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We use microscopic linear response theory to derive a set of equations that provide a complete description
of coupled spin and charge diffusive transport in a two-dimensional electroi2gd3G) with the Rashba
spin-orbit(SO) interaction. These equations capture a number of interrelated effects including spin accumula-
tion and diffusion, Dyakonov-Perel spin relaxation, magnetoelectric, and spin-galvanic effects. They can be
used under very general circumstances to model transport experiments in 2DEG systems that involve either
electrical or optical spin injection. We comment on the relationship between these equations and the exact spin
and charge density operator equations of motion. As an example of the application of our equations, we
consider a simple electrical spin injection experiment and show that a voltage will develop between two
ferromagnetic contacts if a spin-polarized current is injected into a 2DEG, that depends on the relative mag-
netization orientation of the contacts. This voltage is present even when the separation between the contacts is
larger than the spin diffusion length.
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[. INTRODUCTION which capture effects of the Rashba spin precession beyond
the Dyakonov-Perel theory, have been derived and

Spintronics is an active field which studies processes thagtudied!®17-19
manipulate and probe the electronic spin degree-of-freedom, In this paper we derive a set of equations that provide a
with the goal of identifying effects that can augment thecomplete description of coupled spin and charge diffusive
orbital control and measurement procedures used in tradiransport in a 2DEG with the Rashba SO interactions. These
tional electronics.Spin-related transport effects in ferromag- equations capture a number of interrelated effects including
netic metals are already used in current technology to prospin accumulation and diffusion, Dyakonov-Perel spin relax-
vide the robust and responsive magnetic field sensoration and magnetoelectric and spin-galvanic effétthis
required by magnetic information storage systems. Hopeanified description is essential, since spin transport is most
that spin-related transport effects might play a greater role irasily detected in practice through the spin accumulation it
future information processing and storage technologies havieduces at the edges of the sam#l& complete understand-
motivated a growing body of research on the creation ofing of the interrelated spin accumulation and magnetoelectric
spin-polarized carrier distribution in semiconductors, eithereffects in a given experimental situation can be obtained by
optically 2 or by injection from other magnetic systenis>  solving the equations derived below. Our derivation is based
Semiconductor quantum well electron gas systems are espen a microscopic evaluation of the disorder-averaged
cially promising for spintronics because their intrinsic spin-density-matrix response function, followed by an analysis of
orbit (SO) interactions are weak, implying long spin memory its long-wavelength, low frequency limit. We apply our
times, and because the Rashba SO interatiohijch en-  equations to a simple model of electrical spin injection into a
ables electrical control of spin, can be tuned over a wide2DEG from ferromagnetic spin-polarized contacts, placed on
range by applying growth-direction gate potentials. top of the 2DEG. We find that a voltage develops between

Although the study of spin dynamics in semiconductors inferromagnetic contacts when a spin polarized current is in-
the presence of SO interactions was initiated a rather longected into the 2DEG, that depends on the relative magneti-
time ago®8°it continues to pose interesting and challengingzation orientation of the contacts. Unlike all other known
problems. The Rashba SO interacfidras received special magnetoresistive effects in spintronics, this voltage drop is
attention, in part because of a proposal by Datta and®Daspresent even when the distance between the electrodes ex-
that it could be exploited in apin transisto—a device in  ceeds the spin-diffusion length.
which currents are modulated by using a gate to alter the The paper is organized as follows: In Sec. Il we outline
Rashba interaction strength. Some interesting refinements tiie density matrix response function formalism that we use
the original idea have appeared in recent literatiifélore  to derive our spin and charge transport equations. In Sec. llI
generally, there has recently been substantial theoreticale derive transport equations from the low frequency, long-
work on spin-dependent transport in a 2DEG with thewavelength limit of the density matrix response function.
Rashba and other types of SO interactions; see, e.g., RefSection IV is devoted to a discussion of the relationship be-
12-26. Diffusion equations valid for weak SO interactions,tween formally exact equations of motion for charge and

1098-0121/2004/105)/1553088)/$22.50 70 155308-1 ©2004 The American Physical Society



BURKOV, NUNEZ, AND MACDONALD PHYSICAL REVIEW B 70, 155308(2004)

spin-density operators in systems with Rashba spin-orbit in- ) k4 .

