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Linear magnetic response of disordered metallic rings: Large contribution from forward-
scattering interactions
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We calculate the effect of electron-electron interactions involving vanishing momentum tréosfesrd
scattering on the orbital linear magnetic response of disordered metal rings pierced by a magnetic flux
Using the bulk value of the Landau paramefgrfor copper, we find that in the experiment by Léey al.

[Phys. Rev. Lett64, 2074(1990)] the forward-scattering contribution to theear magnetic response is larger

than the corresponding contribution from large momentum transfers considered by Ambegaokar and Eckern
[Phys. Rev. Lett65, 381(1990]. However, outside the regime of the validity of the linear response and to first
order in the effective screened interaction the persistent current is dominated by scattering processes involving
large momentum transfers.
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I. INTRODUCTION small compared with the inverse elastic lifetime' the

More than a decade ago the measurement by leba)? disorder-averaged polarization is given by

of persistent currents in mesoscopic normal metal rings _

pierced by an Aharonov-Bohm flu triggered a lot of the- Ho(g,iw) = 2w,
oretical activity? Yet, up until now a truly convincing and

generally accepted theoretical explanation of the surprisinglyhere D, is the diffusion coefficient andy, is the average
large persistent currents observed in Ref. 1 and in subsequegénsity of states at the Fermi eneger spin in the absence
experiment$® has not been found. It has become clear, howf interactions. Note thato=(Ao)) 1, whereV is the volume
ever, that this effect cannot be explained within a model ofpf the system and\,, is the average level spaciriger spin

noninteracting electrons. Ambegaokar and ECRe(AE) gt the Fermi energy. It turns out that both diagrams in Fig. 1
were the first to examine the effect of electron-electron in-

teractions on mesoscopic persistent currents: they realized
that, to first order in the screened Coulomb interaction, the
dominant contribution to the disorder-averaged persistent
current can be obtained from the two diagrams shown in Fig.

1, representing a special correctibng(¢) to the disorder-
averaged thermodynamic potential which depends strongly
on the Aharonov-Bohm fluxp. Here the overbar denotes
averaging over the disorder. The shaded symbols in Fig. 1
denote Cooperon ladders, defined diagrammatically in Fig. 2
Given the grand canonical potentfa(¢), the corresponding
persistent currenk(¢) can be obtained from the thermody-
namic relation
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In a bulk metal at high densities the bare Coulomb inter-
actionVy(q)=4me?/g? is strongly screened. A simple way to
take the screening into account diagrammatically is the
random-phase approximatiqiRPA). Following this proce-
dure, AE approximated the effective interactigim the
imaginary frequency formalisyjras follows:

I(¢)=~c 1

(@) (b)

- Vy(Q) FIG. 1. Feynman diagrams representing the flux-dependent part
Vrpa(Q,iw) = — 0 . (2) of the grand canonical potential to first order in the screened inter-
1 +11y(q,im)Ve(q) action.(a) Hartree diagram(b) Fock diagram. Solid arrows repre-

' ' sent noninteracting disorder-averaged Green functions and thick
For momentum transfetg| small compared with the inverse wavy lines represent the effective density-density interaction. The
elastic mean free patfi?, and for frequency transfeig|  Cooperon(shaded symbolis defined in Fig. 2.
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are dominated by momentum transfers of the order of the

Fermi momentunkg, which for a metallic system is large c= =
compared with¢™. Equations(2) and (3) are therefore not

suitable for a quantitatively accurate calculation of persistent

currents. To make some progress analytically, AE estimatec

the contribution from the diagrams in Fig. 1 by replacing the

effective interaction by a constant:

+
<
+
<
+

D= =}

+
+

Virpa(k =K' iw) = (Vepakg =KELI0) =V,  (4)

where(---) denotes the Fermi surface average okerand FIG. 2. Diagrammatic definitions of the Coopert®) and the
ke. For simplicity, it is assumed that the ring is quasi onegiffuson (D). A dashed line represents the covariance of the impu-
dimensional, with transverse thicknelss in the rangeks® rity potential.

