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The conditions for a spontaneous spin polarization in a quantum wire positioned in a zero magnetic field are
analyzed under weak population of one-dimensional(1D) subbands, which gives rise to the efficient quenching
of the kinetic energy by the exchange energy of carriers. The critical linear concentration of carriers above
which the quasi-one-dimensional gas undergoes a complete spin depolarization is determined by the Hartree-
Fock approximation. The dependence of the critical linear concentration on the carrier’s concentration is
defined to reveal the interplay of the spin depolarization with the evolution of the “0.7s2e2/hd” feature in the
quantum conductance staircase from thee2/h to s3/2dse2/hd values. This dependence is used to study the
effect of the hole concentration on the 0.7s2e2/hd feature in the quantum conductance staircase of the quantum
wire prepared inside thep-type silicon quantum well using the split-gate technique. The 1D channel is dem-
onstrated to be spin-polarized at the linear concentration of holes lower than the critical linear concentration,
because the 0.7s2e2/hd feature is close to the value of 0.5s2e2/hd that indicates the spin degeneracy lifting for
the first step of the quantum conductance staircase. The 0.7s2e2/hd feature is found to take, however, its normal
magnitude when the linear concentration of holes attains the critical value corresponding to the spin depolar-
ization. The variations in the height of the 0.7s2e2/hd feature observed in the hole quantum conductance
staircase that is revealed by the p-type silicon quantum wire seem to be related to the evidences of the quantum
conductance staircase obtained by varying the concentration of electrons in the 1D channel prepared inside the
GaAs-AlGaAs heterojunction[K. S. Pyshkin, C. J. B. Ford, R. H. Harrell, M. Pepper, E. H. Linfield, and D. A.
Ritchie, Phys. Rev. B62, 15842(2000)].
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I. INTRODUCTION

Progress in nanotechnology makes it possible to fabricate
low-dimensional semiconductor systems with low density of
high-mobility charge carriers, which exhibit ballistic behav-
ior under the conditionkBTt /".1, where" /kBT is the time
of electron-electron interaction andt=m*m /e is the transport
relaxation time.1–15 In contrast to the diffusion mode
skBTt /",1d, the role of spin correlations is considerably
enhanced in the processes of ballistic transport.2–6 Among
their most dramatic manifestations in the localization and
transport processes is the appearance of the “0.7s2e2/hd” fea-
ture, which is split off from the first step in the quantum
conductance staircase revealed by a one-dimensional(1D)
channel.1,7–9

The charge transport in such channels that are prepared by
the split-gate10–12and cleaved edge overgrowth13 methods is
not accompanied with the Joule losses, because their length
is less than the mean free path. Therefore, the conductance of
the quantum wire that contains a single or several ballistic
1D channels depends only the transmission coefficientT,14,15

i.e.,

G0 = gs
e2

h
NT, s1d

where N denotes the number of the highest occupied 1D
subband, which is changed by varying the gate voltageUg.
Furthermore, the dependenceGsUgd represents the quantum
conductance staircase, because the conductance of a quantum

wire is changed by the value ofgse
2/h each time when the

Fermi level coincides with one of the 1D subbands.11,12Spin
factor gs describes the spin degeneration of the wire mode.
The value ofgs is equal to 2 for noninteracting fermions if
the external magnetic field is absent and becomes unity as a
result of Zeeman splitting of a quantum staircase in strong
magnetic field. The first step of the quantum conductance
staircase has been found, however, to split into two parts
even in the absence of external magnetic field.1,7–9 The
height of the substep that is dependent on temperature is
usually observed to be about 0.7 of the first step value in a
zero magnetic field.

