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We study theoretically the effects of lateral confinement on the electronic structure of strained ultrathin
InAs/ InP (001) quantum wells(QWs) with one-dimensional(wirelike) interface islands. We develop a theo-
retical approach allowing the efficient computational treatment of a large class of one-dimensional structures
within the framework of the surface Green’s-function matching formalism. Using the semiempiricalsp3s*
nearest-neighbor tight-binding model, we calculate the energies, spatial distributions, and orbital character of
electronic states for islands oriented along thek010l and k110l directions. The presence of the interface steps
gives rise to localized states and leads to a band-gap reduction and an increase of the splitting between heavy
holes(HH) and light holes(LH). We observe significant changes in the orbital character of both localized and
extended(QW) states, namely a large anisotropy of the in-planep components in all subbands and an increase
of the pz contribution to HH states. The valence-band structure depends strongly on the wire orientation. In
k110l-oriented islands, the HH-LH mixing is significantly enhanced by the lateral potential, whereas ink010l
structures there is no evidence for such enhancement. The observed effects influence the optical properties of
the structures and may cause optical anisotropy, relax some of the selection rules, and enhance the oscillator
strengths for both interband and intersubband transitions.
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I. INTRODUCTION

Semiconductor quantum wells, wires, and dots are be-
coming increasingly important and already have numerous
applications in microelectronic and optoelectronic devices
for telecommunications and information technologies. In the
past decade, the progress in growth and processing tech-
niques has allowed us to fabricate semiconductor films as
thin as a few monolayers(ML ). With decreasing layer thick-
nesses, interfaces play an increasingly important role in de-
termining the electronic, optical, and transport properties of
the heterostructures and become of crucial importance for
their suitability for device applications. The vast majority of
the numerous studies on the electronic structure of semicon-
ductor quantum wells(QWs), however, assume perfectly
abrupt interfaces with only a small number being devoted to
the investigation of structures with realistic interfaces. Most
of the attention has been focused on theoretical investiga-
tions of the effects of interface roughness,1–3 segregation,3–5

and interdiffusion.6–8A few works have also been devoted to
steplike interfaces, considering periodic steplike interface
modulation with varying amplitude(step depth), leading to a
quantum wirelike(one-dimensional) behavior of the con-
fined states.9,10 In a recent study, we have investigated the
energies of the localized states arising due to lateral confine-
ment from monolayer steps at the interfaces of thin InAs/ InP
QWs.11 It has been pointed out that the presence of interface
terraces leads to significant modifications of the band struc-
ture, affecting both localized and extended(QW) states. To
the best of our knowledge, no detailed theoretical investiga-

tion of these effects has been carried out until now, although
experimental observations have emphasized their importance
in heterostructures.12–14

The lack of studies on this problem is partly due to its
numerical complexity, since the presence of interface steps
reduces the dimensionality of the structure and greatly in-
creases the required computational effort.
Envelope-function,15,16 tight-binding,16,17 pseudopotential,18

and effective bond orbital19,20 methods have been used to
investigate the localized states of one-dimensional structures
(quantum wires). Because the envelope-function approxima-
tion is no longer valid for structures with dimensions of sev-
eral lattice constants,21,22 one has to employ atomistic band-
structure models for calculating the electronic states of
ultrathin QWs. The large dimensions of the matrices in-
volved in such calculations severely limit the possible size of
the supercell and, consequently, the size of the structures that
can be studied. Even larger supercells are necessary for an
adequate study of the extended states, since they are strongly
affected by the boundary conditions. The treatment of such
large supercells is possible by means of high-performance
algorithms for matrix diagonalization such as the Lanczos
method.23 These algorithms, however, compute only a lim-
ited number of well-separated eigenstates and are therefore
suited only to the study of the discrete spectrum of the sys-
tem (localized states). For the continuous spectrum(ex-
tended states), they quickly become impractical, since one
needs to consider thousands of eigenstates in order to obtain
an adequate description of the electronic structure. A theoret-
ical approach allowing the investigation of both localized
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and extended states of systems with characteristic dimen-
sions of up to several hundreds of lattice constants will con-
tribute to a more realistic theoretical description of quantum
heterostructures, and to a better understanding of the com-
plex relationship between the interface morphology and the
electronic and optical properties of quantum heterostructures.

In Sec. II, we develop an efficient theoretical method for
calculating the electronic structure of a large class of 1D
structures, based on the surface Green’s-function matching
(SGFM) formalism.24 We employ this approach to study the
effects of one-dimensional(1D) lateral confinement of carri-
ers in ultrathin InAs/ InP(001) QWs due to monolayer steps
at the QW interfaces. The electronic properties of these
structures are very sensitive to monolayer width fluctuations,
making them suitable test systems for studying carrier
localization.6,11–14The details of our calculations and the ge-
ometry of the structures are outlined in Sec. III. In Secs.
IV–VI we present the results of our electronic-structure cal-
culations. The effects of the wire width and orientation on
the calculated energies, spatial distributions, and orbital char-
acter of the valence- and conduction-band states are ana-
lyzed. It is demonstrated that the electronic structure of ul-
trathin QWs is considerably modified due to the presence of
interface steps. These modifications can have important con-
sequences on the optical properties of the structures, which
are discussed in Sec. VII. We conclude in Sec. VIII with a
summary of our results and a few final remarks on the pos-
sible applications of the developed theoretical approach.

II. SURFACE GREEN’s-FUNCTION MATCHING
FOR ONE-DIMENSIONAL SYSTEMS

We consider the effect of one-dimensional lateral confine-
ment from interface steps(terraces) on the electronic prop-
erties of QWs within the framework of the discrete surface
Green’s-function matching(SGFM) formalism24 and the em-
pirical tight-binding (TB) method. Our model structures,
sketched in Fig. 1, consist of a slab of a widthLS, containing
a QW in which one of the interfaces is planar and the other
exhibits two steps(terraces), delimiting a wirelike region
(WR) of a width LWR. The structures are periodic in the
direction of the wire(perpendicular to the plot).

