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Magnetic-moment oscillations in a quantum Hall ring
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We predict nonmesoscopic oscillations in the orbital magnetic moment of a thin semiconductor ring in the
quantum Hall effect regime. These oscillations, which occur as a function of magnetic field because of a
competition between paramagnetic and diamagnetic currents in the ring, are a direct probe of the equilibrium
current distribution in the nonuniform quantum Hall fluid. The amplitude of the oscillating moment in a thin
ring with major radiusR and minor radiughalf-width) a is approximatelyaReaw./c, wherew, is the cyclotron
frequency.
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[. INTRODUCTION conductor quantum dots; see Refs. 10-13 and references

There has been considerable interest in the orbital ma _herein. In particular, the limit of gnoninteracting two-

netic response of mesoscopic normal-metal rings to an a __|mensional electr(_)n gas_in_ a strong _perpendicular magnetic
plied magnetic field. The principal focus has been on th ield and a parabolic confining potential has been solved ex-

microscopic origin of the equilibrium persistent currdnt actly by Harrisori:? Equilibrium current distributions in a
which leads to a measurable magnetic momeRl /c in a confined quanttljp Hall S)gtem have been calculated by Gud-
thin ring of radiusR. The persistent currentis mesoscopic n}undssore'lt al,** by Lglnt, anhd by T?n and Inksolzgort?e

in origin® and vanishes in the macroscopic limit in accor-Of OUr results are similar to those of Tan and InkSomho

dance with Bloch's theorefHowever, because the current also find deviations from de Haas-van Alphen behavior in

in a ring is actuallydistributed the orbital magnetic moment ring geometries. . A
In the next section, we discuss the equilibrium current

distribution in a ring in the quantum Hall effect regime, and
w= Ef drr?j(r), (1)  We present results of a self-consistent Hartree calculation of
c the oscillating, field-dependent magnetic moment. In Sec. Il
we show that in a particular limit, the magnetic-moment os-
may be finite even if ={dr j(r) vanishes. Herg(r) is the cillations become that of the de Haas-van Alphen effect for a
azimuthal component of the equilibrium current density, andwo-dimensional electron gas in the area defined by the bulk
a two-dimensional electron system is assumed. of the ring. Section IV contains a discussion of our results.
This multipole-moment effect is negligible in metal rings
qt Iab'oratory magnetic fielq str_en'gths or in semiconductor Il HARTREE THEORY OF THE MAGNETIC-MOMENT
rings in weak fields, becaugér) is itself small under these OSCILLATIONS
conditions. However, the equilibrium current density in the
guantum Hall regime generally consists of strips or channels We shall assume that a two-dimensional electron gas is
of distributed current, which alternate in sign, and whichconfined to a semiconductor ring of major radRsnd mi-
have universalconfining potential independenintegrated nor radius (half-width) a by a fixed positive background
strengths of the order adw..>* Therefore, although van-  charge density of magnitudg. The inner radius of the two-
ishes for a macroscopic ring in the quantum Hall regime, dimensional ring isR—-a and the outer radius i®+a. A
may be quite large. Furthermore, we shall show that becauagiform magnetic field of strengtB is oriented perpendicu-
of a competition between paramagnetic and diamagnetic cufar to the two-dimensional electron gas in théirection. The
rents in the ring, the orbital magnetic moment oscillates withorigin of the magnetic-moment oscillations is best under-
applied magnetic field. These oscillations, which are generstood within a self-consistent Hartree approximation. The ef-
ally distinct from the de Haas-van Alphen or any mesoscopidects of exchange and correlation are discussed at the end of
oscillations, and which may be used to probe the equilibriunthis paper.
current distribution in the confined quantum Hall fluid, are  The theory of the equilibrium current distribution in the
the subject of this paper. disorder-free, slowly confined quantum Hall fluid, has been
There is an extensive literature on finite-size orbital mag-developed in Refs. 3 and 4. In the ring geometry considered
netic effects in conductofs® and Sivan and Im&/have dis- here, the current flows in the azimuthal direction. The azi-
cussed the de Haas-van Alphen oscillations in srefid  muthal component of the current density, a function of the
simply connectedquantum dots. Several investigators haveradial coordinate only, may be written(ignoring exchange
also studied the related problem of magnetization in semiand correlation effecisas
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J(r) = jedgd) + Jpui(r) (2
where
) hw (. 1 an;
= — +—|— 3
]edge m*§)<| 2) ar ()
and
en oV
lpuk=—"-—"". 4
Jbulk m* wg dr (4)