teractions and arbitrary scalar disorder potentials and the Emﬂ(lw)=—7’f (Zw)zg""’(k’lw)' (5)

coarse-grained dynamics predicted by our diffusive transport

equations. Section V comments on the physical content ofvhere y:niug, n; is the density of impurities ang® is the

these equations and discusses an application to the case &feen’s function of the clean system without impurities. The

electrical spin-injection from spin polarized contacts. Finally,self-energy turns out to be spin and momentum-independent

in Sec. VI we briefly summarize our findings. and upon analytic continuatioiw — w+i#n, we obtain the
familiar expression for the Born-approximation retarded self-

Il. DENSITY-MATRIX RESPONSE FUNCTION energy.

Our analysis of coupled spin and charge transport in a Ewr(wﬂﬂ):—l—éwr,
semiconductor 2DEG system uses a model of noninteracting 27

electrons described by an effective-mass Hamiltonian, MOVi here r=1/my0, is the mean scattering time amg=m/
Ing in-a random short-range spin-independent |m'pur|ty. PO%s the total density of states at the Fermi energy.

tential. Because of the externally controllable inversion-— . "0 cnicnt 1o decompose the disorder-averaged re-
asymmetry of the quantum well confining potential,

. : . tarded and advanced real-time Green's functi@}s, into
electrons experience a tunable SO interaction that we assume 4

to be of the Rashba typfeThe system is therefore described SPin-independent singlet and spin-dependgptet parts:

(6)

by a single-particle Hamiltoniarl=Hg+H;, where GR'A(k ®) = GRAK, )8, + GtR,A(k w) -7 7)
o' ’ s ’ oo’ ’ oo’
2
Ho = > (k_ — N2 7, X k]>cl(rck(r' (1) whereja are the usual s_pin-1/2 Pguli matrices. The singlet
AV and triplet Green’s functions are given by
is the effective-mass Hamiltonian with an additional Rashba GRAKK, w) = 1 1 + 1
SO interaction term(We will use #=1 units for conve- s 2 ’

[ [
nience) This interaction can be interpreted as Zeeman cou- = &~ k* P TRRASS 27

pling to a k-dependent effective magnetic field(@Xx k).
The impurity term in the Hamiltonian,

(8)

1
Hi= f 2 VOWHW (1) = = 2 Vik =K )ef, oo s
r o kk' o GF'A(k,(D) =

2

describes the interaction of electrons with an impurity poten- X . s
tial Vi(r)=ug=, &(r —r,). The spin-independent random po- w—& —\k+ L w—& +\k+ L
tential influences the electronic spin state by inducing tran- 27 27
sitions between momentum states that have different Rashba (9)
effective fields. The SO interaction lifts the spin degeneracy )
of the effective-mass Hamiltonian resulting in a momentum-Where&.=k=/2m-u. _
dependent spin-splitting of the conduction band We can now proceed to evaluate the coupled spin and

charge density response functions. We introduce the general-

k2 @ ized density operator

(k)= —xAk—pu.
am™= By (10 =W (00, (1,0, (10

Mihose expectation value is the density matfikis the ma-

We assume here that the Rashba spin-splitting is small co
pared to the Fermi energyke < e, a good approximation in iy character of this quantity in spin-space that allows us to
almost all cases of interest. look at coupled spin-charge response; for present purposes it

Our analysis is based on an evaluation of the densityjs 5qequate to specialize to diagonal elements in position-

matrix response function using .stan_dard. perturbation.—theorgpace) From standard linear-response theory the retarded
methods?® The fundamental object in this approach is thedensity response function is given by

imaginary time Green’s function
(r=r't-t)=-ig(t-t")

X0 (1D @y, (1))
where the angular brackets denote quantum, thermal, and (11)
disorder averages. We compute the disorder averaged
Green'’s function in the first Born approximation, which im- It is well knowr?® that this quantity can be evaluated to lead-
plies a self-energy in the Matsubara frequency representatiang order in 1 k¢ by summing all Born approximation self-
given by energy and ladder vertex corrections to the polarization

