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We investigate theoretically the nonlinear optical response of a semiconductor for excitation conditions
where simultaneously all kinds of correlated two-pair transitions contribute to the dynamics. This includes
transitions to biexcitons, exciton-exciton scattering states, two free electron-hole pairs as well as two-pair states
involving an exciton and a free electron-hole pair. For certain excitation conditions two-pair correlations give
rise to a complex line shape of four-wave-mixing spectra with an emission spread over the whole range
between the exciton line and the band-edge. Even a strong suppression of the signal at the exciton line can be
achieved while the emission is still concentrated between the exciton and the band-edge. The dependence of
these features on the excitation conditions and on the strength of the Coulomb interaction is discussed.
Comparing a nonperturbative treatment of the Coulomb interaction with the Born approximation and the
mean-field theory clearly reveals the importance of nonperturbative Coulomb correlations even for excitations
involving the continuum of free electron-hole pairs.
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I. INTRODUCTION

A wealth of evidence has accumulated over recent years
indicating that the nonlinear optics of near band-edge exci-
tations in semiconductors is dominated by Coulomb
correlations.1,2 To a large extent this dominance is due to the
prominent role played by excitonic and biexcitonic reso-
nances for excitations in the vicinity of the band-edge.
Clearly, the occurrence of bound states with discrete reso-
nances can only be understood when the Coulomb interac-
tion is accounted for in a nonperturbative way. For con-
tinuum excitations, on the other hand, it is often argued that
the Coulomb interaction mainly provides for an additional
scattering channel which can be treated on the level of the
second Born approximation3–7 (BA), i.e., by a perturbative
procedure concentrating on the leading order contributions.
This point of view has been supported by a number of cor-
responding investigations where a good qualitative agree-
ment between BA calcultions and experiments has been
found.3–5,8 In these studies, usually the statically screened
potential is used as the perturbative parameter in order to
avoid known divergences that occur when the BA is com-
bined with the Markov approximation and then applied to the
scattering due to the bare Coulomb potential.9 Obviously,
this procedure is most adequate when the experiments are
performed at high excitation densities where the effective
strength of the Coulomb interaction is substantially reduced
by screening. In contrast, at low excitation densities screen-
ing is not effective and thus the Coulomb potential is essen-
tially unscreened. In this limit the BA can only be applied
without invoking the Markov approximation, i.e. on the
quantum kinetic level.10–12But even then the BA description
of the scattering between excitons turned out to deviate
strongly from experimental findings.13,14In Refs. 13 and 14 a
selective excitation at the 1s exciton line of a quantum well
in a microcavity has been considered. In this case, no free
electron-hole pairs are excited and the failure of the BA