Two experimental observations indicate the importance of
the spin component for the behavior of this 0.7s2e2/hd fea-
ture. First, the electrong factor was found to increase from
0.4 to 1.3 as the number of occupied 1D subbands
decreases.7 Second, the height of the 0.7s2e2/hd feature at-
tains a value of 0.5s2e2/hd with increasing external magnetic
field.7–9 These results have defined the spontaneous spin po-
larization of a 1D gas in a zero magnetic field as one of
possible mechanisms for the 0.7s2e2/hd feature in spite of
the theoretical prediction of a ferromagnetic state instability
in ideal 1D systems in the absence of a magnetic field.16

The studies of the spontaneous spin polarization in quan-
tum wires that have been carried out recently in frameworks
of the Kohn-Sham mean-field approximation with the ul-
tralow linear concentration of charge carriers when the en-
ergy of the exchange interaction begins to exceed the kinetic
energy in a zero magnetic field allowed to describe qualita-
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tively the quantum conductance staircase of a spin-polarized
1D channel.17–23 However, the behavior of the 0.7s2e2/hd
feature with the onset of spin depolarization that is enhanced
by increasing the linear concentration of charge carriers spe-
cifically at finite temperatures is still elusive, because the
spontaneous spin polarization is analyzed using only numeri-
cal calculations, and any analytical expressions of the critical
linear concentration corresponding to spin depolarization
were not present.17–19

Here we use the Hartree-Fock approximation to define
analytically the critical linear concentration of carriers above
which the spin-polarized quasi-one-dimensional gas under-
goes the spin depolarization that seems to be related to the
evolution of the height of the 0.7s2e2/hd feature in the quan-
tum conductance staircase. The energies of the completely
spin-polarized and unpolarized states of the quasi-one-
dimensional gas are analytically calculated and then com-
pared. The completely spin-polarized state is shown to be
stable in ultrathin 1D ballistic channels when the linear con-
centration of carriers is lower than the critical value, above
which the quasi-one-dimensional gas undergoes the spin de-
polarization. This result allows us to explain the variations in
the height of the 0.7s2e2/hd feature revealed by the 1D chan-
nel prepared inside the GaAs-AlGaAs heterojunction which
have been found by varying the concentration of 2D electron
gas in leads.1 These variations are suggested to result from
the dependence of the effective mass of carriers on its con-
centration in two-dimensional semiconductor structures. Fi-
nally, the effect of the concentration of the charge carriers on
the 0.7s2e2/hd feature is experimentally verified in the stud-
ies of the hole quantum conductance staircase revealed by
the quantum wire prepared inside thep-type silicon quantum
well using the split-gate technique.

II. SPONTANEOUS SPIN POLARIZATION IN ONE-
DIMENSIONAL SYSTEM

IN A ZERO MAGNETIC FIELD

The 1D systems of fermions are described by the
Schrödinger equationHC=EC with H=H0

1D+H1, where
H0

1D is the Hamiltonian of noninteracting fermions, which
depends on the dimensionality of the system under study, and
the termH1 accounts for the interaction of fermions. The
form of H0

1D depends on the dimensionality of the system
under consideration. Since the motion of charge carriers in
1D systems is quantized in two directionssx,yd, the Hamil-
tonian for noninteracting particles has the form

H0
1D = o

j=1

N S pj
2

2m
+ Usxj,yjdD . s2d

The corresponding unperturbed wave functions can be writ-
ten as

ck,msr d =
1

ÎV1D

eikzwmsrd, s3d

wherem is the number of the subband of the quantum con-
finement in the planer = ix+ j y and V1D is the 1D volume

that is a quantity with the dimensionality of length.
The interaction operator that is independent of the dimen-

sionality is given by

H1 =
1

2o
iÞ j

Vsur i − r j ud, s4d

where

Vsur i − r j ud =
e2

ur i − r j u
. s5d

In the second-quantized representation,

H1 =
1

2o
iÞ j

kKLuVuMQlcK
+cL

+cQcM , s6d

where each of the subscriptsK, L, M, and Q stand for a
particle wave vector, the number of the quantum-
confinement subband, and the spin.

If the density of noninteracting carriers is sufficiently low
so that only the lowest quantum-confinement subband is oc-
cupied, the total energy of the electron gas equals its kinetic
energy, and the energy density can easily be calculated both
for a 1D gas of charge carriers:

«kin = o
uku,kF

"2k2

2m
, s7d

wherekF is the Fermi wave vector.
Accordingly,

«kin
1D = o

uku,kF

gs
"2k2

2m
=

"2gs

6pm
kF

3 =
p2"2n1D

3

6mgs
2 , s8d

where the value ofkF is determined from the condition

kF =
p

gs
n1D. s9d

Here n1D is the linear concentration of charge carriers in a
1D gas andgs is the spin factor, which is equal to the number
of electrons per unit cell of phase space. For an unpolarized
state,gs=2, whereas for a completely spin-polarized state,
gs=1. The values 1,gs,2 correspond to the partial spin
polarization of charge carriers in a 1D gas.

