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We present an efficient scheme for representing many-body wave functions in quantum Mon{&QGHE)o
calculations. The scheme is based Brsplines (blip functiong, which consist of localized cubic splines
centered on the points of a regular grid. We show that blip functions are unbiased, systematically improvable,
and conveniently obtained from any standard plane-wave density functional tfRWADFT) code, and
therefore provide a convenient and natural interface between PW-DFT and QMC calculations. We present tests
on a 16-atom system of Si in th&tin structure, and on 2- and 8-atom systems of MgO in the NaCl structure.
We show that already with such small systems the speed-up of blip functions with respect to plane waves is
between one and two order of magnitudes, without compromising the accuracy.
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The quantum Monte Carl6QMC) techniqué is becom-  evaluation of eachy,(r;) one has to sum over all PW in the
ing one of the standard ways of studying condensed mattegsystem. Since this has to be done Fbrorbitals andN elec-
because its accuracy is generally better than that of widelyrons, with M proportional toN, the cost of evaluating the
used techniques such as density functional thébfyT). It many-body wave function involve®(N3) operations, with a
has been applied to a wide range of problems, including the,efactor depending on PW cutoff, which can be very large

reconstruction of semiconductor surfaéee energetics of for “hard” systems, like MgO. The storage required for a PW
point defects in insulators, optical excitations in representation is p’roportional N2

nanostructure$and the energetics of organic molecutest This problem with PW can be overcome by using local-
present, one of the obstacles to the more general use of QMg

is its large demand on computer time. The choice of basis se ed basis sets. One possibility is to use Gaussians, but the
has a significant effect on computer requirements. We pro- rawback is that they are biased and generally difficult to

pose and test here a basis set that has many of the propertfgémove systematically. An option which combines the best

; ; . both worlds is to use 8-splines basigblip functions,
of plane waves, currently widely used in DFT calculations,® )
but with the advantage of being localized. We shall show tha?lready proposed fob(N) D!:T calcp Iatlo_nse. Here we pro-
pase and test the use of blip functions in QMC calculations.

this localized basis achieves essentially the same accurac : X !
y Y e will show that blip functions share all the advantages of

plane wave basis sets, but is very much faster for QM : X X s
calculations. PW, i.e., are systematically improvable and unbiased. They
In QMC, the trial many-body wave function are also closely connected with PW, and can therefore be
’ obtained from PW-DFT codes. However, they are localized;

W(rq,...,ry) consists of a Slater determinadt—or more . .
generally a linear combination of Slater determinants—oithermcore the evaluation of each orbitg)(r;) has a cost

single-electron orbitalgl,(r;) multiplied by a parametrized \t/)vlhich .iz independent of thg sizehof the syst?fr_‘rr1hand indeed of
Jastrow correlation factod(rq,...,ry). In the variational Ip-grid spacing(connected to the PW cutgifThe storage

Monte Carlo techniquéVMC), J is “optimized” by varying required for blip functions is not much worse than PW and

2 . _ . . .
its parameters so as to reduce the variance of the “local erb—as the sam@(N°) scaling. TheB sp!me pasu; that we \.N'”
describe appears to have something in common with the

» Al S ;
ergy” Wr(HWy), where H is the many-electron Hamil- gijine hasis set used in recent QMC calculations by William-
tonian. Since VMC by itself is not usually accurate enoughgonet al,7 though the technical details of their basis were not
the optimized¥; produced by VMC is used in the diffusion reported.
Monte Carlo techniqueDMC), which achieves the exact ag described in detail elsewhetehe blip functions con-
ground state within the fixed nodal structure imposed by th&;ist of |ocalized cubic splines centered on the points of a
Slater determinanD. At each QMC step it Is necessary 10 regyar grid, each function being nonzero only inside a re-
evaluateW(ry, ...,ry) in each of the replicaQMC “walk-  gion extending two grid spacings in each direction from its
ers”), which involves the evaluation of the single electron center. For a cubic grid spacing the blip function®(r)

orbitals #,,(r;). A crucial issue in the efficiency of the calcu- .entered on the grid point at positieh=(X, Ys, ZJ) is given
lations is therefore the representationygfr;). One common |,

approach is using plane wavé3W). The big advantages of

PW are that their accuracy is systematically improvable

increasing the PW cutoffand they are unbiased. Moreover, O4(r) = p((x = XJla)p((y - Yola)p((z— ZJla), (1)
many DFT codes are written in terms of PW, so the technol-

ogy is highly developed and easily accessible. However, PW

are not well suited for QMC calculations because for thewhere ¢(§) is
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HO=1-2¢+ ¢l 0=ld=1 ns= 2 e ®
2 4
= }(2 -l 1<|g<2 The coefficientsa,,s can therefore be evaluated using fast
4 ' Fourier transform routines.
=0, |¢g=2 ) We have implemented blip functions in the appropriately