Here m* is the electron effective magsn*/ m,~0.067 for
GaAy, e is the magnitude of the electron charge, and
=eB/m*c is the cyclotron frequency. In Eq3) ni(r) de-
notes the contribution to the equilibrium number density

n(r) = >, n(r) (5
-0

from theith Landau level, namely

1

"= 2

11
> nF[ﬁwc<i o+ E'y(r) +V(r)] . (8
Here n:(e)=[exple—u)/kgT+1]7? is the Fermi distribution
function,

_ gugB _ gm*
ho,  2mg

is the dimensionless spin splittiq@ith g the magnitude of
the effective Landéy factor of the host semiconductor and
ug the Bohr magneton € = VAc/eB is the magnetic length,
and the summation in Eq6) is over spin components

)
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FIG. 1. The electron density for=2 (solid line) plotted to-
gether with the background charge densigtted ling in units of
nO:(ZTrré)‘l for a two-dimensional ring of major radilR=40a at
temperatureT =0.00%?/ krokg. The inset shows in more detail the
inner-edge region where the=1 incompressible strip is formed.

/2
K(m) = f
0

is the complete elliptic integral of the first kiftl(see the
appendix for more detailsand « is the dielectric constant.

In Figs. 1 and 2 we present results of a self-consistent
Hartree calculation of the low-temperature density and cur-
rent distributions in the ring, as a function R&r—R (the
radial coordinate measured from the major radius of the
ring). The dotted line in Fig. 1 shows the assumed positive
background charge density of magnitudgand width 2,

de

— 9
V1-msir? 0 ©

=21. Instead of using the batefactor, which is about 0.44  \yherea=100,. Herer, is the average interparticle spacing

in GaAs, we have used the experimentally measure
exchange-enhanced value, which is abbgt= 7.3 (see also
Ref. 17 where a slightly smalleg factor is observed A

¢h the bulk of the ring, defined byy=(27r2)~L. The back-
0

minor technical point in our computation is that thdactor & 4 ::g/z
is the same for all Landau levels. This has been confirmed ing |
an experimendt showing that the exchange-enhancgthc- (t\l“ 02
tor is independent of the magnetic field despite the intuitive 1 '
expectation that it should haveBa'? dependencésee Fig. 4 5 o4
in Ref. 17. The confining potentia¥/(r) in Eq. (6) consists = |
of an external potential, produced by the fixed positive back- =
. . x 0.0
ground charge, together with the self-consistent Hartree po-= |
tential from the electron gd$.The expressions above are ,§ 0.1
valid provided(V’' <fiw. andkgT <A w,. 2 '
Assuming cylindrical symmetry, and a positive back- 3
. - . - -02
ground charge given by, (r), the Hartree potential energy in = |
the ring is 5
o '03 T 1
" -150 -100 -50 0] 50 100 150
4¢? r' Arr’! Distance x [r ] measured from the major radius R
v<r):7f dr'rH,K((rH,)Z)[n(r')—nb(r')], ® :
0 FIG. 2. The current densities far=2 (solid line) and v=5/2

where

(dotted ling in units of jp=eh/27m* rg for a two-dimensional ring
of major radiusR=40a at temperaturd=0.00%?/ kT okg.
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ground charge drops linearly to zero over a distance o§20 | background
leading to the trapezoid-shaped cross-sectional distribution 4 o Slectrons
shown. The corresponding low-temperature electron density L : :
for a two-dimensional ring of major radil®=40a is shown 0.8 : ;
=2 i \
0.6 : :

in the solid curve of Fig. 1. The magnetic field strength has
been chosen so that two Landau levels are filkeel2, where
v=2m{°ny) in the bulk of the ring. Incompressible strips are
formed at filling factory=1 at the inner and outer edges of
the ring.