The SGFM method allows us to calculate the Green’s
function of a compound system from the Green’s functions
of its constituent domains. A key concept in the SGFM for-
malism is theprincipal layer, defined to satisfy the following

two conditions:24 (i) be a unit cell for translation perpen-
dicular to the interfaces;(ii ) couple only with adjacent
(nearest-neighbor) principal layers. Note that here the term
“interfaces” means interfaces between the constituent do-
mains of the system, which are different from the QW inter-
faces shown in Fig. 1. The atomic details of the principal
layer depend on the structure geometry(in our case, QW
growth direction and wire orientation) and the underlying
physical model (e.g., first- or second-nearest-neighbor
method). However, these are mere technical details; in order
to keep the discussion as general as possible, we define the
principal layer for our systems as an atomic chain in the QW
growth direction(perpendicular to the QW interfaces) satis-
fying the above conditions. In terms of principal layers, we
now have a sandwich structureABA, where A and B are
domains containing QWs with different thicknesses(see Fig.
1). A schematic plot of the structures and the layer notation
in the chosen principal layer representation is shown in Fig.
2. Let us denote the Green’s functions of theA and B do-
mains asGA andGB, and define the Green’s function of the
external domainGe, consisting of the twoA domains, as
equal toGA in eachA domain. Using the layer notation of
Fig. 2, we define the projections at the interfaces between the
A and B domainsIe= lA+rA, IB= lB+rB, and I = Ie+ IB. The
interface projections ofGe andGB are

G̃e ; kIeuGeuIel = SklAuGAulAl 0

0 krAuGAurAl
D , s1d

G̃B ; kIBuGBuIBl = SklBuGBulBl klBuGBurBl
krBuGBulBl krBuGBurBl

D . s2d

Using the SGFM analysis,24 we obtain the matrix elements
of the Green’s function of the entire systemGS,

knjuGSunj8l = knjuGjunj8l + knjuGjuI jlG̃j
−1

3sG̃S− G̃jdG̃j
−1kI juGjunj8l, s3d

FIG. 1. A schematic plot of the structures under study. The QW
interfaces are shown with a solid line, and principal layers are plot-
ted with a dashed line.A andB denote principal layers containing
QWs with different thicknesses. The structures are periodic in the
direction perpendicular to the plot.

FIG. 2. Principal layer representation of the structures from Fig.
1. Each symbol represents a principal layer.A and B are the do-
mains containing narrower(wider) QWs, respectively. The two in-
terface domains and the four interface layers are shown with the
corresponding notation.
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knjuGSunk8l = knjuGjuI jlG̃j
−1G̃SG̃k

−1kIkuGkunk8l, s4d

wherenj denotes a principal layer of the domainj s j =e,Bd,
and j Þk. The full interface projection ofGS is given by24

G̃S
−1 = EI − o

nePsed
kI uHSunelkneuGeuIelG̃e

−1

− o
nBPsBd

kI uHSunBlknBuGBuIBlG̃B
−1, s5d

whereHS is the full Hamiltonian of the system. Equations
(3)–(5) give exact expressions for the Green’s functionGS of
the compound system. Note that all operations, including the
matrix inversion, should be performed in the space in which
the corresponding objects are defined.

The presented approach is much more computationally
efficient compared to a conventional supercell calculation. In
Eqs. (3)–(5), all calculations are carried out within the sub-
spaces of interface projections, which are 232 block matri-
ces. The block size depends on the slab thicknessLS and on
the size of the TB basis. The SGFM calculation time scales
linearly (at worst) with the wire widthLWR, since the ele-
ments of the Green’s function are computed by multiplica-
tion by the amplitude transfer matrixT (i.e., Gn,0=TnG0,0),24

compared to acubic dependence onLWR for the supercell
calculation. Therefore, the computation time in the SGFM
method scales assLWRLS

3d, compared tosLWR
3 LS

3d in the su-
percell approach. The advantageous scaling properties, com-
bined with the modest memory needs due to the use of
smaller matrices, allow the application of the SGFM method
for the investigation of a wider array of important physics
problems. The results presented in this paper are obtained for
principal layers containing 40 atoms in a TB model with 10
orbitals per atom, hence we deal with 8003800 matrices.
With respect to both computing time and memory require-
ments, this is a huge improvement over the approximately
1053105 matrices needed for a supercell calculation of simi-
lar structures. In addition, once the Green’s functionsGA and
GB are calculated, one may investigate systems with various
widths of the wirelike region with only a small computa-
tional effort, whereas in the supercell approach one needs to
diagonalize the Hamiltonian for each value ofLWR.

III. CALCULATION DETAILS

In our calculations of ultrathin InAs/ InP(001) QWs, we
have used the nearest-neighborsp3s* semiempirical tight-
binding (TB) model25 with the parameters of Ref. 26, which
include the spin-orbit coupling. Although more elaborate TB
parametrizations are available,27 the sp3s* model provides a
suitable theoretical framework for our study, since it com-
bines a satisfactory description of the band structure through-
out the entire Brillouin zone with a small basis size that
facilitates the computation. The on-site energies are calcu-
lated by the virtual crystal approximation, using a composi-
tional average over the first nearest neighbors, and the two-
center integrals are computed by a compositional average
over the atoms entering the corresponding bonds. The un-
strained valence-band offset at the InAs/ InP heterojunction

is taken to be 0.3 eV, which is within the accepted range of
values, giving a good agreement with the experimental
results.6,28

Strain effects are included in the Hamiltonian by scaling
the two-center integrals with the bond length according to a
modified Harrison’s law,29

i j ksdd = Sd0

d
Dni j k

i j ksd0d, s6d

wheredsd0d is the strained(unstrained) interatomic distance.
For the exponentsni j k we use the values of Ref. 26, which
are obtained by fitting the bulk deformation potentials. The
on-site energies of thep orbitalsEp are modified to account
for the crystal-field splitting according to21

