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We study transport through multiply coupled carbon nanotubes(quantum wires) and compute the conduc-
tances through the two wires as a function of the two gate voltagesg1 andg2 controlling the chemical potential
of the electrons in the two wires. We find that there is anequilibrium cross-conductance, and we obtain its
dependence on the temperature and length of the wires. The effective action of the model for the wires in the
strong coupling(equivalently Coulomb interaction) limit can also be mapped to a system of capacitively
coupled quantum dots. We thus also obtain the conductances for identical and nonidentical dots. These results
can be experimentally tested.
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I. INTRODUCTION

Transport in one-dimensional systems(quantum wires)
has continued to attract interest in the last decade. This has
been mainly due to the fabrication of novel one-dimensional
materials like single-walled carbon nanotubes, besides the
more standard quantum wires obtained by gating semicon-
ductors. Moreover, attention has been attracted by the evi-
dence for Luttinger liquid(LL ) behavior in the nonlinear
transport measurements on these carbon nanotubes.1–3 This
has led to an upsurge of theoretical work4–6 on transport
through carbon nanotubes.

Transport measurements involving more than one carbon
nanotube can show even more dramatic deviations from
Fermi liquid behavior. For instance, the predictions7 for
crossed carbon nanotubes have been experimentally
verified.8 Further predictions9 have been made for longer
contacts leading to Coulomb drag as well.

In this paper, we study a system of two carbon nanotubes
with a slightly different geometry. The aim is to understand
the phenomena of resonant tunneling through coupled carbon
nanotubes. We start with a system of two wires with density-
density couplings operating at the two ends of both the
wires.10 This geometry is also relevant in the study of en-
tangled electrons, where a superconductor(source of en-
tangled electrons) is weakly coupled to the wires and the
consequent nonlocal correlation is measured at the two
edges.11 The experimental situation that we wish to analyze
is given in Fig. 1 with the schematic diagram in Fig. 2. The
carbon nanotube wires are between the source and the drain
and the two floating gates above the wires provide a strong
capacitive coupling between the two wires at both ends. We
will see later that the same setup can also be thought of as a
set of two quantum dots in parallel, at least in the strong
interaction limit, where the density-density couplings be-
tween the wires themselves are the tunnel barriers respon-
sible for forming the dot.(We will see this analogy explicitly
in the effective action.)

Our aim is to compute the conductance through the two
wires as a function of the two gate voltagesg1 andg2 con-
trolling the density of electrons in wires 1 and 2. Without
leads, when the electron-electron Coulomb interaction
strength is weak, the capacitive coupling between the wires

gets renormalized to zero and the system decouples into two
independent wires. The resonant transmission pattern in this
case is well-known and is simply the resonant transmission
between double barriers. But in the limit of strong interelec-
tron interactions, the coupling between the wires grows, and
an interesting resonance pattern emerges, With the inclusion
of leads, we find that the value of the interaction strength for
which the coupling changes from being irrelevant to relevant
changes. With leads, even stronger inter-electron interactions
are needed to access the strong coupling regime. Single-
walled carbon nanotubes(SWNT), with an interaction pa-
rameter ofKSWNT=0.5–0.6, is essentially at the borderline
between strong and weak interactions(without leads).

In Sec. II, we show how the system can be modeled in
terms of the one-dimensional bosonized Luttinger liquid La-
grangian. In Sec. III, we obtain the effective action by inte-
grating out all degrees of freedom, except at the coupling
points, firstly for a uniform wire without leads. We then
show that for identical wires, the system decouples in terms
of symmetric(“+” ) and antisymmetric(“−” ) combinations of
the fields at the coupling points(boundary fields), and we are
essentially left with two copies of a wire with backscattering
potentials at the two ends. In the weak Coulomb interaction
limit, the backscattering couplings potentials renormalize to
zero (at very low temperaturesT→0 and long wire lengths
d→`). However, for strong Coulomb interactions, the back-
scattering potentials turn out to be relevant. AtT→0 andd
→`, the wires are “cut” and there is no transmission. How-
ever, there is still the possibility of resonant transmission.
When mapped back to the original wires, the conductance