The spin-polarized state of a 1D gas of noninteracting
fermions seems to be unfavorable energetically, because its
kinetic energy is always higher than the kinetic energy of an
unpolarized state. Therefore the spontaneous spin polariza-
tion due to the exchange interaction in quasi-one-
dimensional (quasi-1D) systems appears to be unlikely.
However, the additional energy termE1 that can be repre-
sented by the following infinite sequence of diagrams

s10d

has to be taken into account if a 1D gas consists of interact-
ing particles. The exchange diagrams 3 and 5 are easily seen
to be dependent substantially on the spin polarization of the
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system. Indeed, the interaction is independent of the spin,
which implies spin conservation at the diagram vertices.
Thus, only particles with the same spin may be involved in
the processes described by the exchange diagrams, the con-
tribution of which is more significant to the spin polarized
than to unpolarized systems. Since the contribution from dia-
gram 2 is negative, a spin-polarized state of a 1D gas may be
energetically more favorable than an unpolarized state.

We limit our discussion to the first two diagrams, which
means that the particle exchange interaction is taken into
account within the Hartree-Fock approximation. Thus,

E1 =
1

2 o
EK,EL,EF

fkKLuVuKLl − kKLuVuLKlg. s11d

Here, the first term is the Hartree correction, whereas the
second term is the Fock correction to the exchange energy.
The summation is carried out both over spatial and spin vari-
ables. The first term diverges in the thermodynamic limit
sN→` ,V→` ,N/V=n=constd. This divergence is compen-
sated, however, by the term describing the interaction with a
positively charged background. Thus, in the first order, the
exchange interaction plays a decisive role. Below, we con-
sider its behavior in a 1D system.

A. Exchange interaction in a quasi-1D system

The matrix element of the exchange interaction for elec-
trons in a quantum wire has the form

kKLuVuLKl =
e2

V1D
2 E e−ikz8e−ilz9eilz8eikz9

Îur8 − r9u2 + sz8 − z9d2

3uwsr8du2uwsr9du2dr8dr9dz8dz9

=
e2

V1D
E e−ikzeilz

Îur8 − r9u2 + z2

3uwsr8du2uwsr9du2dr8dr9dz, s12d

where thez coordinate coincides with the wire axis. Here,
the transformation of the variablesz=z8−z9 ,Z=sz8+z9d /2
was performed with the integral overZ being equal to the
sample lengthV1D. Thus, the expression for the exchange
interaction energy can be written as

Eexc= −
1

2 o
K,L,kf

kKLuVuLKl

= − gs
e2V2D

2s2pd2E
−kF

kF

eikzdkE
−kF

kF

eilzdl

3E uwsr8du2uwsr9du2

Îur8 − r9u2 + z2
dr8dr9dz

= − gs
e2V1D

2p2 E sin2skFzd
z2Îur8 − r9u2 + z2

dz

3E uwsr8du2uwsr9du2dr8dr9. s13d

Subsequent substitution,u=z/ ur8−r9u and a=kFur8−r9u, in
the integral overz results in the following expression for the
density of the exchange interaction energy in a quasi-1D sys-
tem:

«exc= Eexc/V1D = − gs
e2

2p2E uwsr8du2uwsr9du2

ur8 − r9u2
Isaddr8dr9.

s14d

Here,

Isad =E
−`

+` sin2saud
u2Î1 + u2

du.

In the limit of the low linear concentration of the charge
carriers, when

kFR! 1

and

a = kFur8 − r9u ! 1, s15d

whereR is the width of the quantum wire, this integral is
estimated as

Isad < a2S−
1

2
ln a +

3

4
−

C

2
D . s16d

Here,C is the Euler constantsC<0.5772d. Thus, we obtain
the following expression for the density of the exchange in-
teraction energy as a function of the concentration of the
charge carriers in a 1D system:

«exc< − gs

e2kF
2

2p2E uwsr8du2uwsr9du2

3F−
1

2
lnskFur8 − r9ud +

3

4
−

C

2
Gdr8dr9

< −
b1D

gs
n1D

2 +
g1D

gs
n1D

2 lnSn1DR

pgs
D . s17d

Here,

b1D = e2S3

8
−

C

4
D < 0.28e2,

g1D =
e2

4
.

