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We use microscopic linear response theory to derive a set of equations that provide a complete description
of coupled spin and charge diffusive transport in a two-dimensional electron gas(2DEG) with the Rashba
spin-orbit(SO) interaction. These equations capture a number of interrelated effects including spin accumula-
tion and diffusion, Dyakonov-Perel spin relaxation, magnetoelectric, and spin-galvanic effects. They can be
used under very general circumstances to model transport experiments in 2DEG systems that involve either
electrical or optical spin injection. We comment on the relationship between these equations and the exact spin
and charge density operator equations of motion. As an example of the application of our equations, we
consider a simple electrical spin injection experiment and show that a voltage will develop between two
ferromagnetic contacts if a spin-polarized current is injected into a 2DEG, that depends on the relative mag-
netization orientation of the contacts. This voltage is present even when the separation between the contacts is
larger than the spin diffusion length.
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I. INTRODUCTION

Spintronics is an active field which studies processes that
manipulate and probe the electronic spin degree-of-freedom,
with the goal of identifying effects that can augment the
orbital control and measurement procedures used in tradi-
tional electronics.1 Spin-related transport effects in ferromag-
netic metals are already used in current technology to pro-
vide the robust and responsive magnetic field sensors
required by magnetic information storage systems. Hopes
that spin-related transport effects might play a greater role in
future information processing and storage technologies have
motivated a growing body of research on the creation of
spin-polarized carrier distribution in semiconductors, either
optically 2 or by injection from other magnetic systems.3–5

Semiconductor quantum well electron gas systems are espe-
cially promising for spintronics because their intrinsic spin-
orbit (SO) interactions are weak, implying long spin memory
times, and because the Rashba SO interaction,6 which en-
ables electrical control of spin, can be tuned over a wide
range by applying growth-direction gate potentials.7

Although the study of spin dynamics in semiconductors in
the presence of SO interactions was initiated a rather long
time ago,6,8,9 it continues to pose interesting and challenging
problems. The Rashba SO interaction6 has received special
attention, in part because of a proposal by Datta and Das10

that it could be exploited in aspin transistor—a device in
which currents are modulated by using a gate to alter the
Rashba interaction strength. Some interesting refinements of
the original idea have appeared in recent literature.11 More
generally, there has recently been substantial theoretical
work on spin-dependent transport in a 2DEG with the
Rashba and other types of SO interactions; see, e.g., Refs.
12–26. Diffusion equations valid for weak SO interactions,

which capture effects of the Rashba spin precession beyond
the Dyakonov-Perel theory, have been derived and
studied.13,17–19

In this paper we derive a set of equations that provide a
complete description of coupled spin and charge diffusive
transport in a 2DEG with the Rashba SO interactions. These
equations capture a number of interrelated effects including
spin accumulation and diffusion, Dyakonov-Perel spin relax-
ation and magnetoelectric and spin-galvanic effects.27 This
unified description is essential, since spin transport is most
easily detected in practice through the spin accumulation it
induces at the edges of the sample.28 A complete understand-
ing of the interrelated spin accumulation and magnetoelectric
effects in a given experimental situation can be obtained by
solving the equations derived below. Our derivation is based
on a microscopic evaluation of the disorder-averaged
density-matrix response function, followed by an analysis of
its long-wavelength, low frequency limit. We apply our
equations to a simple model of electrical spin injection into a
2DEG from ferromagnetic spin-polarized contacts, placed on
top of the 2DEG. We find that a voltage develops between
ferromagnetic contacts when a spin polarized current is in-
jected into the 2DEG, that depends on the relative magneti-
zation orientation of the contacts. Unlike all other known
magnetoresistive effects in spintronics, this voltage drop is
present even when the distance between the electrodes ex-
ceeds the spin-diffusion length.

