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We study the zero-temperature phase diagram of the half-filled one-dimensional ionic Hubbard model. This
model is governed by the interplay of the on-site Coulomb repulsion and an alternating one-particle potential.
Various many-body energy gaps, the charge-density-wave and bond-order parameters, the electric as well as
the bond-order susceptibilities, and the density-density correlation function are calculated using the density-
matrix renormalization group method. In order to obtain a comprehensive picture, we investigate systems with
open as well as periodic boundary conditions and study the physical properties in different sectors of the phase
diagram. A careful finite-size scaling analysis leads to results which give evidence in favor of a scenario with
two quantum critical points and an intermediate spontaneously dimerized phase. Our results indicate that the
phase transitions are continuous. Using a scaling ansatz we are able to read off critical exponents at the first
critical point. In contrast to a bosonization approach, we do not find Ising critical exponents. We show that the
low-energy physics of the strong-coupling phase can only partly be understood in terms of the strong-coupling
behavior of the ordinary Hubbard model.
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I. INTRODUCTION

A. Motivation

Theoretical studies of the ionic Hubbard model(IHM )
date back as far as the early 1970s(see Ref. 1 and references
therein). The model consists of the usual Hubbard model
with on-site Coulomb repulsionU supplemented by an alter-
nating one-particle potential of strengthd. It has been used to
study the neutral-to-ionic transition in organic charge-
transfer salts1,2 and to understand the ferroelectric transition
in perovskite materials.3 Based on results obtained from
numerical4,5 and approximate methods,6,7 it was generally
believed that at temperatureT=0 and for fixedd a single
phase transition can be found ifU is varied. This quantum
phase transition was also interpreted as an insulator-insulator
transition from a band insulatorsU!dd to a correlated insu-
lator sU@dd. In the present paper, we discuss in detail how
this transition occurs.

In 1999, Fabrizio, Gogolin, and Nersesyan used bosoniza-
tion to derive a field-theoretical model which they argued to
be the effective low-energy model of the one-dimensional
IHM.8 Surprisingly, the authors found, using various ap-
proximations, that the field-theoretical model displaystwo
quantum critical points asU is varied for fixed d. For
U,Uc1 the system is a band insulator(with finite bosonic
spin and charge gaps), as expected from general arguments.
At the first transition pointUc1, they found Ising critical
behavior as well as metallic behavior in the sense that the
gap to the bosonic charge modes goes to zero at the critical
point only. In the intermediate regimeUc1,U,Uc2, a spon-
taneously dimerized insulator phase(in which the bosonic
spin and charge gaps are finite) was found. In this phase the
bond-order(BO) parameter, which is the ground-state expec-
tation value of the staggered kinetic energy per bond(for
details see below), is finite. The authors argued that the sys-
tem goes over into a correlated insulator phase(in which the

bosonic charge gap is finite) with vanishing bond order and
bosonic spin gap at a second critical pointUc2 which is of
Kosterlitz-Thouless(KT) type.

Several groups have attempted to verify this phase dia-
gram for the IHM using mainly numerical methods. Varia-
tional and Green function quantum Monte Carlo(QMC) data
obtained for the BO parameter, the electric polarization, and
the localization length were interpreted in favor of a scenario
with a single critical pointUc and finite BO forU.Uc.

9 In a
different calculation using the auxiliary field QMC method,
data for the one-particle spectral weight were argued to show
two critical points with an intermediate metallic phase.10 Ex-
act diagonalization studies of the Berry phase11 and energy
gaps12–14 have been interpreted as favoring one critical
point13 or two points;11 in two investigations this issue was
left unresolved.12,14 Several density-matrix renormalization
group (DMRG) studies have been performed focusing on
different energy gaps, the localization length, the BO param-
eter, the BO correlation function, different distribution func-
tions, and the optical conductivity.14–17 Some of the results
have been interpreted to be consistent with a two-critical-
point scenario.15–17 In Ref. 14 the signature of only one
phase transition was found and the possible existence of a
second transition was left undetermined. The phase diagram
of the IHM has also been studied using approximate methods
such as the self-consistent mean-field approximation,18–20the
slave-boson approximation,18 and a real-space renormaliza-
tion group method.19 Although these studies led to interest-
ing insights, the validity of the approximations in the vicinity
of the critical region can be questioned on general grounds;
therefore, we do not focus on these approaches any further
here. The present situation can be summarized as being
highly controversial.

Here we refrain from giving a detailed discussion of the
merits and shortcomings of the various numerical methods
used and the possible problems in the interpretation of nu-
merical results in the literature. Instead, we present a detailed
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study of theT=0 phase diagram of the one-dimensional IHM
mainly based on DMRG calculations on systems with both
open and periodic boundary conditions(OBC’s and PBC’s).

We have calculated a number of different many-body
energy gaps, including the spin gap, the one-particle gap(the
energy difference of the ground states withN+1, N, and
N−1 electrons), and the gaps to the first(“exciton”) and
second excited states. A definition of the gaps is given in Sec.
II A. Our results explicitly show that different gaps associ-
ated with charge degrees of freedom do not coincide in the
thermodynamic limit, although they are often believed to in
the literature(see also Refs. 16 and 14). Our data show that
the exciton gap vanishes at a coupling which depends ond
and which we define asUc1. At this critical point the spin gap
remains finite. The spin gap vanishes at a second critical
coupling, which defines ourUc2.

In addition to the energy gaps, we have determined the
BO parameter and susceptibility as well as the charge-
density-wave(CDW) order parameter. Since the single-site
translational symmetry is explicitly broken due to the alter-
nating potential, we will avoid using the term “order param-
eter” in describing the CDW order and instead use the term
“ionicity” to refer to the difference in occupancy between
sites on the two sublatticesknA−nBl. We find that the ionicity
is continuous and nonvanishing for all values of the interac-
tion strength.