It should be noted that the expression obtained is an approxi-
mation and independent of the model of the quantum wire
used.

Since this expression is obtained in the limit of the low
linear concentration of charge carriers, whenkFR!1, the
logarithmic factor in the second term should be noted to be
negative that results in the corresponding negative exchange
energy correction.

The opposite limiting case when

kFR, a @ 1 s18d
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is also followed to be analyzed. The integralIsad is esti-
mated in frameworks of this limit as

Isad =E
−`

+` sin2saud
u2Î1 + u2

du< Aa,

A =E
−`

+` sin2std
t2

dt < 3.1375. s19d

Then, the linear density of the exchange energy

«exc= Eexc/V1D = −
gse

2

2p2E uwsr8du2uwsr9du2

ur8 − r9u2
Isaddr8dr9

<
Ae2

2p2kF = x1Dn1D,

x1D <
e2

2p
E uwsr8du2uwsr9du2

ur8 − r9u2
dr8dr9, s20d

is independent of the spin factor.

B. Spontaneous spin polarization due to the exchange
interaction energy exceeding the kinetic energy

To answer the question of whether the exchange interac-
tion may result in the appearance of a spontaneous spin po-
larization, we have to compare the total energies of spin-
polarized and unpolarized states of a quasi-1D gas of charge
carriers. In the limit of the low charge carrier concentration
[see Eqs.(8) and(17)], the energy density of a quasi-1D gas
equals

«1D = «kin + «exc,

«1D =
p2"2n1D

3

6mgs
2 −

n1D
2

gs
Fb1D − g1DlnSn1DR

pgs
DG . s21d

Here, the first and the second terms correspond to the kinetic
and the exchange interaction energies, respectively. Since the
approach of the infinitely long quantum wire is used, the
Hartree term is by itself infinite[see Eq.(11)], but is com-
pletely canceled by positive background according to the
general theorem.

If the linear concentrationn1D is less than a critical value
n0 that results from the equality of the energies of the spin-
polarizedsgs=1d and unpolarizedsgs=2d states,

u«ugs=1 = u«ugs=2,

3p2"2n0

12m
= b1D − g1DlnS2n0R

p
D , s22d

the exchange interaction energy exceeds the kinetic energy
and, thus, the spin-polarized state is energetically more fa-
vorable than the unpolarized state. At the same time, if the
linear concentration of the charge carriers exceeds the critical

valuen0 and the kinetic energy is dominant, the unpolarized
state is energetically more favorable. The value ofn0 should
be noted to be dependent only on the width of the quantum
wire and the effective mass that appears to be a function of
the concentration of electrons24,25 and holes26–32 in low-
dimensional systems.

Two features of the discussed mechanism of a spontane-
ous spin polarization in low-dimensional semiconductor sys-
tems have to be taken into account. First, the conditions for
the appearance of ferromagnetic ordering in quasi-1D sys-
tems in the limit of low linear concentration of charge carri-
ers are actually reduced to those obtained for strictly 1D
systems, in frameworks of the inclusion of correlation cor-
rections that does not destroy the stability of the ferromag-
netic state due to the exchange interaction.17–19 Second, the
correlation energy is also taken into account to determine the
linear concentration value corresponding to the onset of the
Wigner crystallization that competes strongly with the tran-
sition to a spontaneously spin-polarized state with extended
wave functions.20,33–36 However, the Wigner crystallization
should take place forrsù39,35 while a spontaneous spin po-
larization appears atrs=3.3,20 where rs is the ratio of the
potential to the kinetic energy. Thus, the transition to the
crystalline state in quasi-1D systems occurs at the concentra-
tion of carriers that is two to four orders of magnitude lower
than the value corresponding to the transition to a spontane-
ously spin-polarized state with extended wave functions. The
spontaneous spin-polarized state with extended wave func-
tions seems to be expected in a quantum wire at higher val-
ues ofn2D than in a 2D gas of charge carriers because of an
additional partial decay of the kinetic energy with a reduc-
tion in the system dimensionality.20

