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Transport through multiply connected quantum wires
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We study transport through multiply coupled carbon nanothaantum wiresand compute the conduc-
tances through the two wires as a function of the two gate voltggasdg, controlling the chemical potential
of the electrons in the two wires. We find that there iseguilibrium cross-conductance, and we obtain its
dependence on the temperature and length of the wires. The effective action of the model for the wires in the
strong coupling(equivalently Coulomb interactigriimit can also be mapped to a system of capacitively
coupled quantum dots. We thus also obtain the conductances for identical and nonidentical dots. These results
can be experimentally tested.
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I. INTRODUCTION gets renormalized to zero and the system decouples into two

Transport in one-dimensional systerfguantum wires independent wires. The resonant transmission pattern in this
has continued to attract interest in the last decade. This h&@Se is well-known and is simply the resonant transmission
been mainly due to the fabrication of novel one-dimensionaPetween double barriers. But in the limit of strong interelec-
materials like single-walled carbon nanotubes, besides th&on interactions, the coupling between the wires grows, and
more standard quantum wires obtained by gating semicorfn interesting resonance pattern emerges, With the inclusion
ductors. Moreover, attention has been attracted by the evif leads, we find that the value of the interaction strength for
dence for Luttinger liquid(LL) behavior in the nonlinear Wwhich the coupling changes from being irrelevant to relevant
transport measurements on these carbon nanotub&is  changes. With leads, even stronger inter-electron interactions
has led to an upsurge of theoretical whikon transport are needed to access the strong coupling regime. Single-
through carbon nanotubes. walled carbon nanotubg$SWNT), with an interaction pa-

Transport measurements involving more than one carborameter ofKg,\=0.5-0.6, is essentially at the borderline
nanotube can show even more dramatic deviations fronbetween strong and weak interactiqmsthout leads.

Fermi liquid behavior. For instance, the predictibrier In Sec. Il, we show how the system can be modeled in
crossed carbon nanotubes have been experimentaltgrms of the one-dimensional bosonized Luttinger liquid La-
verified® Further predictiors have been made for longer grangian. In Sec. Ill, we obtain the effective action by inte-
contacts leading to Coulomb drag as well. grating out all degrees of freedom, except at the coupling

In this paper, we study a system of two carbon nanotubepoints, firstly for a uniform wire without leads. We then
with a slightly different geometry. The aim is to understandshow that for identical wires, the system decouples in terms
the phenomena of resonant tunneling through coupled carba?f symmetric(“+") and antisymmetri¢‘-") combinations of
nanotubes. We start with a system of two wires with densitythe fields at the coupling pointsoundary fields and we are
density couplings operating at the two ends of both theessentially left with two copies of a wire with backscattering
wires1? This geometry is also relevant in the study of en-potentials at the two ends. In the weak Coulomb interaction
tangled electrons, where a supercondugswurce of en- limit, the backscattering couplings potentials renormalize to
tangled electronsis weakly coupled to the wires and the zero(at very low temperature$— 0 and long wire lengths
consequent nonlocal correlation is measured at the twd— ). However, for strong Coulomb interactions, the back-
edgest! The experimental situation that we wish to analyzescattering potentials turn out to be relevant.TAt-0 andd
is given in Fig. 1 with the schematic diagram in Fig. 2. The — ¢, the wires are “cut” and there is no transmission. How-
carbon nanotube wires are between the source and the dragwer, there is still the possibility of resonant transmission.
and the two floating gates above the wires provide a stronyvhen mapped back to the original wires, the conductance
capacitive coupling between the two wires at both ends. We
will see later that the same setup can also be thought of as a
set of two quantum dots in parallel, at least in the strong
interaction limit, where the density-density couplings be-
tween the wires themselves are the tunnel barriers respon-
sible for forming the dot(We will see this analogy explicitly
in the effective action.

Our aim is to compute the conductance through the two
wires as a function of the two gate voltaggsandg, con- FIG. 1. Carbon nanotube wires 1 and 2 are stretched between
trolling the density of electrons in wires 1 and 2. Without the source and the drais, and Gg are the two floating gates
leads, when the electron-electron Coulomb interactiorwhich generate a strong capacitive coupling between the two wires
strength is weak, the capacitive coupling between the wireat the two ends.
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Wire A
| &/ | Hint:E_ f dxpipi) - 2
Lead Ll Kl A ol Lead I

