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We predict nonmesoscopic oscillations in the orbital magnetic moment of a thin semiconductor ring in the
quantum Hall effect regime. These oscillations, which occur as a function of magnetic field because of a
competition between paramagnetic and diamagnetic currents in the ring, are a direct probe of the equilibrium
current distribution in the nonuniform quantum Hall fluid. The amplitude of the oscillating moment in a thin
ring with major radiusR and minor radius(half-width) a is approximatelyaRevc/c, wherevc is the cyclotron
frequency.
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I. INTRODUCTION

There has been considerable interest in the orbital mag-
netic response of mesoscopic normal-metal rings to an ap-
plied magnetic field. The principal focus has been on the
microscopic origin of the equilibrium persistent currentI,
which leads to a measurable magnetic momentpR2I /c in a
thin ring of radiusR. The persistent currentI is mesoscopic
in origin1 and vanishes in the macroscopic limit in accor-
dance with Bloch’s theorem.2 However, because the current
in a ring is actuallydistributed, the orbital magnetic moment

m ;
p

c
E
0

`

dr r2jsrd, s1d

may be finite even ifI =e0
`dr jsrd vanishes. Herejsrd is the

azimuthal component of the equilibrium current density, and
a two-dimensional electron system is assumed.

This multipole-moment effect is negligible in metal rings
at laboratory magnetic field strengths or in semiconductor
rings in weak fields, becausejsrd is itself small under these
conditions. However, the equilibrium current density in the
quantum Hall regime generally consists of strips or channels
of distributed current, which alternate in sign, and which
have universal(confining potential independent) integrated
strengths of the order ofevc.

3,4 Therefore, althoughI van-
ishes for a macroscopic ring in the quantum Hall regime,m
may be quite large. Furthermore, we shall show that because
of a competition between paramagnetic and diamagnetic cur-
rents in the ring, the orbital magnetic moment oscillates with
applied magnetic field. These oscillations, which are gener-
ally distinct from the de Haas-van Alphen or any mesoscopic
oscillations, and which may be used to probe the equilibrium
current distribution in the confined quantum Hall fluid, are
the subject of this paper.

There is an extensive literature on finite-size orbital mag-
netic effects in conductors,5–8 and Sivan and Imry9 have dis-
cussed the de Haas-van Alphen oscillations in small(and
simply connected) quantum dots. Several investigators have
also studied the related problem of magnetization in semi-

conductor quantum dots; see Refs. 10–13 and references
therein. In particular, the limit of a(noninteracting) two-
dimensional electron gas in a strong perpendicular magnetic
field and a parabolic confining potential has been solved ex-
actly by Harrison.10 Equilibrium current distributions in a
confined quantum Hall system have been calculated by Gud-
mundssonet al.,14 by Lent,15 and by Tan and Inkson.12 Some
of our results are similar to those of Tan and Inkson,12 who
also find deviations from de Haas-van Alphen behavior in
ring geometries.

In the next section, we discuss the equilibrium current
distribution in a ring in the quantum Hall effect regime, and
we present results of a self-consistent Hartree calculation of
the oscillating, field-dependent magnetic moment. In Sec. III,
we show that in a particular limit, the magnetic-moment os-
cillations become that of the de Haas-van Alphen effect for a
two-dimensional electron gas in the area defined by the bulk
of the ring. Section IV contains a discussion of our results.

II. HARTREE THEORY OF THE MAGNETIC-MOMENT
OSCILLATIONS

We shall assume that a two-dimensional electron gas is
confined to a semiconductor ring of major radiusR and mi-
nor radius (half-width) a by a fixed positive background
charge density of magnituden0. The inner radius of the two-
dimensional ring isR−a and the outer radius isR+a. A
uniform magnetic field of strengthB is oriented perpendicu-
lar to the two-dimensional electron gas in thez direction. The
origin of the magnetic-moment oscillations is best under-
stood within a self-consistent Hartree approximation. The ef-
fects of exchange and correlation are discussed at the end of
this paper.