FIG. 1. Carbon nanotube wires 1 and 2 are stretched between
the source and the drain.GA and GB are the two floating gates
which generate a strong capacitive coupling between the two wires
at the two ends.
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maxima forms an interesting resonance pattern. For noniden-
tical wires, there is a coupling term, which can be treated
perturbatively and the change in the pattern of resonance
maxima can be explicitly obtained. In both the cases of
strong and weak Coulomb interactions, the conductances
through the two wires can be explicitly computed in terms of
the new “+” and “−” fields perturbatively. In the “high” tem-
perature limit, the temperatureT is the scale of the cutoff of
the renormalization group(RG) equations and the conduc-
tances are a function ofT. In the low temperature limit, and
for finite length wires, the length of the wire is the RG cut-
off, and the length dependences of the conductances can be
obtained. Interestingly, we find that there is a nonzeroequi-
librium cross-conductance, i.e., there is a nonzero current
through one wire caused by a voltage drop across the other
wire. Finally, we show that the inclusion of leads changes the
value of the interaction parameter where the coupling be-
tween the wires changes from being irrelevant to relevant.
The resonance patterns do not change due to the inclusion of
leads, but the dependence of conductances on the tempera-
ture and the length of the wires, which depend on the RG
flow of the coupling strengths do change and we compute the
new conductances.

In Sec. IV, we show how the effective action in the strong
interaction limit is identical to the action that one would get
for two capacitively coupled quantum dots. Hence, we show
that our results are also applicable to a system of capacitively
coupled quantum dots. Finally in Sec. V, we conclude with a
discussion of how the current model can be extended to mul-
tiply coupled wires and multiply coupled dots.

II. THE MODEL

Following Ref. 4, we will assume that the band structure
of the carbon nanotube is captured by the one-dimensional
free fermion model given by

H0 = − o
i,a
E dxvFfcRia

† i]xcRia − sR↔ Ldg, s1d

wherei =1,2refers to the two wires anda= ↑ ,↓ refers to the
two spins. Coulomb repulsion between the electrons can be
approximated as an onsite density-density interaction as fol-
lows (Fig. 2):

Hint = o
i
E dxri↑ri↓. s2d

Hereriasxd=cia
† cia are the electron densities of the↑ and↓

electrons andcia=cLia e−ikFx+cRia eikFx. The cRia and cLia
stand for fermion fields linearized about the left and
right Fermi points in theith wire. Using the standard boson-
ization procedure, whereby a fermionic theory can be rewrit-
ten as a bosonic theory with the identificationcia

=shia /Î2pade2iÎp fia, the Hamiltonian can be written as

H = H0 + Hint = o
ib

vib

2
FKibsPibd2 −

1

Kib
s]xfibd2G , s3d

whereb=c,s are the subscripts for charge and spin degrees
of freedom, instead ofa= ↑ ,↓ since the interaction term
mixes them.hia are the Klein factors that ensure the anti-
commutation relations of the fermions. HereKic,s1
+g/pvFd−1/2,vic,vFs1+g/pvFd1/2 and Pi,c/s are the fields
dual tofi,c/s. Kis=1 andvis=vF in the absence of magnetic
fields. Kic=1 for free electrons andKic,1 for repulsivee-e
interactions.

In fact, the correct modeling of the single-wall carbon
nanotube requires a four-channel LL.12 Three channels are
noninteracting and the fourth channel is the total charge or
plasmon mode having a LL parametersKicd which lies be-
tween 0.15 and 0.3 as estimated both from theory4,12 and
experiment.1 The effect of all four channels can be included
just by introducing the effective interaction parameter given
by following replacement13

Ki
−1 → sKic

−1 + 3d/4 s4d

in Eq. (3). From now on we will only work with the charge
channel of the SWNT with the redefined LL parameterKi.
Hence, the action is given by

S=E dtfLleads+ Lwires+ Lcoup+ Lgatesg s5d

with each of the terms given below. The electrons in the
leads are free while the electrons in wires 1 and 2 are inter-
acting and they are modeled as Luttinger liquids with Lut-
tinger parameterKiL =1 andKi =K1,K2, respectively,

Lleads+ Lwires= o
i=1

2

fsLleadsdi + sLwiresdig

= o
i=1

2 SE
−`

0

+E
d

` DdxLisfi ;KiL,vFd

+ o
i=1

2 E
0

d

dxLsfi ;Ki,vid. s6d

Herefi denotes the(spinless) Luttinger bosons in wires 1
and 2, respectively, with the Lagrangian densities