Ki-1 ?» P ?» K=l Herepia(x):z//?a%a are the electron densities of theand |

Lead | = 71 | Lead electrons andfi,=iiq e"kFX+. URia _e'kFX. The i, and ¢,
; 2 ; stand for fermion fields linearized about the left and

x=0 Q= d right Fermi points in théth wire. Using the standard boson-

Wire B ization procedure, whereby a fermionic theory can be rewrit-

ten as_a bosonic theory with the identificatios,
FIG. 2. Schematic diagram of the experimental setup. The wires= (7, ,/\27a)e? '™ %i«, the Hamiltonian can be written as
are modeled as LLs witk;-; ,, with the leads havind<, =1. The
density-density coupling between the wires is denoted by its
strength\ and the two gate voltages controlling the densities of _ _N Vig , 1 2
electrons in the wire are denoted by andgj. H=Ho+Hin _iE,B 2 Kig(Ilig)” = @wxd’iﬁ) ., (3

maxima forms an interesting resonance pattern. For noniden;
tical wires, there is a coupling term, which can be treate

perturbatively and the change in the pattern of resonanc ixes them.s,,, are the Klein factors that ensure the anti-

maxima can be explicitly ob_talned.. In both the cases of ommutation relations of the fermions. Her, ~ (1
strong and weak Coulomb interactions, the conductance

-§g/ﬂ'v )2y ~ve(1+gl 12 and I ;

. oy . F) % vic~ve(1+g/ mog)H'e and Il ,, are the fields

e e . U8l 01, K. =1 ando = nthe absence of magnetc
. pertu y. g fields. K;.=1 for free electrons ank{. <1 for repulsivee-e

perature limit, the temperatuiiis the scale of the cutoff of interactions

the renormalization groupRG) equations and the conduc- :

. e In fact, the correct modeling of the single-wall carbon
tances are a function af. In the low temperature limit, and nanotube requires a four-channel F.Three channels are
for finite length wires, the length of the wire is the RG cut- q :

oninteracting and the fourth channel is the total charge or
off, and the length dependences of the conductances can g?asmon mode having a LL paramei@€,) which lies be-
obtained. Interestingly, we find that there is a nonzegai- 9 P 1

librium cross-conductangei.e., there is a nonzero current tween 0.15 and 0.3 as estimated both from the&hand

through one wire caused by a voltage drop across the othéelxpe”menﬂ' Thg effect of all .four. chann(_als can be mclut_jed
wire. Finally, we show that the inclusion of leads changes th ust by introducing the effective interaction parameter given

value of the interaction parameter where the coupling be?Y following replacemeri

tween the wires changes from being irrelevant to relevant. o .

The resonance patterns do not change due to the inclusion of K™ — (Kic +3)/4 (4)
leads, but the dependence of conductances on the tempera-

ture and the length of the wires, which depend on the RGn Eg. (3). From now on we will only work with the charge
flow of the coupling strengths do change and we compute thehannel of the SWNT with the redefined LL paramekgr

hereB=c, o are the subscripts for charge and spin degrees
f freedom, instead otx=7,] since the interaction term

new conductances. Hence, the action is given by
In Sec. IV, we show how the effective action in the strong
interaction limit is identical to the action that one would get
o S= | d7{Ljeagst Lwirest Leoup™ L 5
for two capacitively coupled quantum dots. Hence, we show f T bteads™ Luires* Leoup Lgated ®

that our results are also applicable to a system of capacitively . , ,
coupled quantum dots. Finally in Sec. V, we conclude with avith each of the terms given below. The electrons in the

discussion of how the current model can be extended to muf€2ds are free while the electrons in wires 1 and 2 are inter-
tiply coupled wires and multiply coupled dots. acting and they are modeled as Luttinger liquids with Lut-
tinger parameteK; =1 andK;=K;,K,, respectively,

2

Il. THE MODEL
. . Lieadst Lwires= E [(Lleadgi + (Lwires)i]
Following Ref. 4, we will assume that the band structure i=1
of the carbon nanotube is captured by the one-dimensional 5
free fermion model given by 0 “
=> f +f dxCi(¢i; KiL,ve)
T =LA
Ho=-2 | dweldfiidiria—R-DI, (D) ,
i,a d
wherei=1, 2refers to the two wires and=1, | refers to the + I% o dXC( i Ki,v). (6)

two spins. Coulomb repulsion between the electrons can be
approximated as an onsite density-density interaction as fol- Here ¢; denotes théspinles$ Luttinger bosons in wires 1
lows (Fig. 2): and 2, respectively, with the Lagrangian densities
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K K K K=1 K K=l obtain an effective actidfi in terms of the boundary fields
: ; | | given by
. : : : ,
K K K K=1 K K=l
(Seﬁ)ozf de (Lwired)i = ZK f |w|((d’| + (¢| )Z)dw
(@) No leads (b)  With leads =1 =1

FIG. 3. Schematic diagram of the wires.