could be traced back to a divergence of the exciton-exciton
scattering amplitude in the limit of zero center-of-mass en-
ergy for the relative motion between the two excitons. This
type of divergence occurs quite generally in two-dimensional
systems as a result of applying the BA.13,14 These deficien-
cies of the BA have been overcome by accounting nonper-
turbatively for two-pair Coulomb correlations, demonstrating
that the continuum of exciton-exciton scattering states is
strongly correlated by the Coulomb interaction in a way
that is beyond the limits of validity of perturbative
treatments.13,14 Indeed, transitions to the correlated exciton-
exciton continuum have been the focus of many recent stud-
ies indicating that these continuum correlations change the
behavior of near band-edge excitations qualitatively and
quantitatively by large amounts.15–29 For example, the exci-
tonic emission in four-wave-mixing(FWM) signals is over-
estimated by more than an order of magnitude in comparison
to the biexcitonic emission when exciton-exciton correla-
tions are neglected.24 The presence of these correlations
changes the sign of the optical Stark effect23 and contributes
to a delay time dependent change of the sense of rotation
observed in the FWM emission from transient polarization
states.20 In addition they give rise to further important prop-
erties of nonlinear optical emissions that can be exploited for
profound signal manipulations. An example for the latter is
the huge increase of the gain up to 5000 detected in semi-
conductor microcavities after the insertion of large numbers
of quantum wells30 which according to the analysis in Ref.
29 is caused by exciton-exciton scattering correlations. The
above results clearly highlight the pertinent role of two-pair
continuum correlations caused by the Coulomb interaction.
However, in most previous studies of two-pair correlations
selective excitations below the band-edge, mostly in reso-
nance with the 1s exciton line, have been investigated. In
this case, transitions to exciton-exciton scattering states are
the only relevant type of two-pair continuum correlations. In
contrast, a simultaneous excitation of excitons and free
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electron-hole pairs with ultrafast laser pulses could poten-
tially establish further types of two-pair correlations includ-
ing correlations between an exciton and a free electron-hole
pair or among two free pairs. Experimentally such excitation
conditions have been studied for a variety of materials, in
different density regimes and with varying pulse
characteristics.3–5,8,31–42But up until now, in almost all cor-
responding theoretical investigations two-pair correlations
have been either completely neglected by concentrating only
on the mean-field(MF) dynamics31–34 or they have been
taken into account perturbatively on the BA level.3–5,8 In
some cases effects of Coulomb scattering were accounted for
within phenomenological models, e.g., by introducing by
hand a density dependent decay time to simulate the excita-
tion induced dephasing(EID).35,36,39,43Without any doubt,
all of these theoretical models have their merits and are able
to reproduce quite a number of features of corresponding
experiments. Nevertheless, not much can be learned about
the role of genuine two-pair correlations within these ap-
proaches. In particular, it is still an open question whether for
excitation conditions involving noticeably the free electron-
hole continuum a proper inclusion of two-pair correlations in
the theory will merely provide for a microscopic justification
of less rigorous approaches or whether there are observable
features that cannot be modeled neglecting these correla-
tions. The few existing studies that account for all types of
two-pair correlations when both excitons and free pairs are
excited have given only preliminary insight with regard to
this question.44,45An early finding was, e.g., that a delay time
decay of FWM signals which is not governed by the intrinsic
excitonic dephasing rate can be modeled by accounting for
all types of two-pair coherences;44 a feature found in many
experiments.35–39These calculations can thus be regarded as
a microscopic support for interpretations of the observed de-
lay time behavior in terms of phenomenological EID
models.35,36,43But already in these early studies the crucial
role of nonperturbative Coulomb correlations became appar-
ent from a comparison with corresponding BA calculations.
Although the BA theory yields results that are qualitatively
similar to the outcome of nonperturbative calculations, sub-
stantial quantitative differences were found between the
two.44 Finally, in Ref. 45 it was shown that for certain exci-
tation conditions—again involving excitonic and band-to-
band continuum transitions—the shapes of FWM spectra cal-
culated including two-pair correlations can qualitatively
deviate from the corresponding MF result.

In the present paper we shall demonstrate nonperturbative
two-pair Coulomb correlations after a simultaneous excita-
tion of excitons and free electron hole pairs by ultrafast laser
pulses. To this end we compare nonperturbative calculations
of FWM spectra emitted from a quantum wire with corre-
sponding results obtained on the MF and BA levels of theory.
The MF theory marks the limit where two-pair correlations
are absent while by comparing with the BA results, which
deal perturbatively with Coulomb scattering, it becomes pos-
sible to evaluate the importance of a nonperturbative treat-
ment of the Coulomb interaction. The full theory yields un-
der certain excitation conditions complex FWM line shapes
that are reproduced neither by the MF nor by the BA theory.
We discuss systematically the dependences of these features

on the characteristics of the exciting laser pulses such as the
central frequency, the spectral width, and the polarization.
For strongly correlated signals, it has to be expected that the
strength of the interaction that mediates the pertinent corre-
lations, i.e. the Coulomb interaction in our case, has a deci-
sive impact. It should be noted that the effective strength of
the Coulomb interaction in a solid state environment is not a
fundamental constant but can vary due to different dielectric
constants and in confined systems also due to different con-
finement lengths. In order to get more insight into the role of
the interaction strength we used the dielectric constant as an
adjustable parameter and compared the shapes of corre-
sponding FWM spectra. It turns out that changing the
strength of the Coulomb interaction not only induces the
expected change of the exciton binding energy, it also results
in considerable changes of the overall spectral shape of the
continuous FWM emission located between the exciton line
and the band-edge.

II. THEORETICAL APPROACH

As the main focus of the present paper is the role of
two-pair correlations under broadband excitation conditions,
a theoretical approach is required that is able to deal with
biexcitons, exciton-exciton scattering states, and two-pair
correlations involving free electron hole pairs on an equal
footing. We shall restrict our discussion to the low intensity
regime where the strongest correlation effects are
expected.1,2 In this regime, a convenient way to account for
all types of correlated two-pair transitions is provided by the
dynamics controlled truncation(DCT) scheme.46,47 In recent
studies, DCT has become the most widely used method for
dealing with two-pair correlations,19–29,48–50mainly because
it constitutes a very compact formulation of the dynamics
which becomes asymptotically exact for low density excita-
tions. In the present paper we shall use the DCT equations
valid in the so called coherent limit(CL),51 i.e., we shall
assume that incoherent couplings, e.g. with phonons, are of
minor importance for the dynamics. Scatterings other than
those provided by the Coulomb interaction can thus be ac-
counted for by phenomenological dephasing rates. With
these assumptions there are two relevant dynamical vari-
ables, namely the amplitudes for single pair interband
transitions:46,47,51