The theory of the equilibrium current distribution in the
disorder-free, slowly confined quantum Hall fluid, has been
developed in Refs. 3 and 4. In the ring geometry considered
here, the current flows in the azimuthal direction. The azi-
muthal component of the current density, a function of the
radial coordinater only, may be written(ignoring exchange
and correlation effects) as
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jsrd = jedgesrd + jbulksrd, s2d

where

jedge=
e"

m* o
i=0

` Si +
1

2
D ]ni

]r
s3d

and

jbulk =
en

m* vc

]V

]r
. s4d

Here m* is the electron effective mass(m* / me<0.067 for
GaAs), e is the magnitude of the electron charge, andvc
;eB/m* c is the cyclotron frequency. In Eq.(3) nisrd de-
notes the contribution to the equilibrium number density

nsrd = o
i=0

`

nisrd s5d

from the ith Landau level, namely

nisrd ;
1

2p,2o
s

nFF"vcSi +
1

2
+

1

2
gsD + VsrdG . s6d

Here nFsed=fexpse−md /kBT+1g−1 is the Fermi distribution
function,

g ;
gmBB

"vc
=

gm*

2me
s7d

is the dimensionless spin splitting(with g the magnitude of
the effective Landég factor of the host semiconductor and
mB the Bohr magneton), ,;Î"c/eB is the magnetic length,
and the summation in Eq.(6) is over spin componentss
= ±1. Instead of using the bareg factor, which is about 0.44
in GaAs, we have used the experimentally measured
exchange-enhanced value, which is about16 g<7.3 (see also
Ref. 17 where a slightly smallerg factor is observed). A
minor technical point in our computation is that theg factor
is the same for all Landau levels. This has been confirmed in
an experiment17 showing that the exchange-enhancedg fac-
tor is independent of the magnetic field despite the intuitive
expectation that it should have aB−1/2 dependence(see Fig. 4
in Ref. 17). The confining potentialVsrd in Eq. (6) consists
of an external potential, produced by the fixed positive back-
ground charge, together with the self-consistent Hartree po-
tential from the electron gas.18 The expressions above are
valid provided,V8!"vc andkBT!"vc.

Assuming cylindrical symmetry, and a positive back-
ground charge given bynbsrd, the Hartree potential energy in
the ring is

Vsrd =
4e2

k
E
0

`

dr8
r8

r + r8
KS 4rr 8

sr + r8d2Dfnsr8d − nbsr8dg, s8d

where

Ksmd ; E
0

p/2

du

Î1 − msin2 u
s9d

is the complete elliptic integral of the first kind19 (see the
appendix for more details), andk is the dielectric constant.

In Figs. 1 and 2 we present results of a self-consistent
Hartree calculation of the low-temperature density and cur-
rent distributions in the ring, as a function ofx; r −R (the
radial coordinate measured from the major radius of the
ring). The dotted line in Fig. 1 shows the assumed positive
background charge density of magnituden0 and width 2a,
wherea=100r0. Herer0 is the average interparticle spacing
in the bulk of the ring, defined byn0=s2pr0

2d−1. The back-

FIG. 1. The electron density forn=2 (solid line) plotted to-
gether with the background charge density(dotted line) in units of
n0=s2pr0

2d−1 for a two-dimensional ring of major radiusR=40a at
temperatureT=0.005e2/kr0kB. The inset shows in more detail the
inner-edge region where then=1 incompressible strip is formed.

FIG. 2. The current densities forn=2 (solid line) and n=5/2
(dotted line) in units of j0=e" /2pm* r0

3 for a two-dimensional ring
of major radiusR=40a at temperatureT=0.005e2/kr0kB.
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ground charge drops linearly to zero over a distance of 20r0,
leading to the trapezoid-shaped cross-sectional distribution
shown. The corresponding low-temperature electron density
for a two-dimensional ring of major radiusR=40a is shown
in the solid curve of Fig. 1. The magnetic field strength has
been chosen so that two Landau levels are filled(n=2, where
n;2p,2n0) in the bulk of the ring. Incompressible strips are
formed at filling factorn=1 at the inner and outer edges of
the ring.

