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We calculate the effect of electron-electron interactions involving vanishing momentum transfer(forward
scattering) on the orbital linear magnetic response of disordered metal rings pierced by a magnetic fluxf.
Using the bulk value of the Landau parameterF0 for copper, we find that in the experiment by Lévyet al.
[Phys. Rev. Lett.64, 2074(1990)] the forward-scattering contribution to thelinear magnetic response is larger
than the corresponding contribution from large momentum transfers considered by Ambegaokar and Eckern
[Phys. Rev. Lett.65, 381(1990)]. However, outside the regime of the validity of the linear response and to first
order in the effective screened interaction the persistent current is dominated by scattering processes involving
large momentum transfers.
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I. INTRODUCTION

More than a decade ago the measurement by Lévyet al.1

of persistent currents in mesoscopic normal metal rings
pierced by an Aharonov-Bohm fluxf triggered a lot of the-
oretical activity.2,3 Yet, up until now a truly convincing and
generally accepted theoretical explanation of the surprisingly
large persistent currents observed in Ref. 1 and in subsequent
experiments4,5 has not been found. It has become clear, how-
ever, that this effect cannot be explained within a model of
noninteracting electrons. Ambegaokar and Eckern6 (AE)
were the first to examine the effect of electron-electron in-
teractions on mesoscopic persistent currents: they realized
that, to first order in the screened Coulomb interaction, the
dominant contribution to the disorder-averaged persistent
current can be obtained from the two diagrams shown in Fig.

1, representing a special correctionV̄AEsfd to the disorder-
averaged thermodynamic potential which depends strongly
on the Aharonov-Bohm fluxf. Here the overbar denotes
averaging over the disorder. The shaded symbols in Fig. 1
denote Cooperon ladders, defined diagrammatically in Fig. 2.
Given the grand canonical potentialVsfd, the corresponding
persistent currentIsfd can be obtained from the thermody-
namic relation

Isfd = − c
]Vsfd

]f
. s1d

In a bulk metal at high densities the bare Coulomb inter-
actionV0sqd=4pe2/q2 is strongly screened. A simple way to
take the screening into account diagrammatically is the
random-phase approximation(RPA). Following this proce-
dure, AE approximated the effective interaction(in the
imaginary frequency formalism) as follows:

V̄RPAsq,ivd =
V0sqd

1 + P̄0sq,ivdV0sqd
. s2d

For momentum transfersuqu small compared with the inverse
elastic mean free path,−1, and for frequency transfersuvu

small compared with the inverse elastic lifetimet−1 the
disorder-averaged polarization is given by

P̄0sq,ivd < 2n0
D0q

2

D0q
2 + uvu

, s3d

whereD0 is the diffusion coefficient andn0 is the average
density of states at the Fermi energy(per spin) in the absence
of interactions. Note thatn0=sD0Vd−1, whereV is the volume
of the system andD0 is the average level spacing(per spin)
at the Fermi energy. It turns out that both diagrams in Fig. 1

FIG. 1. Feynman diagrams representing the flux-dependent part
of the grand canonical potential to first order in the screened inter-
action.(a) Hartree diagram,(b) Fock diagram. Solid arrows repre-
sent noninteracting disorder-averaged Green functions and thick
wavy lines represent the effective density-density interaction. The
Cooperon(shaded symbol) is defined in Fig. 2.
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are dominated by momentum transfers of the order of the
Fermi momentumkF, which for a metallic system is large
compared with,−1. Equations(2) and (3) are therefore not
suitable for a quantitatively accurate calculation of persistent
currents. To make some progress analytically, AE estimated
the contribution from the diagrams in Fig. 1 by replacing the
effective interaction by a constant:

V̄RPAsk − k8,ivd → kV̄RPAskF − kF8,i0dl ; V̄, s4d

where k¯l denotes the Fermi surface average overkF and
kF8. For simplicity, it is assumed that the ring is quasi one
dimensional, with transverse thicknessL' in the rangekF

−1

!L'!,!L, whereL is the circumference of the ring. Then
diffusive motion is only possible along the circumference. At
temperatureT=0 the resulting average persistent current can
be written as6

ĪAEsfd = o
k=1

`

Ik
AE sins4pkf/f0d, s5d

wheref0=hc/e is the flux quantum7 and the Fourier coeffi-
cients of the current are