Y2
1: = kŶ2

1l: = kd̂1ĉ2l, s1d

and for correlated two-pair transitions,

B̄24
13: = kŶ2

1Ŷ4
3l − Y2

1Y4
3 + Y4

1Y2
3. s2d

Here, we have used the real-space representation whereĉj

sd̂jd destroys an electron(hole) in the Wannier state at sitej
in the bands j. We consider a two-band model with two-fold
degenerate bands(the valence band refers to heavy holes)
corresponding to the lowest subbands of a cylindrical quan-
tum wire with a 100 nm2 cross-section confined by infinite
barrier potentials. The space dependence of the Coulomb in-
teraction in the wire is obtained in the standard way by pro-
jecting the 3D Coulomb potential onto the lowest wire sub-
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levels. The transition densityY is directly related to the
optical polarization47 which is the main observable in optical

measurements. The amplitudeB̄, on the other hand, repre-
sents the correlated part of two-pair coherences. In the Wan-
nier representation the coupled nonlinear equations of mo-

tion for Y and B̄ can be written in the compact form

f− i"s]t + gYd + "V̂Y2
1gY2

1

=E · fM 2
1 − o

jl

sM l
1Yl

j* Y2
j + M 2

j Yl
j* Yl

1dg

+ o
jl

Vs2
1uljdYl

j* sYl
jY2

1 − Y2
j Yl

1 + B̄l2
j1d, s3d

f− i"s]t + gBd + "V̂B24
13gB̄24

13=Vs2
1u43dY2

1Y4
3 − Vs4

1u23dY4
1Y2

3,

s4d

with

"V̂Y2
1 ; "vg −

"2

2mh
D1 −

"2

2me
D2 − V12, s5d

"V̂B24
13 ; 2"vg −

"2

2mh
sD1 + D3d −

"2

2me
sD2 + D4d

+ V13 + V24 − V34 − V12 − V14 − V23. s6d

Here, for simplicity a spatially homogeneous excitation by a
laser fieldE is assumed.M 2

1<dr 1,r 2
mc2

v1 are dipole matrix
elements wheremc2

v1 through its dependence on the valence
sv1d and conductionsc2d band indices comprises the usual
band selection rules for heavy-hole transitions. We shall ac-
count only for the interband dipole coupling, because intra-
band dipole couplings are considered to be of minor impor-
tance for the present discussion.gY and gB describe the
residual damping provided by interactions with the environ-
ment. The optical gap of our two-band model is denoted by
"vg while me andmh are the effective masses for electrons
and holes, respectively. We have defined, for convenience,

Vs2
1u43d ; V14 + V23 − V13 − V24, s7d

whereV12 is the Coulomb potential between sites 1 and 2
projected onto the lowest quantum wire confinement modes.
Finally, the sums in Eq.(3) comprise a sum over band indi-
ces as well as an integration over the space variables along
the wire.

The equations of motion forY andB̄ have the structure of
driven Schrödinger equations. The free propagation of the
single-pair transition amplitudeY is determined by the op-

erator"V̂Y which is in fact the Hamiltonian for the exciton-

problem in a quantum wire. The eigenenergies of"V̂Y com-
prise discrete lines corresponding to bound exciton states as
well as a continuum which belongs to unbound electron hole
pairs. These eigenenergies show up as resonances of the tran-
sition densityY. This is most clearly seen in the linear ab-
sorption spectrum derived from Eq.(3) and plotted in the

inset of Fig. 1(c). Analogously, the operator"V̂B, which is

responsible for the free propagation ofB̄, is the Hamiltonian
for the biexciton-problem in a quantum wire. It has a spec-
trum composed of a discrete line representing the bound ex-
citon molecule(biexciton) and a continuum which can be
roughly subdivided into parts corresponding to exciton-
exciton scattering states and two-pair scattering states in-
volving free electon-hole pairs. These spectral features are

reflected as resonances in the dynamics ofB̄.
The sources on the right hand side of Eq.(3) and Eq.(4)

all have simple physical meanings: the terms proportional to
the laser fieldE have the structure of a saturable driving