From the finite-size scaling of the BO parameter, we find
a parameter regime with a nonvanishing dimerization start-
ing at Uc1 and ending atUc2. We find that the transitions at
both critical points are continuous. The BO susceptibility
shows one isolated divergence atUc1 separated from a region
of divergence starting atUc2.

We have also investigated the electric susceptibility,
which is finite in the thermodynamic limit forU,Uc1 and
diverges at the lower transition pointUc1. For U.Uc1, the
behavior is less clear: there seems to be a weak divergence
with system size nearUc2 and forU.Uc2. This behavior is
consistent with that of the density-density correlation func-
tion, which decays exponentially as expected in a band insu-
lator phase forU,Uc1, but surprisingly decays as a power
law with an exponent between 3 and 3.5 in the strong-
coupling regime,U.Uc2.

Using a scaling ansatz for the BO and the electric suscep-
tibility we can determine the critical exponents atUc1. In
contrast to the bosonization approach,8 we obtain critical ex-
ponents different from those of the two-dimensional Ising
model.

For (almost) all observables, we find that a careful finite-
size scaling analysis is crucial to obtain reliable results in the
thermodynamic limit. Furthermore, since it is necessary to
distinguish between fairly small, but finite, gaps and order
parameters and vanishing ones, a detailed understanding of
the accuracy of the DMRG data is essential.

In order to obtain a comprehensive picture of the ground-
state phase diagram, we have studied the different phases(as
a function ofU) for differentd’s which cover a wide range of
the parameter space. We also consider the limit of large Cou-
lomb repulsionU→` (for fixed d and hopping matrix ele-
ment t) and show that some aspects of the physics of the
model in this limit can be understood in terms of an effective

Heisenberg model, as has been suggested earlier1 but has
recently been questioned.14 As a result of our investigations,
we are able to resolve many of the controversial issues and
present indications in favor of a scenario with two quantum
critical points. At the appropriate points in the paper, we will
briefly comment on the relationship of our results with the
ones obtained in earlier publications.

The remainder of the paper is organized as follows. In
Sec. I B, we introduce the model and discuss the limits in
which it can be treated exactly. In Sec. I C, we discuss the
details of our DMRG procedure. In Sec. II, our finite-size
and extrapolated data for the energy gaps are discussed. In
Sec. III, we present our results for the ionicity and show that
in the large-U limit they are consistent with analytical results
obtained by mapping the IHM to an effective Heisenberg
model. The BO parameter and the related susceptibility are
investigated in Sec. IV A. We present results for the electric
susceptibility and the density-density correlation function in
Sec. IV B. In the numerical calculations of Secs. III and IV
we use OBC’s, for which the DMRG algorithm performs
best. To complete our DMRG study in Sec. V, we present
results for the energy gaps calculated for PBC’s and summa-
rize our findings in Sec. VI.

B. Model and exactly solvable limits

The one-dimensional IHM is given by the Hamiltonian

H = − to
j ,s

scjs
† cj+1s + H.c.d + Uo

j

nj↑nj↓ +
d

2o
j ,s

s− 1d jnjs,

s1d

wherecjs scjs
† d destroys(creates) an electron with spins on

lattice sitej andnjs=cjs
† cjs. We set the lattice constant equal

to 1 and denote the number of lattice sites byL. Here we
study the properties of the half-filled system withN=L elec-
trons.

The system corresponds to the usual Hubbard model with
an additional local alternating potential. It is useful to con-
sider various limiting cases in order to gain insight into pos-
sible phases and phase transitions. ForU=0 andd.0, the
model describes a conventional band insulator with a band
gap d. Since the alternating one-particle potential explicitly
breaks the one-site translational symmetry, the ground state
has finite ionicity.

The one-dimensional half-filled Hubbard model without
the alternating potentialsd=0d and with U.0 describes a
correlated insulator with vanishing spin gapDS

HMsUd and
critical spin-spin and bond-bond correlation functions.21 All
gaps associated with the charge degrees of freedom, such as
the one-particle gapD1

HMsUd, are finite.22 (The gaps dis-
cussed here are defined in Sec. II A.) The ionicity and the
dimerization are zero for all values ofU. These two limiting
cases suggest that the system will be in two qualitatively
different phases in the limitsU!d andU@d.

In the atomic limit,t=0, and for 0,U,d, every second
site of the lattice with on-site energy −d /2 (A sites) is occu-
pied by two electrons while the sites with energyd /2 (B
sites) are empty. The energy difference between the ground
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state and the highly degenerate first excited state isd−U. For
U.d, both theA and B sites are occupied by one electron
and the energy gap isU−d. Thus for t=0 a single critical
point Ucsdd=d with vanishing excitation gap can be found.
One expects similar critical behavior with at least one critical
point to persist for the full problem with finitet.

To describe the physics of the IHM in the limitU@ t ,d,
an effective Heisenberg Hamiltonian

HHB = Jo
j
SSj ·Sj+1 −

1

4
D, J =

4t2U

U2 − d2 , s2d

was derived in Ref. 1 analogously to the strong-coupling
perturbation expansion of the usual Hubbard model. It has
recently been pointed out that this strong-coupling mapping
does not take into account an explicitly broken one-site
translational symmetry.14 However, it was shown in Ref. 1
that the strong-coupling expansion preserves the one-site
translation symmetry in the effective spin Hamiltonian toall
orders in the strong-coupling expansion. In addition, the ion-
icity can be derived directly from the effective spin Hamil-
tonian as follows. The symmetry of the Hamiltonian[Eq.
(1)] implies that after taking the thermodynamic limit,njs
=nj+2s for s= ↑ ,↓ and all j . Using the Hamiltonian, Eq.(1),
and the Hellman-Feynman theorem, the ionicity

knA − nBl = −
2

L
o
j ,s

s− 1d jknjsl s3d

can be determined via

knA − nBl = −
4

L
K ]H

]d
L = −

4

L

]E0

]d
. s4d

The ground-state energyE0 of the effective Heisenberg
model [Eq. (2)] is known analytically23 and, in terms ofU
andd, is given by