The paper is organized as follows: In Sec. II we outline
the density matrix response function formalism that we use
to derive our spin and charge transport equations. In Sec. III
we derive transport equations from the low frequency, long-
wavelength limit of the density matrix response function.
Section IV is devoted to a discussion of the relationship be-
tween formally exact equations of motion for charge and
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spin-density operators in systems with Rashba spin-orbit in-
teractions and arbitrary scalar disorder potentials and the
coarse-grained dynamics predicted by our diffusive transport
equations. Section V comments on the physical content of
these equations and discusses an application to the case of
electrical spin-injection from spin polarized contacts. Finally,
in Sec. VI we briefly summarize our findings.

II. DENSITY-MATRIX RESPONSE FUNCTION

Our analysis of coupled spin and charge transport in a
semiconductor 2DEG system uses a model of noninteracting
electrons described by an effective-mass Hamiltonian, mov-
ing in a random short-range spin-independent impurity po-
tential. Because of the externally controllable inversion-
asymmetry of the quantum well confining potential,
electrons experience a tunable SO interaction that we assume
to be of the Rashba type.6 The system is therefore described
by a single-particle HamiltonianH=H0+Hi, where

H0 = o
kss8

S k2

2m
− m + lẑ · ftss8 3 kgDcks

† cks8 s1d

is the effective-mass Hamiltonian with an additional Rashba
SO interaction term.(We will use "=1 units for conve-
nience.) This interaction can be interpreted as Zeeman cou-
pling to a k-dependent effective magnetic field 2lsẑ3kd.
The impurity term in the Hamiltonian,

Hi =E
r
o

s

Visr dCs
†sr dCssr d =

1

Vo
kk8s

Visk − k8dcks
† ck8s,

s2d

describes the interaction of electrons with an impurity poten-
tial Visr d=u0oa dsr −r ad. The spin-independent random po-
tential influences the electronic spin state by inducing tran-
sitions between momentum states that have different Rashba
effective fields. The SO interaction lifts the spin degeneracy
of the effective-mass Hamiltonian resulting in a momentum-
dependent spin-splitting of the conduction band

e±skd =
k2

2m
± lk − m. s3d

We assume here that the Rashba spin-splitting is small com-
pared to the Fermi energylkF!eF, a good approximation in
almost all cases of interest.

Our analysis is based on an evaluation of the density-
matrix response function using standard perturbation-theory
methods.29 The fundamental object in this approach is the
imaginary time Green’s function

Gss8sr − r 8,t − t8d = kTCssr ,tdCs8
† sr 8,t8dl, s4d

where the angular brackets denote quantum, thermal, and
disorder averages. We compute the disorder averaged
Green’s function in the first Born approximation, which im-
plies a self-energy in the Matsubara frequency representation
given by

Sss8sivd = − gE d2k

s2pd2Gss8
0 sk,ivd, s5d

whereg=niu0
2, ni is the density of impurities andG0 is the

Green’s function of the clean system without impurities. The
self-energy turns out to be spin and momentum-independent
and upon analytic continuation,iv→v+ ih, we obtain the
familiar expression for the Born-approximation retarded self-
energy:

Sss8sv + ihd = −
i

2t
dss8, s6d

wheret=1/pg%0 is the mean scattering time and%0=m/p
is the total density of states at the Fermi energy.

It is convenient to decompose the disorder-averaged re-
tarded and advanced real-time Green’s functionsGss8

R,A into
spin-independent singlet and spin-dependenttriplet parts:

Gss8
R,A sk,vd = Gs

R,Ask,vddss8 + Gt
R,Ask,vd · tss8, s7d

whereta are the usual spin-1/2 Pauli matrices. The singlet
and triplet Green’s functions are given by

Gs
R,Ask,vd =

1

23 1

v − jk − lk ±
i

2t

+
1

v − jk + lk ±
i

2t
4 ,

s8d

and

Gt
R,Ask,vd =

k̂ 3 ẑ

2

33 1

v − jk − lk ±
i

2t

−
1

v − jk + lk ±
i

2t
4 ,

s9d

wherejk =k2/2m−m.
We can now proceed to evaluate the coupled spin and

charge density response functions. We introduce the general-
ized density operator