X 010,030

Goor(r =1, 7= 7) =(TU(r, )W (r', 7)), (4)
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bubble (here ¢ =vg 7 is the mean-free-pathFor §-function D q,Q) =(-iQ+Dg?
impurities, the ladder sum for the Fourier-transformed re- ) ]
tarded response function is a matrix geometric series which 0 ilsdy —ils 0
is easy to evaluate. We find that . iTs@y, 1/7, 0 =iy
-ilsgx O Ur, —iTs@y |’
Q7o . .
Xo’lo'z,0'304(qrﬂ) == 2 Ola'loz,a'ia'é(quﬂ) 0 |FS§]X |Fssqy 1/TZ
(17
1
XD 107 (A, 2) = 5905(,1‘,35,,204, (120  whereD=v27/2 is the diffusion constanty, =27/(2\kg7)?
and r,=7,/2 are the in-plane and out-of-plane spin relax-
ation times, andl¢;=—2\(\kg7)? and I'sc=4\ec7 are the
where . L e : :
spin-charge and in-plane to out-of-plane spin couplings that
) result from the SO interactions. Note thadd 4 T2=1.
_ A R Transforming this diffusion propagator to real space and
'010210304((1’9)_7[ (ZW)ZGvsol(k’O)GUz%(k+q’m’ time leads to the following system of coupled spin and
charge transport equations that is the principal result of this
(13 .
paper:
dN N
e ¢ ZDVAN+ 0oV + 202X V) - (S~ goh) + 17,
D=[1-17" (14)
aS*

1
—= DV2——> S - 0h®) +T{(ZX V) X (S-ggh
is the coupled spin-charge diffusion propagator or “diffu- dt ( Ta (87~ @o) + I'd( )% (S~ e

son.” Summation over repeating spin indices is implied. r
At this point it is convenient to go to a more physical + =52 X V)o(N+ 0V, + 153, (18)
charge-spin-component representation for the response func- 2

tion: In these equationg, andh are the charge and spieeman
components of the external potential. The last term on the
Xap(d,Q) = %Tﬁlgzxolgzygﬂ(q,ﬂ) 75403, (15 right-hand side of each equation has been inserted by hand to
represent charge and spin currentsand 152, vertically in-
y,z. Inserting the identity matrix resolution jected into the 2DE.G.. The factors of 2 and 1/2, j[hat appear
in front of the coefficient’s, follow from the relationships
between spin and charge densities and the corresponding
combinations of elements of the density matrix. Note that in
Q700 1 a generalization of the familiar Einstein relations, the exter-
Xap(@:€D) = - 2 (0, €)D5(9, ) = 5905&!3' nal charge and spin potentials and the corresponding chemi-
(16) cal potentials,N/g, and S/, are always summed; the
charge and spin-densities respond as usual to electrochemical
) ) ] potentials and their gradientfA 2DEG system with excess
The integral over momentum in E@L3) is elementary but  giin and charge densitiéé and S, has excess chemical po-
leads to cumbersome expressionsltay, ) that are listed in  tantial (N+2|S))/ 0, for spins oriented along and in opposi-
the Appendix. We focus on the long-wavelength, low- -

frequency limit of the response functigh6) in the remain-
ing sections of this paper.

wherea, B=cC,X,
27% 1%, between factors in Eq12), we obtain

040
192 0,0

tion to S respectively.

A physical understanding of the numerical values and the
parametric dependencies of the coefficients that appear in
front of the various terms in EqéL8) is most easily obtained

IIl. SPIN TRANSPORT EQUATIONS by considering the limit in which external potentials are ab-
sent. Then the drift and diffusion of charge and spin can be

We are interested in the coupled dynamics of spin andinderstood by considering the time evolution of electrons
charge, coarse-grained over lengths long compared to that start at the origin in specified spin-states and are scat-
mean-free pathf and times long compared to the scatter-tered randomly between various Rashba states at arbitrary
ing time 7. We concentrate here on the limit of weak SO angles on the Fermi circle. These electrons undertake ran-
interactions A\ke7<<1 in which the scattering time is much dom walks that make correlated steps of sizekgz7 in spin-
shorter than the spin-precession period and the spin-splipace and in position-space. The joint probability distribu-
Rashba bands are therefore not establisHd@dhe low- tion function that results from these correlated changes in
frequency, long-wavelength expansionl@d, ) is not ana-  spin and position is readily evaluated. Associating the
lytic in the strong SO scattering limjtin this diffusive limit,  coarse-grained spin and charge distributions with the distri-
the inverse density fluctuation propagat@he diffuson bution of starting positions and spin orientations, the coeffi-
D Yq,Q)=1-1(q,Q) simplifies to cients of nth derivative terms in Eq¢l8) arise from nth
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order spatial moments of the spin and charge diffusiorpotential gradient. The SO contribution apparently remains
clouds. For example the diffusion constdbtis related, as separate and proportional to the spin-density, rather than be-
usual, to the second spatial moment of charge diffusion clouthg subsumed at long-wavelengths in the diffusive term. The
and is therefore proportional to the square of the spatial stefptal charge current is therefore given by,