FIG. 1. FWM spectra at zero delay time, calculated accounting
nonperturbatively for Coulomb correlations within the full CL
theory. Spectra are plotted for different excess energies"vex (as
indicated) and different polarizations of the exciting pulses:(a)
colinear,(b) cocircular,(c) cross-linear. The inset shows the linear
absorption spectrum of our quantum wire model together with the
spectra of the laser pulses used. The pulses had a duration of 40 fs
full width at half maximum of the field amplitude. The zero of
energy is set to the band-edge.
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force. They describe an excitation process which is saturated
due to phase space filling. The terms proportional toY*YY
are MF Coulomb nonlinearities which account for the aver-
age action of all particles on an interband transition that pro-
motes an electron from site 1 in the valance band to site 2 in
the conduction band. Calculations, where Eq.(3) is solved
including all contributions except for the terms proportional
to Y*B̄, will be referred to as MF calculations. The terms
,Y*B̄ represent the influence of two-pair correlations on in-
terband transitions. Here, the variableB̄ accounts for the time
evolution of scattering processes involving two electron-hole
pairs. In fact, one can think ofB̄ as a kind of reservoir where
part of the excitation is stored. Then this reservoir can act
back on the optically visible polarizations as long as it
prevails.1,2 From the point of view of single particle density
matrices, likeY, the storing of parts of the excitation com-
bined with a later back action provides for a memory struc-
ture which reflects the finite duration of two-pair scattering
processes. Within the coherent limit DCT theory, correlated
two-pair transitionsB̄ are generated by sources of the form
,VYY [cf. Eq. (4)]. The occurrence of a quadratic depen-
dence onY reflects the fact that two-pair transitions cannot
be generated by an absorption of a single photon. Instead, at
least a two-photon process is needed. Moreover, the sources

are proportional to the Coulomb interactionV, becauseB̄
respresents the correlated part of the two-pair transition den-
sity matrix and the correlation is mediated by the Coulomb

interaction. Thus, it is natural that the sources forB̄ do van-
ish in the limit of vanishing Coulomb interaction. It should

be noted, however, that the Coulomb interaction enters theB̄
equation not only via the sources on the right hand side of

Eq. (4). Instead, the operator"V̂B, which determines the free

propagation ofB̄, also contains the Coulomb potential[cf.

Eq. (6)]. In fact, the Coulomb potentials contained in"V̂B
are responsible for the occurrence of the discrete biexciton
resonance. In addition, even when two pairs are not bound
into a molecule the way they are correlated can be strongly
affected by the potentials in Eq.(6) due to changes of the
density of states in the two-pair continuum. However, when

B̄ is expanded in powers of the Coulomb interaction, the
lowest order contribution is provided exclusively by the
source terms on the right hand side of Eq.(4) while the
potentials in Eq.(6) yield higher order contributions. It has
been shown previously52 that, by neglecting the Coulomb
potentials in the propagating operator of Eq.(6) and then
formally inverting Eq. (4), one recovers the usual second
order Coulomb scattering terms in the low density limit
when the result is inserted on the right hand side of Eq.(3).
This type of scattering theory is usually referred to as the
second Born approximation. Technically, we have obtained
the BA results discussed below not by this inversion proce-
dure, but by solving the coupled equations of motion forY

and B̄ for the case where the Coulomb potentials in the

propagation operator"V̂B are neglected. Both procedures are
mathematically equivalent and thus our BA calculations rep-
resent indeed the standard BA scattering theory on the quan-
tum kinetic level.10–12

For the numerical treatment it turned out to be convenient
to transform Eqs.(3) and (4) to the momentum space by
performing Fourier transformations with respect to all space
arguments. Then, in order to take advantage of the spatial
homogeneity of the system, we introduced relative and cen-
ter of mass coordinates. Because there are many ways to
introduce relative coordinates between the four arguments of

B̄ one has to make a choice. Here, we have followed the
construction described in Ref. 53. In a homogeneous system,
the dynamical variables depend only on relative coordinates

and thus we end up with ak-space representation ofY andB̄
where the former depends on one and the latter on three

one-dimensional arguments. Of course, bothY andB̄ depend
in addition on the discrete band indices. Convergent numeri-
cal results were obtained by using equidistantk-space grids
for all momentum arguments with 140 points in each dimen-

sion, i.e.,B̄ has been represented by a total of 2.7443106

differentk-space points. The discretized coupled equations of
motion have then been integrated numerically in time with-
out further approximation. We are interested in a standard
two-pulse FWM setup where the pulses approach the sample
from the directionsk1 and k2 and the signal is recorded in
the 2k2−k1 direction. In order to extract the FWM signals
from our calculation we have used a method proposed by
Bányai,11,54 where the nonlinear polarization is first deter-
mined for different relative phases between the two exciting
pulses. The FWM contribution of the signal is then obtained
by a Fourier transformation with respect to these phases. For
all material parameters we have used standard values typical
for GaAs, except for the dielectric constant which has been
used as a variable parameter in order to be able to system-
atically change the strength of the Coulomb interaction. The
phenomenological dephasing constants have been set togY
=1/s1.34 psd and gB=2gY, respectively. In Ref. 44 it has
been shown that for our broadband excitation conditions the

dephasing properties ofB̄ are clearly dominated by the de-
structive interference of the excitations in the two-pair con-
tinuum. The precise value ofgB has therefore only little in-
fluence on our results.