Ik
AE =

c

f0

16lc

k2 Ece
−kÎgf1 + kÎgg. s6d

Here Ec="D0/L2 is the Thouless energy andg=G /Ec!1,
where at zero temperatureG=D0/p is the cutoff energy that
regularizes the singularity in the Cooperon in a finite
system;8 see Eqs.(14) and(20) below. The coupling constant

lc=n0V̄ can be identified with the dimensionless effective
interaction in the Cooper channel to first order in perturba-
tion theory. AE estimatedlc<0.3, assuming that the validity
of the RPA can be extended to momentum transfers of the
order of kF. However, higher-order ladder diagrams in the
Cooper channel strongly reduce the effective interaction, so
thatlc<0.06 is a more realistic estimate9 for the Cu rings in
the experiment.1

In real space Eq.(4) amounts to replacing the electron-
electron interaction by a local effective density-density inter-
action:

V̄effsr − r 8d → V̄dsr − r 8d. s7d

More precisely, this replacement means that for distances
ur −r 8u larger than,, the interaction is effectively local. In a
recent Letter Schechteret al.10 pointed out that a different
type of effective interaction can possibly lead to a much
larger persistent current. Specifically, they used the BCS
model to calculate the leading interaction correction to the
orbital linear magnetic response and found7,10

U ]ĪBCS

]f
U

f=0
=

c

f0
232plBCSEc lnSEco

D0
D , s8d

wherelBCS,0 is the attractive dimensionless interaction in
the BCS model, and the coherence energyEco is the smaller
energy of " /t and the Debye energy"vD. Equation (8)
should be compared with the corresponding result for the

local interaction model used by AE, which implies, accord-
ing to Eqs.(5) and (6),

U ]ĪAE

]f
U

f=0
=

c

f0
232plcEc ln SEc

D0
D , s9d

where we have usedG=D0/p and retained only the leading
logarithmic order. Note that the logarithm is due to the slow
decay s~k−1d of the Fourier coefficients 4pkIk

AE/f0 of

]ĪAE/]f, so that all coefficients withk&1/Îg contribute to
the linear response. ForEco@Ec the linear magnetic response
in the BCS model is parametrically larger than the linear
response in the local interaction model. Whether or not this
remains true beyond the linear response has not been clari-
fied. Note also that in the BCS model the linear magnetic
response is diamagnetic because the effective interaction is
attractiveslBCS,0d, whereas the linear response in the local
interaction model is paramagnetic, corresponding to a repul-
sive effective interactionslc.0d.

II. MAGNETIC RESPONSE DUE TO FORWARD
SCATTERING

An interesting observation made by the authors of Ref. 10
is that an effective interaction different from the local inter-
action used by AE can lead to a much larger persistent cur-
rent, at least for sufficiently small fluxf, where it is allowed
to calculate the current from the linear response. Given the
rather crude approximations in the microscopic derivation of
the local interaction model, it seems worthwhile to explore
the magnetic response for other types of effective interac-
tions. A possibility which so far has not been thoroughly
analyzed is an interaction which is dominated by small mo-
mentum transfers. Note that the assumption that only
forward-scattering processes(corresponding to vanishing
momentum transfer) have to be taken into account for a con-
sistent description of the low-energy and long-wavelength
properties of normal metals lies at the heart of the Landau’s
Fermi-liquid theory. The Landau model is in a sense the
opposite extreme of the local interaction model, because the
effective interaction in the Landau model is proportional to a
Kroneckerd in momentum space:

FIG. 2. Diagrammatic definitions of the CooperonsCd and the
diffuson sDd. A dashed line represents the covariance of the impu-
rity potential.
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V̄effsq,ivd → dq,0f0, s10d

where the Landau parameterf0 can be determined from ex-
periments. In fact, the dimensionless Landau parameter11

F0;2n0f0 can be written as

F0 =
B

B0

m*

m0
− 1,

whereB is the bulk modulus,m* is the effective mass, andB0
and m0 are the corresponding quantities in the absence of
interactions. Inserting the known bulk values for Cu,12

m* /m<1.3 andB/B0<2.1, we findF0<1.7, which is a fac-
tor of 30 larger than the corresponding estimatelc<0.06 in
the local interaction model. Note that in real space Eq.(10)
corresponds to a constant effective interaction, proportional
to the inverse volume of the system:

V̄effsr − r 8d → f0

V . s11d

Given an effective interaction of the form(10), the dominant

flux-dependent contributions to the average potentialV̄sfd to
first order in the interaction are shown in Fig. 3. The Fock
diagrams(b)–(d) have been discussed previously in Refs. 13
and 14; as first pointed out by Béal-Monod and
Montambaux,13 to leading order in the small parameter
skF,d−1, the three Fock diagrams in Figs. 3(b)–3(d) cancel, so
that a direct evaluation of the sum of these diagrams is rather
difficult. To calculate the leading contribution of these dia-
grams, we note that the fermion loops in Figs. 3(b)–3(d) can
be identified with contributions to the disorder-averaged po-
larization, which for general frequencies and small wave
vectors can be written as15