ZKJek' _kd{(ekd+e_kd)((¢l)2+(¢ )?)
i=1
Li(¢i; Ki,vi) = (L2K)[(Llop) (d)? = i) (d)?]. (7)

The Lagrangian for the coupling between the wires is given
as

- 4l pHdw. (12)

The Fourier transformed tilde fields are defined @’yz(r)

+oo _ Ciw TN 1'2 . .
L :f dX A 191(X) po(X) (X) + Aopy(X) po(X) S(x = d)] —Ewne' "¢ "(wp). In the high frequency or equivalently,
R PP PP high temperature limit(T> %v;/kgd), (S:)o reduces to

A — — -
:W[cos(zva:(ﬁ) - co§2\ 7 y) + cog2\ w2 (Spht=>, I f o] ($H)2 + (¢?)?)dw. (13
i=
+ 2ked) - COQ{ZV'TT(Z,SJ, 2k=d)], (8) Let us now also include the contributions coming from

the long range part of the Coulomb interaction explicithy
wherep; are the densities of the electrons, and in terms of thgyang, 15 since conventional LL theory does not automatically
bosonic fields, they are given by include these contributions. They are incorporated by includ-
ing the term

pi(x) = i B+ =Co82 T h (0 + 2. (O

- | Ik a5 & Ve | dTE g2 ()
Here« is an infrared regulator and we have set Klein factors 212G 2

to 1 (which is sufficient for the correlation functions we

compute in this paper, although in general with two wires, in the effective action. Here th€); stands for the excess
one has to be carefulThe gate voltage that couples to the ‘accumulated charge with respect to the background in the

electrons densities in the two dots is modeled by the follow-confined region of double barrier aiiis the corresponding
ing term in the action: capacitance. With this, in the low temperature linti

<hwv;/kgd), the density-density coupling at the two ends of

each wire are seen coherently by the electrons and the total

2
Lyates= > i J dxp;(x) = 2 \r(dﬂ #).  (10) effective action reduces to
i=1 i=1 V

— I
Seff - (Seff)(; + f dT[Lcoup"' Lgate;
Ill. THE EFFECTIVE ACTION

We first analyze the model of a uniform quantum wire

f ||($)2+ (9D dw
with

= J dr(Lyirest Lcoup+ Lgateg, (11 f [2 (¢| )2 + I—coup"' Lgates . (19

i=1

whereL yies==2, [, Li(¢;;Ki,v). The wire both to the left  Here U,=#v;/K;d+Ug=A/K;+Ug; are the mass terms that

of the first coupling point and the right of the second cou-suppress charge fluctuations on the wires and are responsible
pling point are interacting wires with the same interactionfor the Coulomb blockad€CB) through the wiresA; is the
parameter as the wire between the two coupling points, adiscrete level spacing of the plasmon state in the double bar-
shown in Fig. 8a). Such a model would be relevant for two rier system. In this paper, we ignore the extra effects that
extremely long carbon nanotubes coupled together at twoccur due to the dicreteness of these levels. These have been
points, near the middle. The terms in the Lagrangian for theliscussed in Refs. 16—18. Note that for weak interactions,
coupling between the wirels,,,, and the coupling between whereK;~1 and Ug; is very small,U;~ A; the Coulomb

the wires and the gatelsy,, are both functionals only of the blockade levels are the same as the plasmon levels.

fields at the boundarigs.e., atx=0 andx=d). Hence, even In this paper we consider the case where the coupling
in Lyires (Which is a functional of the bulk fieldsit is con-  between the wires are symmetric,=\,=\ (say). For fur-
venient for further calculations to integrate out all degrees other analysis, it is convenient to define the following vari-
freedom except at the coupling pointss0 andx=d, and  ables:
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F+ ¢ ked P- ¢ ked =
ai:¢|—¢|+iy Ni:¢' ’_¢' i bl (16) ‘91_’0¢+Ev N, — 2Ng. = N,, (22)
2 2 \ar T 2

) ) . when Ny, is tuned to be a half-integer by tuning the gate
In terms of these variables the coupling part of the action Caoltagesg; andg,. This tuning of gate voltages corresponds
be written as to certain special points in thg; ,g,) plane where resonance
transport of electrons through each of the wires takes place.
The conductance matrix for the two-wire system in the

A — — i ; be
Leoup= %[cos Alm(6, + 6,)cos 2/m(N; + Ny) inear response regime, can be written as
_ Gy Gi,
+cos Alm(6; - 6,)cos Alm(N - Np].  (17) G=< T ) (23)
GZl GZZ

The expression fok,, in terms of the new fields suggests \yhere G

. u , , i is the conductance through each wire due to the
that we can diagonalize the problem by introducing the fo"voltage across the same wire ar@. is the cross-
ij

lowing symmetric and antisymmetric combination of fields: .,nquctance—the conductance in wirdue to the voltage