%̂s1s2
sr ,td = Cs2

† sr ,tdCs1
sr ,td, s10d

whose expectation value is the density matrix.(It is the ma-
trix character of this quantity in spin-space that allows us to
look at coupled spin-charge response; for present purposes it
is adequate to specialize to diagonal elements in position-
space.) From standard linear-response theory the retarded
density response function is given by

xs1s2,s3s4
sr − r 8,t − t8d = − iust − t8d

3kf%̂s1s2

† sr ,td,%̂s3s4
sr 8,t8dgl.

s11d

It is well known29 that this quantity can be evaluated to lead-
ing order in 1/kF, by summing all Born approximation self-
energy and ladder vertex corrections to the polarization
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bubble (here ,=vFt is the mean-free-path). For d-function
impurities, the ladder sum for the Fourier-transformed re-
tarded response function is a matrix geometric series which
is easy to evaluate. We find that

xs1s2,s3s4
sq,Vd = −

iVt%0

2
Is1s2,s18s28

sq,Vd

3Ds18s28,s3s4
sq,Vd −

1

2
%0ds1s3

ds2s4
, s12d

where

Is1s2,s3s4
sq,Vd = gE d2k

s2pd2Gs3s1

A sk,0dGs2s4

R sk + q,Vd,

s13d

and

D = f1 − Ig−1 s14d

is the coupled spin-charge diffusion propagator or “diffu-
son.” Summation over repeating spin indices is implied.

At this point it is convenient to go to a more physical
charge-spin-component representation for the response func-
tion:

xabsq,Vd = 1
2ts1s2

a xs1s2,s3s4
sq,Vdts4s3

b , s15d

wherea ,b=c,x,y,z. Inserting the identity matrix resolution
1
2ts1s2

a t
s28s18
a between factors in Eq.(12), we obtain

xabsq,Vd = −
iVt%0

2
Iagsq,VdDgbsq,Vd −

1

2
%0dab.

s16d

The integral over momentum in Eq.(13) is elementary but
leads to cumbersome expressions forIsq ,Vd that are listed in
the Appendix. We focus on the long-wavelength, low-
frequency limit of the response function(16) in the remain-
ing sections of this paper.

III. SPIN TRANSPORT EQUATIONS

We are interested in the coupled dynamics of spin and
charge, coarse-grained over lengths long compared to the
mean-free path, and times long compared to the scatter-
ing time t. We concentrate here on the limit of weak SO
interactions,lkFt!1 in which the scattering time is much
shorter than the spin-precession period and the spin-split
Rashba bands are therefore not established.[The low-
frequency, long-wavelength expansion ofIsq ,Vd is not ana-
lytic in the strong SO scattering limit.] In this diffusive limit,
the inverse density fluctuation propagator(the diffuson)
D−1sq ,Vd=1−Isq ,Vd simplifies to

D−1sq,Vd = s− iV + Dq2d

+1
0 iGscqy − iGscqx 0

iGscqy 1/t' 0 − iGssqx

− iGscqx 0 1/t' − iGssqy

0 iGssqx iGssqy 1/tz

2 ,

s17d

whereD=vF
2t /2 is the diffusion constant,t'=2t / s2lkFtd2

and tz=t' /2 are the in-plane and out-of-plane spin relax-
ation times, andGsc=−2lslkFtd2 and Gss=4leFt are the
spin-charge and in-plane to out-of-plane spin couplings that
result from the SO interactions. Note that 4D /t'Gss

2 =1.
Transforming this diffusion propagator to real space and

time leads to the following system of coupled spin and
charge transport equations that is the principal result of this
paper:

] N

] t
= D=2sN + %0Vcd + 2Gscsẑ3 =d · sS− %0hd + Ic,

] Sa

] t
= SD=2 −

1

ta
DsSa − %0h

ad + Gssfsẑ3 =d 3 sS− %0hdga

+
Gsc

2
sẑ3 =dasN + %0Vcd + Is,a. s18d

In these equationsVc andh are the charge and spin(Zeeman)
components of the external potential. The last term on the
right-hand side of each equation has been inserted by hand to
represent charge and spin currents,Ic and Is,a, vertically in-
jected into the 2DEG. The factors of 2 and 1/2, that appear
in front of the coefficientGsc, follow from the relationships
between spin and charge densities and the corresponding
combinations of elements of the density matrix. Note that in
a generalization of the familiar Einstein relations, the exter-
nal charge and spin potentials and the corresponding chemi-
cal potentials,N/%0 and S/%0, are always summed; the
charge and spin-densities respond as usual to electrochemical
potentials and their gradients.[A 2DEG system with excess
spin and charge densitiesN andS, has excess chemical po-
tential sN±2uSud /%0 for spins oriented along and in opposi-

tion to Ŝ respectively.]
A physical understanding of the numerical values and the

parametric dependencies of the coefficients that appear in
front of the various terms in Eqs.(18) is most easily obtained
by considering the limit in which external potentials are ab-
sent. Then the drift and diffusion of charge and spin can be
understood by considering the time evolution of electrons
that start at the origin in specified spin-states and are scat-
tered randomly between various Rashba states at arbitrary
angles on the Fermi circle. These electrons undertake ran-
dom walks that make correlated steps of size,lkFt in spin-
space and, in position-space. The joint probability distribu-
tion function that results from these correlated changes in
spin and position is readily evaluated. Associating the
coarse-grained spin and charge distributions with the distri-
bution of starting positions and spin orientations, the coeffi-
cients of nth derivative terms in Eqs.(18) arise from nth
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order spatial moments of the spin and charge diffusion
clouds. For example the diffusion constantD is related, as
usual, to the second spatial moment of charge diffusion cloud
and is therefore proportional to the square of the spatial step
length, times the step ratet−1. Similarly Gss is due to spin-
precession and is proportional to the first spatial moment of
the Sx spin projection in the diffusion cloud generated by
spins that start with an orientation out of the plane. It is
therefore proportional to the product of the spin-space and
orbital-space step lengths and to the step rate. All nonstand-
ard coefficients in our equations can be understood in terms
of the correlation between velocity and spin-precession axis
that exists throughout the random walk. This line of argu-
ment can be followed to provide an independent confirma-
tion of Eqs.(18).

IV. OPERATOR EQUATIONS OF MOTION

Some insight into our general equations for the diffusive
charge and spin density dynamics of 2DEG’s with the
Rashba spin-orbit coupling can be obtained by comparing
Eqs. (18) with the equations of motion of the charge and
spin-density operators for this system. Let us first consider
the Heisenberg equation of motion for the charge(or, more
precisely, particle number) density operator

Nsr d = Cs
†sr dCssr d. s19d

The equation of motion reads

] N

] t
= ifH,Ng. s20d

Since the particle number is conserved, we expect this equa-
tion to have the form of a continuity equation,

] N

] t
= − = ·Jc, s21d

whereJc is the charge current density. Fourier transforming
the charge density operator and evaluating the elementary
commutator in Eq.(20) implies the following expression for
the charge current density:

Jc = −
i

2m
sCs

†=Cs − H.c.d + 2lsSxŷ − Syx̂d, s22d

where

Sasr d = 1
2Cs

†sr dtss8
a

Cs8sr d, s23d

is thea-component of the spin density. The first term in Eq.
(22) is the usual quantum-mechanical expression for the par-
ticle current density. We will call this contribution to the
charge current akinetic contribution. As seen from Eq.(22),
SO interactions result in an additional contribution to the
charge current density, that we accordingly refer to as the
spin-orbit contribution. This contribution is proportional to
the in-plane spin densities. Comparing Eqs.(21) and (22)
with the first of Eqs.(18), we conclude that the kinetic con-
tribution to the charge current transforms in the diffusive
limit to a kinetic contribution of the standard form, propor-
tional to both the diffusion constant and the electrochemical

potential gradient. The SO contribution apparently remains
separate and proportional to the spin-density, rather than be-
ing subsumed at long-wavelengths in the diffusive term. The
total charge current is therefore given by,