P̄0sq,ivd = 2n0
Dsivdq2

Dsivdq2 + uvu
, s12d

whereDsivd is a generalized frequency-dependent diffusion
coefficient. The crucial observation is now that the sum of
the three Fock diagrams in Figs. 3(b)–3(d) corresponds to the
usual weak localization correction to the average
conductance:14

Dsivd < D0f1 + gWLsivdg, s13d

where

gWLsivd = −
2D0

p
o
q

1

"D0q
2 + uvu + G

. s14d

Essentially we have used the equation of continuity to re-
place the charge vertices in Fig. 3 by current vertices, which
cannot be renormalized by singular diffusion corrections.
The fact that a gauge transformation replacing charge verti-
ces by current vertices can be used to avoid the explicit cal-
culation of vertex corrections has also been employed in Ref.
16 to calculate the zero-bias anomaly in the tunneling density
of states of two-dimensional disordered electrons interacting
with Coulomb forces.

The evaluation of the contribution of the three Fock dia-
grams in Fig. 3 to the persistent current is now straightfor-
ward. Note that for a thin ring withL'!,!L the q sum-
mation is one dimensional, with quantized wave vectors
2psn+2f /f0d /L, n=0, ±1, ±2, . . ..Then we obtain for the
kth Fourier component of the average current due to the Fock
diagrams(b)–(d) in Fig. 3 for the Landau model:14

Ik
L,Fock~ k−1 f0

V . s15d

Due to the extra factor of inverse volume, this contribution
is, for experimentally relevant parameters,1 negligible com-
pared with corresponding result in the local interaction
model given in Eq.(6).

The Hartree diagram in the Landau model is more inter-
esting. The fact that the diagram with two Cooperons shown
in Fig. 3(a) dominates the persistent current due to electron-
electron interactions with momentum transfersuqu&,−1 has
already been pointed out in Ref. 17. A similar diagram with
two Cooperons(but without interaction line) dominates the
fluctuations of the number of energy levels in a fixed energy
window centered at the Fermi energy.18 Using the approxi-
mate relation

INsfd = −
c

2
D0

]sdNd2

]f
s16d

between the persistent currentINsfd at constant particle
number and the fluctuationsdNd2 of the particle number at
constant chemical potentialm, several authors have
realized19–21 that without interactions the two-Cooperon dia-
gram determines the average persistent current in a canonical
ensemble. Note that the Hartree diagram in Fig. 3(a) does not
contain any vertex corrections analogous to the diffusion cor-
rections of the vertices in the Fock diagams(b)–(d). This is

FIG. 3. Feynman diagrams that dominate the flux-dependent
part of the grand canonical potential if the effective interaction in-
volves only momentum transfers smaller than the inverse elastic
mean free path,uqu&,−1. For vanishing momentum transfer the
Hartree diagram(a) dominates the linear magnetic response,
whereas outside the regime of validity of the linear response the
sum of the three Fock diagrams(b)-(d) has the same order of mag-
nitude as the Hartree diagram(a). Note that the diffuson(shaded
box; see Fig. 2) renormalizes only the density vertex in the Fock
diagrams; the interaction in the Hartree diagram does not transfer
any energy and hence cannot be renormalized by singular diffuson
corrections.
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due to the fact that the interaction line in the Hartree process
does not transfer any energy. Hence, the two Green functions
attached to the vertex of a Hartree interaction are either both
retarded or both advanced, so that it is impossible to attach a
singular diffuson to the vertex.

For the Landau model the Hartree diagram in Fig. 3(a)
yields at finite temperatureT the following correction to the
disorder-averaged grand canonical potential:

V̄L,Hartreesfd =
f0

2V4o
q

T2 o
ṽn,ṽn8

us− ṽnṽn8d

3 S D0

2p

"

t
D2F "/t

"D0q
2 + uṽn − ṽn8u + G

G2

3 o
k

fḠ0sk,iṽndg2Ḡ0s− k + q,iṽn8d

3 o
k8

fḠ0sk8,iṽn8dg
2Ḡ0s− k8 + q,iṽnd.

s17d

Here t=, /vF is the elastic lifetime,ṽn=2psn+ 1
2

dT are fer-
mionic Matsubara frequencies, and

Ḡ0sk,iṽnd =
1

iṽn −
"2k2

2m
+ m + i

"