Ep
x,y = Ep + bpsei − e'd,

Ep
z = Ep − 2bpsei − e'd, s7d

whereei ande' are the in-plane and interplane components
of the strain tensor, andbp is a constant fitted in order to
reproduce the deformation potentialb. We have used
bp=0.7 eV for InAs.21 The atomic positions in thek001l di-
rection are calculated using the macroscopic elasticity theory,
with bulk lattice constants and elasticity moduli of InAs and
InP taken from Ref. 28. In the(001) plane, the atoms are
fixed at the positions of the atoms of the InP substrate, i.e.,
the additional strain due to the presence of interface steps is
not taken into account. This approximation can be justified
by recalling that strain plays a minor role in ultrathin QWs
compared to confinement effects.6 We have performed calcu-
lations of unstrained(relaxed) structures, which reveal only
small quantitative changes in the calculated electronic struc-
ture. Therefore, we can expect that an exact calculation of
the atomic positions, including the lateral compression,
would not lead to qualitative changes in our results.

The local density of states(DOS) is calculated from the
Green’s function

NsE,n,md = −
1

p
lim

e→+0
Im TrfGS;n,nsE + iedgm,m, s8d

whereE is the energy,n is the principal layer index,m is the
atom index within the principal layer,GS;n,n;knuGSunl is the
diagonal element of the Green’s function corresponding to
principal layern, and the trace is taken over orbitals centered
at atomm (within principal layern). We use a finite value of
e=0.001 eV when calculating the Green’s functions. The
matrix elements ofGS are calculated using Eqs.(3)–(5), and
the Green’s functionsGA and GB are computed using an
efficient iterative algorithm.30,31 The energies of the elec-
tronic states are derived from the interface DOS

ÑsEd = −
1

p
lim

e→+0
Im TrfG̃SsE + iedg, s9d

i.e., the local DOS at the four layers belonging to the inter-
face domainI, which contains the entire spectra of the struc-
tures under study.24

We have calculated the electronic structure of 2-ML-wide
InAs/ InP (001) QWs, in which one of the interfaces is planar
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and the other one exhibits two 1-ML steps, delimiting a
wirelike region containing a 3-ML-wide QW. A schematic
view of the structures is shown in Fig. 1. Interface terraces
oriented along thek010l or k110l directions are considered.
For k110l structures, thepx andpy orbitals are equivalent due
to symmetry, therefore an analysis of the orbital composition
of the states in a basis withp orbitals oriented along the
k100l, k010l, and k001l directions spx,py,pzd cannot yield
information about the preferential orientation of the in-plane
p components of the wave functions. In order to obtain com-
plete information on the orbital character of the electronic
states, the calculations are carried out in a basis withp or-
bitals oriented parallelspid and perpendicularsp'd to the
wire. This is achieved by the basis changesupxl , upyld
→ supil , up'ld, where

Hup'l = upxl
upil = upyl

J k010l wires

Hup'l = supxl − upyld/Î2

upil = supxl + upyld/Î2
J k110l wires.

One monolayer in thek110l direction is equal toÎ2 ML in
the k010l direction, therefore we will denote thek110l length
units asÎ2 ML. The lateral width of the wirelike regionLWR
is varied between 2s2Î2d ML and 45s32Î2d MLfor k010l
(k110l) wires, respectively. In all calculations, we have con-
sidered a(001) slab with periodic boundary conditions in the
k001l direction and infinite in the(001) plane. For a slab
thickness of 20 ML, the change in the bound-state energies
due to coupling between neighboring QWs is less than
15 meV for electrons and 10 meV for holes. Increasing the
slab thicknessLS to 40 ML leads only to small quantitative
changes in the calculated band structures. Since we aim to
investigate the general trends rather than obtaining precise
numerical results, a slab thickness ofLS=20 ML is sufficient
for our purposes and has been used in the present study. The
calculated energies of the electron(E), heavy-hole(HH), and
light-hole (LH) states for periodic 20-ML slabs with 2- and
3-ML-wide QWs without interface steps are shown in Table
I. The zero energy is at the InP valence-band edge.

IV. RESULTS: CONDUCTION BAND

A. Energy spectrum

The energies of the conduction-band states fork110l and
k010l wires, derived from the peaks of the interface DOS

ÑsEd, are shown in Fig. 3. The energy spectra of the struc-

tures depend on the wire width, but remain the same for the
two wire orientations, which is a direct consequence of the
isotropy of the conduction band. The energy of the
conduction-band ground state of the 2-ML QWs1.333 eVd
divides the spectra into two parts. At energies below
1.333 eV, the spectra consist of discrete energy levels, cor-
responding to 1D bound states(BS). The 1D localization is
driven by the lateral confining potential of 47 meV, arising
from the difference between the energies of the electron
states in 2-ML and 3-ML QWs(see Table I). The distribu-
tions of the local DOS(i.e., the wave function square)
throughout the wire cross section are plotted in Fig. 4 for
four representative cases. As can be seen from the spatial
distributions of the typical first and second conduction-band
BS, shown in Figs. 4(a) and 4(b), respectively, the BS are
well localized in the wire region. However, at small wire
widths sLWRø7 MLd the BS energy is closer to the QW
band edge and the state begins to delocalize. Its wave func-

TABLE I. Energies of the bound states in ultrathin InAs/InP
(001) QWs. The calculations are made for a 20 ML(001) slab,
periodic in thek001l direction.

QW width E1 (eV) HH1 (eV) LH1 (eV)

2 ML 1.333 0.118 0.033

3 ML 1.286 0.180 0.059

FIG. 3. (Color online) Dependence of the conduction-band
bound state energies on the wire widthLWR for k010l andk110l wire
orientations. The energy of the conduction-band ground states of
the 2 and3 ML QWs is shown with horizontal lines at 1.333 eV
and 1.286 eV, respectively.