E0
HB = L

4Ut2

U2 − d2Sln 2 −
1

4
D s5d

in the thermodynamic limit. In the limitU@d, we can thus
derive an analytic expression for the ionicity:

knA − nBl = 32 ln 2
Ud t2

sU2 − d 2d2 . s6d

It implies that for anyU,`, the ionicity of the IHM is
nonzero and for largeU vanishes as 1/U3. Since CDW order
is explicitly favored by the Hamiltonian, it is not surprising
that the ionicity is nonvanishing for all finiteU. As will be
shown in Sec. III, this expression shows excellent agreement
with our DMRG data for the IHM. This gives us confidence
that the effective Heisenberg model indeed gives correctly at
least certain aspects of the low-energy physics. Since the
Heisenberg model[Eq. (2)] has a vanishing spin gap,24 the
mapping suggests that the spin gap also vanishes in the large-
U limit of the IHM.

Although the alternating potential breaks the one-site
translational symmetry explicitly, the model remains invari-
ant to a translation by two lattice sites. This leads to a site-
inversion symmetry for closed-chain geometries with peri-

odic or antiperiodic boundary conditions, a symmetry which
is not present for OBC’s. As pointed out in Ref. 12, the
ground state of the effective Heisenberg model with periodic
boundary conditions for systems with 4n lattice sites or an-
tiperiodic boundary conditions for systems with 4n+2 sites
has a parity eigenvalue of −1 whereas the ground state for
U=0 has a parity eigenvalue of +1. This suggests that the
IHM undergoes at least one phase transition point with in-
creasingU for fixed d. This level crossing will be replaced
by level repulsion and approximate symmetries for other
boundary conditions.25 In the thermodynamic limit, the effect
of the boundaries will disappear and the level repulsion be-
comes vanishingly small. It is important to point out, how-
ever, that a level crossing on small finite systems does not
necessarily lead to a first-order transition in the thermody-
namic limit; careful finite-size scaling must be carried out in
order to determine the critical behavior.

From these considerations, one expects to find at least one
quantum phase transition from a phase with physical proper-
ties similar to those of a noninteracting band insulator to a
phase with properties similar to those of the strong-coupling
phase of the ordinary Hubbard model. However, the details
of the transition and the physical properties of the different
phases remain unclear from these arguments. Furthermore,
the behavior of the BO parameter in the critical region can-
not be estimated from these simple limiting cases. Therefore,
a detailed and careful calculation of the characterizing gaps
and order parameters is necessary. Since no direct analytic
approach is known to be able to treat the parameter values in
the critical regime, we restrict ourselves to numerical calcu-
lations using the DMRG method with the details described in
the next section.

In the following, we measure energies in units of the hop-
ping matrix elementt—i.e., sett=1. In order to be able to
cover a significant part of the parameter space, we have car-
ried out calculations withd=1, d=4, andd=20 for weak
interaction valuesU!d, for strong couplingU@d, and in
the intermediate critical regimeU<d. For the sake of com-
pactness, we will mostly focus ond=20 when presenting
results that are generic to all threed regimes.

C. DMRG method

We have carried out our calculations using the finite-
system DMRG algorithm. Our investigation focuses on the
ground-state properties for systems with OBC’s; i.e., we
have performed DMRG runs mostly with OBC’s and one
target state, the case in which the DMRG algorithm is most
efficient. In order to perform the demanding finite-size scal-
ing necessary, we have performed calculations for systems
with up to L=768 sites, much larger than in an earlier
work.26

In order to investigate the low-lying excitations, we have
also performed calculations targeting up to three states si-
multaneously on systems with OBC’s. These numerically
more demanding calculations were carried out for systems
with up to L=256 sites for three target states and with up to
L=450 sites for two target states. In order to compare with
exact diagonalization calculations and to extend its finite-size
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scaling to larger systems, we have performed calculations for
PBC’s with up toL=64 sites and one to three target states. In
this case, the maximum system size is limited by the rela-
tively poor convergence.

The DMRG calculations for OBC’s with one target state
were carried out performing up to six finite-system sweeps
keeping up tom=800 states. For more multiple states and
for PBC’s up to 12 sweeps were performed, keeping up to
m=900 states. In order to test the convergence of the DMRG
runs, the sum of the discarded density-matrix eigenvalues
and the convergence of the ground-state energy were moni-
tored. For OBC’s, the discarded weight is of order 10−6 in the
worst case and the ground-state energy is converged to an
absolute error of 10−3 but in most cases the absolute error is
10−5 or better. This accuracy in both the energy and the dis-
carded weight gives us confidence that the wave function is
also well converged and that local quantities are quite accu-
rate.

For PBC’s, the discarded weight is of the order 10−5 in the
worst case and the convergence of the ground-state energy
for most runs is up to an absolute error of 10−3 or better, but
for extreme cases such asL=64 and three target states for
parameter values near the phase transition points, the conver-
gence in the energy is sometimes reduced to an absolute
error of only 10−1. However, we believe that this accuracy is
high enough for the purposes of the discussion in Sec. V.

In general, we find that our data are sufficiently accurate
so that extrapolation in the number of statesm kept in the
DMRG procedure does not bring about significant improve-
ment in the results(at least for OBC’s). Details of the ex-
trapolations and error estimates for particular calculated
quantities are given in the corresponding sections.

II. ENERGY GAPS

One important way to characterize the different phases of
the IHM are the energy differences between many-body
eigenstates. Gaps to excited states can be used to characterize
phases by making contact with the gaps obtained in
bosonization calculations and also form the basis for experi-
mentally measurable excitation gaps, found, for example, in
inelastic neutron scattering, optical conductivity, or photo-
emission experiments. In addition to the gaps themselves,
however, matrix elements between ground and excited states
as well as the density of excited states are important in form-
ing the full experimentally relevant dynamical quantities. An
example is the matrix element of the current operator that
comes into calculations of the optical conductivity. We have
investigated the behavior of the matrix elements for the dy-
namical spin and charge structure factors and for the optical
conductivity using exact diagonalization on systems with
both PBC’s and OBC’s.