length ¢ times the step rate™™. Similarly I's. is due to spin- . e .
precession and is proportional to the first spatial moment of 9°= ~DV(N+@oVo) +2I'sJ (S~ eoh™)y — (S’ — eoh”)X].

the S* spin projection in the diffusion cloud generated by (24)
spins that start with an orientation out of the plane. It is . . .
therefore proportional to the product of the spin-space and Let us now repeat the same analysis for the spin density

orbital-space step lengths and to the step rate. All nonstan@Perators. Since the spin is not conserved, there is some free-
gom of choice in how the spin current density operator is

ard coefficients in our equations can be understood in termg .. ) .
d efined3® We choose to define the spin current as the sym-

of the correlation between velocity and spin-precession axi . :
that exists throughout the random walk. This line of argu-metr'z_ed product of the_c_h_arge current discussed above af‘d
the spin operator, a definition that seems natural from a mi-

ment can be followed to provide an independent confirma : : . .
croscopic point of view and has been used previously, for

i f Eqs.(18). S . . .
tion of Egs.(18) example in discussing the spin-Hall effétThe spin current
density operator is, therefore, also a sum of a kinetic and a

IV. OPERATOR EQUATIONS OF MOTION spin-orbit contribution and has the following form:
Some insight into our general equations for the diffusive J5X= JSX 4 §N§/
charge and spin density dynamics of 2DEG's with the kin = o

Rashba spin-orbit coupling can be obtained by comparing
Egs. (18) with the equations of motion of the charge and A
spin-density operators for this system. Let us first consider %Y= 0% - ENX
the Heisenberg equation of motion for the cha¢ge more
precisely, particle numbgdensity operator

JS2= 37, (25)
N(r) =W (r)w,(r). (19)  where
The equation of motion reads i
q A ;n(‘I’ZV‘I’a' 7 —H.c), (26)
JN
Tt =i[H,N]. (20 is the kinetic contribution to the spin current. Note that the

current of thez-component of the spin has only a kinetic
%’omponent. The Heisenberg equations of motion for the spin
density operators can then be written in the following form:

Since the particle number is conserved, we expect this equ
tion to have the form of a continuity equation,

dN
E:_V.JC’ (21) éa:_v_‘]s,&q_ Fa1 (27)
. . . . at
whereJ® is the charge current density. Fourier transforming, hereF. is an additional source term that is given by
the charge density operator and evaluating the elementary é
commutator in Eq(20) implies the following expression for Fyy=—2AamE7,

the charge current density:
F,=2xm(J* + Jf;y) . (28)

As before, comparing Eq$25)—28) with Eq. (18), we con-

clude that the kinetic contribution to the spin currents is pro-

portional to the gradient of the spin electrochemical potential

S(r) = %\PT(r)Ta (), (23) and, in addition, that the currents of the in-plane spin com-

o ee e ponents have SO contributions as in the microscopic equa-

is thea-component of the spin density. The first term in Eq.tions of motion,

(22) is the usual quantum-mechanical expression for the par- I

ticle current density. We will call this contribution to the JSX= = DV(S' - goh") + =S(N + 0oV)Y,

charge current &inetic contribution. As seen from E@22), 2

SO interactions result in an additional contribution to the

charge current density, that we accordingly refer to as the

spin-orbit contribution. This contribution is proportional to

the in-plane spin densities. Comparing E¢®1) and (22)

with the first of Eqs(18), we conclude that the kinetic con- sz _ _

tribution to the charge current transforms in the diffusive J¥=-DV(S- o). (29)

limit to a kinetic contribution of the standard form, propor- As in the charge current case, the spin-orbit contribution to

tional to both the diffusion constant and the electrochemicathe microscopic spin current is not subsumed in the diffusive