The azimuthal current density at this same magnetic field
strength is shown in the solid curve of Fig. 2 in units ofj0
;e" /2pm* r0

3. The qualitative features of the current distri-
bution may be understood from Eqs.(3) and(4). At the inner
edge of the ring,x<−116r0, the density increases from zero
to n0/2. Because the compressibility in this edge region is
large, the screening is nearly perfect and the self-consistent
confining potential is approximately uniform. Therefore, the
current density is dominated by the edge contribution(3).
The current is positive becausensrd is increasing with radius.
At the boundary of the innermost edge region,x<−114r0,
the current has a node. In then=1 incompressible region
betweenx<−114r0 and −107r0, the density is uniform and
the potential decreases by approximately"vc. In this region
the bulk contribution(4) is dominant, and the current is
negative because]V/]r is negative. Atx<−107r0 the in-
compressible region ends and there is another node in the
current. Another edge region is then encountered as the den-
sity approaches its bulk value ofn0.

The current density at the outer edge of the ring follows
similarly: There are two edge regions where the density de-
creases bys2p,2d−1 and where the sign of the current is
negative, separated by an=1 incompressible bulk region
where the current is positive. We note that the integrated
current in each channel is universal, independent of the
shape of the channel and the details of the confining
potential.3

It is tempting to regard the edge current of Eq.(3) as
being diamagnetic and the bulk current of Eq.(4) as para-
magnetic, but this is not correct. Figure 2 shows that the edge
current—in the sense of our definition(3)—at the outer edge
of the ring is in fact diamagnetic, but that near the inner edge
of the ring it is paramagnetic instead.

It is also worth stressing the asymmetry between the odd-
integer and even-integer filling factorsn. It is well known
that for the quantum Hall states with odd-integern the Fermi
level resides in the Zeeman gap of sizeg"vc within the
uppermost Landau level, whereg is defined in Eq.(7), while
for the even-integern it lies in the cyclotron gap of size"vc.
In our calculations, the spin splitting is about 25% of the
cyclotron energy. Because the width of the incompressible
channel is proportional to the corresponding energy gap, the
incompressible strips formed at odd-integern are notably
narrower than the even-integer ones, as evident in Fig. 3. The
horizontal arrows in Fig. 3 point to the positions of the in-
compressible strips corresponding to filling factorsn=1 (at
n/n0=1/3) andn=2 (at n/n0=2/3).

As the magnetic field is changed, the filling factor in the
bulk of the ring changes. It is useful to define a dimension-
less magnetic field strength,

b ;
"vc

e2/kr0
, s10d

where, as before,k is the dielectric constant of the semicon-
ductor. The density of one filled Landau level is given by
s2p,2d−1=rsbn0, wherers; r0/aB is the dimensionless inter-
particle spacing andaB;"2k /m* e2 is the effective Bohr
radius in the semiconductor. The density in Fig. 1 and current
in the solid curve of Fig. 2 were calculated with the param-
eter valuesrs=1 andb=1/2.

The dotted curve of Fig. 2 shows the current distribution
after the magnetic field has been reduced to a strength cor-
responding tob=2/5, sothat n=5/2 in thebulk of the ring.
In this case, there are three compressible edge channels and
two incompressible strips at the inner and outer edges of the
ring. Note that the current distribution forb=1/2 and b
=2/5 arealmost everywhere opposite in sign(after an unim-
portant shift inx). This sign reversal, which leads to oscilla-
tions in the orbital magnetic moment of the ring, occurs be-
cause of a combination of two factors: The competition
between the edge current(3) and bulk current(4) leads to a
pattern of strips or channels of current with alternating sign,
and the electron-electron interaction expels most of the cur-
rent from the bulk to the inner and outer edges of the ring.

The orbital magnetic moment of the ring is straightfor-
ward to compute from Eq.(1), and is plotted in the solid
curve of Fig. 4 in units of

m0 ; 4pRan0mB
* , s11d

where mB
* ;e" /2m* c is the effective Bohr magneton. The

magnetic moment is plotted as a function ofn, the filling
factor in the bulk of the ring, andrs=1 as before. Note that
the asymmetry between the odd-integer and even-integern
discussed above leads to a partial suppression of the magne-
tization oscillation amplitude at odd-integern. The dashed
line of Fig. 4 shows the magnetic moment in the limitR
@a@, and T→0, which is calculated analytically in the
next section. The deviation of the solid curve from the

FIG. 3. The electron density forn=3 (solid line) plotted to-
gether with the background charge density(dotted line) in units of
n0=s2pr0

2d−1 for a two-dimensional ring of major radiusR=40a at
temperatureT=0.005e2/kr0kB.
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dashed one is a consequence of both finite-size effects and
finite temperature. The solid curve in Fig. 4 is essentially the
same as that in Fig. 2 of Ref. 20. The magnetic field distance
between two adjacent minima of the magnetization in Fig. 2
of Ref. 20 corresponds to a distance inn approximately equal
to 2 which is in very good agreement with Fig. 4 here.