FIG. 4. Spatial distribution of the conduction-band states in
k110l wires: (a) first localized state,(b) second localized state,(c)
extended state, and(d) quasilocalized state. The InAs/ InP inter-
faces are shown with a solid line; the wire widths and the energies
of the states are shown next to each figure. The intensity scale is
linear, the DOS of the extended states(c) and(d) is multiplied by 8
in order to achieve a contrast level comparable to that of the bound
states(a) and (b).
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tion decreases rather slowly with distance, having appre-
ciable amplitude tens of monolayers away from the wire. As
we will see in the next section, this delocalization is accom-
panied by a modification of the states’ orbital character,
showing a close resemblance between the BS in narrow
wires and the 2D states of the QW.

Above 1.333 eV, we observe the continuous energy spec-
trum of the 2D states of the 2 ML QW(not shown in the
figure), projected onto theG point of the 1D Brillouin zone
due to the reduced symmetry of the structure. These ex-
tended states(ES) are characterized by localization in the 2
-ML QW region [Fig. 4(c)]. Their amplitude in the wire re-
gion is strongly suppressed. Superimposed over the continu-
ous spectrum, there is another set of discrete states. These are
resonant states(RS), arising from the coupling of the con-
tinuous QW spectrum with the wire potential. Their spatial
distribution, shown in Fig. 4(d), resembles that of ES; how-
ever, they penetrate substantially in the wire region. The RS
amplitude in the wire is stronger for RS energies near the
QW band edge and fades quickly at higher energies. We note
that the energies of RS plotted in Fig. 3 are approximate due
to the following reasons.(i) They have a small amplitude and
become indistinguishable from the ES at energies higher than
1.346 eV.(ii ) The energy of these states is not well deter-
mined, since they are delocalized. The energy shown in the
figure is that of the peak density of states, but it should be
understood that these states span a wider energy range of
about 10–20 meV.

B. Orbital character

The typical 2D electron ground state of a(001) QW based
on direct-gap semiconductors originates from theG mini-
mum of the conduction band and is predominantlys-like,
with a small(up to several percent) contribution ofpz due to
the projection of the bulk states from thek001l G-X axis onto

the Ḡ point of the 2D Brillouin zone. Thepx and py contri-
butions are very small but nonzero, since thepx,y and pz
orbitals of opposite spins are weakly coupled atG through
the spin-orbit part of the Hamiltonian.32 In a 2-ML InAs/ InP
(001) QW, the orbital composition of the conduction-band
state is s/ spx+pyd /pz=96.9% /0.34% /2.6%. The orbital
composition of the DOS(and, respectively, the wave func-
tions) in the investigated wirelike structures deviates signifi-
cantly from these values due to the wire potential, which
breaks the symmetry of the structures. These deviations af-
fect the symmetry of the states and can have important im-
plications on the symmetry-related properties, such as the
optical selection rules and the oscillator strengths of the op-
tical transitions.

In order to study the effect of the interface terraces on the
conduction-band states, we have calculated the percentage
contributions of thes, p', pi, andpz orbitals to the interface

DOS Ñ for the states from the discrete spectra(BS and RS).
The results are plotted in Fig. 5 versus the energy of the
states, for the first three states ink010l (k110l) wires from
2 s2Î2d to 60 s42Î2d ML wide. One important result from
our calculations, evident from Fig. 5, is that the curves cor-
responding to different states practically coincide for a given

wire orientation, showing that the orbital composition of the
states for wires with a given orientation depends only on the
energy. For BSsE,1.333 eVd, the curves for the first, sec-
ond, and third states are identical, and the differences in the
orbital character for the different RSsEù1.333 eVd are less
than 0.4%. Also, due to the isotropy of the conduction band,
the orbital characters of the states ink010l and k110l wires
are almost identical. Thepz orbital (not shown in Fig. 5) has
a constant contribution of 3.6%, which does not change with
the wire width and orientation.

The pi (oriented along the wire) contribution remains al-
most zero throughout the energy range of interest. For ener-
gies near the QW subband edge, thep' contribution is close
to zero and the wire-induced anisotropy of the orbital char-
acter is negligible. Away from the subband edge, the states’
character changes to lesss-like and morep'-like, for both
BS (below 1.333 eV) and RS (above 1.333 eV). This in-
crease is due to the loss of translational symmetry in the
direction perpendicular to the wire, since the 2D band struc-
ture is projected onto the 1D Brillouin zone. Because the size
quantization takes place in the direction perpendicular to the
wire orientation, theup'l component in the wave functions
increases. The results in Fig. 5 represent the orbital compo-
sition of the local DOS in the four principal layers adjacent
to the interface terraces. In the wire center, the orbital char-
acter of the states approaches that of the 3-ML InAs/ InP
QW when increasing the wire width.

The first bound state in very narrow wires exhibits a dif-
ferent behavior. ForLWRø7 ML, its orbital character ap-
proaches closely that of the 2D QW state: thes contribution
increases up to 96.7%(shown with an arrow in Fig. 5) and
the pz contribution decreases to 2.9%. Together with the ob-

FIG. 5. (Color online) Contributions of thes, p', andpi orbitals
to the conduction-band local DOS in the principal layers adjacent to
the interface terraces. Lines connect symbols corresponding to
states with the same index(first, second, etc.) and wire orientation,
but different wire widths. The energy of the 2 ML QW conduction-
band edges1.333 eVd is shown with a vertical line.
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served delocalization of the wave function at these wire
widths, this shows that the electronic states in narrow wires
are 2D-like and resemble closely the states from the QW
subbands.