In the following, we present DMRG calculations of the
gaps to first and second excited states, the spin gap, and the
one-particle gap in which a careful finite-size scaling on sys-
tems of up to 512 sites is carried out. As we shall see, this is
necessary in order to resolve the behavior of the gaps in the
transition regime and to distinguish between scenarios with
one or two critical points.

A. Definition of the gaps

In this section, we study excitations between a nondegen-
erate S=0 ground state and various excited states. In the
numerical calculations, we have found that for OBC’s the
ground state is nondegenerate with total spinS=0 for all
parameter values studied here. We define the exciton gap

DE = E1sN,Sd − E0sN,S= 0d s7d

as the gap to the first excited state in the sector with the same
particle numberN and withSz=0, whereSz is thez compo-
nent of the total spin. We also calculate the expectation value
of the total spin operatorkS2l so thatS is known.

The spin gap is defined as the energy difference between
the ground state and the lowest-lying energy eigenstate in the
S=1 subspace:

DS = E0sN,S= 1d − E0sN,S= 0d. s8d

When the first excited stateE1sN,Sd in theSz=0 subspace is
a spin triplet withS=1, DS=DE. Within the DMRG, this gap
can be calculated by determining the ground-state energies in
different Sz subspaces in two different DMRG runs.

If DE,DS, we call the lowest excitation a charge excita-
tion. In fact, exact diagonalization calculations for system
with PBC’s suggest that the gapDE corresponds to the gap in
the optical conductivity.14 We have carried out additional ex-
act diagonalization calculations that show that the corre-
sponding matrix elements of the current operator are also
nonzero for OBC’s. We therefore expect thatDE (for excita-
tions withS=0 and whenDE,DS) corresponds to the optical
gap in the thermodynamic limit.27 To obtain a deeper under-
standing of the excitation spectrum in the critical region, we
also calculate the gap to the second excited state,

DSE= E2sN,Sd − E0sN,S= 0d, s9d

for selected parameters.
In the literature, gaps to excitations which can be classi-

fied as charge excitations are often calculated by taking dif-
ferences between ground-state energies in sectors with dif-
ferent numbers of particles(this gap is commonly called the
“charge gap”). In particular, one can define ap-particle gap

Dp = fE0sN + p,Smin
z d + E0sN − p,Smin

z d − 2E0sN,S= 0dg/p,

s10d

which is essentially the difference in chemical potential for
adding and subtractingp particles. The spinSmin

z is the mini-
mal value, 1/2 or 0 forp odd and even, respectively. Either
the one-particle gapD1 or the two-particle gapD2 is com-
monly used. The calculation ofD1 or D2 is numerically less
demanding than that ofDE since it is sufficient to calculate
the ground-state energies in the subspaces with the corre-
sponding particle numbers. However, since these gaps in-
volve changing the particle number and, forp=1, the spin
quantum number, it is nota priori clear if they can be used to
characterize possible phase transition points of theN-particle
system. In many cases of interest, the difference betweenD1,
D2, and DE vanishes forL→`, but in other systems(an
example is the Hubbard chain with an attractive interaction),
their behavior differs. As we shall see,D1 andDE do behave
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differently nearUc1. In this work we focus our investigation
on D1. We have also calculatedD2 and find that it behaves
similarly to D1, although it generally takes on slightly larger
values for finite systems.

Gaps are also used to characterize the phase diagram
within the bosonization approach.8,14 It is generally believed
that the bosonic charge gap defined there can be identified
with the gap to the first excited state with spin quantum
numberS=0 (i.e., the exciton gapDE [Eq. (7)] as long as
DE,DS) and the bosonic spin gap withDS [Eq. (8)], al-
though a formal proof is missing.

Based onDE, DS, andDSE and the very limited knowledge
on matrix elements due to the small system sizes available to
exact diagonalization, no reliable characterization of the me-
tallic or insulating behavior of different phases and transition
points can be given.

B. Gaps to excited states

In this section, we calculate excited states within the
Sz=0 sector. Due to the additional numerical difficulty of
calculating excited states in the same quantum number sec-
tor, we are restricted to systems ofL=450 lattice sites forDE
andL=256 sites forDSE.

In Fig. 1(a), DE as a function ofU is presented for

d=20 and variousL. For comparison, the spin gap forL
=300 is also shown. The exciton gap develops a local mini-
mum aroundU=21.38, which, for increasingL, becomes
sharper. Furthermore, the value at the minimum becomes
smaller and seems to approach zero. There is a cusp inDE for
all system sizes shown here at a certainU to the right of the
minimum and then a smooth decay towards zero gap with
further increasingU. As illustrated forL=300, this corre-
sponds to a level crossing with the first tripletsS=1d excita-
tion, which becomes the first excited state for all largerU
values—i.e.,DE=DS. The data ford=1 and d=4 behave
similarly, but the increase to the right of the minimum(up to
the cusp) is substantially steeper.

In Fig. 1(b), we displayDE, the gap to the second excited
stateDSE, and the spin gapDS (calculated using the ground
state in theSz=1 sector) for L=128. It can be seen that
DSE,DS for U values to the left of the minimum inDE. A
similar behavior is found ford=4 andd=1. This means that
there is more than oneS=0 excitation below the lowest-lying
S=1 excitation, consistent with a scenario in which a con-
tinuum of S=0 excitations becomes gapless atUc1. This is
the scenario predicted to occur at the first quantum critical
point in the bosonization approach.8 Since system sizes for
calculations ofDSE were limited toL=128 (L=256 for some
parameter values), we did not attempt to systematically ex-
trapolateDSE to the thermodynamic limit.