III. RESULTS

Figure 1 shows FWM spectra calculated by numerically
solving the full CL equations(3) and(4) for zero delay time
between the pulses. The strength of the Coulomb interaction
has been tuned by adjusting the dielectric constant to yield
an exciton binding energy of 4 meV. Thus, the energetic
situation resembles bulk GaAs in this case. We consider
ultra-short-pulse excitations with a pulse duration of 40 fs
full width at half maximum(FWHM) of the field amplitude.
The calculations have been performed for four different cen-
tral frequencies of the laser pulses. The corresponding pulse
spectra are plotted in the inset of Fig. 1(c) together with the
linear absorption spectrum of our quantum wire model. As
seen from these plots, the excitation is spectrally broad and
has in all cases a considerable overlap with the continuum of
free electron-hole pairs as well as with the exciton line. Thus,
for all excitation conditions considered here, all types of cor-
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related two-pair transitions are simultaneously excited. By
changing the excess energy we can control the relative
weights of excitonic and continuum excitations. Figure 1(a)
displays FWM spectra calculated for colinear polarized
pulses. To facilitate the comparison, results corresponding to
different excess energies are shifted vertically. For all four
excess energies there is only a negligible FWM emission
above the band-edge. This behavior has been reported for
many experiments in the low intensity regime3,31,39,42and is
also reproduced by corresponding MF calculations.31,43,45

Clearly, the shape of the spectra depends crucially on the
excess energy. For an excitation centered at the spectral po-
sition of the 1s exciton also the FWM emission is concen-
trated at the exciton line. Shifting the excess energy towards
the band-edge broadens the exciton line and additional emis-
sions emerge which are continuously spread over the whole
region between the exciton and the band-edge, i.e., an emis-
sion occurs at frequencies where the linear absorption has a
gap. A further increase of the excess energy leads to a de-
crease of the emission at the 1s-resonance while the continu-
ous emission between the exciton and the band-edge is am-
plified. The spectra exhibit quite complex shapes under these
excitation conditions. A pronounced feature is a marked dip
which splits the spectra roughly into two parts. The dip ap-
pears close to but not exactly at the spectral position of the
exciton. The complex continuous line shapes obviously re-
flect an interference of discrete and continuous parts of the
excitation. According to this interpretation, the strong sup-
pression of the emission at the exciton line, as manifested by
the dip, occurs because different quantum mechanical path-
ways involving discrete as well as continuous excitations
contribute to the signal at the exciton line and cancel due to
destructive interference. The destructive superposition of dif-
ferent quantum mechanical pathways is a rather general fea-
ture which is at the heart of many interesting effects such as,
e.g., excitation induced transparency(EIT). EIT has recently
been demonstrated in a solid state system by using excitonic
and biexcitonic transitions for representing the competing
pathways.50 Our case is, of course, different from EIT be-
cause the superposition suppresses the FWM emission at the
exciton line instead of the absorption. The interesting point
here is, however, that a strong suppression of a discrete line
can be achieved not only by superpositions of discrete path-
ways, as is the case for EIT, but it can occur also as the result
of combining discrete and continuous paths. It shall be dem-
onstrated below that indeed nonperturbative Coulomb corre-
lations determine the way in which discrete and continuum
pathways are mixed such that the complex line shapes with
the suppression of the exciton line, seen in Fig. 1(a),
emerges.

Plotted in Fig. 1(b) are results for the same conditions as
in Fig. 1(a) but calculated for cocircular polarizations of the
laser pulses. As for the colinear case in Fig. 1(a), also for the
cocircular excitation there is practically no emission above
the band-edge. Also similar is the behavior for resonant ex-
citation at the exciton, where the emission is concentrated at
the 1s line. A broad continuous emission between exciton
and band-edge is, however, not yet present for excitations at
the band-edge, it emerges in Fig. 1(b) only for higher excess
energies. But, once the continuous emission has built up, also

for cocircular excitation a dip appears close to the exciton
resonance. Thus, apart from some quantitative differences,
the shapes of the FWM spectra follow the same overall
trends with increasing excess energy as in the colinear case.
We therefore conclude that biexcitons play no decisive role
for the occurrence of the complex line shapes and in particu-
lar of the dip structure near the exciton line, because due to
well known selection rules biexcitons do not contribute for
cocircular excitations.