V. RESULTS: VALENCE BAND

A. Energy spectrum

The calculated energies of the bound states in the valence
band of structures withk010l and k110l wires are shown in
Fig. 6. Similarly to the conduction-band states, we can clas-
sify the states into BS, ES, and RS with respect to their
spatial distributions. However, due to the presence of HH
and LH subbands, the valence-band spectra are much more
complex than those of the conduction band. The 1D potential
couples the HH and LH states, therefore characterization of
valence-band states as heavy or light hole should be done
with caution.15,17,19However, in ultrathin InAs/ InP QWs, the
HH and LH ground states are well separated, therefore in
Fig. 6 one can clearly distinguish the states originating from
different hole subbands. Further, we will refer to these states
as HH and LH according to the 2D subband of origin, but in
some cases the HH-LH mixing is so strong that this notation
is kept only for convenience. The energies of the HH and LH
states in 2- and 3-ML QWs(shown in the figure with hori-
zontal lines) divide the valence-band spectra of the structures
into four distinct regions, and each one is characterized by a
different set of states.

Region 1s0.180 eV.E.0.118 eVd. For energies greater
than the HH subband edge of the 2-ML QW, there are only
1D HH states localized in the wire(BS). Their spatial distri-
butions are similar to those shown in Figs. 4(a) and 4(b).

Region 2s0.118 eVùEù0.059 eVd. In this energy re-
gion, we observe extended HH states(ES) forming a con-
tinuous spectrum(not shown in the figure) and HH reso-
nances(RS), represented by symbols in Fig. 6. Their spatial

distribution is similar to that of the conduction-band states
[see Fig. 4(c) for ES and Fig. 4(d) for RS].

Region 3 s0.059 eV.E.0.033 eVd. Between the LH
subband edges of the 2- and 3-ML QWs, we observe local-
ized LH states(BS), superimposed over a continuum of HH
states. The HH resonances are not seen as peaks in the inter-
face DOS and are not shown in the figure, however their
presence can be indirectly observed ink110l wires and will
be discussed later.

Region 4s0.033 eVùEù0 eVd. Below the LH subband
edge of the 2-ML QW, both HH and LH extended states are
present in the spectra. The LH resonances, shown with data
points in Fig. 6, have very small amplitudes, but still can be
distinguished from the continuous background.

The energies of the HH states exhibit significant depen-
dence on the wire orientation due to the highly anisotropic
HH dispersion. The energies of the LH states are very close
in k010l andk110l wires, reflecting the fact that the LH QW
subband is almost isotropic. However, as we will see later,
the spatial distributions and orbital characters of LH bound
states depend significantly on the wire orientation. The com-
ments we have made in the discussion of the conduction-
band RS are equally valid for the valence-band RS. The
points representing the RS in Fig. 6 actually show the maxi-
mum amplitude of a group of states spanning an energy
range of 10–20 meV, superimposed over the continuous
spectrum of the structures. The HH RS are shown only in the
energy range 0.059–0.118 eV(region 2), where they are
well pronounced. At lower energies(regions 3 and 4) they
cannot be identified directly, however, as we will show later,
their existence ink110l structures can be observed indirectly
through their coupling with LH states, which has important
consequences on the valence-band structure.

B. Orbital character

The zone-center HH states in a QW are typically con-
structed bypx andpy orbitals with a small contribution ofpz,
whereas the LH states are composed of comparable amounts
of px, py, and pz orbitals. Thes orbital contributions to the
valence-band QW states are negligible. The orbital contribu-
tions to the 2-ML QW hole states are 49.7%px,y and 0.4%pz
for HH; and 31.6%px,y and 36.5%pz for LH, respectively.
The calculated contributions of thep', pi, andpz orbitals to
the HH states from energy regions 1 and 2 are shown in Fig.
7. Similarly to the conduction-band states, we see that the
orbital character of the HH states depends only on the en-
ergy. The first localized state(HH1) for LWRø7 ML, shown
with arrows in the figure, deviates from this general trend
and approaches the orbital character of the 2D QW states. It
also begins to delocalize, showing that for narrow wires the
effect of the wire potential on the electronic structure is mi-
nor and both the conduction- and valence-band ground states
resemble the states from the QW subbands.

It is evident from Fig. 7 that the wire potential causes a
strong anisotropy of the in-planep component of the HH
states. The latter are composed predominantly ofpi orbitals,
followed by p' and a small contribution ofpz. The p' /pi

anisotropy is much stronger for wires in thek110l direction.

FIG. 6. (Color online) Dependence of the valence-band states
energies on the wire widthLWR for k010l and k110l wire orienta-
tions. The energies of the HH and LH ground states of the 2 and
3 ML QWs are shown with horizontal lines and the four energy
regions are marked with numbers at the right side of the graph(see
the text for explanation).
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For E.0.160 eV, thep' contribution becomes dominant,
however this is an interface effect caused by the quicker
decay of thepi amplitude away from the wire center. In the
wire center, the same trend of equalizing thepi andp' con-
tributions with increasingLWR takes place, but the dominant
orbitals remainpi for all considered values ofLWR. The HH
states have the smallestpz contribution(or, in other words,
they are most HH-like) when they are close in energy to the
HH band edge of the QW[see Fig. 7(b)]. Away from the QW
band edge, thepz contribution increases and can reach almost
6% for BS and 12% for RS.

We have performed a similar analysis for the LH states.
Unlike the electrons and heavy holes, the orbital character of
the LH states strongly varies between states with similar en-
ergies because they are superimposed on a continuous back-
ground from HH extended states with varying amplitude.
Other reasons for the observed differences are the spatial
variations of the orbital composition of the QW LH states
due to strain33 and the mixing between LH and HH states
that we will investigate in the following section. The LH
bound states(region 3) are typically composed ofp' orbitals

(around 45%), followed by pi (around 35%) andpz (around
20%). The in-plane anisotropy is again more pronounced in
k110l wires; besides, for this wire orientation the variations
of the states’ orbital character with the wire width and the
energy are much larger. In region 4, we observe a marked
dependence of the orbital character of the RS on the wire
orientation: ink010l wires, the states are similar to the LH
BS with a dominantp' contribution, whereas ink110l wires
the pi component prevails. Thepz contribution to the states
in this energy region is smaller ink110l structures(10–
15 %), compared to<20% in k010l wires. These differences
are a signature of stronger HH-LH coupling ink110l-oriented
wires and demonstrate that the states we have denoted as LH
resonances are more LH-like ink010l and more HH-like in
k110l wires.