We next discuss the finite-size scaling forDE to the left of
the cusp. ForU sufficiently far from the critical region(i.e.,
the minimum), the finite-size corrections are small and the
data can safely be extrapolated to the thermodynamic limit
using a quadratic polynomial in 1/L, leading to a finite ex-
citon gap. Close to the minimum, the scaling becomes more
complicated. At smaller system sizes, we findDE=DS and
the scaling is nonlinear. However, at larger system sizes,
there is a crossover to linear scaling withDEsLdÞDSsLd. The
crossover length scale becomes larger asU approaches the
position of the minimum. As a consequence, a reliable finite-
size extrapolation in the critical region requires very large
system sizes.

To investigate the behavior asL→`, we interpolateDE as
a function ofU for fixed L close to the minimum with cubic
splines. From the interpolation we can read off the minimal
value of the gapDminsLd and the positionUminsLd for the
different system sizes. Figure 2 shows the resultingDminsLd
as a function of 1/L for d=1, 4, and 20. A linear extrapola-
tion of the data givesDminsL=` ,d=1d=3310−3, DminsL
=` ,d=4d=5310−4, and DminsL=` ,d=20d=−1310−4.
Within the accuracy of our data and our extrapolation, these
minimal gaps can be considered to be zero. In analogy with
the atomic limit, we interpret the vanishing of the exciton
gap as defining a critical point.28 The critical couplingUc1
can be determined from fittingUminsLd to a linear function in
1/L, as shown ford=20 in Fig. 3. The extrapolation is simi-
lar for the otherd values and we obtainUc1sd=1d<2.71,
Uc1sd=4d<5.61, andUc1sd=20d<21.39. As will be dis-
cussed in Sec. IV B, the vanishing of the exciton gap is ac-
companied by a diverging electric susceptibility.

Examining the BO parameter and the related susceptibil-
ity in Sec. IV A, we will present evidence in favor of a

FIG. 1. The exciton gapDE for finite system sizesL and d
=20. The spin gapDS for L=300 is also shown for comparison.(b)
The exciton gap, the spin gapDS, and the gap to the second excited
stateDSE for L=128.
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spontaneously dimerized phase forUc1,U,Uc2. The
dimerized phase has an Ising-like symmetry. Following the
standard procedure of applying a small symmetry breaking
field, taking the thermodynamic limit, and only afterwards
sending the field to zero, the ground state in the dimerized
phase is expected to be twofold degenerate(regardless of the
boundary conditions applied). The exciton gapDE would
therefore formally vanish after these limits are taken. How-
ever, in our calculationsDE increases as a function ofU to
the right of Uc1 (but before the cusp is reached) for finite
systems, as seen in Fig. 1(a). Unfortunately, the finite-size
scaling for the exciton gap forUc1,U,Uc2 is problematic.
Since there is only a small region with anS=0 excitation
lying below the triplet excitation, there is only a very limited
range ofU values in which theS=0 excitation is accessible
within the DMRG. Within this region, we find thatDE scales
to a finite value. The problem lies in the formation of the
ground-state manifold when extrapolating to the thermody-
namic limit (after a symmetry breaking field has been ap-
plied). While the level crossing scenario presented in the
Introduction helps to identify the first excited state forU
ùUc1 as the state whose energy would presumably extrapo-
late to the ground-state energy for PBC’s, the situation is
more complicated for OBC’s. By calculating the bond expec-
tation values(see Sec. IV A) of the ground state and the first

excited state on systems of up toL=450 (the largest size we
were able to reach), we find that the first excited state does
not have the opposite alternation pattern. Instead, the alter-
nation pattern is the same as in the ground state near the
ends, but reverses itself in the middle of the chain. This
change in the alternating BO parameter is evenly spread over
the chain so that it has a cosinelike form with two nodes. In
order to investigate the ground-state manifold in the thermo-
dynamic limit, this buildup of domain walls makes it neces-
sary to apply an additional field such as the dimerization
field r introduced by us in Sec. IV A. For appropriate orien-
tation and sufficient strength of this field, the dimerization
pattern of the ground state reverses compared to the case
with no field. Even with this field, however, the buildup
of domain walls makes it difficult to follow the formation of
the ground-state manifold when taking the limitsL→` and
r→0. Therefore, we have not performed such a procedure
and do not show results forDE for U.Uc1; we believe that
other quantities are more suitable for the investigation of the
model’s quantum critical behavior. We also find it problem-
atic to perform finite-size scaling for this quantity for PBC’s,
due to nonmonotonic behavior of the gap with system size
and level crossings of various excited states(see Sec. V). We
emphasize that such problems do not occur for the one-
particle and spin gaps presented below: the excitations are
well defined since they are characterized by a change in con-
served quantum numbers and the finite-size scaling is well
behaved.

Sufficiently far to the left ofUc1, the data presented in
Fig. 1(a) suggest a linear closing of the exciton gap, which
gets rounded off in the critical region for finite systems. The
largerL, the closer toUc1 the deviation from linear behavior
sets in. This suggests thatDE,Uc1−U close to but below the
first critical point. It implies that the product of the critical
exponentsz1n1=1 at the first critical point,28 wherez1 is the
dynamical critical exponent andn1 is the exponent associated
with the divergence of the correlation length.

Our finding of a vanishing exciton gap at the couplingUc1
for OBC’s is consistent with results obtained using PBC’s
andL=4n. For this case, a ground-state level crossing of two
spin singlets atU=UxsL ,dd (implying a zero exciton gap)
was found using exact diagonalization of small
systems.11,12,14A change of the site inversion symmetry at
U=Ux was also observed. In Sec. V, we will argue that
UxsL→` ,dd coincides withUc1sdd.11 The presence of the
ground-state level crossings might lead one to speculate that
discontinuous behavior will persist in the thermodynamic
limit, implying a first-order phase transition atUxsL=` ,dd.
However, we find no discontinuous behavior for systems
with OBC’s, either on finite systems or in theL→` extrapo-
lations. In order to agree with the results obtained for OBC’s
in the thermodynamic limit, the discontinuous behavior for
PBC’s must become progressively smoothed out asL→`.