(19) drop in wirej. Note _that the density-density couplings at the
two ends of the wires can be thought to be the source of

Thus, the total actiofiin the low T limit) can be written in ~ “entanglement” of the previously uncorrelated electrons in

0.=6,% 60, N,=N;*N,.

terms of these new = fields as wires 1 and 2 The cross-conductand®@;, is a measure of
this entanglement.
Uest S| Ui—Up By transforming to the “+” and “~" wires, we can com-
Sert = J d{ g_{?mv_ No,)” | + 4 N.N- pute G, explicitly since they are just the conductances for
o uncoupled wires with two barriers each. Moreover, siGce
N _ . . o .
+ 22 [cos 278, cos TFNJ} , (19 can be written in terms of the currerjts=j,+j,, we find that
(ma) %y Gi(G1+92) = (Gp1+ G+ G+ G21)(91,92),

where U= (U +Uy) 14, Ui=wU; and S, Ny, and Ny are
et = Uy +hr) (ikhe S No 0 G_(01—02) = (G11+ Gy~ G1— Go)(01,82),  (24)

given by
1 from which we can obtain
S= EE [(NJ2 + Z(m)z +(ND)? + Z(G_)Z} (20) G;+G,=G,+G_=G, (25
and G2t G =G, -G (26)
Note thatG;,+G,;# 0, as long asG, # G_. Thus unlike in
s = ked@h £Uy) — (91 % 92). (21) the case of the singly crossed carbon nanotdibveisere the
- (7/2) (U + Us) cross-conductand®;, was a nonequilibrium effect and van-

ished in the linear response regime, hetbg cross-
Thus, from EQ.(19), we see that whei/;=U,, we have

successfully mapped the problem of two density coupled
quantum wires to a pair of “decoupled” quantum wires with A
double barriers. Whei{; # U, but is small the two wires
interact weakly. It is also possible to identify effective Lut-
tinger liquid parameters for the “+” wires frod. (for Uy
=U,) by writing it as Uey=mUen=hv/Kerd and we find
that Kg=4K K5/ (K1 +K,) for both the “+” and “~" wires,
since both of them have the saig;.

Note that forK;=K,=K, K.=2K. Hence, the interaction
parameter has doubleédThe “+” and “-” wires are “free”
whenK=1/2, and thequasiparticles have repulsive interac-
tions forK <1/2 and attractive interactions fér>1/2.

A. Case ofU;=U,=U

~ Whent/, =, the coupling term between the “+” and “="  giG_ 4. Conductances in the plane of the two gate voltages
fields drops from the effective action and the action is €X-For4,=14,, the solid lines represent semi-maxiifia” or “~” wire

actly identical to the effective action of a decoupled pair ofat resonangeand the crossings represent the maxiimath wires at
guantum wires, each with two barriers, in one dimension. resonance The dotted line represents semimaxirtfa” or “-”
The action remains invariant under the following transforma-wire at resonangefor 24, #4,. There is no resonance at the cross-
tions ings of the dotted lines and that region has been left blank.
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conductance is an equilibrium phenomertaonly requires also that as the temperature is reduced, the effective barrier

G, # G_. Since the conductances, and G_ are indepen- strength reduces and hence, perturbation theory is a good

dently tuned by the gate voltaggs+g, andg;—g,, they are  approximation. In fact, folf — 0, the direct conductances are

equal only if they are both tuned to be equal. very close toe?/h or perfect conductance and the cross-
The combined transport through the wires 1 and 2 carronductances go to zero.

now be tuned to resonance when bG&handG_ are tuned to

resonancémaximun), or when one of them is tuned to reso- 2. Strong interaction, strong coupling limit

nance(semimaximun It is easy to see that the conductance ) ) )

maxima through both the dots form a rectangular grid of FOr strong interelectron interactiofise;<1) or K<1/2,

points in the plane of the gate voltages, wiégn and No_ the den5|ty-_den5|ty couplmg_ term is relevant under thg RG

are tuned to half integers, i.eNp,=n+1/2 and N,_=m transformation. At low energies, the strength of the barriers