FWM spectra calculated for cross-linear polarizations are
depicted in Fig. 1(c) again for otherwise the same conditions
as in Figs. 1(a) and 1(b). In this case, a rather narrow line
approximately at the exciton position is obtained for all ex-
cess energies. In sharp contrast to Figs. 1(a) and 1(b), apart
from small shifts of the position of the line and minor
changes in its width and height, the signal in Fig. 1(c) is not
much affected by changing the excess energy. Thus, the
FWM emission is qualitatively different for different polar-
ization configurations. While a pronounced dependence on
the polarizations is well known from selective excitations at
the exciton resonance,23,24,55–59such features are studied so
far in much less detail when band-to-band excitations are
involved.

Our aim of the present paper is to systematically analyze
the role of two-pair correlations under conditions where ex-
citonic and band-to-band continuum contributions are simul-
taneously excited. Choosing a quantum wire as our model
system has the advantage of providing for a numerically trac-
table, well defined theoretical model which at the same time
corresponds to a realizable physical system. However, to the
best of our knowledge, there are no measurements available
performed on quantum wire systems that are directly compa-
rable with our calculations. Nevertheless, it is worthwhile to
note that broad FWM spectra that are spread over the gap
region between the exciton position and the band-edge have
been observed in multiple quantum well systems for excita-
tion conditions similar to ours.42 Even a pronounced dip
close to the exciton position has been reported.42 A micro-
scopic modeling of the experiments in Ref. 42, which would
require us to deal with a multiple quantum well system, is
definitely not our goal in the present paper. Thus, no final
statement should be made at this point as to whether or not
the results of Ref. 42 can be regarded as evidence for the
nonperturbative Coulomb correlations described by our
theory. Nevertheless, we find it encouraging that complex
line shapes very similar to the ones predicted by our theory
have indeed been observed under comparable excitation
conditions.

In order to clarify the role of two-pair correlations for the
results presented so far, we have repeated all calculations of
Fig. 1 for the MF as well as the BA level of theory. The
corresponding FWM spectra are shown in Fig. 2. The MF
results are plotted in Figs. 2(a)–2(c) (left panels) while the
BA spectra can be seen in Figs. 2(d)–2(f) (right panels).
From the difference between the full CL calculations in Fig.
1 and the MF results we can infer the effects brought forth by
two-pair correlations while the comparison with the BA
theory reveals which features of the full results require a
nonperturbative treatment of the Coulomb interaction. Let us
first concentrate on the MF results. The MF spectra are al-
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ways concentrated at the exciton resonance. The shape is
almost independent of the excess energies and the polariza-
tion configurations. Neither a sizeable broadening nor shifts
occur. Only the total signal height decreases monotonously
the closer the excitation is to the exciton line. For cocircular
excitation even the latter effect is small. The BA spectra
differ noticeably from the MF theory, though also here the
emission is for all excitation conditions mostly concentrated
near the exciton. For colinear excitation the BA theory pre-
dicts a nonmonotonous dependence of the peak height on the
excess energy, while for cocircular and cross-linear polariza-
tions the BA curves follow the trend of the MF theory. For
cross-linear polarizations the width and the position of the
emitted peak depends noticeably on the excess energy in
contrast to the MF result. In particular, an increase of the
excess energy leads in the BA theory to a shift of the FWM
emission towards higher energies[cf. Fig. 2(f)] which is
even quantitatively almost comparable with the full results
for the cross-linear configuration in Fig. 1(c). But the BA
curves in Fig. 2(f) also exhibit an enhanced emission spread
between the exciton line and the band-edge which is absent
in the full calculation for cross-linear polarizations. Compar-
ing Fig. 1 with Fig. 2 by far the most striking feature is,
however, that neither the MF nor the BA theory is able to
account for the complex line shapes found in the full theory
for the colinear and cocircular polarization configurations.
Neither the strong dependence on the excess energy of the
shape of the continuous emission between 1s resonance and
band-edge nor the dip near the exciton position is repro-
duced. In addition, the MF and BA spectra for cross-linear

excitation differ only quantitatively from the other polariza-
tion configurations. A large qualitative change of the behav-
ior, as found in the full theory, is not obtained from the MF
or BA theory. Altogether, one has to conclude that two-pair
correlations indeed determine the way in which continuum
and discrete excitations are mixed in the nonlinear response.
Furthermore, the comparison between the MF, the BA, and
the full CL theory clearly demonstrates that the complex line
shapes in Fig. 1 reflect correlations that can only be under-
stood when the Coulomb interaction is treated nonperturba-
tively during the scattering process.