Jom_ #n(\p;w[,- Hc)+2MS9-9%), (22

where

r
IV = -DV(I - oghY) - 7S°(N +QoVo)X,
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contribution, but appears separately. Interestingly, a changge y-axis is along the direction daf, brings the inverse dif-
occurs in passing from the microscopic expression to thdusion propagator Eq.17) to the block-diagonal form:
coarse-grained transport theory expression in that the chemi-

cal potentia(proportional to the density in 2D) is replaced Dq,Q) = (-iQ+Dg?)1

by the electrochemial potential. Because the spin-orbit spin 0 ifg O 0

current contributions are proportional to the charge density in ) °

the absence of external fields, they are nonzero in equilib- " irsq 17, 0 0 (30)
rium, as noted by Rash3&Although the constant equilib- 0 0 1r, -ilg |

rium spin currents in a uniform system have no physical 0 0 Ty 1

consequences as far as we are aware, these spin-orbit terms
in the spin current do play an important role in coupled spin-The eigenmodes are then easily calculated to be
charge transport as we illustrate in the following section.

Also note that the source ternig in the microscopic equa- (). = Dg2 1 + 1 2.2

: ! . i0.=Dg°+ — =+ \/— -T:Q",

tions of motion appear in an almost, but not completely, 27, 472l

identical way in the diffusive equations of motions; the con-

stants multiplying the currents are twice as large in the dif- 5

fusive casel'sg/ D=4xminstead of min Eq.(28) andN is i0,,=Dqg?+ AT, \/<TL__TZ) +T2g2. (31)
replaced by its electrochemical equival&ht o4V, B 27,7, 27,7 s

Finally, let us comment on the relationship between ou
results and the recently discovered spin-Hall efféctli.e.,
a transversel®* current in response to an in-plane electric

field. Note that, as in the microscopic expressions, the cu . . ) .
b b modei(),_ is gapless ag=0. This means that this mode

rent of thez-component of the spin has only a kinetic con- . .
P P y corresponds to &nearly conserved quantity, with a very

tribution. This means that, apparently, the spin-Hall effec D _ . !
does not occur in the diffusive limaince the current d& in []_ong relaxation time at smad. Exactly atq=0 th's. quantity
is of course simply the conserved total particle number.

Eq. (18) has only a diffusive contribution, that does not react > : .
However, at finite wave vectors it corresponds to a linear

to the electric field. In the diffusive regime, the spin current binati f the ch densit d the t of
divergence(from the spin-orbit contribution produced by a combination of the charge density an omponent o
rlihe spin density.

uniform electric field, is balanced in the steady-state by spi . e
relaxation. This balancing leads to a spin-polarization per- Thei(},, modes correspond to coupled diffusionfand

pendicular to the electric field direction, as noted some timeS Spin densmes. This cogplmg originates from the Rashba
ago215 In the regime of resolved spin-orbit induced spin- SP'!N Precession as explained above. Note tfist has a

o e - - ini t a finite wave vectoq =y15\m/2, as discov-
splitting, the diffusive transport picture of E@l8) is no minimum a : . ’ .
longer applicable. In this case, the current of theered previously in Ref. 17. This means that /& Fourier

z-component of the spin will have a contribution, propor- com*pone_nt V\.’ith the slowest relaxafcion rate Wi!l actually pe at
tional to zXx E, due to the intrinsic spin-Hall effect. 9=q’, unlike in the case of the ord|_nary diffusive relaxation,
where the slowest relaxation rate iscatO.
V. APPLICATIONS OF COUPLED SPIN-CHARGE Let us now look at stationary solutions of Ed.8). For
TRANSPORT EQUATIONS simplicity and clarity of presentation we will assume that

i dch densiti if in ¥adirection, and,
In the case of an infinite 2DEG, Eqg&l8) can be solved Spin anc cnarge densies are unitorm In rection, an

. . ) . therefore, the inverse diffusion propagator has the simple
by Fourier transformation. Rotating coordinate axes so tha{)lock-diagonal form Eq(30). In the following paragraphs

we discuss the stationary state response of the 2DEG system
detector to external spin and charge currents injected or drained along
lines of constany as illustrated in Fig. 1. We first consider

7 the response to a flux of thecomponent of the spin %
Q Inverting the lower block of the inverse diffusion propagator
Eq. (30), we obtain
Dg?+ /7,

=52 2
S@ D?q” - 4(\ee7)’q” + 32\ °Meg7)?’ (32

r, . e
The iQ)1. modes correspond to coupled diffusion of charge
and the in-plane spin density component that is transverse to
rt_he direction ofq, i.e., S* in this convention. Note, that the

injector

and

y -il'sg
D?%q* - 4(\ e 1)%0% + 32(\°mer7)?