+1/2. Thevalues of the appropriate gate voltages, given'e@normalize to very large values, and in fact, at zero tempera-

below, ture, or for very long wires, the “+” and “~” wires are cut
and there is no transmission, except at resonance points
_ | 2ked 1 (which are the points where the Coulomb blockade is lifted
%t G= {_ - (n * _)}u’ Note also that the discreteness of the plasmon levels, in gen-
eral, implies that for small dots, the Coulomb blockade peaks
1 get paired, because each level can accommodatebatiu
Op— 0= {(m+ —)}u, (27) | spins. So the CB level spacing alternates betwedgrand
2 Uc+A;/K. For large dots, this difference is negligible. But
are plotted in Fig. 4. The semimaxima form the two pairs offor small dots, this difference is experimentally significant
solid lines and the intersections of the two pairs of lines areétnd is the basis of the observation of the Kondo effect in

the maxima. small dots?! Zero transmission away from resonance points
_ _ o is true only atT=0 and for infinite length wires. For finite
1. Weak interaction, weak coupling limit temperatures and for finite length wires, there are power law
After transforming to the “+” wires, the RG flow of the conductances even when Coulomb blockade is not lifted,
density-density coupling term is given by given by
dN T\ 2WKeD)
ar - A Kew. (28) G~ e2t2(X> ~ G+ Gy, (31)

For weak interelectron interactioi€ >1/2 orK ;> 1), the

A\ coupling is irrelevant and it grows smaller as a function of \haret of order 1A. is a tunneling amplitude between the

the energy cutoffi =FINLA(\)/A]. Here, A is an arbitrary ot wires. In this limit, the system can be considered as a pair
high energy scalgsay, the inverse of the average inter- ¢ decoupled dots(“+” and “~” dots) which are tunnel-

particle separationat which we start the renormalization coupled to Luttinger wires[see Fig. ) below]. The

group flow. We are interested in the conductance of the sysjensity-density couplings which grow themselves act as the
tem in the low temperature lim{T <Ty) where there is co-  parriers forming the dot.

herent transport through both the barriers. The total conduc- | et us now incorporate the leads, by studying the model

tance through the system is given'by in Eq. (5). The leads have noninteracting electrons and only
262 o T\ 2KeitD) the electrons within the length of the wire between the two
G=—- —ezxz(—> coupling terms are interactingee Fig. 8)].
h 2 A The inclusion of leads essentially changes the renormal-
X[2 + cos 27Ny, + cos 2mN,_], (29)  ization group flow of the barriers in the two wirés!®2°To

) ] . find the new RG flows, we first note that even with the in-
wherea is an arbitrary constant of order unity. Note that the o|,sion of leads, it is convenient to work with the “+” and

last factor(i.e., factor in square brackegoes to zero when «_» fig|ds, where the two wires decouple. In terms of these
both the wires are tuned to resonance and then there is pefg|ds, we find that the interaction parameters in the leads are

Similarly, the temperature dependence of the total cross=1 Hence, the leads are no longer “free” in the new basis.

conductance is given by (Note that the real leads are of course free. We have mapped
T\ 2KefD the model to another model in terms of the * fields, where

—) (cos 27Ny, — cos 27Ng_) the “effective” leads just appear interacting.

A When the barrier is at the boundary between the leads and

(30)  the wire as in our set-up in Figs. 1 and 2, the RG equations

Giat+ Gy = gez)\2<

in the low temperature limit. Thus, the cross-conductance igre given by

nonzero unless both wires are at resonanceNgr=Ng_ ,

+27N and it can be both negative or positive depending on a - (1-Kegh T>Ty
the gate voltageég;, g,) operating on the two wires. Note dl (L-K N T<Ty'
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Strong Coupling Case
: T T

T T T T T T T
~ - —02 ;a
S 0o} - %, 0.1F y 1F Ho.1
o < : -1
8 T < T, T
8 0.1 =
_ Y. <
g o} i g 00sr 1t H0.05
g <
= s
= S
g o
o ] ] ] \ ]
0
ol ' ' ' 0.1 0.05 0.1 0.15
005 01 015 0 0.1 0.9 Length o wire @/L,)  Temperature (T/T, )
Length of wire (T d/ A) Temperature (T / T 4 )

FIG. 6. The dependencies of the low temperai{lr& T,) con-

FIG. 5. The dependence of the low temperatifies T,) cross- ductance(in units of 2?/h) on T and Ty for the case 0K =0.25.

conductance(in units of 2%/h) on T and Ty for the case oK

=0.5. HereT4=fiv/kgd is the temperature equivalent of the lendth For strong interelectron interactiofis 4 <1) or K<1/3,

of the wire. A is the high energy cutoff scale. The overall scale of the density-density coupling term is relevant under the RG

the conductance has been adjusted by adjustirig be within the  transformation. Connecting leads to the interacting wires

perturbative regime. Hence, it is only the power law which is changes the regime & for which the density-density cou-

significant. pling is relevant fronK <1/2 toK < 1/3. Since\ renormal-

izes to very large values in this regime, for very long wires

or at very low temperature, the “+” and “~" wires are cut and

there is no transmission, except at resonance points. How-

ever, for finite temperatures and for finite length wires, as

K>1/3. usual, we can compute the conductances as a function of the
For “weak” interelectron interactions(K,,>1) or  temperature and/or length scale perturbatively. The high tem-