C. Spin gap DS

The spin gapDS is shown in Fig. 4 as a function ofU for
d=20 and system sizes betweenL=16 and 512. In Fig. 4(a),
one can see that the spin gap systematically scales towards

FIG. 2. Finite-size scaling analysis of the minimal value of the
exciton gapDE. The solid lines are linear fits through the four
system sizes shown,L=256, 300, 350, 400.

FIG. 3. Finite-size scaling analysis of theU value at the mini-
mum of the exciton gapDE for d=20. The solid line represents a
linear least-squares extrapolation of the data yieldingUc1<21.39.
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zero above a certainU value. However, it is crucial that the
finite-size scaling is carried out carefully and systematically
in order to determine the behavior in the thermodynamic
limit. As can be seen in the scaling as a function of 1/L for
representativeU values in Fig. 4(b) and as was pointed out in
Ref. 16, there is nonmonotonic behavior as a function of 1/L
for U,Uc1. In addition, the minimum ofDS as a function of
1/L shifts to larger system sizes as the critical region is ap-
proached. This makes an extrapolation to the thermodynamic
limit in the critical region a difficult task which requires
fairly large system sizes. In order to carry out an accurate
extrapolation, we fit to a cubic polynomial in 1/L.

Figure 5 shows the extrapolated spin gap ford=20 pre-
sented together with the extrapolated values forD1 and DE
(for the reasons given in the last subsection the latter only
shown forU,Uc1). All three gaps are approximately equal
for U!Uc1 (see the inset). Close to the transition, as can be
seen on the expanded scale in the main plot,DE goes to zero
at Uc1, while DS andD1 stay finite and are(almost; see be-
low) equal. We find a region ofU.Uc1 in which DSsL=`d
has a value that is clearly nonzero, well above the accuracy
of the data which is of the order of the symbol size. The
behavior is similar ford=4 (not shown). For even smaller

values ofd, DS close toUc1 becomes significantly smaller.
As a consequence, the region in whichDS is nonvanishing
for U.Uc1 is less pronounced atd=1. In this case,DS at Uc1
is only a factor of 6 larger than the estimated accuracy of our
data(this has to be compared to the factor of 20 ford=4 and
40 for d=20) with a fast decrease forU.Uc1. We take the
estimate of accuracy from comparison of DMRG calcula-
tions for the one-particle gap of the usual 1D Hubbard model
with Bethe ansatz results. We find that the difference is about
uD1

HM,DMRG−D1
HM,exactu=0.003 in the worst case. We therefore

interpret this small spin gap to be finite ford=1 and in a
small region ofUùUc1. Ford substantially smaller than 1, it
is impossible to resolve a nonvanishingDS at UùUc1 using
the DMRG.

The spin gap data in Fig. 5 indicate thatDS goes to zero
very smoothly between 21.55 and 21.8 and remains zero
from there on. We here defineUc2 as the coupling at which
DS goes to zero. As we have argued in Sec. I B, the mapping
onto a Heisenberg model at strong coupling[Eq. (2)] sug-
gests that the spin gap should vanish at sufficiently largeU.
However, we cannot strictly speaking exclude thatUc2=`
from the spin gap data. We give further evidence in support
of two transition points at finiteU below.

Note that the extrapolated(Fig. 5) as well as the large-L
data(Fig. 4) for DS display an inflection point in the vicinity
of Uc1. This might be an indication of a nonanalyticity re-
lated to the phase transition atUc1.

D. One-particle gap D1

In Fig. 6(a), D1 as a function ofU is shown ford=20 and
different L. Away from the critical region(which is between
U<21.15 andU<22), the finite-L data rapidly approach the
thermodynamic limit and accurate results forD1sL=`d can
easily be obtained by fitting to a polynomial in 1/L. Close to
Uc1, the data for largeL develop a minimum. AsL increases,
the position of the minimum shifts to largerU values. The
shape is quite rounded for the small system sizes, but be-
comes sharper for the largest sizes.

In the critical region, the finite-size scaling is again deli-
cate. We examineD1 as a function of 1/L for a number ofU

FIG. 4. The spin gapDS for finite systemsL as a function ofU
and (b) the finite-size scaling analysis ford=20 for chosenU val-
ues. The system sizesL=64, 128, 200, 256, 300, 350, 400, 450, and
512 are shown in(b) and are used for a least-squares fit to a third-
order polynomial in 1/L (solid lines). The dashed line in(b) shows
the value ofDS at the largest system size in order to illustrate the
nonmonotonic behavior.

FIG. 5. The exciton gapDE, the spin gapDS, and the one-
particle gapD1 for d=20 after extrapolating to the thermodynamic
limit L→`. The inset shows the result for a larger range ofU.
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values nearUc1 for d=20 in Fig. 6(b). The data sufficiently
away from the minimum(on both sites) show linear behavior
in 1/L for smaller system sizes, but then deviate from linear
behavior and saturate at a finite value for largerL values.
This behavior is directly related to theL dependence of the
minimum of D1, which shifts to largerU and becomes
sharper with increasing system size. The scale on which a
deviation from the linear behavior can be observed shifts to
larger system sizes asU approachesUc1. In order to perform
the finite-size scaling analysis, we fit to cubic polynomials in
1/L, as we did for the spin gap. We have carried out this
procedure ford=1 and 4 and find thatD1sL ,Ud behaves
similarly.