C. Band mixing

In order to get further insight into the nature of the hole
states and the coupling between the hole subbands, we have
investigated the evolution of the valence-band local density
of states with the energy. The results for 12Î2 ML k110l and
21 ML k010l wires are presented in Fig. 8. Each horizontal
line in the figure represents the spatial variation of the local
DOS in the InAs layer in the direction perpendicular to the
wire and parallel to the QW interfaces, for that given energy.
In the figures one can clearly identify the first and the second
localized HH states at approximately 0.160 eV and
0.127 eV, respectively. AtEø0.118 eV, one finds the HH
extended states continuum, originating from the projection of
the HH subband of the 2-ML QW in thek' direction onto
the 1D Brillouin zone center.

At a fixed energy, we observe a horizontal oscillating pat-
tern in the extended states’ DOS. These oscillations are due
to the coupling of the ES with the wire potential. Let us
recall that the ES areextendedin the 1D context, but origi-
nate from thelocalizedstates of the 2D QW with a 2D in-
plane wave vectorsk' ,0d and an energyEsk' ,0d. In the
absence of a wire, the ES wave functions are plane waves
exps±ik'jd, wherej is the lateral coordinate perpendicular to
the wire. The local DOS(wave function squared) of these

FIG. 7. (Color online) Orbital contributions to the local DOS of
the HH states at the principal layers adjacent to the interface ter-
races:(a) p' andpi orbitals,(b) pz orbital. Symbols corresponding
to states with the same index(first, second, etc.) and wire orienta-
tion, but different wire widths, are connected with lines. The energy
of the HH band edge of the 2 ML QWs0.118 eVd is shown with a
vertical line.

FIG. 8. Valence-band local density of states in the InAs layer for
k010l (right) andk110l (left) wires. The wires start from monolayer
index 1. The intensity scale is linear. The DOS is normalized to the
unit area of the wire cross section.
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states is constant withj. In the presence of a wire, the plane
waves scatter from the wire interfaces. The interference be-
tween the scattered waves gives rise to an interference pat-
tern, which we observe through the DOS oscillations withj.
The period of the oscillations 2p /k' decreases with decreas-
ing energy(i.e., increasingk') and is different for the two
wire orientations due to the anisotropic dispersion of the 2D
HH subband.

In both structures, one can observe a HH resonance
around 0.090 eV, with a maximum amplitude in the wire
center and two side maxima near the wire interfaces. The
strong coupling between the RS and the HH continuum is
evidenced by the smearing of the ES interference pattern,
observed tens of monolayers away from the wire. The peak
corresponding to the first localized LH state is located at
<0.05 eV. While in thek010l wire this peak bears the char-
acteristics of a regular bound state, in thek110l structure it
has two important features:(i) it has a highly irregular shape
with two maxima; and(ii ) it introduces long-range changes
in the ES interference pattern outside the wire. Both are sig-
natures of strong coupling with HH states at the same energy.
This coupling can be observed for all wire widths, as evi-
denced by the variation of the local DOS in the direction
perpendicular to the wire for the first localized LH states in
k110l wires, shown in Fig. 9(a). The irregular shape of the
peak suggests that the LH state is mixed with a HH reso-
nance; in the figure one may follow the index of this RS by
counting the number of peaks in the wire region. Thus we
may identify the second sLWR=3 to 6Î2 MLd, third
s7 to 9Î2 MLd, fourth s10 to 13Î2 MLd, fifth
s14 to 19Î2 MLd, sixth s20 to 23Î2 MLd, seventh
s24 to 26Î2 MLd, eighth s27 to 31Î2 MLd, and ninth
s32 to 34Î2 MLd HH states. These ranges of wire widths
correspond to the values ofLWR for which the corresponding
HH state would have energy close to the first LH state. One
can easily verify this by continuing the imaginary lines rep-
resenting the dependence of each HH state’s energy onLWR
in Fig. 6 until they cross the line corresponding to the first
LH state. This confirms that the irregular shape of the LH
bound states ink110l wires is due to coupling with HH reso-
nances. We note that a similar effect has been observed in
V-shapedk110l quantum wires, where the calculated wave
function of the LH-like ground state has two maxima due to
coupling with HH-like localized states.15

For comparison, we have also calculated the spatial varia-
tion of LH states ink010l wires [Fig. 9(b)]. It is seen from
the figure that the peaks remain regular for all wire widths.
For this wire orientation, there is also a small oscillating
component from the HH continuum. However, as seen in
Fig. 8, the LH BS is visible only in the vicinity of the wire,
and the phase of the HH ES oscillations around 0.05 eV
remains unchanged. This means that, contrary to thek110l
structures, the DOS at this energy is simply a superposition
between LH BS and HH ES—no additional coupling be-
tween HH and LH subbands due to the wire potential takes
place. These observations remain true for all wire widths and
for all states in region 3: the localized LH states mix strongly
with HH states ink110l wires, while no evidence of such
mixing is observed ink010l structures.

At energies below 0.033 eV(region 4), one observes in
Fig. 8 the LH extended states originating from thek' pro-
jection of the LH subband of the 2 ML QW. Again, there is
a pronounced difference between the two wire orientations.
In the k010l structure, the LH ES show a similar interference
pattern to the HH states, superimposed on the HH con-
tinuum. In contrast, the LH states ink110l wires show no
visible oscillations. The ES DOS in this energy region is
dominated by the spatial oscillations characteristic of the HH
states, confirming our conclusion based on the analysis of the
orbital contributions that the states in this energy region are
of predominantly HH character ink110l wires.

VI. OTHER STRUCTURE GEOMETRIES

In the structures investigated so far, the two interface
steps occur at the same QW interface, forming a wirelike
interface island(see Fig. 1). Such islands can be obtained

FIG. 9. Variation of the local DOS in the InAs layer for the first
LH state fork110l (a) and k010l (b) wires. The curves are shifted
horizontally for clarity; the zero of each curve is shown with a
horizontal line on the left-hand side of the graphs. The wire widths
are shown at the right side of the graphs in monolayers(ML for
k010l andÎ2 ML for k110l). The vertical dashed line shows the left
interface of the wire.