modified cAsINO code® To test the implementation we
The function and its first two derivatives are continuous, dispresent now three cases in which we compare the energy and
continuities appear only in the third derivative, and all higherthe standard deviation in VMC and DMC calculations per-
derivatives are zero. Each single-particle orbital is then repformed using PW or blip-function representations of the
resented as single-particle orbitals. Calculations with blip functions are
presented for two values of the grid spacing, tla¢ural grid
(1) = 2 3, 0(r). (3 spacinga=m/k4, and a two times finer grid obtained with
s a=m/2K,. Results are reported in Table I. All calculations
For any positiorr, there are only 64 nonzero blip functions, have been performed at tiepoint.
whatever the nature and size of the system, so that the num- The first case is a 16-atom cell of silicon in tigtin
ber of operations to computg,(r) is the same for any ma- structure(this system was chosen because there is already
terial. considerable QMC experience with Si, and because we are
The close relationship betweed-splines and PW has currently using QMC to investigate the relative energetics of
been discussed elsewhérén the PW representation, the the diamond angs-tin structures of Si The single-particle

single-particle orbitals are given by orbitals have been obtained using tRe/scr code? with
r Hartree-Fock pseudopotentials channel chosen to be the
Un(r) = 2 cue®, (4)  local pary and PW cutoff energy of 15 Ry. VMC calcula-
k

tions are reported for 3:21C° steps of length 1 a.u. in all
where the wave vectoils go over the reciprocal lattice vec- three cases. No Jastrow factor has been used for these VMC
tors of the superlattice, witk less than the PW cutof,, calculations. We found it useful to perform these tests with-
The relationship between the PW coefficients and the out the Jastrow factor because it enabled us to make cross-

blip coefficientsa,s can be understood by considering blip checks of some individual components of the energy with

wavesy,(r) defined by DFT calculations. DMC calculations have been performed
_ using 320 walkers for 10 100, 12 700, and 10 100 steps of
xi(r) =2 €€ R0 yr). (5)  length 0.03 a.u. for PW and blip-function calculations with
s the coarse and the fine grid spacing, respectively. Diffusion
For smallk, the y, (1) are essentially identical to plane waves [0 the ground state is already achieved aftet00 steps. In
expk -r), apart from ek-dependent factog: VMC the natural grld is not dgnsg enough fqr this system,
_ with the largest difference being in the kinetic enei@y
& = yox(r). (6)  ~0.06 eV/atom. The standard deviation on the energy is

also slightly larger. However, with the fine grid the blip-
function results agree identically with the PW ones within a
statistical error of only a few meV/atom. In Table | we also
report the time taken to perform one VMC step on an Origin
3000 machine. Already for this small system, with such a
modest PW cutoff, the speed-up with blip functions is almost
a factor of 6. The timings between the two blip-function
At largerk, the x,(r) differ significantly from expk-r), as  calculations should in principle be identical, the small differ-
they must, becausg(r) is periodic ink space: the number ence between the two is probably due to the larger sparsity in
of independeny(r) functions is equal to the number of sites memory of the blip coefficienta, for the case with a finer
on the blip grid. grid, and we found that this is machine dependent. For DMC
There is a “natural” choice of blip grid spacirag given  the computational speed-up is more that a factor of 10, and
by a=m/kyae With this choice, the regiok=Kk,, Where the energy is already correct with the natural grid, which
blip waves and plane waves differ most, is the region whereneans that the nodal surface is essentially the same as the
the plane-wave coefficients, are very small. However, the PW one already with the natural grid.
precision with which blip waves reproduce plane waves in The second test we performed was a perfect crystal of
the regionk <k, can always be improved by refining the MgO in its zero-pressure NaCl structure. The unit cell in this
blip grid. case contained only 2 atoms and had face-centered-cubic
The procedure to obtain the blip coefficiemtg from the  (fcc) geometry. Single-particle orbitals were obtained again
plane-wave coefficients of orbitalg,(r) obtained from a using thePwscF code, with Hartree-Fock pseudopotentials
DFT calculation is straightforward. For the relationship be-(d channel chosen as the local part for both Mg ancad a
tween blip waves and plane wavgsee Egs(3), (4), and PW cutoff of 200 Ry. No Jastrow factor has been used in
(7], it follows that these calculations. VMC calculations have been done with

The factory, is the Fourier transform of a single blip func-
tion O(r) and is given by Y= Vi Vi, Vi where k
=(ky,ky,k,) and