K>1/3, the density-density coupling term is irrelevant un-Perature(T>Tg) conductance scales now with K, in-

der the RG transformation. Note that connecting leads to thétead ofK(, as in the weak interaction case. At low tempera-

interacting wires, changes the values Kffor which the tures(T<Ty) also, the interaction parameters get replaced by

density-density coupling is irrelevant frold=1/2 to K their inverse¥2% and the direct and cross-conductances are

=>1/3. So we observe that evenkf<1/2, butK >1/3, the  given by
density-density coupling still remains irrelevant, unlike the

where  Klg=2 KeiKap/ (Kegt Ko ) =4K/(K+1)  and Ty
=fvlkgd as before. So for the “+” wires\ is relevant if
Keg<<1, i.e., K<1/3 and it is relevant folK;>1, i.e.,

case of uniform wire with no leads. T\ 2D/ T, 21K 1)
The high temperature conductance scales now With G~ 2t2<_|_—> (X) ~ G+ Gy,
instead ofK. But at low temperatureSl <T,) where there d
(34)

is coherent transport through both the barriers, there exists a
new feature. The conductance now has both non-trivial tem-
perature and length dependences and is given by wheret is the tunneling between the cut wires. This result is

also experimentally testable and is plotted in Fig. 6.
6222 - 2ol L) 1o
2

h Ty A
X (2 +cos 27Ny, + cos 27Ny.).

B. Case ofU, #U,

However, wherif, # U,, it is no longer possible to tune
for resonances through the “+” and “~" wires simultaneously
due to the presence of tieN_ term in the effective action.

The temperature dependence essentially comes becauseNa+ Now depends oMN_ and Ny depends orN,. But it is
the “+” wires, the leads are no longer free. always possible to fix eithey_ or Ny, and tune the other

Similarly, the temperature and length dependences of th@ire to resonance. The condition for resonance for the + wire
total cross-conductance is given by is given by

(32)

Vef‘f(Niaai;Niagi) :Veff<Ni + 116i + %;N1101>

a T \2Ke D/ T 2(Kgm1)
Gt Gy = Eez)\z(_r_) A

X (cos 2mNy, — cos 27Ny.).

(35

(33
and the appropriate gate voltages at which the wires get

This result is experimentally testable and is plotted in Fig. 5tuned to resonance is given by
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_ 2ked 1 U= U, gZ
N P

Kd N
R - *.\‘ il \
— dotl ! odoz pb——
2de<z,{l—z,{2> <m+ 1) W(ul—uz) U '\’~0 ‘)_/\/\/\_‘.\ «,l
- =—— |- —|-— - ‘~ R4
917092 7 \U+ i, 2)” 4\ U+, effs (a) ~———
(36)
which gives us the deviation$ andé, in Fig. 4 as
™ ul—uz)
61=—| =/ |Uess 3
1 4(2/[1"‘[/12 eff ( 7)
ked )
&H=\———-1]6. 38
2 (2772 1 ( )
Heren andm are the number of electrons on the +/— wires
when they are off resonance and the —/+ wire is tuned to (b)

resonance. Since the resonance condition of one (gag

wire A) depends on the number of electrons of the other wire FIG. 7. Schematic diagram ¢8) tunnel coupled quantum dots
(wire B), unlike the case when the two wires are decoupledn series andb) capacitively coupled quantum dots in parallel.
(U1=U,), wire B clearly has to have a fixed number of elec-

trons, i.e., it has to be off-resonancAt resonance, the wiré jified and the points of maxima are when both CBs are lifted.
is degenerate fon andn+1 electrons and hence does not | contrast, for the tunnel coupled dots, the maxima occur
have a fixed number of electrons. The electron number fluc(—)my when both Coulomb blockades are lifted.

tuates) So the derivations of the gate voltages above for the \when 4, +14,, we have a term mixingN; and N. This

+/— wires are valid only when the —/+ wire is far from (g5 ys that the CB through one dot is affected by the charge
resonance. Our analysis is unable to predict conductances fgf, the other dot. As in the case of wires, this means that the

Uy #U, when both the wires are near resonance. CBs through both dots cannot be simultaneously lifted. The
lines where one of the CBs is lifted is shifted from the
IV. EFFECTIVE ACTION OF COUPLED DOTS =U, case and as for the wires, we are unable to predict con-

ductances at the crossing points. In contrast, the effect of a

In this section, we map the effective action studied in theeak interdot coupling in the tunnel coupled case is to split
earlier section to the effective action of capacitively coupledihe maxima2322These results are depicted in Fig. 8, to show
quantum dots to obtain the conductance pattern for coupleghe contrast.