Jc = − D=sN + %0Vcd + 2GscfsSx − %0h
xdŷ − sSy − %0h

ydx̂g.

s24d

Let us now repeat the same analysis for the spin density
operators. Since the spin is not conserved, there is some free-
dom of choice in how the spin current density operator is
defined.36 We choose to define the spin current as the sym-
metrized product of the charge current discussed above and
the spin operator, a definition that seems natural from a mi-
croscopic point of view and has been used previously, for
example in discussing the spin-Hall effect.31 The spin current
density operator is, therefore, also a sum of a kinetic and a
spin-orbit contribution and has the following form:

Js,x = Jkin
s,x +

l

2
Nŷ,

Js,y = Jkin
s,y −

l

2
Nx̂,

Js,z = Jkin
s,z , s25d

where

Jkin
s,a = −

i

4m
sCs

†=Cs8tss8
a − H.c.d, s26d

is the kinetic contribution to the spin current. Note that the
current of thez-component of the spin has only a kinetic
component. The Heisenberg equations of motion for the spin
density operators can then be written in the following form:

] Sa

] t
= − = ·Js,a + Fa, s27d

whereFa is an additional source term that is given by

Fx,y = − 2lmJx,y
s,z ,

Fz = 2lmsJx
s,x + Jy

s,yd. s28d

As before, comparing Eqs.(25)–(28) with Eq. (18), we con-
clude that the kinetic contribution to the spin currents is pro-
portional to the gradient of the spin electrochemical potential
and, in addition, that the currents of the in-plane spin com-
ponents have SO contributions as in the microscopic equa-
tions of motion,

Js,x = − D=sSx − %0h
xd +

Gsc

2
sN + %0Vcdŷ,

Js,y = − D=sSy − %0h
yd −

Gsc

2
sN + %0Vcdx̂,

Js,z = − D=sSz − %0h
zd. s29d

As in the charge current case, the spin-orbit contribution to
the microscopic spin current is not subsumed in the diffusive
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contribution, but appears separately. Interestingly, a change
occurs in passing from the microscopic expression to the
coarse-grained transport theory expression in that the chemi-
cal potential(proportional to the densityN in 2D) is replaced
by the electrochemial potential. Because the spin-orbit spin
current contributions are proportional to the charge density in
the absence of external fields, they are nonzero in equilib-
rium, as noted by Rashba.36 Although the constant equilib-
rium spin currents in a uniform system have no physical
consequences as far as we are aware, these spin-orbit terms
in the spin current do play an important role in coupled spin-
charge transport as we illustrate in the following section.
Also note that the source termsFa in the microscopic equa-
tions of motion appear in an almost, but not completely,
identical way in the diffusive equations of motions; the con-
stants multiplying the currents are twice as large in the dif-
fusive case:Gss/D=4lm instead of 2lm in Eq. (28) andN is
replaced by its electrochemical equivalentN+%0Vc.

Finally, let us comment on the relationship between our
results and the recently discovered spin-Hall effect,26–41 i.e.,
a transverseJs,z current in response to an in-plane electric
field. Note that, as in the microscopic expressions, the cur-
rent of thez-component of the spin has only a kinetic con-
tribution. This means that, apparently, the spin-Hall effect
does not occur in the diffusive limit, since the current ofSz in
Eq. (18) has only a diffusive contribution, that does not react
to the electric field. In the diffusive regime, the spin current
divergence(from the spin-orbit contribution), produced by a
uniform electric field, is balanced in the steady-state by spin
relaxation. This balancing leads to a spin-polarization per-
pendicular to the electric field direction, as noted some time
ago.12,15 In the regime of resolved spin-orbit induced spin-
splitting, the diffusive transport picture of Eq.(18) is no
longer applicable. In this case, the current of the
z-component of the spin will have a contribution, propor-
tional to ẑ3E, due to the intrinsic spin-Hall effect.