In addition to the plot of the magnetic-moment oscillation
as a function of the filling factorn given in Fig. 4, it is also
interesting to plot the magnetic moment as a function of the
magnetic field. This is given in Fig. 5 for a system withn0
=4.931015 m−2, corresponding to sample T412 of Ref. 20
(after illumination), where we find excellent agreement with
that experiment(see Fig. 3 of Ref. 20).

Finally, we note that the self-consistent density distribu-
tions that we calculate do not have the large compressible
edge regions predicted by Chklovskii, Shklovskii, and
Glazman.21 This is because the systems we consider are not
large enough. When applied to a wide two-dimensional chan-
nel, our method does correctly reproduce the density distri-
bution discussed in Ref. 21.

III. MOMENT OSCILLATIONS IN THE DE HAAS-VAN
ALPHEN LIMIT

In this section we calculate the orbital magnetic moment
for the special case ofR@a@,, a limit where an exact ana-
lytic solution is possible. Recall that 2a is the width of the
electron gas in a ring of radiusR, and , is the magnetic
length. We shall show that in this limit the magnetic-moment
oscillations become that of the de Haas-van Alphen effect for
a two-dimensional electron gas in the area defined by the
bulk of the ring.

In terms of x; r −R, the magnetic moment(1) may be
written as

m =
p

c
E
−`

`

dxsR+ xd2jsxd, s12d

where the fact that the current density vanishes outside the
ring has been used to extend the limits of integration. Be-
causejsxd is an odd function ofx in a macroscopic ring in
the R@a limit [see Eq.(A4) in the appendix], we have

m =
4pR

c
E
0

`

dx xjsxd. s13d

This expression shows thatm is proportional to the first mo-
ment of the current distribution shown, for example, in Fig.
2, which itself oscillates as a function of magnetic field.

Because the current density is concentrated at the inner
and outer edges of the ring on a length scale much smaller
thana,

E
0

`

dx xjsxd < aE
0

`

dx jsxd. s14d

Finally, the relationj sr d=c¹ 3M sr d between current and
local magnetization shows that

E
0

`

dx jsxd = cMsnd, s15d

where Msnd is the z component of the equilibrium orbital
magnetization of a uniform two-dimensional electron gas
with filling factor n.

Therefore, in the de Haas-van Alphen limit,

m = 4pRaMsnd. s16d

The expression(16) shows that the magnetic moment in the
R@a@, limit is equal to that of a uniform electron gas of

FIG. 4. The magnetic moment as a function of the filling factor
in units of m0 [see Eq.(11)] for a two-dimensional ring of major
radiusR=40a with temperatureT=0.005e2/kr0kB. The dashed line
shows the magnetic moment of a bulk noninteracting electron gas at
T=0.

FIG. 5. The magnetic moment (at temperature T
=0.005e2/kr0kB) as a function of the total magnetic fieldBtot com-
puted for the sample T412 of Ref. 20(after illumination) in units of
m0 for a two-dimensional ring of major radiusR=40a. The arrows
show the magnetic fields at which the corresponding filling factors
appear.
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filling factor n and area 4pRa, the area of the ring of width
2a and radiusR. The magnetic moment in this limit, which
may also be written as

m = m0
Msnd
mB

* n0

, s17d

is shown at zero temperature in the dashed curve of Fig. 4.

IV. DISCUSSION

In this paper, we have shown that the equilibrium current
density in a confined quantum Hall fluid, which generally
consists of a series of strips or channels of distributed current
with alternating signs, leads to a magnetic moment in a non-
mesoscopic ring that oscillates as a function of magnetic
field. In a certain limit, namelyR@a@,, the oscillations
may be regarded as de Haas-van Alphen oscillations of the
Hall fluid in the bulk of the ring, even though the current
density in this limit is actually concentrated at the inner and
outer edges.