The azimuthal current density at this same magnetic field
strength is shown in the solid curve of Fig. 2 in unitsjgf
=efi/27m* 3. The qualitative features of the current distri-
bution may be understood from E@8) and(4). At the inner ,
edge of the ringx=-116, the density increases from zero -150  -100  -50 0 50 100 150
to ny/2. Because the compressibility in this edge region is Distance x [r,] measured from the major radius R
large, the screening is nearly perfect and the self-consistent
confining potential is approximately uniform. Therefore, the FIG. 3. The electron density for=3 (solid line) plotted to-
current density is dominated by the edge contributi@n gether with the background charge densigptted ling in units of
The current is positive becausé) is increasing with radius. No=(27rg) ™" for a two-dimensional ring of major raditR=40a at
At the boundary of the innermost edge regioms 114,  temperaturel=0.00%/ xtoke.
the current has a node. In the=1 incompressible region
betweenx=-114, and -107,, the density is uniform and fwe
the potential decreases by approximately.. In this region B= 2 nre (10
the bulk contribution(4) is dominant, and the current is 0
negative becauséV/dr is negative. Atx=-107, the in-  where, as beforeg is the dielectric constant of the semicon-
compressible region ends and there is another node in thductor. The density of one filled Landau level is given by
current. Another edge region is then encountered as the def2m¢?)1=r 8n,, wherers=r,/ag is the dimensionless inter-
sity approaches its bulk value of,. particle spacing andg=#%%x/m* €® is the effective Bohr

The current density at the outer edge of the ring followsradius in the semiconductor. The density in Fig. 1 and current
similarly: There are two edge regions where the density dein the solid curve of Fig. 2 were calculated with the param-
creases by(2m¢?)! and where the sign of the current is eter values =1 andB=1/2.
negative, separated by @=1 incompressible bulk region The dotted curve of Fig. 2 shows the current distribution
where the current is positive. We note that the integratedifter the magnetic field has been reduced to a strength cor-
current in each channel is universal, independent of theesponding tg3=2/5, sothat»=5/2 in thebulk of the ring.
shape of the channel and the details of the confiningn this case, there are three compressible edge channels and

0.4

02

Charge densities n(x) [n,] for

0.0

potential® two incompressible strips at the inner and outer edges of the
It is tempting to regard the edge current of E§) as ring. Note that the current distribution fg8=1/2 andp
being diamagnetic and the bulk current of E4) as para- =2/5 arealmost everywhere opposite in sigafter an unim-

magnetic, but this is not correct. Figure 2 shows that the edgportant shift inx). This sign reversal, which leads to oscilla-
current—in the sense of our definiti¢g®)—at the outer edge tions in the orbital magnetic moment of the ring, occurs be-
of the ring is in fact diamagnetic, but that near the inner edgeause of a combination of two factors: The competition
of the ring it is paramagnetic instead. between the edge curref8) and bulk current{4) leads to a

It is also worth stressing the asymmetry between the oddpattern of strips or channels of current with alternating sign,
integer and even-integer filling factois It is well known  and the electron-electron interaction expels most of the cur-
that for the quantum Hall states with odd-integethe Fermi  rent from the bulk to the inner and outer edges of the ring.
level resides in the Zeeman gap of sizBw. within the The orbital magnetic moment of the ring is straightfor-
uppermost Landau level, wheseis defined in Eq(7), while  ward to compute from Eq(l), and is plotted in the solid
for the even-integer it lies in the cyclotron gap of sizkw,. curve of Fig. 4 in units of
In our calculations, the spin splitting is about 25% of the _ *
cyclotron energy. Because the width of the incompressible Ho = 4mRanusg, (19
channel is proportional to the corresponding energy gap, thehere ,u;;zeﬁIZm* c is the effective Bohr magneton. The
incompressible strips formed at odd-integerare notably magnetic moment is plotted as a function mfthe filling
narrower than the even-integer ones, as evident in Fig. 3. Thiactor in the bulk of the ring, and,=1 as before. Note that
horizontal arrows in Fig. 3 point to the positions of the in- the asymmetry between the odd-integer and even-integer
compressible strips corresponding to filling factersl (at  discussed above leads to a partial suppression of the magne-
n/nyg=1/3) andv=2 (atn/ny=2/3). tization oscillation amplitude at odd-integer The dashed