V. APPLICATIONS OF COUPLED SPIN-CHARGE
TRANSPORT EQUATIONS

In the case of an infinite 2DEG, Eqs.(18) can be solved
by Fourier transformation. Rotating coordinate axes so that

the y-axis is along the direction ofq, brings the inverse dif-
fusion propagator Eq.(17) to the block-diagonal form:

D−1sq,Vd = s− iV + Dq2d1

+1
0 iGscq 0 0

iGscq 1/t' 0 0

0 0 1/t' − iGssq

0 0 iGssq 1/tz

2 . s30d

The eigenmodes are then easily calculated to be

iV1± = Dq2 +
1

2t'

±Î 1

4t'
2 − Gsc

2 q2,

iV2± = Dq2 +
t' + tz

2t'tz
±ÎS t' − tz

2t'tz
D2

+ Gss
2 q2. s31d

The iV1± modes correspond to coupled diffusion of charge
and the in-plane spin density component that is transverse to
the direction ofq, i.e., Sx in this convention. Note, that the
mode iV1− is gapless atq=0. This means that this mode
corresponds to a(nearly) conserved quantity, with a very
long relaxation time at smallq. Exactly atq=0 this quantity
is of course simply the conserved total particle number.
However, at finite wave vectors it corresponds to a linear
combination of the charge density and thex-component of
the spin density.

The iV2± modes correspond to coupled diffusion ofSy and
Sz spin densities. This coupling originates from the Rashba
spin precession as explained above. Note thatiV2− has a
minimum at a finite wave vectorq* =Î15lm/2, as discov-
ered previously in Ref. 17. This means that theSy,z Fourier
component with the slowest relaxation rate will actually be at
q=q* , unlike in the case of the ordinary diffusive relaxation,
where the slowest relaxation rate is atq=0.

Let us now look at stationary solutions of Eq.(18). For
simplicity and clarity of presentation we will assume that
spin and charge densities are uniform in thex-direction, and,
therefore, the inverse diffusion propagator has the simple
block-diagonal form Eq.(30). In the following paragraphs
we discuss the stationary state response of the 2DEG system
to external spin and charge currents injected or drained along
lines of constanty as illustrated in Fig. 1. We first consider
the response to a flux of thez-component of the spin,Is,z.
Inverting the lower block of the inverse diffusion propagator
Eq. (30), we obtain

Szsqd = Is,z Dq2 + 1/t'

D2q4 − 4sleFtd2q2 + 32sl2meFtd2 , s32d

and

Sysqd = Is,z − iGssq

D2q4 − 4sleFtd2q2 + 32sl2meFtd2 . s33d

The Fourier transform to real space is readily evaluated by
contour integration. Poles occur at the roots of the denomi-
nator located at

FIG. 1. Cartoon of the spin injection experiment. A polarized
current, that has a polarization component along thex-direction
(i.e., along the electrode) is injected at the left electrode and col-
lected at the right one. A voltage develops between the electrodes
that depends on the spin-polarizations of both emitter and collector.
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q = ± lmÎ2s1 ± iÎ7d. s34d

Note that all the roots are complex. This means that the
nonequilibrium spin density profile in this case will not have
the usual form, exponentially decaying away from the point
where the current is injected, with a characteristic spin dif-
fusion decay length.(Because the spin-orbit coupling is lin-
ear in momentum, the distance traveled by a Fermi energy
electron during one spin-precession,~1/lm, is independent
of the Fermi momentum.) Instead it will clearly involve an
oscillatory component, which is the remnant of the Rashba
spin precession in the diffusive regime. The inverse of the
characteristic decay length and the inverse period of the spa-
tial oscillations are given by the imaginary and real parts of