3
W= 1a(3 -4 cosk+cos X). ()
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TABLE |. Comparisons of the various components of the total enérggV/atom and timings between
VMC and DMC for a 16-atom Si system in th&tin structure, and an MgO crystal in the NaCl structure.
Standard deviation of the total energy(eV/aton) is also reported. The MgO crystal has been simulated
using a 2-atom face-centered-cubic cell and an 8-atom simple-cubic cell. PW calculations have been per-
formed with a cutoff energy of 15 Ry for Si and 200 Ry for MgO. Blip calculations have been performed
using two different grid spacingsi=m/Kmyax and a=m/2kmay, Whereknay is the modulus of the largest PW

vector.
PW Blips (a=m/kpna  Blips (a=7/2Kay
Si B-tin, 16 atoms
VMC
Exin 43.8643) 43.9243) 43.8623)
Eoc 15.0573) 15.0633) 15.0583)
(= 1.5333) 1.5253) 1.53%3)
Eiot -101.33%3) -101.2773) -101.3413)
s 4.50 4.74 4.55
T (s/step 1.83 0.32 0.34
DMC
Eiot -105.7133) -105.7114) -105.71%4)
o 2.29 2.95 2.38
T (s/step 2.28 0.21 0.25
MgO-NacCl, 2 atoms, fcc cell
VMC
Exin 199.44924) 199.46%15) 199.41815)
Ejoc -239.89927) -239.86115) -239.85%15)
En -26.90612) -26.8898) -26.9028)
Eiot -224.5274) —-224.46%3) -224.5232)
o 28.7 35.8 28.3
T (s/step 101x 1073 8.3x 1073 8.9x 1073
DMC
Eiot —-228.42910) -228.4337) —-228.4279)
T 22.1 28.9 22.3
T (s/step 89x 1072 7.1x10°3 7.5x1073
MgO-NaCl, 8 atoms, sc cell
VMC
Evin 178.34949) 178.36022) 178.36922)
Ejoc —-225.19150) -225.12824) —-225.17723)
Eq -17.955%25) -17.97411) -17.97611)
Eiot -227.6718) -227.6484) -227.6694)
o 14 15 14.5
T (s/step 7.8 5.6x 1072 7.1x1072

3.36x 107, 1.6x 1(®, and 1.6x 1(? steps of length 0.3 a.u.

Finally, the third test consists of the same MgO

for PW and the two blip functions cases. DMC calculationscrystal simulated in a simple-cubi¢sc) cell containing
have been performed using 1600 walkers for 1X79", 8 atoms. Single-particle orbitals were obtained in analogy
23.98x10% and 11.5% 10* steps of length 0.005 a.u. for to the previous case, i.e., same pseudopotential and same
the three casé$. Diffusion to the ground state is achieved PW cutoff of 200 Ry. No Jastrow factor has been used.
after the first few hundred steps. Similarly to the previousVMC calculations have been done with 0:3320°,
case, blip-function VMC energies and standard deviatiorl.6x 10f, and 1.6< 10° steps of length 0.3 a.u. for PW and
agree identically with those obtained using PW for the denséhe two blip-function cases. The important thing to notice in
blip grid, and the speed-up obtained with blip functions isthis case is the speed-up obtained with blip functions, which
more than a factor of 10. DMC energies are also in this case over two order of magnitudes. We have not attempted
correct already when the coarse grid is used, but the variand@MC calculations as they would be impractical for the PW
is significantly improved when the fine grid is used. case.

161101-3



D. ALFE AND M. J. GILLAN PHYSICAL REVIEW B 70, 161101R) (2004

We note that despite we have chosen to use PW cutoffs dfave shown that already for this relatively small system the
15 Ry and 200 Ry for Si and MgO, respectively, we foundspeed-up obtained using blip functions is over a factor of
that by using a much larger cutoff energypically 32 Ry  100. SinceB-splines can easily be obtained from PW, they
for Si and 500 Ry for MgQthe variance of the energy can g5o provide a natural and convenient interface between

be further significantly improved. Of course, increasing thePMC and PW-DFT codes. Moreover, this technique can be
PW cutoff leads to a direct increase in the PW computationajiqey iy onjunction with “linear-scaling” techniques for
time, but has hardly any effect in the calculations that em-

ploy blip functions. We have also found that by using a muchQ'VIC calculations, as reported elsewhéféWe conclude by

larger PW cutoff the blip-function natural grid is already "Oting that we are now attempting to calculate the formation
accurate enough, as expected. energy of a Schottky defect in MgO using a cell containing
We have presented here a robust and efficient schenfe# atoms. This calculation would be impossible to perform if
based onB-splines to represent the trial wave functions inwe had to use PWresults will be reported elsewhéfe
QMC calculations. We have shown that this scheme shares i
all the advantages of plane waves, but offers a much better D-A- acknowledges support from the Royal Society, and
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