We stress once more that this consideration corresponds
to the limit of low linear concentration of charge carriers,
kFR!1, for quasi-1D systems. This circumstance imposes
serious restrictions on the width of quantum wires. If this
condition is not satisfied, the system should be considered in
the limiting case of high charge-carrier concentration,kFR
@1, for quasi-1D systems when an unpolarized state is al-
ways energetically more favorable than a spin-polarized
state, because the exchange energy becomes independent of
gs. Besides, all of the preceding is valid only when the wave
function corresponding to the motion along the quantum
wire can be present in the context of a plane wave that im-
poses the following condition:L@R, whereL is the length
of the quantum wire. To put it in another way, the mecha-
nisms of the 0.7s2e2/hd feature that are caused by the Kondo
effect in the process of the transport through the quantum
point contact are outside the province of this consideration.37

III. SPIN DEPOLARIZATION AND QUENCHING
OF THE 0.7„2e2/h… FEATURE IN THE QUANTUM

CONDUCTANCE STAIRCASE OF A QUANTUM WIRE

A. Spin depolarization of electrons in the GaAs based quantum
wires

The spin-polarized state in low-density quasi-1D gas ap-
pears to be revealed in the studies of the quantum conduc-
tance staircase. Since the exchange interaction gives rise to
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the energy gap between states with the spin parallel and an-
tiparallel to the magnetization of the quantum wire, the car-
riers of the first type pass ballistically through the quantum
wire, while the potential barrier is formed for the carriers
with opposite spin direction. The height of this energy barrier
seems to be estimated using the relationship for the energy
density of a quasi-1D gas(21):

E↑ − E↓ = 2n1DFSb1D −
g1D

2
D − g1D lnSn1DR

p
DG −

p2"2n1D
2

2m
.

s23d

Thus, the probability of passing through the quantum wire is
sufficiently suppressed for the carriers with the spin antipar-
allel to the magnetization thereby forming a spin island in-
side ballistic channel. As the carriers with only one spin pro-
jection cause the transport processes, the value of the first
step in the quantum conductance staircase is less than 2e2/h,
being e2/h in the case of full polarization of the 1D gas in
the quantum wire. However, the variations in the split-gate
voltage appear to increase the linear concentration of carriers
above critical value corresponding to the spin depolarization
of the 1D gas that results in the suppression of the potential
barrier revealed by the standard value of the quantum con-
ductance step, 2e2/h. We would like to stress that the con-
sideration present above was analytically performed,
whereas previous data obtained in the studies of the spin
properties of the quantum point contacts were based on the
numerical calculations.17–19,38 Nevertheless, the results of
both approaches agree with each other rather well.

The critical linear densityn0 corresponding to a complete
spin depolarization in a quantum wire connecting two 2D
reservoirs, which is given by Eq.(23), depends upon both the
width of the quantum wire and the effective mass that in-
creases as the value ofn2D decreases.24–26 Such behavior of
the effective mass for electrons specifically in the GaAs
based quantum wires seems to be caused by its energy de-
pendence that was calculated in the case when the kinetic
energy and the quantum-confinement energy are dominant in
low-dimensional semiconductor systems:39,40

m= m0s1 + 1.447E + 0.245E2d. s24d

Here,E is the sum of the kinetic and quantum-confinement
energies and the coefficients ofE account for the band pa-
rameters of GaAs.

The electron effective mass value has been found to in-
crease by a factor of 1.1–1.2 that is due to a rise in quantum-
confinement energy as the width of the quantum well de-
creases below 10 nm.39–41 The electron effective mass is of
importance to rise as the value ofn2D increases in the GaAs
based quantum wells, even though the exchange energy that
compensates the kinetic energy is taken into account in Eq.
(24). However, the exchange interaction may significantly
affect the effective mass of charge carriers in quantum wires,
because the spin-polarized states with extended wave func-
tions in a quasi-1D system are spontaneously formed at
higher values ofn2D or p2D than in a 2D gas.20 Therefore, the
kinetic energy is effectively quenched in the middle part of a

quantum wire that connects two 2D reservoirs, because a
competition with the exchange energy is available, which
may favor a reduction in the effective mass with increasing
the values ofn2D or p2D [see Eqs.(22) and(24)]. Such a gain
in the exchange interaction may account for a rise in the
effective mass of electrons as their concentration decreases
in quantum wells,25 because the low density 2D gas is able to
decay in the system of two-dimensional lakes connected by
quantum wires or quantum point contacts, which result from
specifically the presence of disorder.42