We have extracted the position and value at the minima
by interpolating the data for fixedL with cubic splines and
then extrapolating toL→` with a fit to a quadratic polyno-
mial. We obtainUminsd=1d<2.71, Uminsd=4d<5.63, and
Uminsd=20d<21.40 for the positions andD1sd=1,Umind
<0.02, D1sd=4,Umind<0.05, and D1sd=20,Umind<0.08.
The minimal values are finite to within the resolution of the
data and the extrapolation, although the values are small,
especially at smalld. Therefore,D1 is certainly larger than
DE at Uc1 and is finite in the critical region. The positions of
the minima are very close to but at a slightly largerU value
thanUc1. The largest differenceUminsdd−Uc1sdd turns out to
be 0.02(for d=4). In Ref. 16, calculations were carried out

for d=0.6 andd=2 (in our units), and this difference was
found to be 0.04 ford=0.6 and 0.03 ford=2. At the same
time D1sd ,Umind was concluded to be zero. The authors in-
terpreted this as an indication of a second transition point(in
addition toUc1 which they determined from the vanishing of
the exciton gap). While we have not carried out calculations
at these values ofd, our results suggest thatD1sd ,Umind is
small, but nonzero. Therefore, we believe thatUmin is not
associated with a second phase transition. In fact, as we have
seen in Sec. II C, the spin gap goes to zero at a substantially
higher value ofU thanUmin, and we associate this value with
Uc2.

Up to a small difference(see Fig. 5) D1sL=`d andDSsL
=`d are equal forU,Uc1. In fact, the values are virtually
identical for the largest few system sizes and deviate only at
smaller sizes. We therefore believe that the difference in the
extrapolated gaps stems from differences in the fitting to the
scaling function at smaller system sizes and thatD1sL=`d
=DSsL=`d for U,Umin<Uc1 is consistent with our results.
At this coupling,D1sL=`d starts to become larger thanDS

and, asU further increases, grows approximately linearly in
U as one would expect in a Mott insulator.

It is important to note that our data forD1 as determined
from ground-state calculations do not suffer from the subtle-
ties discussed in Sec. II B in connection with the behavior of
the exciton gap:D1 is characterized by a difference of par-
ticle number which is a conserved quantity and the finite-size
scaling is smooth and well behaved. A further confirmation
of regular behavior is thatDSsLd<D1sLd for U,Uc1 and for
sufficiently largeL, despite different finite-size effects for
smaller systems.

To summarize the behavior of the finite-size extrapolated
gaps, we find that forU!Uc1, DE=DS=D1 as in a noninter-
acting band insulator. AsUc1 is approached, the gaps to two
(or more) S=0 excitations drop belowDS and at least one of
them goes to zero atUc1. The one-particle gapD1 reaches a
finite minimum aroundUc1 and then increases(linearly for
large U), and the spin gapDS goes to zero smoothly at
Uc2.Uc1. This smooth decay of the spin gap makes it diffi-
cult to quantitatively estimateUc2. Since the above behavior
is similar for the widely different potential strengths studied
here,d=1, 4, and 20, we believe that it is generic forall d.

III. IONICITY

As argued in Sec. I B, the effective strong-coupling model
(2) predicts that the ionicityknA−nBl,1/U3 for largeU. For
t=0, on the other hand, one expects a discontinuous jump
from knA−nBl=2 to knA−nBl=0 at the single transition point
Uc. Here we explore the behavior ofknA−nBl for all U cal-
culated within the DMRG.

In Fig. 7 we compare Eq.(6) for d=1, 4, 20 and various
U to results obtained from DMRG with OBC’s andL=32.
By also considering larger system sizes(up to L=512) and
PBC’s (up to L=64), we have verified that theL=32 results
shown are already quite close to the thermodynamic limit for
U@d. On the scale of the figure the difference betweenL
=32 andL=` is negligible. For largeU, the DMRG data

FIG. 6. The one-particle gapD1 for d=20. (a) Results for finite
systems withL=16–512.(b) The finite-size scaling behavior for
L=64, 128, 200, 256, 300, 350, 400, 450, 512. The solid lines in(b)
show least-squares fits to a third-order polynomial in 1/L.
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agree quite well with the analytical prediction, Eq.(6). This
gives a strong indication that the large-U mapping of the
IHM onto an effective Heisenberg model1 is applicable at
large but finiteU. It is therefore tempting to conclude that
Uc2,`. One should nevertheless keep in mind that the ex-
cellent agreement of the numerical data and the analytical
prediction for the ionicity does not constitute a proof of this
statement. We will return to this issue.

The DMRG data forknA−nBl for L=32 shown in Fig. 7
are continuous as a function ofU for all U. We examine
knA−nBl more carefully as a function of system size in the
vicinity of the first phase transition atUc1 for d=20 in Fig. 8.
The main plot shows DMRG data for variousL as a function
of U for d=20. While the data are continuous as a function
of U for all sizes, there is significant size dependence be-
tweenU=21.2 and 21.5, near the first critical point atUc1.
We have extrapolated the data to the thermodynamic limit
using a second-order polynomial in 1/L and have checked
that other extrapolation schemes do not lead to significant
differences in the extrapolated values. TheL=` extrapolated
curve is shown in the inset. While the curve is still continu-
ous, an inflection point can be observed close toUc1. This
might be related to nonanalytic behavior atUc1. We have

found similar behavior ofknA−nBl for d=1 and 4.
The behavior ofknA−nBl for PBC’s (and L=4n), which

we have checked using the DMRG for up toL=64, is quite
different. For finiteL, the data display a jump discontinuity
in the critical region which decreases in size for increasingL.
The origin of this jump is the ground-state level crossing at
UxsL ,dd. Since we do not observe any discontinuity in the
ionicity calculated for OBC’s ford=1, 4, 20 and up toL
=512, and since the jump obtained for PBC’s becomes
smaller with system size, we expect that the jump vanishes in
the thermodynamic limit andknA−nBl becomes a continuous
function.