dot systems.
We note that Eq(19) is precisely the effective action of

coupled quantum dots with charging energiéss and an V. DISCUSSIONS AND CONCLUSIONS
interaction energyl/;—U,)/4. In the absence of the interac- . ) )
tion term, i.e., wheidd, =y, by tuningN,, or equivalently by In this paper, we have studied conductance through a pair

tuning g, the dot states wittN, and N,+1 can be made O©f carbon nanotubes, which are coupled by floating gates at
degenerate. This is the lifting of the Coulomb blockg@®)  the beginning and end of the wires. This geometry of carbon
for each individual dot. The gate voltages at which both thehanotubes enables us to study how resonant tunneling con-
CB's are lifted and the current through both dots is at aductance through one ca(bon nanotube is affected by that of
maximum are the same points in Fig. 4 where both the wire&1€ other. We have obtained the conductance pattern as a
go through a resonance. Similarly, the gate voltages wherinction of the two gate voltages controlling the densities of
one of the CB's is lifted is where one of the wires goesthe electrons in the two wires. In the plane of the two
through a resonance. gate voltages, we find thator identical carbon nanotubgs
Note that although the effective action looks similar to thethe conductance is a semimaximugpes through a single
effective action for tunnel coupled quantum détshere is  resonancealong the linesg,~g;=~(m+1/2 and g;+g,
an important difference. Unlike the tunnel-coupled ci&g.  =(2Kgd/m)—(n+1/2))i4. At the points where the two lines
7(a)], here, we have a two channel probldifig. 7(b)]. cross, the conductance is a maximu(goes through
Hence, there is nonzero conductance even when only one &0 resonancgs In the rest of the plane, the conductance
the Coulomb blockades is lifted. For instance, when the twds very low (no resonance When the two wires are not
dots are weakly capacitively couple@(; -4, is smal), we identical, the lines of semimaximugsingle resonangeshift
can trivially see that when the CB through dot 1 is lifted, 10 91=0>=[(2Ked/ m) (U ~Up) | Uy +Up)) = (n+1/2) = (11/
G,#0 and when the CB through dot 2 is lifte@,#0. 4 ((U—U) ! (U1 +Uy))]2Uer  and gy +g,=[(2ked/ 7)—(m
Thus, if we measure the total conductance through both thé1/2) - (I1/4)(Uy~U,) (U +U,)) 12U and there is no
dots, the lines of semimaxima are when one of the CBs isesonance when the lines cross. We have also mapped the
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A ; § problem to that of two quantum dots that are capacitively
' : coupled. The conductance through the double-dot system
: : shows the same patterns of maxima when both the dots are
° Y | : Y on resonance, a semimaxima when one is on resonance and
: ; no conductance otherwise.
P O ................... O vrreeeneieeee The above analysis has been a low temperature analysis,
' : T<Ty=tve/ Ked~10 K for typical wires of lengthd
=5 uwm. This is needed for coherent propagation through the
: : wire leading to resonance features. Hence, it is the ledgth

L4 § L : d which plays the role of a cutoff in the RG flows. Although, it
® E 0/ . ® may not be experimentally feasible to change the lengths of
the wire, if it could be done, then one would expect the
deviations of conductances from perfect resonance to scale
as power laws of the lengths, as usually happens in LLs. The
inclusion of leads also brings in nontrivial temperature de-

: : pendences even in the low temperature limit. These may be
& S la) experimentally easier to see. Thus such experiments would
@) g > probe Luttinger liquid physics. More importantly, the geom-
etry that we have studied also allows for cross-conductances,
whose temperature and length dependencies also show the
characteristic LL power laws. Here, however, the very exis-
tence of a “cross” current is an interaction dependent effect
and thus provides a qualitative probe of LL physics. We
should point out that single-walled carbon nanotubes with
Kswnt~ 0.5-0.6 are not in the strong coupling, strong inter-
action regime, which requireK <0.5 without leads, and
82 _ | K <1/3 with leads. However, it is quite likely that materials
will be found which will be in the strong interaction regime.

In this paper, we have given results both for weak and strong
interaction strengths.