<L, <{<L, whereL is the circumference of the ring. Then

diffusive motion is only possible along the circumference. At|,a| interaction model used by AE, which implies, accord-
temperaturd =0 the resulting average persistent current CaNng to Egs.(5) and(6)

be written a8 '

A . : | AE
1AE(p) = >, IRE sin(4mkel ), (5 AT %327TACEC In (5) 9)
k=1 b | g=0 &g Ay
where ¢go=hc/e is the flux quanturhand the Fourier coeffi-
cients of the current are where we have usell=A,/ and retained only the leading
c 16\ logarithmic order. Note that the logarithm is due to the slow
kv . - ; i AE
lﬁE:Zo kZCECe KL +kyy]. (6) decay (xk™) of the Fourier coefﬂments_a-ﬂklk [ ¢y of

IAE] d¢, so that all coefficients witlk< 1/+y contribute to
Here E.=#Dy/L? is the Thouless energy ang=I'/E <1, Fhe linear response.'FEr:0> E. thg linear magnetic response
where at zero temperatufe= A,/ 7 is the cutoff energy that in the BCS model is parametrically larger than the linear
regularizes the singularity in the Cooperon in a finiteresponse in the local interaction model. Whether or not this
systeni? see Eqs(14) and(20) below. The coupling constant rgmains true beyondi the linear response hag not been clgri-
A\e=7oV can be identified with the dimensionless effective fied- Note also that in the BCS model the linear magnetic
interaction in the Cooper channel to first order in perturba/€SPONse is diamagnetic because the effective interaction is
tion theory. AE estimateal,~ 0.3, assuming that the validity attractive(Agcs< 0), whereas the linear response in the local

of the RPA can be extended to momentum transfers of thilteraction model is paramagnetic, corresponding to a repul-
order of k.. However, higher-order ladder diagrams in theSive effective interactiortA.>0).
Cooper channel strongly reduce the effective interaction, so
that\.~0.06 is a more realistic estimdt®r the Cu rings in
the experiment.

In real space Eq4) amounts to replacing the electron-
electron interaction by a local effective density-density inter-
action:

IIl. MAGNETIC RESPONSE DUE TO FORWARD
SCATTERING

An interesting observation made by the authors of Ref. 10
is that an effective interaction different from the local inter-
Veﬁ(r ) HV5(r -1, ) action used by AE can lead to a much Iarger_ persistent cur-
rent, at least for sufficiently small flug, where it is allowed
More precisely, this replacement means that for distancet® calculate the current from the linear response. Given the
[r=r’| larger thane, the interaction is effectively local. In a rather crude approximations in the microscopic derivation of
recent Letter Schechteaat all® pointed out that a different the local interaction model, it seems worthwhile to explore
type of effective interaction can possibly lead to a muchthe magnetic response for other types of effective interac-
larger persistent current. Specifically, they used the BCSions. A possibility which so far has not been thoroughly
model to calculate the leading interaction correction to theanalyzed is an interaction which is dominated by small mo-

orbital linear magnetic response and foGHd mentum transfers. Note that the assumption that only
_ forward-scattering processegorresponding to vanishing
e ed B« Eeo momentum transfgthave to be taken into account for a con-
I ¢:0‘%327T)‘BCSECIn A_o ' ®) sistent description of the low-energy and long-wavelength

properties of normal metals lies at the heart of the Landau’s
wheregcs<O0 is the attractive dimensionless interaction in Fermi-liquid theory. The Landau model is in a sense the

the BCS model, and the coherence endfgyis the smaller opposite extreme of the local interaction model, because the
energy of#i/r and the Debye energfiwp. Equation(8)  effective interaction in the Landau model is proportional to a

should be compared with the corresponding result for thé&kroneckers in momentum space:
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D(iw)g?

Ty(q,iw) = ZVOW

: (12

whereD(iw) is a generalized frequency-dependent diffusion
coefficient. The crucial observation is now that the sum of
the three Fock diagrams in Figgb3-3(d) corresponds to the

usual weak localization correction to the average

conductancé?
(@) ® © @ D(iw) = Do[1 +gw (iw)], (13
FIG. 3. Feynman diagrams that dominate the qux-dependenWhere
part of the grand canonical potential if the effective interaction in- _ 2A, 1
volves only momentum transfers smaller than the inverse elastic Ow (i) =~- —E (14