In order to get a more detailed picture on how these spec-
tral features depend on the excitation conditions, we have
performed further calculations. For the plots in Fig. 3 we
have reduced the pulse duration to 20 fs FWHM. The curves
are the result of the full theory for colinear polarized pulses.
Taking shorter pulses implies that now the pulse spectra are
much broader and thus cover a much larger portion of the
continuum. Based on the assumption that the BA treatment
should give better results for excitations in the continuum
one might expect that the spectra should show a tendency to
become more similar to the BA results. However, the emis-
sion has now a complex shape with a pronounced dip for all
excess energies, while the shapes of the corresponding BA
spectra(not shown) closely resemble the results in Fig. 2.
The overall shape of the spectra in Fig. 3 is similar for all
excess energies although some dependencies are still visible.
Even for resonant excitation at the exciton in Fig. 3 only a
weak enhancement is found in the low frequency component
of the emission which is reminiscent of the strong excitonic

FIG. 2. FWM spectra at zero delay time, cal-
culated for the same excitation conditions as in
Fig. 1 but using the MF(left) or the BA (right)
level of the theory.
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emission found in Fig. 1. Here, we have almost reached the
limit where the excitation is flat in all relevant parts of the
spectrum for all central frequencies that have been consid-
ered. It is, of course, expected that in this limit there should
be only minor dependences of the FWM emission on the
excess energy. The most interesting finding of Fig. 3 is there-
fore not the weak dependence on the central frequency, but
the fact that by reaching this ultra short pulse limit, the MF
or BA prediction of an emission that is strongly peaked near
the exciton line and otherwise unstructured, is not restored.

From the foregoing analysis it has become clear that the
specific mixture of discrete and continuum contributions
which manifests itself in complex FWM line shapes is gov-
erned by the Coulomb interaction. For such a situation where
obviously strong nonperturbative Coulomb correlations
dominate the dynamics it is evident that the interaction
strength is a critical parameter of the system. In order to get
more insight into the role of the interaction strength we have
systematically varied the dielectric constant which scales the
Coulomb potential. In a first set of calculations we have kept
fixed the characteristics of the pulses and considered colin-
early polarized 40 fs pulses with an excess energy 16 meV
above the band-edge. Changing the interaction strength, first
of all, has the more or less trivial consequence of changing
the exciton binding energy. In Fig. 4(a) we compare FWM
spectra calculated for fixed pulse characteristics for three dif-
ferent cases corresponding to exciton binding energies of 4,
10, and 18 meV, respectively. To facilitate the comparison
we have plotted the spectra in units of the exciton binding
energyEB. As seen from Fig. 4(a), for a stronger Coulomb
interaction the complex line shape disappears. Already, in the
EB=10 meV case the emission is concentrated at the exciton
resonance. Here, the influence of two-pair correlations
merely leads to some broadening which is even further re-
duced when the binding energy is increased toEB=18 meV.
In the gap region between the exiton and the band-edge we
find for the stronger interactions no longer a broad continu-
ous emission, instead a well resolved second resonance

emerges which corresponds to the 2s exciton transition. Ex-
citing the wire above the band-edge with a fixed pulse width
and then increasing the exciton binding energy implies that
the relative weight of the excitonic excitation is decreased
compared with the excitation above the band-edge. In con-
trast, increasing the excess energy for a fixed binding energy,
as studied in Fig. 1, reduces also the excitonic contribution
but at the same time substantially increases the continuum
absorption. Moreover, keeping the central frequency as well
as the pulse width fixed implies that in Fig. 4(a) we cover the
same energy region of the continuum in all cases, while the
increasing excess energy used in Fig. 1 increases the con-
tinuum absoption mostly by covering a larger energy range
in the band-to-band continuum. It is often argued that con-
tinuum excitations are reasonably well approximated by free
electron hole pairs that are represented by plane waves.
Within this simplified model, the three cases studied in Fig.
4(a) correspond to identical continuum excitations. From this
point of view it is rather surprising to find that areductionof
the excitation at the exciton results in an almost complete
concentration of the emission at the exciton line and removes
practically all continuous parts from the FWM spectra. Thus,
the trends obtained in Fig. 4(a) indicate that the uncorrelated
free-particle picture is inadequate for near band-edge excita-

FIG. 3. FWM spectra at zero delay time for colinear polarized
pulses, calculated accounting nonperturbatively for Coulomb corre-
lation within the full CL theory. The calculations are performed for
the same excitation condictions as in Fig. 1 except that the pulses
had a duration of 20 fs full width at half maximum of the field
amplitude.