2t
sgnṽn

s18d

is the disorder-averaged noninteracting Matsubara Green
function. Since the Cooperons(i.e., the second line) in Eq.
(17) are only singular foruqu&,−1 and because thek andk8
sums are dominated by momenta of the order of the Fermi

momentum, we may approximateḠ0s−k +q , iṽn8d
<Ḡ0s−k , iṽn8d and Ḡ0s−k8+q , iṽnd<Ḡ0s−k8 , iṽnd in Eq.
(17). The product of the last two lines of Eq.(17) gives then
rise to a factor offs2p /D0dst /"d2g2, so that we obtain

V̄L,Hartreesfd =
f0

2VPsfd, s19d

with the dimensionless coefficient

Psfd =
4T

p
o

0,vm,"/t
o
q

vm

f"D0q
2 + vm + Gg2 , s20d

where vm=2pmT are bosonic Matsubara frequencies. As-
suming again a thin ring withL'!,!L, we find in the limit
T→0 for the Fourier components of the persistent current,

Ik
L,Hartree=

16

p

c

f0

f0

2Ve−kÎg =
c

f0
8F0

D0

p
e−kÎg. s21d

Comparing this expression with the corresponding result(6)
of the local interaction model, we see that in the Landau
model the Fourier componentsIk

L,Hartreeare independent ofk
as long ask&1/Îg. Therefore the linear magnetic response
is determined by all Fourier components up tok&ÎEc/G,

U ]ĪL,Hartree

]f
U

f=0
=

4p

f0
o
k=1

`

kIk
L,Hartree<

c

f0
216pF0Ec, s22d

where we have assumed thatg=G /Ec!1, so that

o
k=1

`

ke−kÎg =
eÎg

f1 − e−Îgg2
<

1

g
<

pEc

D0
. s23d

Note that the small energy scaleD0 of Eq. (21) has disap-
peared on the right-hand side of Eq.(22) and is replaced by
the much larger Thouless energyEc. Due to the faster decay
of the Fourier components(15) of the Fock contribution in
the Landau model, the linear response due to the Fock dia-
grams shown in Figs. 3(b)–3(d) is a factor ofÎG /Ec smaller
than the corresponding Hartree contribution. Interestingly,
the anomalously large linear magnetic response in the BCS
model given in Eq.(8) is also dominated by the Hartree
process.10 Thus, the importance of Hartree interactions for
persistent currents is to some extent independent of a specific
model for the interaction. For the Cu rings used in the
experiment1 we estimateF0<1.7, lc<0.06, and Ec/D0
<25; with these values the linear magnetic response due to
forward scattering is more than 4 times larger than the linear
response in the local interaction model considered by AE.6

To take both contributions into account one should param-
etrize the total effective interaction as

V̄effsr − r 8d = V̄dsr − r 8d +
f0 − V̄

V , s24d

which in momentum space amounts to

V̄effsqd =H V̄ for q = 0,

f0 for q Þ 0.
J s25d

Using the estimate for bulk Cu given above,F0=2n0f0

<1.7 andlc=n0V̄<0.06, we findf0/ V̄<14, which supports
our assumption that there is indeed a strong enhancement of
the effective interaction in the forward-scattering channel.

III. CONCLUSIONS

In summary, we have shown that a forward-scattering ex-
cess interaction, involving a vanishing momentum transfer,
yields the dominant contribution to thelinear magnetic re-
sponse of mesoscopic metal rings for experimentally relevant
parameters.1 On the other hand, outside the linear response

regime the persistent current is dominated by the termV̄
involving large momentum transfers, at least if we use the

bulk estimates forV̄ and F0 for Cu. However, for a
mesoscopic-disordered Cu ring it is not obvious that the bulk
estimates are reliable. Note also that in the bulk the normal
Fermi liquid is stable as long asF0.−1, so that for
0.F0.−1 the linear magnetic response in the normal state
can be diamagnetic, in spite of the fact that the effective
couplinglc in the Cooper channel is positive. Moreover, in
the vicinity of ans-wave Pomeranchuk instability,22,23where
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F0,0 and u1+F0u!1, one should replaceF0 by F0/ s1
+F0d. In this case we predict a strongly enhanced diamag-
netic linear response. In fact, the forward-scattering channel
might then dominate the persistent current even beyond the
linear order in the fluxf. To clarify this point, a better mi-
croscopic theory of the effective electron-electron interaction
in mesoscopic-disordered metals is necessary. In particular, a
microscopic theory should properly treat the problem of

screening in a finite system and incorporate the breakdown
of Fermi-liquid theory in quasi-one-dimensional disordered
metals at sufficiently low temperatures.24
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