As the magnetic field is changed, the filling factor in theline of Fig. 4 shows the magnetic moment in the liriit
bulk of the ring changes. It is useful to define a dimension>a> ¢ and T—0, which is calculated analytically in the
less magnetic field strength, next section. The deviation of the solid curve from the
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—— T=0.005 Finally, we note that the self-consistent density distribu-
0. s e 0,000 tions that we calculate do not have the large compressible
2 08l . ' '.‘ \ H edge regions predicted by Chklovskii, Shklovskii, and

Glazmar?! This is because the systems we consider are not

g 0.6 Y l\ y large enough. When applied to a wide two-dimensional chan-
“,i: 0.4 ':“ I" [" v [ nel, our method does correctly reproduce the density distri-
S 0244 | 3 i I \ i / \ bution discussed in Ref. 21.
g 0071 [\ ¥ | PNCY [ Ill. MOMENT OSCILLATIONS IN THE DE HAAS-VAN
E 02] % WA LN ' ALPHEN LIMIT
€ 04 | 5 l I. \ "‘ / ' \ / \ . ) . )
2 06l LEONJ N In this section we calculate the orbital magnetic moment
s ] 3 \ - ; ' - for the special case &> a> ¢, a limit where an exact ana-
g 08 y 3 : v i ; lytic solution is possible. Recall thata2s the width of the
-1.0 3 ] } electron gas in a ring of radiuR, and ¢ is the magnetic
1 2 3 4 5 6 7 length. We shall show that in this limit the magnetic-moment
Filling factor v oscillations become that of the de Haas-van Alphen effect for

a two-dimensional electron gas in the area defined by the
FIG. 4. The magnetic moment as a function of the filling factor py|k of the ring.

in units of ug [see Eq.(11)] for a two-dimensional ring of major In terms ofx=r-R, the magnetic momentl) may be
radiusR=40a with temperaturél =0.00%?/ kr okg. The dashed line written as

shows the magnetic moment of a bulk noninteracting electron gas at

T=0. p

T 2;
dashed one is a consequence of both finite-size effects and m= cf dx(R+X)(x), (12)
finite temperature. The solid curve in Fig. 4 is essentially the -

same as that in Fig. 2 of Ref. 20. The magnetic field distance . . .
between two adjacent minima of the magnetization in Fig. here the fact that the current density vanishes outside the

of Ref. 20 corresponds to a distanceviapproximately equal ring has been used to extend the limits of integration. Be-

to 2 which is in very good agreement with Fig. 4 here. causej(x) .is.an odd function ok in a mac.roscopic ring in
In addition to the plot of the magnetic-moment oscillation the R>a limit [see Eq(A4) in the appendik we have
as a function of the filling factor given in Fig. 4, it is also o
interesting to plot the magnetic moment as a function of the 47R )
magnetic field. This is given in Fig. 5 for a system witk m== dx Xj(x). (13
=4.9x 10 m2, corresponding to sample T412 of Ref. 20 0
(after illumination, where we find excellent agreement with __ . . ) i
that experimentsee Fig. 3 of Ref. 20 This expression shows thatis proportional to the first mo-
ment of the current distribution shown, for example, in Fig.
0.8- ——T=0.005] 2, which itself oscillates as a function of magnetic field.
N Because the current density is concentrated at the inner
u 086 and outer edges of the ring on a length scale much smaller
S w7 v=6 v=5 A thana,
= % /] . .
: 0.2 /‘ / \ v=4 v=
= [} [...\ fdx Xj(x) = af dx j(x). (19
5 o00ll ] \
E - / \ p 0 0
2 > \ / . -
S -0.2 \ -/ 2 Finally, the relationj(r)=cV XM(r) between current and
b 7 \ 7 local magnetization shows that
c '04 4
S \4 \\ y, -
= 06 .
dx j(x) =cM(»), (15)
-0.8 ' 1 0
3 4 5 6 7 8
Magnetic field B__ [T] where M(v) is the z component of the equilibrium orbital
tot