9(q) =157 (33

FIG. 1. Cartoon of the spin injection experiment. A polarized
current, that has a polarization component along sthadirection ) ) )
(i.e., along the electrodds injected at the left electrode and col- The Fourier transform to real space is readily evaluated by

lected at the right one. A voltage develops between the electrodegontour integration. Poles occur at the roots of the denomi-
that depends on the spin-polarizations of both emitter and collectonator located at
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YV oo
g= £ m\2(1i\7). (34) _ iqy —
EY)=-5—~ L dg q Uge®'= oD
Note that all the roots are complex. This means that the — — —
nonequilibrium spin density profile in this case will not have X[1+T g\ 7, /D(ae¥ P71 — e VD7),
the usual form, exponentially decaying away from the point (39)

where the current is injected, with a characteristic spin dif- . )
fusion decay length(Because the spin-orbit coupling is lin- The voltage between the electrodes is therefore given by

ear in momentum, the distance traveled by a Fermi energy JL [
1

electron during one spin-precessior,/Am, is independent V= E(y)dy= +FS$(1 —eP1)y(a-p)|.
of the Fermi momentunn.Instead it will clearly involve an 0 eeoD L

oscillatory component, which is the remnant of the Rashba (39
spin precession in the diffusive regime. The inverse of the

characteristic decay length and the inverse period of the spai°te that in addition to the usual Ohm's law contribution to
tial oscillations are given by the imaginary and real parts oftN€ potential drop, the first term on the right-hand side of Eq.

o1 oi . (39), there is also a contribution proportional to the differ-
Amy2(1+iv7)correspondingly. ence of spin polarizations of the two ferromagnetic elec-

Let us now turn to the more interesting issue of signaturegoqes. This sensitivity of the resistance of a paramagnetic
of the spin-charge coupling in our transport equations in spiRy stem to the spin-polarization of the current-carrying elec-
injection experiments. We imagine the geometry schemaligong results from the spin-charge coupling terms in our
cally depicted in Fig. 1. Assume two infinitely long ferro- ,nsnort equations that generate a contribution to the electric
magnetic electrodes are placed on top of the 2DEG _sampleﬁaem proportional tol'.. [see Eq(38)]. Note that this contri-
distanceL from each other. Let a charge currénpolarized  p ion to the voltage is present even when the electrodes are
in the x-direction i.e., along the electrodebe injected into  genarated by a distance larger than the spin-coherence length.
the 2DEG from the/=0 electrode. Assume that the degree of g effect could be studied by attaching voltage probes to
spin polarization of this current ig, i.e., the injected Spin 1o 2DEG near the ferromagnetic electrodes, or simply by
current is|**=al. Assume in addition that this current i meaquring the voltage drop between the ferromagnetic elec-
extracted at the second electrodg/al, which has a degree q4es. |n the latter case, the total voltage will contain con-
and sign of spin polarization denoted By that can differ 5. contributions from the local voltage drops between the
from «. This circumstance is expressed compactly by thgeromagnetic electrodes and the 2DEG. The spin-orientation
following source terms in our spin-charge transport equayenendent voltages that we discuss will, in general, need to
tions: be distinguished from other spin polarization-dependent

voltages that occur in magnetotransport, for example the

1°(y) = 1[aly) - &y - L)], spin-polarization dependent open-circuit voltages measured
by ferromagnetic electrodes first discovered in the semi-
nal work of Johnson and Silshé®.The effects that we
discuss here can be distinguished in several ways. First of
I, the voltage differences that we have calculated are
nes that would be measured by paramagnetic voltage
robes. Secondly, our voltages have a characteristic depen-
ence on the polarization of the injected spin current. In
the case of the effect described by E&9), the voltage
drop is maximal when the first electrode is polarized along
‘the x-direction, while the second one is polarized along
the —x-direction. On the other hand, if the electrodes are
polarized along they and -y-directions, the polarization-
dependent voltage drop will vanish.