lmÎ2s1+iÎ7dcorrespondingly.
Let us now turn to the more interesting issue of signatures

of the spin-charge coupling in our transport equations in spin
injection experiments. We imagine the geometry schemati-
cally depicted in Fig. 1. Assume two infinitely long ferro-
magnetic electrodes are placed on top of the 2DEG sample a
distanceL from each other. Let a charge currentI, polarized
in the x-direction (i.e., along the electrode), be injected into
the 2DEG from they=0 electrode. Assume that the degree of
spin polarization of this current isa, i.e., the injected spin
current is Is,x=aI. Assume in addition that this current is
extracted at the second electrode aty=L, which has a degree
and sign of spin polarization denoted byb, that can differ
from a. This circumstance is expressed compactly by the
following source terms in our spin-charge transport equa-
tions:

Icsyd = Ifdsyd − dsy − Ldg,

Is,xsyd = Ifadsyd − bdsy − Ldg. s35d

We now evaluate voltage, i.e., the electrochemical potential
difference, that develops between the two electrodes and dis-
cuss how it depends on the relative spin polarization of the
electrodes.

Inverting the upper block of the diffusion propagator Eq.
(30), we obtain the Fourier transformed local electrochemi-
cal potential changeU=N/%0+Vc that is generated in the
2DEG in response to the injected spin-polarized current,

%0Usqd = Is1 − e−iqLd
1

Dq2 − Isa − be−iqLd
2iGsc

D2qsq2 + 1/Dt'd
.

s36d

We define the effective electric field in the 2DEG in the usual
way in terms of the gradient of the electrochemical potential,

E = −
1

e
=U. s37d

The electric field response to the injected current can then be
easily calculated by an inverse Fourier transformation,

Esyd = −
i

2pe
E

−`

`

dq q Usqdeiqy =
I

e%0D

3f1 + Gsc
Ît'/Dsae−y/ÎDt' − be−sL−yd/ÎDt'dg.

s38d

The voltage between the electrodes is therefore given by

V =E
0

L

Esyddy=
IL

e%0D
F1 +

Gsct'

L
s1 − e−L/ÎDt'dsa − bdG .

s39d

Note that in addition to the usual Ohm’s law contribution to
the potential drop, the first term on the right-hand side of Eq.
(39), there is also a contribution proportional to the differ-
ence of spin polarizations of the two ferromagnetic elec-
trodes. This sensitivity of the resistance of a paramagnetic
system to the spin-polarization of the current-carrying elec-
trons results from the spin-charge coupling terms in our
transport equations that generate a contribution to the electric
field proportional toGsc [see Eq.(38)]. Note that this contri-
bution to the voltage is present even when the electrodes are
separated by a distance larger than the spin-coherence length.

This effect could be studied by attaching voltage probes to
the 2DEG near the ferromagnetic electrodes, or simply by
measuring the voltage drop between the ferromagnetic elec-
trodes. In the latter case, the total voltage will contain con-
tact contributions from the local voltage drops between the
ferromagnetic electrodes and the 2DEG. The spin-orientation
dependent voltages that we discuss will, in general, need to
be distinguished from other spin polarization-dependent
voltages that occur in magnetotransport, for example the
spin-polarization dependent open-circuit voltages measured
by ferromagnetic electrodes first discovered in the semi-
nal work of Johnson and Silsbee.30 The effects that we
discuss here can be distinguished in several ways. First of
all, the voltage differences that we have calculated are
ones that would be measured by paramagnetic voltage
probes. Secondly, our voltages have a characteristic depen-
dence on the polarization of the injected spin current. In
the case of the effect described by Eq.(39), the voltage
drop is maximal when the first electrode is polarized along
the x-direction, while the second one is polarized along
the −x-direction. On the other hand, if the electrodes are
polarized along they and −y-directions, the polarization-
dependent voltage drop will vanish.