FIG. 2. Schematic diagram of the experimental setup. The wires
are modeled as LLs withKi=1,2, with the leads havingKL=1. The
density-density coupling between the wires is denoted by its
strengthl and the two gate voltages controlling the densities of
electrons in the wire are denoted byg1 andg2.
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Lisfi ;Ki,vid = s1/2Kidfs1/vids]tfid2 − svids]xfid2g. s7d

The Lagrangian for the coupling between the wires is given
as

Lcoup=E
−`

+`

dxfl1r1sxdr2sxddsxd + l2r1sxdr2sxddsx − ddg

=
l

spad2fcoss2Îpf1
1d · coss2Îpf2

1d + coss2Îpf1
2

+ 2kFdd · coss2Îpf2
2 + 2kFddg, s8d

whereri are the densities of the electrons, and in terms of the
bosonic fields, they are given by

risxd =
1

Îp
]xfisxd +

1

pa
coss2Îpfisxd + 2kFxd. s9d

Herea is an infrared regulator and we have set Klein factors
to 1 (which is sufficient for the correlation functions we
compute in this paper, although in general with two wires,
one has to be careful). The gate voltage that couples to the
electrons densities in the two dots is modeled by the follow-
ing term in the action:

Lgates= o
i=1

2

giE
0

d

dxrisxd = o
i=1

2
gi

Îp
sfi

2 − fi
1d. s10d

III. THE EFFECTIVE ACTION

We first analyze the model of a uniform quantum wire
with

S=E dtsLwires+ Lcoup+ Lgatesd, s11d

whereLwires=oi=1
2 e−`

` Lisfi ;Ki ,vid. The wire both to the left
of the first coupling point and the right of the second cou-
pling point are interacting wires with the same interaction
parameter as the wire between the two coupling points, as
shown in Fig. 3(a). Such a model would be relevant for two
extremely long carbon nanotubes coupled together at two
points, near the middle. The terms in the Lagrangian for the
coupling between the wiresLcoup and the coupling between
the wires and the gates,Lgate, are both functionals only of the
fields at the boundaries(i.e., atx=0 andx=d). Hence, even
in Lwires (which is a functional of the bulk fields), it is con-
venient for further calculations to integrate out all degrees of
freedom except at the coupling points,x=0 andx=d, and

obtain an effective action14 in terms of the boundary fields
given by

sSeffd0 =E dto
i=1

2

sLwiresdi = o
i=1

2
1

2Ki
E uvussf̃i

1d2 + sf̃i
2d2ddv

+ o
i=1

2
1

2Ki
E uvu

ekid − e−kid
hsekid + e−kiddssf̃i

1d2 + sf̃i
2d2d

− 4f̃i
1f̃i

2jdv. s12d

The Fourier transformed tilde fields are defined byfi
1,2std

=ovn
e−ivntf̃i

1,2svnd. In the high frequency or equivalently,
high temperature limit,sT@"vi /kBdd, sSeffd0 reduces to

sSeffd0
ht = o

i=1

2
1

Ki
E uvussf̃i

1d2 + sf̃i
2d2ddv. s13d

Let us now also include the contributions coming from
the long range part of the Coulomb interaction explicitly(by
hand),15 since conventional LL theory does not automatically
include these contributions. They are incorporated by includ-
ing the term

E dto
i=1

2
Qi

2

2Ci
=

UCi

2
E dto

i=1

2

sfi
2 − fi

1d2 s14d

in the effective action. Here theQi stands for the excess
accumulated charge with respect to the background in the
confined region of double barrier andCi is the corresponding
capacitance. With this, in the low temperature limitsT
!"vi /kBdd, the density-density coupling at the two ends of
each wire are seen coherently by the electrons and the total
effective action reduces to

Seff = sSeffd0
lt +E dtfLcoup+ Lgatesg

= o
i=1

2
1

2Ki
E uvussf̃i

1d2 + sf̃i
2d2ddv

+E dtFo
i=1

2
Ui

2
sfi

2 − fi
1d2 + Lcoup+ LgatesG . s15d

HereUi ="vi /Kid+UCi=Di /Ki +UCi are the mass terms that
suppress charge fluctuations on the wires and are responsible
for the Coulomb blockade(CB) through the wires.Di is the
discrete level spacing of the plasmon state in the double bar-
rier system. In this paper, we ignore the extra effects that
occur due to the dicreteness of these levels. These have been
discussed in Refs. 16–18. Note that for weak interactions,
where Ki ,1 and UCi is very small,Ui ,Di the Coulomb
blockade levels are the same as the plasmon levels.