SHTINKOV et al. PHYSICAL REVIEW B 70, 155302(2004)

155302-8



unintentionally during epitaxial growth of QWs. In Fig. 10,
we have shown a different structure geometry, in which the
two consecutive 1-ML steps that delimit the wirelike region
occur at the opposite QW interfaces. Such structures are
more likely to be formed during growth on misoriented sub-
strates. In principal layer representation, we again have a
“sandwich” sequence of 2 ML/3 ML/2 ML QWs, however
in this case the left and right semi-infinite domainsA and
A8 are nonequivalent from a geometry point of view(see
Fig. 10). The SGFM analysis of theA8BA system remains
essentially the same, the only difference being that in this
case we defineGe as equal toGA8 in the left and toGA in the
right semi-infinite domain. Using this definition, the applica-
tion of the SGFM formulas described in Sec. II is straight-
forward.

The electronic structure of systems withA8BA geometry
closely resembles that ofABA systems having the same wire
width and orientation. Our calculations reveal small quanti-
tative differences(typically below 1%) in the local DOS be-
tween the two structure geometries. The maximum differ-
ences are found inside the wire region at energies near the
LH localized states and are around 3% fork010l and 6% for
k110l structures. Besides these small modifications of the lo-
cal wave-function amplitude, the calculated energies, spatial
distributions, and orbital character of the electronic states in
ABA andA8BA systems are essentially identical. Therefore,
all results presented in the previous two sections are also
valid for the structures shown in Fig. 10.

We have also calculated the electronic structure of 1-ML
and 3-ML InAs/ InP (001) QWs, containing 2-ML and
4-ML InAs wires, respectively. The impact of the interface
islands on the QW electronic structure is stronger for
thinner QWs, because the lateral confining potential is
greater. For the same reason, the HH-LH mixing is also en-
hanced in thinner QWs, and in 1-ML QWs a significant
valence-band mixing is observed for thek010l wire orienta-
tion as well.

VII. DISCUSSION

The results presented in the previous sections demonstrate
that the electronic structure of 2-ML InAs/ InP(001) QWs is
profoundly influenced by the presence of 1D(wirelike) in-
terface islands. This influence is manifested by the appear-
ance of bound states, localized in the wirelike regions, with
energies up to 30 meV below the QW subband edge for elec-

trons, 50 meV above the QW subband edge for HH, and
20 meV for LH states. Thus, the presence of interface islands
leads to an increased HH-LH splitting and to a band-gap
reduction of up to 80 meV. Having in mind that we consider
lateral localization in only one dimension, we find that the
experimentally measured difference of 50 meV between the
energies of the free and localized HH excitons in 2-ML InAs/
InP QWs with 3-ML interface islands14 is in good agreement
with our calculations. In order to carry out a more precise
comparison of our results with experimental data, one would
need a specially fabricated sample with preferential island
orientation and a certain uniformity in the island dimensions,
which so far has proven difficult to achieve.

The orbital character of the localized states exhibits sig-
nificant deviations from the 2D QW states. A great aniso-
tropy of the in-planep components is observed in both the
conduction and the valence band. For electron bound states,
we find an increase of thep' component up to ten times
while thepz andpi components remain almost constant. The
HH (LH) states are composed predominantly bypi sp'd or-
bitals, and thepz contribution to the HH states increases
significantly with respect to the QW states. The valence-band
structure exhibits a marked dependence on the wire orienta-
tion. While in structures withk010l-oriented wires we found
no evidence for significant enhancement of the HH-LH cou-
pling, in k110l structures we have observed very strong
HH-LH mixing, virtually leading to the absence of pure LH
states in these systems. The different HH-LH coupling in
k110l and k010l wires is probably a consequence of the dif-
ferent symmetry of the structures. A group-theoretical dis-
cussion of the symmetry effects in 1D structures with differ-
ent shapes and crystallographic orientations can be found in
Refs. 34 and 35.

An interesting aspect of our findings is the large in-plane
anisotropy of the HH states and its dependence on the wire
orientation. A recent study has identified the origins of the
in-plane anisotropy in 2D(001) zinc-blende structures as(i)
asymmetry of the two interfaces(e.g., in no-common-atom
superlattices); and (ii ) reduced symmetry in thek001l direc-
tion (e.g., in trilayer superlattices).36 The presence of a wire-
like interface island has a twofold effect on the symmetry of
the structure: it breaks the translational periodicity in the
lateral direction(which naturally leads to in-plane aniso-
tropy), and it renders the two(001) interfaces nonequivalent.
The latter results in an in-plane anisotropy with principal

axes[110] and f1̄10g.36 Thus, one can expect the difference
between the in-planep components due to the interface
asymmetry to be maximal in a basis oriented along the prin-
cipal axes and zero in a basis rotated at 45° with respect to
them. Therefore, the smallerpi /p' anisotropy in k010l
wires is due only to coupling with the 1D wire potential,
which breaks the lateral periodicity of the QW. The same
effect takes place ink110l wires; however, according to
the above argument, the interface asymmetry leads to
additional anisotropy in these structures. As demonstrated
in Ref. 36, this effect is strongest for the HH states and
negligible in the conduction band, which is in agreement
with our results.