VI. CONCLUSIONS

In this paper we have examined the issue of the diffusive
spin and charge density transport in Rashba 2DEG systems.
The separation between the spin and momentum relaxa-
tion time scales in the diffusive regime has allowed us to
use a statistical description, where the spin and charge trans-
port is described by local spin and charge electrochemical
potentials and their gradients. Our theory thus generalizes
the usual two-component theory of diffusive spin
transport,42,43 that has found numerous successfull applica-
tions, in particular in the theory of spin-dependent transport
in magnetic multilayers.43
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Our equations with appropriate boundary conditions can
be used to model experiments on coupled spin-charge trans-
port in 2DEG systems with the Rashba SO interactions, in-
volving both electrical and optical spin injection. By com-
paring our equations, valid in the diffusive transport regime,
with the exact operator equations of motion, we have in-
ferred relationships between spin and charge current densi-
ties and spin and charge electrochemical potentials and their
gradients. These expressions can be used to devise appropri-
ate boundary conditions that are necessary to supplement our
transport equations at the 2DEG boundaries.

As an example of the application of our equations, we
have considered a simple electrical spin injection experiment
and show that a voltage will develop between two ferromag-
netic contacts if a spin-polarized current is injected into a
2DEG sample, that depends on the relative magnetization
orientation of the two contacts. Unlike the giant magnetore-
sistance and other familiar magnetoresistive effects in spin-
tronics, this voltage drop is present even when the distance
between the electrodes exceeds the spin-diffusion length.
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APPENDIX

This appendix summarizes some technical details of the
density matrix response function calculation in Sec. II. The
main technical problem is the evaluation of the matrix ele-
mentsIs1s2,s3s4

sq ,Vd, which turn out to have the following
general form:

Is1s2,s3,s4
sq,Vd = Isssq,Vdds1s3

ds2s4

+ Istsq,Vdds1s3
ts2s4

n

− Ist*sq,− Vdts3s1

n ds2s4

+
I+
ttsq,Vd + I−

ttsq,Vd
2

ts3s1

q ts2s4

q

+
I+
ttsq,Vd − I−

ttsq,Vd
2

ts3s1

n ts2s4

n ,

sA1d

where

tq = S 0 e−iw

eiw 0
D , sA2d

and

tn = S 0 − ie−iw

ieiw 0
D , sA3d

are the Pauli matrix components along and perpendicular to
the direction ofq (w is the angle betweenq and thex-axis).
The explicit expressions for the functionsIss,Ist,I+

tt, I−
tt, and

dIst, that appear in the matrix elements ofI, are

Isssq,Vd =
1

4
F 2

f0
+

1

f−
+

1

f+
G , sA4d

Istsq,Vd =
i

4Î2Dq2t
FÎ1 −

2Dq2t

f−
2 −Î1 −

2Dq2t

f+
2 G

− iqltslkFtd2, sA5d

I+
ttsq,Vd =

1

4
F 2

f0
−

1

f−
−

1

f+
G , sA6d

I−
ttsq,Vd =

1

4Dq2t

3F2
f0
2 − Dq2t

f0
−

f−
2 − Dq2t

f−
−

f+
2 − Dq2t

f+
G ,

sA7d

where

f0 = Îs1 − iVtd2 + 2Dq2t,

f± = Îs1 − iVt ± iVsotd2 + 2Dq2t, sA8d

and Vso=2lkF is the Larmor precession frequency associ-
ated with the Rashba field. The spin-charge coupling is gen-
erated by the last term in the expression forIstsq ,Vd. Note
that, unlike other elements of the matrixIsq ,Vd, the term
responsible for the spin-charge coupling can only be calcu-
lated perturbatively inl andq.

Expanding Eqs.(A4)–(A8) to leading order iniVt, Dq2t,
and lkFt, one arrives at Eq.(18), which we have concen-
trated on in this paper. These expressions should be useful in
their original form, however, in systems with the Rashba
interactions strong enough that the spin-splitting of the band
energies is not smeared out by disorder.
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