In this paper we consider the case where the coupling
between the wires are symmetric,l1=l2=l (say). For fur-
ther analysis, it is convenient to define the following vari-
ables:

FIG. 3. Schematic diagram of the wires.
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ui =
fi

1 + fi
2

2
+

kFd

2
, Ni =

fi
2 − fi

1

Îp
+

kFd

p
. s16d

In terms of these variables the coupling part of the action can
be written as

Lcoup=
l

pa
fcos 2Îpsu1 + u2dcos 2ÎpsN1 + N2d

+ cos 2Îpsu1 − u2dcos 2ÎpsN1 − N2dg. s17d

The expression forLcoup in terms of the new fields suggests
that we can diagonalize the problem by introducing the fol-
lowing symmetric and antisymmetric combination of fields:

u± = u1 ± u2, N± = N1 ± N2. s18d

Thus, the total action(in the low T limit ) can be written in
terms of these new ± fields as

Seff =E dtF o
n=+,−

FUeff

2
sNn − N0nd2G +

U1 − U2

4
N+N−F

+
l

spad2o
n=±

fcos 2ÎpuncospNngG , s19d

where Ueff=sU1+U2d /4, Ui =pUi and Sl, N0+, and N0− are
given by

Sl =
1

2o
vn

FsÑ+d2 +
p

4
sũ+d2 + sÑ−d2 +

p

4
sũ−d2G s20d

and

N0± =
kFdsU1 ± U2d − sg1 ± g2d

sp/2dsU1 + U2d
. s21d

Thus, from Eq.(19), we see that whenU1=U2, we have
successfully mapped the problem of two density coupled
quantum wires to a pair of “decoupled” quantum wires with
double barriers. WhenU1ÞU2 but is small, the two wires
interact weakly. It is also possible to identify effective Lut-
tinger liquid parameters for the “±” wires fromUeff (for U1
=U2) by writing it as Ueff=pUeff=p"v /Keffd and we find
that Keff=4K1K2/ sK1+K2d for both the “+” and “−” wires,
since both of them have the sameUeff.

Note that forK1=K2=K, Keff=2K. Hence, the interaction
parameter has doubled7. The “+” and “−” wires are “free”
whenK=1/2, and thequasiparticles have repulsive interac-
tions for K,1/2 and attractive interactions forK.1/2.

A. Case ofU1=U2=U
WhenU1=U2, the coupling term between the “+” and “−”

fields drops from the effective action and the action is ex-
actly identical to the effective action of a decoupled pair of
quantum wires, each with two barriers, in one dimension.14

The action remains invariant under the following transforma-
tions

u± → u± +
Îp

2
, N± → 2N0± − N±, s22d

when N0± is tuned to be a half-integer by tuning the gate
voltagesg1 andg2. This tuning of gate voltages corresponds
to certain special points in thesg1,g2d plane where resonance
transport of electrons through each of the wires takes place.

The conductance matrix for the two-wire system in the
linear response regime, can be written as

G = SG11 G12

G21 G22
D , s23d

whereGii is the conductance through each wire due to the
voltage across the same wire andGij is the cross-
conductance—the conductance in wirei due to the voltage
drop in wire j . Note that the density-density couplings at the
two ends of the wires can be thought to be the source of
“entanglement” of the previously uncorrelated electrons in
wires 1 and 2. The cross-conductanceG12 is a measure of
this entanglement.