The dependences of the electron effective mass in the
GaAs based quantum wells on the value ofn2D that were
calculated when the exchange energy has been taken into
account in the relationship(24) allowed to determine the
values of the critical linear concentrationn0 [see Eq.(22)],
which corresponds to a complete spin depolarization of elec-
trons in the quantum wire connecting two 2D GaAs reser-
voirs (Fig. 1). Here, these dependences ofn0 on the value of
n2D are used in analysis of the 0.7s2e2/hd feature in the
quantum conductance staircase as a function of the electron
concentration in the quantum wire prepared in the GaAs
based quantum well by the split-gate method, with the elec-
tron sheet density tuned controllably over one order of mag-
nitude by biasing an overall top gate1 (Fig. 1).

The 0.7s2e2/hd feature is seen to attain almost the value
of 0.5s2e2/hd at sufficiently small values ofn2D. Thus, spin
degeneracy of the substep in the quantum conductance stair-
case is lifted, when the 1D channel is completely spin polar-
ized. However, if the electron concentration in the 2D reser-
voir attains the value corresponding to the critical linear
concentration in the 1D channel,n0, the 0.7s2e2/hd feature
evolves towards its normal value because of spin depolariza-
tion. Besides, the apparent level-off of the 0.7s2e2/hd feature
near the value of 0.75s2e2/hd appears to be due to its tem-
perature dependence, which results from partial spin depolar-

FIG. 1. Dependence of the critical linear concentration corre-
sponding to a complete spin depolarization of the quasi-1D electron
gas in a quantum wire connecting 2D reservoirs in a GaAs/GaAlAs
QW on the concentration of electrons;R=100 nm, d=20 nm.
Circles indicate the height of the 0.7s2e2/hd feature determined in
the studies of the 1D channels prepared by split-gate method in
GaAs/GaAlAs QWs(Refs. 1 and 7–9).

SPIN DEPOLARIZATION IN QUANTUM WIRES… PHYSICAL REVIEW B 70, 155315(2004)

155315-5



ization of the electron gas near the bottom of the 1D subband
at finite temperatures.23

A most interesting result is the unexpected transformation
of the 0.7s2e2/hd feature to the value of 0.5s2e2/hd with a
subsequent increase in the electron sheet density(see Fig. 1).
This recreation of the 0.5s2e2/hd value seems to be caused
by also the spin polarization in the quantum wire, which
originates probably from the lowest 1D subband that is mag-
netically ordered by the indirect exchange via electrons ex-
cited to the upper subband at a finite temperature. Indirect-
exchange mechanisms that cause such nonequilibrium spin
polarization in a 1D channel are most probably related to the
processes of spin-correlated transport within a narrow
band43,44 and spin polarization due to the formation of spin
polarons.35 Finally, the 0.5s2e2/hd substep is of importance
to be observable readily in the quantum wires with a higher
level of disorder,45 which is the evidence of the indirect ex-
change in lifting the spin degeneracy of the 0.7s2e2/hd fea-
ture in the quantum conductance staircase at large values of
n2D.

B. Spin depolarization of holes in the Si based quantum wires

Studies of the quantum conductance staircase revealed by
ballistic channels have shown that the 0.7s2e2/hd feature is
observed not only in various types of the electron GaAs
based quantum wires,7–13,46–48but also in the hole Si based
quantum wires.49–51 The latter findings were made possible
by the developments of the diffusion nanotechnology that
allows us to fabricate the ultranarrow silicon quantum wells
of the p-type on then-type Sis100d surface, which are lo-
cated between thed barriers heavily doped with boron.49,52,53