P R R
mean free pathjg|<¢!. For vanishing momentum transfer the T q hDo0” + |w| +T
Hartree diagram(a) dominates the linear magnetic response,
whereas outside the regime of validity of the linear response th

sum of the three Fock diagranis)-(d) has the same order of mag-

Essentially we have used the equation of continuity to re-
%Iace the charge vertices in Fig. 3 by current vertices, which

nitude as the Hartree diagra(). Note that the diffusor{shaded ?:?]nnfot tbteh rtenormallzetd b); Smgtl.”ar dlf'f|USI_0n Cﬁrrectlonst:
box; see Fig. renormalizes only the density vertex in the Fock ebac at a gauge ranst())rma Ign rep a%ln% c argl_e Vver :'
diagrams; the interaction in the Hartree diagram does not transff€S DYy current vertices can be used to avoid the explicit cal-

any energy and hence cannot be renormalized by singular dif‘fuso?\UI"’mon of vertex Correctipns has also_been emplo_yed in Rgf.
corrections. 16 to calculate the zero-bias anomaly in the tunneling density

of states of two-dimensional disordered electrons interacting
_ with Coulomb forces.
Ver(d,iw) — J4,0f0, (10) The evaluation of the contribution of the three Fock dia-
grams in Fig. 3 to the persistent current is now straightfor-
where the Landau parametgy can be determined from ex- ward. Note that for a thin ring with. | <€ <L the q sum-
periments. In fact, the dimensionless Landau paraffetermation is one dimensional, with quantized wave vectors

Fo=2w,f, can be written as 2m(n+2¢/ pg)/L, n=0,+1,+2,....Then we obtain for the
kth Fourier component of the average current due to the Fock
E - Bm 1 diagrams(b)—<(d) in Fig. 3 for the Landau modéf:
T Bymy f
| LFockee k‘lgo. (15)

whereB is the bulk modulusn. is the effective mass, ari},

andm, are the corresponding quantities in the absence ofye to the extra factor of inverse volume, this contribution
interactions. Inserting the known bulk values for €u, is, for experimentally relevant parametémsegligible com-

m./m=~1.3 andB/By~2.1, we findFo~1.7, which is a fac-  pared with corresponding result in the local interaction
tor of 30 larger than the corresponding estimiate=0.06 in  model given in Eq(6).

the local interaction model. Note that in real space @) The Hartree diagram in the Landau model is more inter-
to the inverse volume of the system: in Fig. 3a) dominates the persistent current due to electron-

electron interactions with momentum transfégb< ¢! has
already been pointed out in Ref. 17. A similar diagram with
two Cooperongbut without interaction lingdominates the
fluctuations of the number of energy levels in a fixed energy

Given an effective interaction of the for(@0), the dominant window centered at the Fermi eneryUsing the approxi-

flux-dependent contributions to the average potefitiah) to mate refation

first order in the interaction are shown in Fig. 3. The Fock c . Jd(SN)?

diagrams(b)—(d) have been discussed previously in Refs. 13 In(@) == EAO o0 (16)

and 14; as first pointed out by Beéal-Monod and

Montambaux.® to leading order in the small parameter between the persistent curreh(¢) at constant particle
(k=€)7%, the three Fock diagrams in Figgb3-3(d) cancel, so  number and the fluctuatio@®N)? of the particle number at
that a direct evaluation of the sum of these diagrams is ratheronstant chemical potentialu, several authors have
difficult. To calculate the leading contribution of these dia-realized®-2*that without interactions the two-Cooperon dia-
grams, we note that the fermion loops in Figeh)33(d) can  gram determines the average persistent current in a canonical
be identified with contributions to the disorder-averaged poensemble. Note that the Hartree diagram in F{g) d8oes not
larization, which for general frequencies and small wavecontain any vertex corrections analogous to the diffusion cor-
vectors can be written & rections of the vertices in the Fock diagat$—d). This is

— f
Vo(r =17) — ;" (12)
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due to the fact that the interaction line in the Hartree process

PHYSICAL REVIEW Br0Q, 155317(2004)

g|LHartree

. 4 c
does not transfer any energy. Hence, the two Green functions —_— = —772 kI Hartree~ glﬁnFoEc, (22

attached to the vertex of a Hartree interaction are either both

retarded or both advanced, so that it is impossible to attach a
P where we have assumed thgtI'/E <1, so that

singular diffuson to the vertex.

For the Landau model the Hartree diagram in Figp)3
yields at finite temperaturé@ the following correction to the
disorder-averaged grand canonical potential:

_ f -~
QL,Hartree(d)) - §}4Z T2 E 0(— wnwnr)
q

(ﬁ@) hlt 2
2w T ﬁDOqZ + |Z)n - Z)n,| +T

X >, [Go(K,i@y) PG~ k + i)
k

X Y, [Go(k' iwg ) 2Go(~ k' +q,idy).
k!

