kd · ẑ, s2d

with k=skx,kyd the 2-D momentum,ẑ a unit vector perpen-
dicular to the confinement plane, anda the SO coupling
constant. The eigenvalues of the HamiltonianHR are «lskd
;"vlskd="2k2/2m+lak, where l= ±1 correspond to the
upper and lower branches of the spectrum, respectively;
a.0. The eigenspinors are
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clskd =
1
Î2

S 1

− ilskx + ikyd/k
D , s3d

and the velocity operator is

v = "−1 ] HR/] k = "k/m+ asẑ3 sd/". s4d

The electric current driven by an homogeneous electric
field Ee−ivt [with a vector-potentialAstd=eEstd / iv], accord-
ing to the Kubo formula, is expressed through a retired com-
mutator of the currentsĵ i =evi,

j istd = j i
s0dstd + j i

s1dstd, j s0dstd = − sne2/mcdAstd,

j i
s1dstd =

i

"c
E

−`

t

kf ĵ isk,td, ĵ jsk,t8dg−lAjst8ddt8, s5d

n being the 2-D election concentration, and the angle bracket
k¯l indicates integration over the Fermi distribution in the
sl ,kd space. Because of the isotropy of the problem, this
integral is diagonal in the indicessi , jd. All matrix elements

of ĵ =evi diagonal in l cancel, and electric conductivity
equals17

ss1dsvd =
ie2

2"v
E

k+

k− d2k

s2pd2k− uvskdu + lk+ uvskdu− l

3 F 1

v−+skd + v + id
−

1

v+−skd + v + id
G , s6d

with vll8skd;vlskd−vl8skd andk±, indicating the integra-
tion limits. When the Fermi energy is positive,m.0, k+ and
k− are the Fermi radii for the upper- and lower-branch elec-
trons, respectively; below, all equations are presented for this
case. Hence, this contribution to the conductivity comes
from the interbranch transitions in thek-space area where the
lower branch is populated and the upper one is empty. Using
the relation

k+ uvskdu− l = − k− uvskdu + l = sia/"kdsẑ 3 kd, s7d

and the equationesvd=4pissvd /v, one comes to the fol-
lowing equations for the real and imaginary parts,e8svd and
e9svd, of the 2-D dielectric function,

e8svd = eSO8 svd − vp
2/v2,

eSO8 svd = 4
e2

"

a3

"3v2W
k+

k− k2dk

s2ak/"d2 − v2 , s8d

e9svd = pe2/4"v, when 2ak+ ø "v ø 2ak−. s9d

The first term ine8svd came fromss1dsvd and the second
from the j s0d-current of Eq.(5), vp

2=4pe2n/m, and e9svd
Þ0 only in the frequency range of the interbranch transi-
tions. Equation(9) can be also found bythe Golden Rule.
The total oscillator strength of the interbranch transition
equalsfSO=sma /"2d2/2p.

It is instructive to compare Eqs.(8) and (9) with the
Kramers-Kronig relation

e8svd =
2

pW0

` v8e9sv8d
sv8d2 − v2dv8; s10d

a background dielectric function that is not related to the
electron band in question is omitted in Eq.(10). If we define
the Kramers-Kronig transform of Eq.(9),

eKK8 svd =
e2

2"W2ak+/"

2ak−/" dv8

sv8d2 − v2 , s11d

and employ the relationk−−k+=2ma /"2, then Eq.(8) can be
rewritten as

e8svd = eKK8 svd − v̄p
2/v2,

v̄p
2 = vp

2f1 − sma/"2d2/2png, s12d

the ratioma /"2 being the characteristic SO momentum. To
conform Eqs.(8) and(10) one needs to supplemente9svd of
Eq. (9) with a singular contribution,

esing9 svd = spv̄p
2/2vddsvd. s13d

This term reflects the oscillator strength that is hidden for
free electrons and manifests itself in the cyclotron resonance,
Drude absorption, etc. Equation(12) includes the renormal-
ization of this oscillator strength by the SO coupling,
v̄p

2,vp
2. It is reduced because a part of it was borrowed for

the interbranch absorption of Eq.(9).
To summarize, the functioneSO8 svd describes the total

contribution of the SO coupling into dielectric polarizability.
It includes both the direct contribution from the interbranch
transitions near the edge of the Fermi distribution and the
reduction of thedsvd-part of e9svd because of the oscillator
strength conservation.