The angular dependencies of the cyclotron resonance
spectra and the conductivity have demonstrated that the self-
assembled silicon quantum well(SQW) prepared by short-
time diffusion of boron contain the high-mobility 2D hole
gas with long transport relaxation time of heavy and light
holes at 3.8 K,tù s5310−10dc.52–56 Thus, the transport re-
laxation time of holes in SQW appeared to be longer than in
the best metal oxide-semiconductor structures,2 contrary to
what might be expected from strong scattering by thed bar-
riers. This passive role of thed barriers between which the
SQW is formed was quite surprising, when one takes into
account the level of their boron doping,<1021 cm−3.49–53To
eliminate this contradiction, the temperature dependencies of
the conductivity and the Seebeck coefficient as well as the
electron paramagnetic resonance(EPR) spectra and the local
tunneling current-voltage characteristics have been
studied.49,52–57The d barriers heavily doped with boron ap-
peared to consist of the trigonal dipole centers that seem to
result from the negative-U reaction, 2B0→B−+B+, which de-
fine their ferroelectric properties responsible for the suppres-
sion of backscattering in the SQW.52–57Therefore even with
small drain-source voltage the electrostatic ordering within
the ferroelectricd barriers is able to stabilize the formation
of the one-dimensional subbands, when the quantum wires
are created inside SQW using the split-gate technique. Thus,
the preparation of the narrowp-type SQW confined by thed

barriers with ferroelectric properties that quench even short-
range scattering potential made it possible to use the split-
gate constriction to study the quantum conductance staircase
of holes at the temperature of 77 K.49–51,58

The device applied here to analyze the dependence of the
0.7s2e2/hd feature on the concentration of holes in the Si
based quantum wires has been first advanced in Ref. 1(see
Fig. 2). The basis of this sample is the self-assembled SQW
of the p-type that was formed betweend barriers by the
short-time diffusion of boron from the gas phase into the
n-type Sis100d surface. The parameters of the SQW that con-
tains the high-mobility 2D hole gas were defined by the,
scanning tunnel microscope cyclotron resonance, and EPR
methods. The sheet density of holes was found to tune con-
trollably over one order of magnitude, from 531012 m−2 to
931013 m−2, by biasing the top gate above a layer of insu-
lator, which fulfills the application of thep+-n bias voltage.
The variations in the mobility measured at 3.8 K that corre-
spond to this range of the values ofp2D appeared to occur
between 80 and 420 m2/V s. Thus, the mobility of holes
remains high even at low densities. Besides, the high value
of mobility appeared to decrease no more than two times in
range of temperatures from 3.8 K to 77 K that seems to be
caused by both the ferroelectric properties for thed barriers
and the electric field of thep+-n junction.49,52,56,57These pa-
rameters of 2D hole gas allowed us to study the quantum
staircase revealed by the heavy holes at 77 K. The experi-
ments were provided by the effective 1D channel length,
0.2 mm, and the QW cross section, 232 nm2, which is de-
termined by the SQW width and the lateral confinement due
to ferroelectric properties for thed barriers. The number of
the highest occupied mode of the short quantum wire in-
serted in the right side arm was controlled by varying the
split-gate voltagesUgd (see Fig. 2).

Figure 3 shows the quantum staircase revealed by the
heavy holes in the 1D channel defined by the split-gate volt-
age inside the SQW provided that thep+-n bias voltage is
kept to be zero, which appeared to result in the value ofp2D
equal to 431013 m−2. Under these conditions, the 0.7s2e2/hd

FIG. 2. Schematic diagram of the device that demonstrates a
perspective view of thep-type silicon quantum well located be-
tween thed barriers heavily doped with boron on then-type Sis100d
substrate as well as the top gate and the depletion regions created by
split-gate method, which indicate aD channel connecting two 2D
reservoirs.
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feature is seen to be coincident practically with its normal
value. Tuning the value ofp2D by biasing the top gate causes,
however, the variations in the height of this feature(Fig. 3).
The value of 0.5s2e2/hd is found under forwardp+-n bias
voltage, whereas at large values ofp2D induced by reverse
p+-n bias voltage the 0.7s2e2/hd feature attains the value of
0.75s2e2/hd. The height of the 0.7s2e2/hd feature studied as
a function of the hole concentration in thep-type silicon
SQW is worthwhile to be related to the behavior of the criti-
cal linear concentration,p0 [see Eq.(22)], which was calcu-
lated by extrapolation from the known dependence of the
hole effective mass in thep-type silicon quantum wells on
the value ofp2D,27–32with the exchange energy that compen-
sates the kinetic energy(Fig. 4). The model of a square quan-
tum wire with hard walls connecting 2D reservoirs in a sili-
con quantum well of thep-type, R=2 nm, d=2 nm, was a
basis of these calculations. Thus, the variations in the height
of the 0.7s2e2/hd feature that result from controllable tuning
the value ofp2D can be perceived as a result of partial spin
depolarization of holes, which is enhanced as the critical
linear concentration in the 1D channel,p0, is approached.