The effect of the interface steps on the electronic proper-
ties of the structures is not limited to carrier localization. The

FIG. 10. Schematic plot of(001) InAs/ InP QWs grown on mis-
oriented substrates. The InAs/ InP interfaces are shown with a solid
line. The principal layers corresponding to the three different do-
mainsA8, B, andA are shown with a dashed line.
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wire potential affects also the QW extended states and gives
rise to resonant states in the QW continuum, which exhibit
similar changes in their orbital character. These changes in
the electronic structure of QWs with steplike interfaces can
significantly affect the QW’s optical properties. The selection
rules and oscillator strengths in semiconductor quantum
wires have been investigated theoretically for both
interband15,19 and intersubband37 transitions. Since the BS
are typical 1D states, they will exhibit similar behavior to the
quantum-wire bound states; among the expected changes of
the optical properties are the breakdown of the 2D selection
rules due to the appearance of 1D states and a significant
optical anisotropy, as confirmed by many theoretical15,19,37

and experimental15,38 studies on quantum wire structures.
However, contrary to the quantum wire case where the tran-
sitions between localized states are of primary interest, in
QWs with steplike interfaces the transitions involving ex-
tended states are equally important.

The optical properties of QWs with perfect interfaces are
determined by the optical transitions between the QW states
from the center of the 2D Brillouin zone. Here we will
present a simplified qualitative discussion of the optical
properties of QWs with steplike interfaces, based on our
analysis of the orbital character of the electronic states and
on an analogy with perfect QWs. We consider two cases of
practical importance: the conduction-band intersubband tran-
sitions and the band-to-band transitions. In the envelope-
function approximation, theG-point transition between the
conduction subbands ofn-doped(001) QWs is forbidden for
normal-incident(x- or y-polarized) light (TE) and allowed
for z-polarized light (TM).39 In a tight-binding representa-
tion, the x and y components of the momentum operator,
which are responsible for the TE transition, can be calculated
from the TB Hamiltonian.40 It can be shown that in a 2D
(001) QW they have nonzero matrix elements only between
two states with the following symmetries:s-px, s-py, px-pz,
andpy-pz. Therefore, the oscillator strength of the TE transi-
tion between twos-like electron states is zero. The small
pz contribution to the conduction-band states due to confine-
ment in thek001l direction also does not contribute to the
TE transitions since the momentum matrix element between
s and pz is zero, and so is the one betweenpz and pz. The
oscillator strength of the TE intersubband transition inn-type
QWs is small but nonzero in a spin-dependent TB model due
to the nonzeropx,y contributions to the zone-center states.41

According to our detailed analysis of the conduction-band
states in QWs with steplike interfaces, the oscillator strength
of the TE transition is likely to increase in these structures
due to the largerp' contribution to the QW extended
states.

A similar analysis can be applied to the electron–heavy-
hole (E-HH) interband transitions forz-polarized light. Thez
component of the 2D momentum matrix in(001) QWs is
nonzero only between two states withs-s, s-pz, px-px, px-py,
py-py, or pz-pz symmetries. Following the same argument as
in the previous paragraph, we see that the E-HH zone-center
transition forz-polarized light is very weak in perfect(001)
QWs, because the electron state iss-like and the HH state is
px,y-like. Thus, the oscillator strength of this transition is

primarily due to(i) the nonzeropx,y contributions to the elec-
tron (coupling to the large HHpx,y components), and(ii ) the
nonzeropz contribution to the HH states(coupling to the
large electrons component). Therefore, we can expect that
the observed large increase of these(usually very small) con-
tributions to the E and HH extended states in the investigated
structures will increase the oscillator strength of the E-HH
transition. Both the interband and intersubband optical spec-
tra in QWs with steplike interfaces can be precisely calcu-
lated using the developed Green’s-functions approach for 1D
structures and the existing methods for computing the optical
conductivity from the Green’s functions of QWs with perfect
interfaces.41

VIII. CONCLUSION

We have developed a general theoretical approach allow-
ing the computationally efficient treatment of 1D systems in
the surface Green’s-function matching framework. Using the
developed method and the semiempiricalsp3s* TB model,
we have investigated the effects of 1D lateral confinement on
the electronic structure of ultrathin InAs/InP(001) QWs with
steplike interfaces. Our results show that the electronic struc-
ture of QWs is profoundly influenced by the presence of 1D
(wirelike) interface islands. This influence is manifested by
the appearance of bound states, localized in the wirelike re-
gions, with energies in the gap, thus leading to a band-gap
reduction and an increase of the HH-LH splitting. The orbital
character of these states exhibits significant deviations from
the QW states, with an increase of the nominally negligible
p' component for electrons and thepz component for heavy
holes. In the valence band, the coupling to the wire potential
modifies the in-planep components of the hole wave func-
tions, increasing thepi contribution to the HH and thep'

contribution to the LH states. We found that the valence-
band mixing depends on the wire orientation. Ink110l-
oriented wires, the HH and LH states are strongly coupled by
the wire potential and no pure LH states can be observed. In
contrast, the HH and LH states ink010l islands are relatively
well defined and we found no evidence for enhancement of
the valence-band mixing due to the presence of interface
terraces in these structures.

The effect of the wire potential on the electronic proper-
ties of the structures is not limited to the localized states. It
affects also the QW extended states and gives rise to reso-
nant states in the QW continuum, which exhibit changes in
their orbital character similar to those of localized states. The
observed changes in the electronic structure affect the optical
properties of the structures and may cause optical anisotropy,
relax some of the selection rules, and enhance the oscillator
strengths for both interband and intersubband transitions due
to the appearance of localized states and the changes in the
orbital character of the extended states.

As a final comment, we emphasize that the use of the
developed Green’s-function approach is not restricted to
electronic-structure calculations, or to systems with the con-
sidered “sandwich”-like geometry. It can be applied to all
cases where the description of the physical problem is
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possible in terms of discrete matrices in principal layer rep-
resentation. An example of practical interest is that of lattice
vibrations, where the dynamical equation may be translated
in the form of the “Hamiltonian matrix” formalism.24 The
developed approach can also be used in conjunction with the
SGFM formalism for systems withN interfaces,42 systems
containing inhomogeneous parts,43 and periodic systems
(superlattices),44,45which allows applications to virtually any
system with planar interfaces in a principal layer representa-
tion. Therefore, the developed approach is a powerful and

flexible tool, providing a computationally efficient formalism
for the investigation of a wide class of one-dimensional sys-
tems.
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