FIG. 4. FWM spectra according to the full CL theory for differ-
ent strengths of the Coulomb interaction(indicated is the resulting
exciton binding energyEB). The central frequency was kept fixed
16 meV above the band-edge and colinear polarized pulses have
been used throughout.(a) for a fixed pulse duration of 40 fs,(b) for
pulse durations as indicated. The pulse durations in(b) have been
chosen such that the linear absorptions at the exciton and in the
continuum have a constant ratio for calculations with different in-
teraction strengths.
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tions. Indeed, it is well known that the effect of changing the
interaction strength is not limited to a change of the exciton
binding energy and thus for fixed pulse characteristics, to a
change of the weight of the excitonic contribution. Instead,
there are further modifications such as changes of the perti-
nent densities of states which may affect all possible scatter-
ing processes.60 The best known consequence of this effect is
the Coulomb enhancement of the near band-edge absorption
in bulk systems. In quantum wire systems the corresponding
effect is a Coulomb induced reduction of the band-edge
absorption.61,62 It should be noted, however, that in order to
understand the spectral shapes discussed in the present paper
it is not enough to account for the Coulomb induced changes
of the linear absorption. These are fully included on the same
level of sophistication in the MF and BA level of theory just
as in the CL treatment. Having noted that we are dealing
with nonperturbative Coulomb correlations that result from
the Coulomb potentials in the propagation operator"V̂B [cf.
Eq. (6)], it becomes evident that what really matters here are
the modifications of the scattering process itself which in
turn determine the way discrete and continuum parts of the
excitation are combined in the nonlinear dynamics. From this
discussion it has to be concluded that the trends in Fig. 4
indeed provide further evidence for the decisive role of non-
perturbative Coulomb correlations which obviously result in
the most pronounced mixing of discrete and continuum ex-
citations for not too strong interactions.

Finally, we would like to show that the actual superposi-
tion of discrete and continuum excitations that eventually is
reflected in the FWM spectra is not determined alone by the
relative weigths of excitonic and continuum excitations. To
this end we have performed calculations for the three differ-
ent quantum wires that were already considered in Fig. 4(a).
Again, we have used a fixed excess energy 16 meV above
the band-edge. But this time, by changing the pulse durations
we have adjusted the pulse width in such a way that the ratio
of the total absorptions at the exciton line and above the
band-edge is exactly the same for all three calculations. The
corresponding results displayed in Fig. 4(b) show essentially
the same trends as the curves in Fig. 4(a). The complex line
shape disappears with an increasing interaction strength in
favor of an emission which is located at the 1s resonance.
Compared with Fig. 4(a) there are some noteworthy differ-
ences: the emission in the gap region is now slightly higher
and the curve forEB=18 meV exhibits a dip-like structure

close to the exciton line. Apart from these details the curves
in Fig. 4(b) are evidently very similar to the corresponding
curves in Fig. 4(a). Thus, even when the total amount of
excitation as measured by the linear absroption is kept at a
constant ratio for excitonic and band-to-band transitions, we
find a strong mixing of discrete and continuum excitations
only when the interaction is not too strong.

IV. CONCLUSIONS

We have analyzed FWM spectra in the low density regime
within a quantum wire model under excitation conditions
where transitions to excitonic states and to the band-to-band
continuum are simultaneously excited. We have accounted
for all types of correlated two-pair transitions comprising
biexcitons, exciton-exciton scattering states, two free
electron-hole pairs as well as two-pair states involving an
exciton and a free electron-hole pair within the framework of
the coherent limit DCT scheme. For the broadband excitation
considered here, all of these correlations contribute actively
to the dynamics. It turns out that even for broadband excita-
tion the FWM spectra depend crucially on the excitation con-
ditions such as the excess energy, the spectral width, and the
polarization of the laser pulses. Under certain excitation con-
ditions, two-pair correlations give rise to complex line
shapes of the FWM spectra, where a continuous emission is
obtained in the gap region between the exciton line and the
band-edge. Typically, these spectra exhibit a dip-like struc-
ture near the exciton resonance and in some cases the emis-
sion at the exciton is strongly suppressed. The bound biexci-
ton does not play a decisive role for the occurrence of these
spectral features as is evidenced by calculations for cocircu-
lar polarizations which exhibit these features although no
biexcitons are excited. By comparing calculations that ac-
count nonperturbatively for the Coulomb interaction, with
results of the MF and the BA theories, it is conclusively
demonstrated that the complex line shapes reflect nonpertur-
bative Coulomb correlations which are present during the
scattering process. The decisive role of the interaction is fur-
ther highlighted by calculations performed for different
strengths of the interaction, which clearly reveal that it is
indeed the interaction which determines the combination of
discrete and continuum excitations that is eventually seen in
the spectra.
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