1%X(y) = I[ad(y) - By - L)]. (35)

We now evaluate voltage, i.e., the electrochemical potenti
difference, that develops between the two electrodes and di
cuss how it depends on the relative spin polarization of th
electrodes.

Inverting the upper block of the diffusion propagator Eq.
(30), we obtain the Fourier transformed local electrochemi
cal potential changé&J=N/py+V, that is generated in the
2DEG in response to the injected spin-polarized current,

) 1 ) 2
U =1(1- —|qL__| _ —igL —SC.
eU(@) =1(1-€ )qu (a—pBe )qu(q2+ 1Dr,) VI. CONCLUSIONS

(36) In this paper we have examined the issue of the diffusive
spin and charge density transport in Rashba 2DEG systems.

We define the effective electric field in the 2DEG in the usual | '€ Separation between the spin and momentum relaxa-

way in terms of the gradient of the electrochemical potentiallioO" time scales in the diffusive regime has allowed us to
use a statistical description, where the spin and charge trans-

port is described by local spin and charge electrochemical
1 : ; ) .
E=->VU. (37) potentials and their gradients. Our theory thus generalizes
e the usual two-component theory of diffusive spin
transport}?>*3 that has found numerous successfull applica-
The electric field response to the injected current can then bigons, in particular in the theory of spin-dependent transport
easily calculated by an inverse Fourier transformation, in magnetic multilayeré3
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Our equations with appropriate boundary conditions can 0 -—ie’®
be used to model experiments on coupled spin-charge trans- 7= (ieiq) 0 )
port in 2DEG systems with the Rashba SO interactions, in-

volving both electrical and optical spin injection. By com-

paring our equations, valid in the diffusive transport regime, . . .
with the exact operator equations of motion, we have in.are the Pauli matrix components along and perpendicular to

ferred relationships between spin and charge current dendi?® direction ofg (¢ is the angle betweeq andt tgex;tams).
ties and spin and charge electrochemical potentials and theli® explicit expressions for the functioh®, 1%, 13, IZ, and
gradients. These expressions can be used to devise appropdl=" that appear in the matrix elementslofare

ate boundary conditions that are necessary to supplement our

transport equations at the 2DEG boundaries.

As an example of the application of our equations, we s 12 1 1
have considered a simple electrical spin injection experiment 1*a,Q) = 4 '
and show that a voltage will develop between two ferromag-
netic contacts if a spin-polarized current is injected into a
2DEG sample, that depends on the relative magnetization
orientation of the two contacts. Unlike the giant magnetore- . i 2Dg?r 2Dg?r
sistance and other familiar magnetoresistive effects in spin- 1°(d,Q) = ——= - - -
tronics, this voltage drop is present even when the distance A2Da’r
between the electrodes exceeds the spin-diffusion length. —igAT(ANke7)?, (A5)

(A3)

(A4)
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fo f_ f,
This appendix summarizes some technical details of the (A7)

density matrix response function calculation in Sec. Il. The
main technical problem is the evaluation of the matrix ele-
mentsl, 4, .,(d.€), which turn out to have the following \,nare

general form:

| Q) =15%q,0)8, .5, . —
0102,03,04((3{ ) S(q ) 103%050, fO: \(1 —|QT)2+ 2Dq27',

t
=150, = )75 ;. 8, f,=\(1-iQr+iQgn?+ 2Dg?r, (A8)
, 1H@,0) +1%q,0)
2 0301 ' 030 and Q¢,=2\kg is the Larmor precession frequency associ-
ated with the Rashba field. The spin-charge coupling is gen-
.\ 1%(q,Q) - 1%q,Q) erated by the last term in the expression fq,()). Note
2 0301 ' 7204 that, unlike other elements of the matii¢g,()), the term

responsible for the spin-charge coupling can only be calcu-
(A1) lated perturbatively i\ andq.
Expanding Eqs(A4)—(A8) to leading order inQ)r, Dg?7,

where and Ak 7, one arrives at Eq(18), which we have concen-
0 eie trated on in this paper. These expressions should be useful in
:(e‘ 0 ) (A2)  their original form, however, in systems with the Rashba
interactions strong enough that the spin-splitting of the band
and energies is not smeared out by disorder.
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