By transforming to the “+” and “−” wires, we can com-
pute G± explicitly since they are just the conductances for
uncoupled wires with two barriers each. Moreover, sinceG±
can be written in terms of the currentsj±= j1± j2, we find that

G+sg1 + g2d = sG11 + G22 + G12 + G21dsg1,g2d,

G−sg1 − g2d = sG11 + G22 − G12 − G21dsg1,g2d, s24d

from which we can obtain

G1 + G2 = G+ + G− = G, s25d

G12 + G21 = G+ − G−. s26d

Note thatG12+G21Þ0, as long asG+ÞG−. Thus unlike in
the case of the singly crossed carbon nanotubes,7 where the
cross-conductanceG12 was a nonequilibrium effect and van-
ished in the linear response regime, here,the cross-

FIG. 4. Conductances in the plane of the two gate voltagesgi.
For U1=U2, the solid lines represent semi-maxima(“+” or “−” wire
at resonance) and the crossings represent the maxima(both wires at
resonance). The dotted line represents semimaxima(“+” or “−”
wire at resonance) for U1ÞU2. There is no resonance at the cross-
ings of the dotted lines and that region has been left blank.
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conductance is an equilibrium phenomena. It only requires
G+ÞG−. Since the conductancesG+ and G− are indepen-
dently tuned by the gate voltagesg1+g2 andg1−g2, they are
equal only if they are both tuned to be equal.

The combined transport through the wires 1 and 2 can
now be tuned to resonance when bothG+ andG− are tuned to
resonance(maximum), or when one of them is tuned to reso-
nance(semimaximum). It is easy to see that the conductance
maxima through both the dots form a rectangular grid of
points in the plane of the gate voltages, whenN0+ and N0−
are tuned to half integers, i.e.,N0+=n+1/2 and N0−=m
+1/2. The values of the appropriate gate voltages, given
below,

g2 + g1 = F2kFd

p
− Sn +

1

2
DGU,

g2 − g1 = FSm+
1

2
DGU, s27d

are plotted in Fig. 4. The semimaxima form the two pairs of
solid lines and the intersections of the two pairs of lines are
the maxima.

1. Weak interaction, weak coupling limit

After transforming to the “±” wires, the RG flow of the
density-density coupling term is given by

dl

dl
= s1 − Keffdl. s28d

For weak interelectron interactions(K.1/2 or Keff.1), the
l coupling is irrelevant and it grows smaller as a function of
the energy cutoffl =FlnfLsld /Lg. Here, L is an arbitrary
high energy scale(say, the inverse of the average inter-
particle separation) at which we start the renormalization
group flow. We are interested in the conductance of the sys-
tem in the low temperature limitsT!Tdd where there is co-
herent transport through both the barriers. The total conduc-
tance through the system is given by15

G =
2e2

h
−

a

2
e2l2S T

L
D2sKeff−1d

3f2 + cos 2pN0+ + cos 2pN0−g, s29d

wherea is an arbitrary constant of order unity. Note that the
last factor(i.e., factor in square bracket) goes to zero when
both the wires are tuned to resonance and then there is per-
fect conductance through both the wires.

Similarly, the temperature dependence of the total cross-
conductance is given by

G12 + G21 =
a

2
e2l2S T

L
D2sKeff−1d

scos 2pN0+ − cos 2pN0−d

s30d

in the low temperature limit. Thus, the cross-conductance is
nonzero unless both wires are at resonance orN0+=N0−
+2pN and it can be both negative or positive depending on
the gate voltages(g1, g2) operating on the two wires. Note

also that as the temperature is reduced, the effective barrier
strength reduces and hence, perturbation theory is a good
approximation. In fact, forT→0, the direct conductances are
very close toe2/h or perfect conductance and the cross-
conductances go to zero.

2. Strong interaction, strong coupling limit

For strong interelectron interactionssKeff,1d or K,1/2,
the density-density coupling term is relevant under the RG
transformation. At low energies, the strength of the barriersl
renormalize to very large values, and in fact, at zero tempera-
ture, or for very long wires, the “+” and “−” wires are cut
and there is no transmission, except at resonance points
(which are the points where the Coulomb blockade is lifted).
Note also that the discreteness of the plasmon levels, in gen-
eral, implies that for small dots, the Coulomb blockade peaks
get paired, because each level can accommodate both↑ and
↓ spins. So the CB level spacing alternates betweenUC and
UC+Di /K. For large dots, this difference is negligible. But
for small dots, this difference is experimentally significant
and is the basis of the observation of the Kondo effect in
small dots.21 Zero transmission away from resonance points
is true only atT=0 and for infinite length wires. For finite
temperatures and for finite length wires, there are power law
conductances even when Coulomb blockade is not lifted,
given by14

G , e2t2S T

L
D2s1/Keff−1d

, G12 + G21, s31d

wheret, of order 1/l, is a tunneling amplitude between the
cut wires. In this limit, the system can be considered as a pair
of decoupled dots,(“+” and “−” dots) which are tunnel-
coupled to Luttinger wires[see Fig. 7(b) below]. The
density-density couplings which grow themselves act as the
barriers forming the dot.