17)

Here 7=¢/v is the elastic lifetime,=2m(n+3)T are fer-
mionic Matsubara frequencies, and

1

fi%k?
i%n—m+,u+iz_sgn'5)n

Gylk, i@y = (18)

is the disorder-averaged noninteracting Matsubara Green

function. Since the Cooperorgse., the second linein Eq.
(17) are only singular fofg|< ¢! and because thie andk’

sums are dominated by momenta of the order of the Fermi

momentum, we may approxirrE\te Eo(—k+q,i2"un/)

= Gy(—k,imy) and Gy(-k'+q,iw,) =Gy(-k’,iw,) in Eqg.

(17). The product of the last two lines of E(L7) gives then
rise to a factor of (27/Ao)(7/#)?]%, so that we obtain

— f
(L Hartre — _OP , 19
1¢)= 2 P() (19
with the dimensionless coefficient
4T [0
Po=— > 2 5 . (20
T ocomettr g [#DoG” + @+ T

b lg=0 Pok=1 0

_er 1 23
[1-e7P v Ay

oo
2 ke—kv‘?’ =
k=1

Note that the small energy scalg of Eq. (21) has disap-
peared on the right-hand side of E§2) and is replaced by
the much larger Thouless enerBy. Due to the faster decay

of the Fourier componentd5) of the Fock contribution in

the Landau model, the linear response due to the Fock dia-
grams shown in Figs.(B)-3(d) is a factor of\I'/E. smaller
than the corresponding Hartree contribution. Interestingly,
the anomalously large linear magnetic response in the BCS
model given in Eq.(8) is also dominated by the Hartree
process? Thus, the importance of Hartree interactions for
persistent currents is to some extent independent of a specific
model for the interaction. For the Cu rings used in the
experiment we estimateFy~1.7, \;~0.06, and E./A,

=~ 25; with these values the linear magnetic response due to
forward scattering is more than 4 times larger than the linear
response in the local interaction model considered by AE.
To take both contributions into account one should param-
etrize the total effective interaction as

— J— f —
Verlr =1')=V&(r —r') + OT (24)
which in momentum space amounts to
— v forq=0,
Veir(@) = (25
eff {fo for g # 0.

Using the estimate for bulk Cu given abovEy=2u,f,

~1.7 and\.=vyV=0.06, we findfy/V =14, which supports

our assumption that there is indeed a strong enhancement of
the effective interaction in the forward-scattering channel.

IIl. CONCLUSIONS

In summary, we have shown that a forward-scattering ex-
cess interaction, involving a vanishing momentum transfer,
yields the dominant contribution to tHmear magnetic re-

where w,=27mT are bosonic Matsubara frequencies. As-SPONse of mesoscopic metal rings for experimentally relevant

suming again a thin ring with | <€ <L, we find in the limit

parameters.On the other hand, outside the linear response

T— 0 for the Fourier components of the persistent current, regime the persistent current is dominated by the t&m

16c fo_y5_C

7 $o2V ¢o

Comparing this expression with the corresponding re&jlt

I L,Hartree_
K =

(21)

A —~
BFg—2e v,
o

involving large momentum transfers, at least if we use the

bulk estimates forV and F, for Cu. However, for a
mesoscopic-disordered Cu ring it is not obvious that the bulk
estimates are reliable. Note also that in the bulk the normal
Fermi liquid is stable as long af,>-1, so that for

of the local interaction model, we see that in the Landaw>F,>-1 the linear magnetic response in the normal state

model the Fourier componenisHa"®are independent d¢

can be diamagnetic, in spite of the fact that the effective

as long ak=1/1y. Therefore the linear magnetic responsecoupling . in the Cooper channel is positive. Moreover, in

is determined by all Fourier components upkts VE /T,

the vicinity of ans-wave Pomeranchuk instabili¥y;>where
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Fo<0 and |1+Fy <1, one should replac&, by Fo/(1  screening in a finite system and incorporate the breakdown
+Fg). In this case we predict a strongly enhanced diamagef Fermi-liquid theory in quasi-one-dimensional disordered
netic linear response. In fact, the forward-scattering channehetals at sufficiently low temperaturés.

might then dominate the persistent current even beyond the

linear or_der in the fluxp. To c_Iarify this point, a be_tter mi-_ ACKNOWLEDGMENT
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