magnetization of a uniform two-dimensional electron gas
FIG. 5. The magnetic moment(at temperature T  With filling factor ». o
=0.00%2/ krkg) as a function of the total magnetic fieRi, com- Therefore, in the de Haas-van Alphen limit,
puted for the s_ample_ T412_of Ref. 2@fter iIIL_lminatior) in units of w=4mRaM(v). (16)
1o for a two-dimensional ring of major radilR=40a. The arrows
show the magnetic fields at which the corresponding filling factorsThe expressioril6) shows that the magnetic moment in the
appear. R>a> ¢ limit is equal to that of a uniform electron gas of
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filling factor v and area 4Ra, the area of the ring of width ACKNOWLEDGMENTS
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with alternating signs, leads to a magnetic moment in a non-
mesoscopic ring that oscillates as a function of magnetic
field. In a certain limit, namelyR>a> ¢, the oscillations
may be regarded as de Haas-van Alphen oscillations of the
Hall fluid in the bulk of the ring, even though the current  The electrostatic potential produced by the electric charge
density in this limit is actually concentrated at the inner anddistribution p(r’)=en(r’)8(z') is independent of the polar

APPENDIX: HARTREE POTENTIAL IN RING
GEOMETRY

outer edges. angle ¢ and takes the form

The most natural interpretation of the magnetic-moment
oscillations reported here is one in terms of the multipole 3 n(r’')o(z')
moments of the equilibrium current distribution. The magni- V(r,2) = © f d°r’ N’/(F— P2+ (z- 7)2’

tude of the net current flowing at the edge:dfilled Landau

levels is of the order ofew.. This current contributes ap- wheref andf” are the projections of the 3D vectarandr’,

) > . . ) i _ ]
proximatelyR“vew./ c to the orbital magnetic moment. How respectively, in the plane=0. Let us choose the vect6ito

ever, the equilibrium currents flowing at the inner and oute_rgF in the direction of thes axis so that(F—Ff')2=r2+r'2

edges of a macroscopic ring cancel, so the zeroth-order radi , " wh "is th | le of". After i
moment of the azimuthal current distributiofi,, dx j(x) _2”. cos¢’ where ¢ IS the polar angle of". After inte-
o ' grating overz’ (and settingz=0) we get

vanishes. However, the first radial moment,, dx xj(x),
does not vanish. The resulting magnetic moment is of the o

order of uq, defined in(11), which may be equivalently re- e, ., ., do’
written as Vi =—| rdrn(r’) | —=— 7 -
! \Nre+r’'c=2rr’ cos¢
[ |

Mo = R c ) (Al)

making evident its multipole-moment origin. Changing the integration variable according ¢6=m-26
Finally, we note that the spin polarization contributes toWe can express the integral owgf in the above equation in
the total magnetic moment of the ring an amount termsl of the complete elliptic integral defined in E§),
namely,
Mspin=~ %gMB(NT - Nl)1 (19

whereN,, is the number of electrons with spin The prin- iK(m), with m= Lz (A2)
cipal effect of exchange is to enhance the bare Zeeman spin r+r’ (r+r’)

splitting, which we have already accounted for phenomeno- o .

logically by usingg factors deduced from experiments. The Substituting Eq(A2) back into Eq.(Al) one recovers the
most important effect of correlation on the zero-temperatur&XPression8) that has been used in the self-consistent cal-
chemical potential and orbital magnetization of the uniformeulation of the potential. o _ _