Let us now incorporate the leads, by studying the model
in Eq. (5). The leads have noninteracting electrons and only
the electrons within the length of the wire between the two
coupling terms are interacting[see Fig. 3(b)].

The inclusion of leads essentially changes the renormal-
ization group flow of the barriers in the two wires.15,19,20To
find the new RG flows, we first note that even with the in-
clusion of leads, it is convenient to work with the “+” and
“−” fields, where the two wires decouple. In terms of these
fields, we find that the interaction parameters in the leads are
also changed and are given byK±L=2 as compared toKi
=1. Hence, the leads are no longer “free” in the new basis.
(Note that the real leads are of course free. We have mapped
the model to another model in terms of the ± fields, where
the “effective” leads just appear interacting.)

When the barrier is at the boundary between the leads and
the wire as in our set-up in Figs. 1 and 2, the RG equations
are given by20

dl

dl
= Hs1 − Keff8 dl T @ Td

s1 − K±Ldl T ! Td
,
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where Keff8 =2 KeffK±L / sKeff+K±Ld=4K / sK+1d and Td

="v /kBd as before. So for the “±” wires,l is relevant if
Keff8 ,1, i.e., K,1/3 and it is relevant forKeff8 .1, i.e.,
K.1/3.

For “weak” interelectron interactionssKeff8 .1d or
K.1/3, the density-density coupling term is irrelevant un-
der the RG transformation. Note that connecting leads to the
interacting wires, changes the values ofK for which the
density-density coupling is irrelevant fromKù1/2 to K
ù1/3. So we observe that even ifK,1/2, butK.1/3, the
density-density coupling still remains irrelevant, unlike the
case of uniform wire with no leads.

The high temperature conductance scales now withKeff8
instead ofKeff. But at low temperaturessT!Tdd where there
is coherent transport through both the barriers, there exists a
new feature. The conductance now has both non-trivial tem-
perature and length dependences and is given by

G =
2e2

h
−

a

2
e2l2S T

Td
D2sK±L−1dSTd

L
D2sKeff8 −1d

3s2 + cos 2pN0+ + cos 2pN0−d. s32d

The temperature dependence essentially comes because in
the “±” wires, the leads are no longer free.

Similarly, the temperature and length dependences of the
total cross-conductance is given by

G12 + G21 =
a

2
e2l2S T

Td
D2sK±L−1dSTd

L
D2sKeff8 −1d

3scos 2pN0+ − cos 2pN0−d. s33d

This result is experimentally testable and is plotted in Fig. 5.

For strong interelectron interactionssKeff8 ,1d or K,1/3,
the density-density coupling term is relevant under the RG
transformation. Connecting leads to the interacting wires
changes the regime ofK for which the density-density cou-
pling is relevant fromK,1/2 toK,1/3. Sincel renormal-
izes to very large values in this regime, for very long wires
or at very low temperature, the “+” and “−” wires are cut and
there is no transmission, except at resonance points. How-
ever, for finite temperatures and for finite length wires, as
usual, we can compute the conductances as a function of the
temperature and/or length scale perturbatively. The high tem-
peraturesT@Tdd conductance scales now with 1/Keff8 , in-
stead ofKeff8 as in the weak interaction case. At low tempera-
turessT!Tdd also, the interaction parameters get replaced by
their inverses14,20 and the direct and cross-conductances are
given by

G , e2t2S T

Td
D2s1/K±L−1dSTd

L
D2s1/Keff8 −1d

, G12 + G21,

s34d

wheret is the tunneling between the cut wires. This result is
also experimentally testable and is plotted in Fig. 6.