The most natural interpretation of the magnetic-moment
oscillations reported here is one in terms of the multipole
moments of the equilibrium current distribution. The magni-
tude of the net current flowing at the edge ofn filled Landau
levels is of the order ofnevc. This current contributes ap-
proximatelyR2nevc/c to the orbital magnetic moment. How-
ever, the equilibrium currents flowing at the inner and outer
edges of a macroscopic ring cancel, so the zeroth-order radial
moment of the azimuthal current distribution,e−`

` dx jsxd,
vanishes. However, the first radial moment,e−`

` dx xjsxd,
does not vanish. The resulting magnetic moment is of the
order of m0, defined in(11), which may be equivalently re-
written as

m0 = S a

R
DSR2nevc

c
D , s18d

making evident its multipole-moment origin.
Finally, we note that the spin polarization contributes to

the total magnetic moment of the ring an amount

mspin= − 1
2gmBsN↑ − N↓d, s19d

whereNs is the number of electrons with spins. The prin-
cipal effect of exchange is to enhance the bare Zeeman spin
splitting, which we have already accounted for phenomeno-
logically by usingg factors deduced from experiments. The
most important effect of correlation on the zero-temperature
chemical potential and orbital magnetization of the uniform
Hall fluid is to introduce additional discontinuities at certain
fractional filling factors. This additional structure leads to
incompressible strips and associated bulk currents at frac-
tional filling factors in the nonuniform Hall fluid. It is clear
from the analysis of Sec. III that in theR@a@, limit, the
orbital magnetic moment will reflect the actual orbital mag-
netization of the interacting electron gas. For other values of
R and a, we expect a more complex oscillatory response.
Measurements of the magnetic moment of a semiconductor
ring in the quantum Hall regime would provide useful infor-
mation about the equilibrium current distribution in the non-
uniform Hall fluid.
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APPENDIX: HARTREE POTENTIAL IN RING
GEOMETRY

The electrostatic potential produced by the electric charge
distribution rsr 8d=ensr8ddsz8d is independent of the polar
anglef and takes the form

Vsr,zd =
e2

k
E d3r8

nsr8ddsz8d
ÎsrW − rW8d2 + sz− z8d2

,

whererW andrW8 are the projections of the 3D vectorsr andr 8,
respectively, in the planez=0. Let us choose the vectorrW to
be in the direction of thex axis so thatsrW−rW8d2=r2+r82

−2rr 8 cosf8 wheref8 is the polar angle ofrW8. After inte-
grating overz8 (and settingz=0) we get

Vsrd =
e2

k
E
0

`

r8 dr8 nsr8dE
−p

p

df8
Îr2 + r82 − 2rr 8 cosf8

.

sA1d

Changing the integration variable according tof8=p−2u
we can express the integral overf8 in the above equation in
terms of the complete elliptic integral defined in Eq.(9),
namely,

4

r + r8
Ksmd, with m=

4rr 8

sr + r8d2 . sA2d

Substituting Eq.(A2) back into Eq.(A1) one recovers the
expression(8) that has been used in the self-consistent cal-
culation of the potential.

In the de Haas-van Alphen limit of Sec. III in whichR
@a, the electrostatic potential reduces to that of a infinite
strip or channel. This is becauseR−aø r, r8øR+a and in
this caser < r8<R so thatm<1 as can be seen from Eq.
(A2). However the elliptic integral(9) has a logarithmic
asymptotic behavior19 whenm→1,

lim
m→1

FKsmd − lnS 4
Î1 − m

DG = 0,

where in our case 1−m=sr −r8d2/4R2. Setting r =R+x and
r8=R+x8 we obtain
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VdHvAsxd = −
2e2

k
E
−`

`

dx8 lnux − x8ufnsx8d − nbsx8dg, sA3d

where we have usededx nsxd=edx nbsxd. Equation(A3) is
the potential of electrons in an infinite two-dimensional strip
with number densitynsxd and background charge density
−nbsxd. It follows from Eqs.(3), (4), (6), and(A3) that in the

de Haas-van Alphen limit the potential and charge densities
are even functions ofx while the current densities are odd,

Vs− xd = Vsxd, ns− xd = nsxd, and js− xd = − jsxd,

sA4d

which has been used in the derivation of Eq.(13). This sym-
metry is not present in a general two-dimensional electron
ring.
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