Qualitative tests of the other features that we have studied
should also be experimentally feasible. Conductances
fffffffffff through a double wire system or a capacitively coupled
double dot system, should show the features that are seen in

5
R
5

Pany
|tl—

Fan)
>

£

—>551 - ' Figs. 4 and 8. There should be large differences in the con-
ductance in the three different cases wheneboth the gate
d » w voltages are tuned to resonangeaxima of conductange

(2) when one of them is tuned to resonarisemimaxima of
®) 81 > conductancg and(3) when both are out of resonanoeery
low conductance
Finally, this analysis can be easily extended to the case
rYT\qh.ere the two wires are allowed to ‘cross’ at more than two

a square grid in both cases as shown by the open circléa), ithe points. A very similar analysis shows that the system can still

open circles are the only points where there is a maxima, becaustée_deCOUpled in terms of “+” and “-" Wirgs, in tgrms C,)f
both dots need to be at resonance (b the solid lines indicate Which the problem reduces to that of Luttinger wires with

semimaximawhere one of the dots is on resonaneed the open multiple bf'irnersz.2 For three crossings, the equivalent dot
circles denote maxima where both dots are at resonance. Whedgometry involves four dots, at the four corners of a square,
interdot coupling is introduced, i@), each point of resonance splits With tunnel couplings along the horizontal axis and capaci-
into two as shown by the solid circles. (b), the lines of semi- tive couplings along the vertical axis. These are also inter-
maxima shift as shown by the dotted lines, and there are no pointesting geometries to stutfyin the context of quantum com-
where both dots are at resonance. puters.

FIG. 8. Conductances in the plane of the gate voltagesdg,
for (a) tunnel coupled dots an@h) capacitively coupled dots. In the
absence of coupling between the dots, the resonance maxima fo

155420-8



TRANSPORT THROUGH MULTIPLY CONNECTED. PHYSICAL REVIEW B 70, 155420(2004)

1S. J. Tanst al, Nature(London) 386, 474(1997); M. Bockrath, Ba. 0. Gogolin and A. Komnik, Phys. Rev. Lett37, 256806
D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents,  (2001).

, and P. L. McEuenibid. 397, 598(1999. 14C. L. Kane and M. P. A. Fisher, Phys. Rev.45, 15 233(1992.
Z. Yao, H. W. Postma, L. Balents, and C. Dekker, Natureisp pyrusaki and N. Nagaosa, Phys. Rev4B, 4631(1993.
(London 402, 273(1999. 16\, Sassetti, F. Napoli, and U. Weiss, Phys. Rev5g 11 213

3D. J. Bae, K. S. Kim, Y. S. Park, E. K. Suh, K. H. An, J. M.
Moon, S. C. Lim, S. Y. Park, Y. H. Jeong, and Y. H. Lee, Phys.
Rev. B 64, 233401(200).

(1995.
17M. Thorwart, M. Grifoni, G. Cuniberti, H. W. Ch. Postma, and C.

4C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. L&8, 18 Dekker, Phys. Rev. Lett89, 196402(2002).
5086(1997). S. Huegle and R. Egger, Europhys. L&, 565 (2004).

9 . . ,
5B. Trauzettel, R. Egger, and H. Grabert, Phys. Rev. L88, 191, safi and H J. Schulz,. Phys. Rev..BZ, 17 040(1.995, |. Safi,
116401(2002. Ph.D. thesis, Laboratoire de Physique des Solides, Orsay, 1996.

6C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys?os- Lal, S. Rao, and D. Sen, Phys. Rev. L&7, 026801(2002);
Rev. Lett. 89, 037901(2002; C. S. Peca, L. Balents, and K. Phys. Rev. B65, 195304(2002.

Wiese, Phys. Rev. B8, 205423(2003. 21D, Goldhaber-Gordon, H. Shtrickman, D. Mahalu, D. Abusch-
7A. Komnik and R. Egger, Phys. Rev. Le®0, 2881(1998. Magder, U. Meirav, and M. A. Kastner, Natuteondon 391,
8J. Kim, K. Kang, J. Lee, H. Yoo, J. Kim, J. W. Park, H. M. So, 156 (1998.

and J. Kim, J. Phys. Soc. Jpii0, 1464 (2002). 225, Das and S. Rao, Phys. Rev.@8, 073301(2003.
9A. Komnik and R. Egger, Eur. Phys. J. B9, 271(2000. 23F, R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L.
10p, Durganandini and S. Rao, Phys. Rev5B 13 122(1999. Campman, and A. C. Gossard, Phys. Rev. L&g. 705(1995)
1p, samuelson, E. Sukhorukov, and M. Buttiker, Doga: Turk. J. F. R. Waugh, M. J. Berry, C. H. Crouch, C. Livermore, D. J.

Phys. 27 481 (2003. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard
12 R. Egger and A. O. Gogolin, Phys. Rev. Le®9, 5082(1997); Phys. Rev. B53, 1413(1996.

Eur. Phys. J. B3, 281(1998. 243, Das and S. Ra@unpublishegl

155420-9