B. Case ofU1ÅU2

However, whenU1ÞU2, it is no longer possible to tune
for resonances through the “+” and “−” wires simultaneously
due to the presence of theN+N− term in the effective action.
N0+ now depends onN− and N0− depends onN+. But it is
always possible to fix eitherN0− or N0+ and tune the other
wire to resonance. The condition for resonance for the ± wire
is given by

VeffsN±,u±;N7,u7d = VeffSN± + 1,u± +
Îp

2
;N7,u7D

s35d

and the appropriate gate voltages at which the wires get
tuned to resonance is given by

FIG. 5. The dependence of the low temperaturesT!Tdd cross-
conductance(in units of 2e2/h) on T and Td for the case ofK
=0.5. HereTd="v /kBd is the temperature equivalent of the lengthd
of the wire.L is the high energy cutoff scale. The overall scale of
the conductance has been adjusted by adjustinga, to be within the
perturbative regime. Hence, it is only the power law which is
significant.

FIG. 6. The dependencies of the low temperaturesT!Tdd con-
ductance(in units of 2e2/h) on T andTd for the case ofK=0.25.
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g1 + g2 = F2kFd

p
− Sn +

1

2
D −

p

4
SU1 − U2

U1 + U2
DGUeff,

g1 − g2 = F2kFd

p
SU1 − U2

U1 + U2
D − Sm+

1

2
D−

p

4
SU1 − U2

U1 + U2
DGUeff,

s36d

which gives us the deviationsd1 andd2 in Fig. 4 as

d1 =
p

4
SU1 − U2

U1 + U2
DUeff, s37d

d2 = S kFd

2p2 − 1Dd1. s38d

Heren andm are the number of electrons on the +/− wires
when they are off resonance and the −/+ wire is tuned to
resonance. Since the resonance condition of one wire(say
wire A) depends on the number of electrons of the other wire
(wire B), unlike the case when the two wires are decoupled
sU1=U2d, wire B clearly has to have a fixed number of elec-
trons, i.e., it has to be off-resonance.(At resonance, the wire
is degenerate forn and n+1 electrons and hence does not
have a fixed number of electrons. The electron number fluc-
tuates.) So the derivations of the gate voltages above for the
+/− wires are valid only when the −/+ wire is far from
resonance. Our analysis is unable to predict conductances for
U1ÞU2 when both the wires are near resonance.

IV. EFFECTIVE ACTION OF COUPLED DOTS

In this section, we map the effective action studied in the
earlier section to the effective action of capacitively coupled
quantum dots to obtain the conductance pattern for coupled
dot systems.

We note that Eq.(19) is precisely the effective action of
coupled quantum dots with charging energiesUeff and an
interaction energysU1−U2d /4. In the absence of the interac-
tion term, i.e., whenU1=U2, by tuningN0n or equivalently by
tuning gi the dot states withNn and Nn+1 can be made
degenerate. This is the lifting of the Coulomb blockade(CB)
for each individual dot. The gate voltages at which both the
CB’s are lifted and the current through both dots is at a
maximum are the same points in Fig. 4 where both the wires
go through a resonance. Similarly, the gate voltages where
one of the CB’s is lifted is where one of the wires goes
through a resonance.

Note that although the effective action looks similar to the
effective action for tunnel coupled quantum dots,22 there is
an important difference. Unlike the tunnel-coupled case[Fig.
7(a)], here, we have a two channel problem[Fig. 7(b)].
Hence, there is nonzero conductance even when only one of
the Coulomb blockades is lifted. For instance, when the two
dots are weakly capacitively coupled,(U1−U2 is small), we
can trivially see that when the CB through dot 1 is lifted,
G1Þ0 and when the CB through dot 2 is lifted,G2Þ0.
Thus, if we measure the total conductance through both the
dots, the lines of semimaxima are when one of the CBs is

lifted and the points of maxima are when both CBs are lifted.
In contrast, for the tunnel coupled dots, the maxima occur
only when both Coulomb blockades are lifted.