Spin currentJzxstd driven by an electric fieldEstdiŷ can

be calculated similarly to Eq.(5) by usingĴzx=s"kx/mdsz.
The interbranch spin conductivity equals

Szxsvd =
ie

"v
E

k+

k− d2k

s2pd2F k+ uvyskdu− lk− uĴzxskdu + l
v−+skd + v + id

−
k+ uĴzxskdu− lk− uvyskdu + l

v+−skd + v + id
G . s14d

Matrix elementskluvyskdul8l, lÞl8, are odd with respect
to the transposition ofl and l8, while matrix elements

k+uszu−l=k−uszu+l=1 entering intokluĴzxskdul8l are even.
As a result, in a factor similar to the bracket of Eq.(6) both
fractions appear with the same sign. Finally, the real part of
Szxsvd equals

Szx8 svd =
ea

2p"mWk+

k− k2dk

s2ak/"d2 − v2 , s15d

in agreement with Schliemann and Loss.18 In the low-
frequency limit,

Szx8 sv = 0d = e/4p", s16d

in agreement with Sinovaet al.12 (after the difference by the
factor " /2 in the definition ofJi j is allowed for).
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The comparison of Eqs.(8) and (15) shows that the inte-
grals coincide and

Szx8 svd =
v

8pe

"v

ma2/"2eSO8 svd. s17d

Hence, for the HamiltonianHR the spectrum-specific fre-
quency dependence cancels from the ratio ofSzx8 svd and
eSO8 svd. Therefore, spin conductivitySzx8 svd, when properly
normalized, acquires the meaning of the electron polarizabil-
ity related to the transitions between the SO-split spectrum
branches. Remarkably, the singular low-v part ofeSO8 svd cor-
responding toozx8 sv=0d comes from the SO correction tovp

2,
Eq. (12).

We conclude that spin currents and the SO part of the
dipole moment,PSOstd=eSO8 svdEstd, represent two aspects of
the same phenomenon.19 Electrically driven spin currents
are described macroscopically through the SO contribution
to the dielectric function.

The implications of this observation reveal themselves if
one takes into account that in deriving Eqs.(8) and(15) only
the interbranch matrix elements of the perturbation
−se/cdvyAystd were involved, while the effect of the electric
field on the intrabranch motion was disregarded. This is an
artifact of applying Kubo formalism to free electrons, and
doing so is an equivalent of the perturbation theory in the
operator V=−eEy= ieE] /]ky in the 232 space of the
spinors clskd. The linear in V corrections to the spinors
clskd are

cl
s1dskd = − lseEkx/4ak3dc−lskd. s18d

They reflect the torque shown graphically in Fig. 1 of Ref.

12. One can now find the mean value ofĴzx over the new
vacuum spanned by the spinorsclskd+cl

s1dskd. The contribu-
tions from the upper and lower branches cancel, as before, in
the region k,k+. The contribution from the region
k+,k,k− equalsJzx=eE/4p", in agreement with Eq.(16).
This result corroborates that the Kubo approach, when ap-
plied to free electrons, allows for the effect of the fieldEstd
only through the rotation of the spinorsclskd.

Such physics corresponds to a pyroelectric deformation
along they-axis rather to the effect of a transport electric
field Eiŷ. This pyroelectric field lowers the symmetry from
the groupC`v of the HamiltonianHR to the groupCs whose
only nontrivial element is a reflection in theyz plane. There
are two new SO invariants,sxky+sykx and szkx, in this
group. The first can be disregarded, while the perturbation
HSO8 =azszkx with az<−eE/2kF

2 results in spinors of Eq.(18)
and the same spin currentJzx=eE/4p" (whenk−−k+!kF).
Because a system with the HamiltonianHR+HSO8 is in equi-
librium, these spin currents are background(nontransport)
currents.

It follows from general arguments thattime-inversion
symmetry forbids spin accumulation in a dissipationless dc
regime. Indeed, a linear relation between the magnetization
M (or spin s) and E is equivalent to a magneto-electric
effect20 that is generally forbidden becauseE is real whileM
is imaginary with respect tot-inversion. For the magneto-

electric effect to exist, this symmetry should be violated by a
proper magnetic structure,20 electron scattering,21 or a finite
frequencyv.15 Remarkably, spin polarization of free elec-
trons that develops in the directionsE3 ẑdix̂ and diverges as
v−1 whenv→0, is cut-off by the momentum relaxation time
tp;

22 this effect has been observed recently.23

In noncentrosymmetric crystals, the existence of equilib-
rium background spin currents13,14 is compatible with thet
→−t symmetry. In fact, this symmetry requires that mo-
menta and spins be reversed simultaneously, hence, it does
not require that the currents of the particles with a given spin
vanish.24 Therefore,in a dissipationless regime Kubo formal-
ism maps the real system driven by an electric fieldE onto
an auxiliary equilibrium system of a lower symmetry. Both
systems are described by identical equations because intra-
branch dynamics has been eliminated. Spin currents flowing
in the mimicking system are background currents. The opti-
cal analogy suggests that they set an upper bond for dc trans-
port spin currents in the real system because the substitution
v→−iG in Eq. (15), G being a proper decay constant, results
in a decrease ofozx8 sGd with G.