Hall fluid is to introduce additional discontinuities at certain " the de Haas-van Alphen limit of Sec. Il in whidR
fractional filling factors. This additional structure leads to > & the electrostatic potential reduces to that of a infinite
incompressible strips and associated bulk currents at fraglfiP or channel. This is becauge-a<r, r'<R+a and in
tional filling factors in the nonuniform Hall fluid. It is clear thiS caser=r’~Rso thatm~1 as can be seen from Eg.
from the analysis of Sec. Il that in the>a> ¢ limit, the ~ (A2). However the elliptic integra(9) has a logarithmic
orbital magnetic moment will reflect the actual orbital mag-3Symptotic behavidf whenm— 1,
netization of the interacting electron gas. For other values of

Randa, we expect a more complex oscillatory response. lim {K(m) - In( 4_)]
Measurements of the magnetic moment of a semiconductor m—1 vl-m
ring in the quantum Hall regime would provide useful infor-

mation about the equilibrium current distribution in the non-where in our case 1m=(r-r')?/4R% Settingr=R+x and
uniform Hall fluid. r'=R+x’ we obtain

Oa
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22 (
Va0 = - == f dx Infx— x|[N(x") = ()], (A3)

where we have usefldx n(x)=fdx n,(x). Equation(A3) is

PHYSICAL REVIEW B0, 155304(2004
de Haas-van Alphen limit the potential and charge densities
are even functions of while the current densities are odd,

V(=x)=V(x), n(=x)=n(x), andj(-x)=-j(x),
(A4)

the potential of electrons in an infinite two-dimensional stripwhich has been used in the derivation of Etg). This sym-
with number densityn(x) and background charge density metry is not present in a general two-dimensional electron

-n,(X). It follows from Egs.(3), (4), (6), and(A3) that in the

ring.

1Y. Imry, Introduction to Mesoscopic Physi¢®xford University
Press, Oxford, 1997

2G. Vignale, Phys. Rev. B1, 2612(1995.

3M. R. Geller and G. Vignale, Phys. Rev. B0, 11714(1994.

4M. R. Geller and G. Vignale, Phys. Rev. 8, 14137(1995.

SR. V. Denton, Z. Phys265, 119(1973.

6M. Robnik, J. Phys. A19, 3619(1986.

7J. M. van Ruitenbeek, Z. Phys. D: At., Mol. Clustet®, 247
(1991).

8J.-X. Zhu and Z. D. Wang, Phys. Lett. 203 144 (1995.

9U. Sivan and Y. Imry, Phys. Rev. Let61, 1001(1989.

10M. J. Harrison, Phys. Rev. B5, 3815(1992.

1w, Sheng and H. Xu, Physica B56—-258 152 (1998

2w.-C. Tan and J. C. Inkson, Phys. Rev.@®, 5626(1999.

13|, Magnusdottir and V. Gudmundsson, Phys. Rev6B 10229
(2000.

15C. S. Lent, Phys. Rev. B3, 4179(1991).

16A. Usher, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Phys. Rev.
B 41, 1129(1990.

17v. T. Dolgopolov, A. A. Shashkin, A. V. Aristov, D. Schmerek,
W. Hansen, J. P. Kotthaus, and M. Holland, Phys. Rev. L.
729 (1997).

18As is often the case with self-consistent Hartree and Hartree-Fock
calculations in the quantum Hall effect regime, we find it nec-
essary to include an additional hard-wall confining potential to
V. Its precise form does not appreciably affect our results.

¥Handbook of Mathematical Functionedited by M. Abramowitz
and |. Stegur{Dover, New York, 1972

20A. Usher, M. Zhu, A. J. Matthews, A. Potts, M. Elliott, W. G.
Herrenden-Harker, D. A. Ritchie, and M. Y. Simmons, Physica
E (Amsterdam 22, 741(2004).

14y Gudmundsson, R. R. Gerhardts, R. Johnston, and L. Sché'D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev.

weitzer, Z. Phys. B: Condens. Matt@0, 453 (1988.

B 46, 4026(1992.

155304-6