When U1ÞU2, we have a term mixingN1 and N2. This
tells us that the CB through one dot is affected by the charge
on the other dot. As in the case of wires, this means that the
CBs through both dots cannot be simultaneously lifted. The
lines where one of the CBs is lifted is shifted from theU1
=U2 case and as for the wires, we are unable to predict con-
ductances at the crossing points. In contrast, the effect of a
weak interdot coupling in the tunnel coupled case is to split
the maxima.23,22These results are depicted in Fig. 8, to show
the contrast.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied conductance through a pair
of carbon nanotubes, which are coupled by floating gates at
the beginning and end of the wires. This geometry of carbon
nanotubes enables us to study how resonant tunneling con-
ductance through one carbon nanotube is affected by that of
the other. We have obtained the conductance pattern as a
function of the two gate voltages controlling the densities of
the electrons in the two wires. In the plane of the two
gate voltages, we find that(for identical carbon nanotubes),
the conductance is a semimaximum(goes through a single
resonance) along the linesg2−g1=−sm+1/2dU and g1+g2

=s2kFd/pd−sn+1/2ddU. At the points where the two lines
cross, the conductance is a maximum(goes through
two resonances). In the rest of the plane, the conductance
is very low (no resonance). When the two wires are not
identical, the lines of semimaximum(single resonance) shift
to g1−g2=fs2kFd/pdssU1−U2d / sU1+U2dd−sn+1/2d−sP /
4dssU1−U2d / sU1+U2ddg2Ueff and g1+g2=fs2kFd/pd−sm
+1/2d−sP /4dssU1−U2d / sU1+U2ddg2Ueff and there is no
resonance when the lines cross. We have also mapped the

FIG. 7. Schematic diagram of(a) tunnel coupled quantum dots
in series and(b) capacitively coupled quantum dots in parallel.
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problem to that of two quantum dots that are capacitively
coupled. The conductance through the double-dot system
shows the same patterns of maxima when both the dots are
on resonance, a semimaxima when one is on resonance and
no conductance otherwise.

The above analysis has been a low temperature analysis,
T!Td="veff /Keffd,10 K for typical wires of lengthd
=5 mm. This is needed for coherent propagation through the
wire leading to resonance features. Hence, it is the lengthd
which plays the role of a cutoff in the RG flows. Although, it
may not be experimentally feasible to change the lengths of
the wire, if it could be done, then one would expect the
deviations of conductances from perfect resonance to scale
as power laws of the lengths, as usually happens in LLs. The
inclusion of leads also brings in nontrivial temperature de-
pendences even in the low temperature limit. These may be
experimentally easier to see. Thus such experiments would
probe Luttinger liquid physics. More importantly, the geom-
etry that we have studied also allows for cross-conductances,
whose temperature and length dependencies also show the
characteristic LL power laws. Here, however, the very exis-
tence of a “cross” current is an interaction dependent effect
and thus provides a qualitative probe of LL physics. We
should point out that single-walled carbon nanotubes with
KSWNT,0.5–0.6 are not in the strong coupling, strong inter-
action regime, which requiresK,0.5 without leads, and
K,1/3 with leads. However, it is quite likely that materials
will be found which will be in the strong interaction regime.
In this paper, we have given results both for weak and strong
interaction strengths.

Qualitative tests of the other features that we have studied
should also be experimentally feasible. Conductances
through a double wire system or a capacitively coupled
double dot system, should show the features that are seen in
Figs. 4 and 8. There should be large differences in the con-
ductance in the three different cases where(1) both the gate
voltages are tuned to resonance(maxima of conductance),
(2) when one of them is tuned to resonance(semimaxima of
conductance), and(3) when both are out of resonance(very
low conductance).

Finally, this analysis can be easily extended to the case
where the two wires are allowed to ‘cross’ at more than two
points. A very similar analysis shows that the system can still
be decoupled in terms of “+” and “−” wires, in terms of
which the problem reduces to that of Luttinger wires with
multiple barriers.22 For three crossings, the equivalent dot
geometry involves four dots, at the four corners of a square,
with tunnel couplings along the horizontal axis and capaci-
tive couplings along the vertical axis. These are also inter-
esting geometries to study24 in the context of quantum com-
puters.

FIG. 8. Conductances in the plane of the gate voltagesg1 andg2

for (a) tunnel coupled dots and(b) capacitively coupled dots. In the
absence of coupling between the dots, the resonance maxima form
a square grid in both cases as shown by the open circles. In(a), the
open circles are the only points where there is a maxima, because
both dots need to be at resonance. In(b), the solid lines indicate
semimaxima(where one of the dots is on resonance) and the open
circles denote maxima where both dots are at resonance. When
interdot coupling is introduced, in(a), each point of resonance splits
into two as shown by the solid circles. In(b), the lines of semi-
maxima shift as shown by the dotted lines, and there are no points
where both dots are at resonance.
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