The mapping of the real system onto an auxiliary equilib-
rium system is helpful because the problem of dissipationless
currents cannot be posed rigorously in the absence of a
strong magnetic field, and the mapping clarifies the assump-
tions underlying it.

Background spin currents do exist because the operator

Ĵi j is real with respect tot-inversion. For the same reason
oi j8 svd is related toe8svd, the dispersive part ofesvd, rather
than to its dissipative parte9svd. These currents are a reality.
Nevertheless, they “do not work” as spin sources because a
pyroelectric element of a circuit cannot inject spins at equi-
librium. To realize how the currents of this sort can be put to
work, it is instructive to consider a simple classical analogy.
The momentum fluxPii =Slvisldpisld is also real with respect
to t-inversion,l numerates particles inside a unit volume. For
an equilibrium gasPii =P, the pressure. In macroscopic
terms, the equation for the momentum flux of an ideal fluid
is ]srvid /]t=−]Pi j /]xj, wherePi j =Pdi j +rviv j is the tensor
of the momentum-density flux,r is a density.25 It is a gradi-
ent of Pi j that produces an acceleration, a flux, and tran-
sients. A similar approach is valid for spin currents. For ex-
ample, Mal’shukovet al.10 have shown that modulatinga
=astd results in injecting spin currents. In a diffusive regime
they are controlled by the ratiov /G.10 For abrupt changes in
a, ballistic pulses can be anticipated. In Stevenset al.7 ex-
periments, spin-current pulses spread from a small spot
where they were generated by a laser pump.

Dynamics and propagation of spin populations and spin
currents should be based on a theory including dissipation,
and different approaches to this problem have already been
advanced.10,18,26–28In particular, such a theory should pro-
vide generalizations of Eq.(17). When SO coupling is
strong,akF,m, the only characteristic time istp. Long re-
laxation timestS of spin populations,29 can be achieved
when SO coupling is weak,akF!m, and tp is short, tp
!" /akF. Then tS, controlled by the Dyakonov-Perel
process,30 is long, tS

−1<tps2akF /"d2. In this regime, a qua-
siequilibrium in orbital degrees of freedom is
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established,30,31 and spin dynamics in an external electric
field is strongly influenced by momentum scattering.31 In the
absence of spin populations, spin currents decay at thetp
scale. Some of the emerging problems are similar to those of
the physics of spin photocurrents.32

Holes in centrosymmetric crystals of the diamond type,
described by a Luttinger Hamiltonian,16

HL = fsg1 + 5g2/2dk2 − 2g2sJ ·kd2g/2m, s19d

are in some aspects similar to the electrons of the Hamil-
tonianHR. Their spectrum consists of two(twice degenerate)
branches known as heavy and light holes with the energies
sg172g2dk2/2m. The momentumJ is described by 434
matrices of the angular momentumJ=3/2. ThecurrentsJi j
defined similarly to Eq.(1) with s→J have the meaning of
angular momentum currents and are related to interbranch
transitions, in this case from the heavy hole to the light hole
branch.33 Therefore, most of the above conclusions are ap-
plicable to this system. The main difference is related to the

fact that for Luttinger holes the notion of “spin” should be
understood generally, as a total angular momentum rather
than the physical spin, and the constantg2 is only weakly
influenced by the physical SO coupling.16

Cancellation ofv=0 interbranch spin currents by dissipa-
tive dynamics found by Inoueet al.27 and reaffirmed
recently34–36 supports the above conclusion that transients
facilitate electric-field driven spin fluxes.

In conclusion, in noncentrosymmetric semiconductors
spin currents related to electronic transitions between spin-
split spectrum branches are tantamount to the spin-orbit con-
tribution to dielectric polarization. Such dc currents are not
accompanied by spintransport. From this standpoint, the im-
portance of transients and gradients for efficient electrical
spin-flux injection has been clarified.
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