Finally, the behavior of the 0.7s2e2/hd feature in the quan-
tum conductance staircase shares a common trait related to
the critical linear concentration of holes and electrons that
corresponds to their complete spin depolarization in the 1D
channels prepared, respectively, inside thep-type Si based
quantum well studied in this work and inside then-type
GaAs based quantum well discussed above.1

IV. CONCLUSIONS

Analysis of the conditions for the appearance of a spon-
taneous spin polarization in one-dimensional systems placed

in a zero magnetic field, which has been carried out within
the Hartree-Fock approximation, enabled us to determine the
critical concentration of carriers that defines a complete spin
depolarization of a quasi-1D gas. The range of the linear
concentration of carriers that imposes the restrictions to use
the plane waves in the studies of the ferromagnetic ordering
in one-dimensional systems has been evaluated in the case of
dominance of the exchange energy over the kinetic energy.

The transition of a quasi-1D gas to the crystalline state
has been demonstrated to occur at the concentration of car-
riers that is two to four orders of magnitude lower than those
corresponding to the transition to a spontaneously spin-
polarized state with extended wave functions. The spontane-
ous spin-polarized state with extended wave functions seems
to be expected in a quantum wire at higher values ofn2D than
in a 2D gas of charge carriers because of an additional partial
decay of the kinetic energy with a reduction in the system
dimensionality.

The dependence of the critical linear concentration that
defines a complete spin depolarization in a 1D channel con-
necting two 2D reservoirs on the carrier’s concentration has
been derived to analyze the corresponding evolution of the
0.7s2e2/hd feature from thee2/h to 3/2se2/hd values in the
quantum conductance staircase of the quantum wire prepared
inside thep-type silicon quantum well using the split-gate
technique. The 1D channel studied seems to be spin-
polarized at the linear concentration of holes lower than the
critical linear concentration, because the 0.7s2e2/hd feature
is close to the value 0.5s2e2/hd that indicates the spin degen-
eracy lifting for the first step of the quantum conductance
staircase. The 0.7s2e2/hd feature has been found, however, to
tend to the value of 0.75s2e2/hd when the linear concentra-
tion of holes attains the critical value corresponding to the
spin depolarization.

FIG. 3. The quantum conductance staircase of the silicon quan-
tum wire as a function of the sheet density of holes that was tuned
controllably by biasing the top gate, which fulfills the application of
the p+-n bias voltage to thep-type silicon quantum well on the
n-type Sis100d surface. Thep+-n bias voltage is varied from the
forward branch to the reverse branch between +110 mV and
−120 mV, which establishes the range of the magnitude ofp2D

from 531012 m−2 to 931013 m−2 provided that zerop+-n bias
voltage results in the value ofp2D equal to 431013 m−2.

FIG. 4. Dependence of the critical linear concentration corre-
sponding to a complete spin depolarization of the quasi-1D hole gas
in a quantum wire connecting 2D reservoirs in a silicon quantum
well on the concentration of holes;R=2 nm, d=2 nm. Circles in-
dicate the values of the height of the 0.7s2e2/hd feature that are
shown in Fig. 1.
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The variations in the height of the 0.7s2e2/hd feature ob-
served in the hole quantum conductance staircase of the
p-type silicon quantum wire seem to be related to the evi-
dences of the quantum conductance staircase obtained by
varying the concentration of electrons in the 1D channel pre-
pared inside the GaAs-AlGaAs heterojunction.1
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