IV. ORDER PARAMETERS AND SUSCEPTIBILITIES

A. Bond order parameter and susceptibility

The energy gaps have given us indications for two critical
points. To study the nature of the intervening phase and the
possibility of dimerization in more detail, we calculate the
BO parameter

kBl =
1

L − 1o
j ,s

s− 1d jkcj+1s
† cjs + cjs

† cj+1sl. s11d

This quantity has been used to characterize dimerized phases
in other models—e.g., the frustrated Heisenberg chain inves-
tigated in Ref. 29. Since the OBC’s break the symmetry be-
tween even and odd bonds,kBlÞ0 for all finite systems.
Therefore, a spontaneous dimerization can be obtained di-
rectly by extrapolatingkBl to L→`—i.e., without adding a
symmetry-breaking field explicitly. One can form the corre-
sponding BO susceptibilityxBO by adding a term

Hdim = ro
j ,s

s− 1d jscj+1s
† cjs + cjs

† cj+1sd s12d

to the Hamiltonian(1) and taking

xBO = U ]kBlsrd
]r

U
r=0

. s13d

In practice, the derivative is discretized as
fkBlsrd−kBls−rdg / s2rd wherer is taken to be small enough
so that the system remains in the linear response regime.30

Due to the additional symmetry breaking by the external
dimerization fieldr, the DMRG runs converge more rapidly
than in ther=0 case, making it easier to reach larger system
sizes. Thus we were able to calculatexBO on lattices of up to
L=768 sites.

Figure 9(a) showskBl as a function ofU for d=20 and
different L. The data develop a well-defined maximum near
Uc1 for largeL. The width of the “peak” forL=512 gives a
first indication that there is a region in which the dimeriza-
tion is nonvanishing. Typical results for the finite-size scaling
of kBl are presented in Fig. 9(b). For U!Uc1, the data ex-
trapolate linearly to zero in 1/L. In the opposite limit
U@Uc1, we find kBl,1/Lk with k<0.5–0.6. A similar
slow decay of the BO parameter has also been found in the
standard and extended Hubbard models at half-filling.31 The

FIG. 7. The ionicityknA−nBl for d=1, 4, 20. The solid lines
indicate analytical results from Eq.(6) and the symbols numerical
DMRG results forL=32 sites.

FIG. 8. The ionicity knA−nBl for finite systems with L
=16,32, . . . ,512 ford=20. The inset shows theL→` extrapolated
value.
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substantial finite-size corrections thus require very large sys-
tems to distinguish between scaling to zero with a slow
power law and scaling to a finiteL→` limit. Below, but
close toUc1, the data for smallL initially display power-law-
like finite-size scaling withk,1, but for larger system size,
one finds a crossover to a linear scaling of the BO parameter
(to zero) asL→`. There is also a crossover in the behavior
for U values near but aboveUc1. One again finds a crossover
from a power law withk,1 for smaller system sizes to
linear behavior that can be extrapolated to finite values of
kBl` for larger system sizes. The crossover length scale in-
creases asU approachesUc1 until it becomes larger than the
largest system size considered here. This length scaleLc can
be used to estimate the correlation length, which diverges at
the first (continuous) critical point. We have been able to
calculateLc for U values on both sides ofUc1 and find that it
diverges approximately asuU−Uc1u. This impliesn1=1 (see
also below). Taking into account thatz1n1=1 as extracted
from the linear closing ofDE, one findsz1=1 for the dynami-
cal critical exponent.

This diverging crossover length scale makes it essential to
treat system sizes that are significantly larger than the scale
Lc, even close to the critical pointUc1. In order to obtain
reliable results, we have calculatedkBlL for a number of

system sizesL.200. In carrying out the finite-size extrapo-
lation, we fit to a linear form for the largest system sizes if it
is clear thatLc has been reached, as can be seen in the inset
of Fig. 9(b).

In Fig. 10, the finite-size extrapolationkBl` is shown as a
function ofU for d=1, 4, and 20. As can be seen,kBl`=0 to
well within the error of the extrapolation forU,Uc1. For
U.Uc1, we find a region of width between 0.2 and 0.4(i.e.,
a factor of 5–10 larger than the extent of the dimerized phase
claimed to be found in Ref. 16) in U in which kBl` is dis-
tinctly finite. The onset of finitekBl` at Uc1 is rather steep for
all three values ofd, but seems to be continuous. This steep
onset suggests a critical exponent of the order parameter that
is substantially smaller than 1. Within bosonization the first
critical point was predicted to be Ising-like withb1=1/8.8

The falloff to zero asU increases, on the other hand, is slow,
with a small or vanishing slope. This behavior would be
consistent with a second critical point at which the critical
exponent for the order parameter is larger than 1 or at which
a higher-order phase transition such as a Kosterlitz-Thouless
transition takes place.8 As can be seen by comparing Figs.
10(a)–10(c), the height of the maximum increases with in-
creasingd. For d significantly smaller than 1, the BO param-
eter is so small that it cannot be concluded to be finite within
the numerical accuracy of the DMRG. For the couplings at
which the finite dimerization sets in we obtainUc1sd=20d
<21.39 andUc1sd=4d<5.61, which are in excellent agree-
ment with the results obtained from the vanishing ofDE. The
value obtained ford=1, Uc1sd=1d<2.67, is also in reason-
ably good agreement with the results obtained from the
analysis of the gaps.

FIG. 9. (a) The bond order parameterkBl for d=20 for finite
systems as a function ofU for various system sizes.(b) The scaling
of the data as a function of the inverse system size 1/L. The solid
lines are least-squares fits to the data as described in the text. The
inset shows an expanded view of the scaling forU values near the
critical point.

FIG. 10. The bond-order parameterkBl` in the thermodynamic
limit for (a) d=1, (b) d=4, and(c) d=20 plotted as a function ofU
near the transition points.
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While our data suggest that a critical couplingŨc2, with

kBl`=0 for U. Ũc2, exists, no reliable quantitative estimate

of Ũc2 can be given based on the DMRG data for the BO
parameter. Due to the close proximity of the two critical
points, we were not able to obtain quantitative results for the
critical exponentsb1 andb2 at the critical points, either by a
direct fit of theL=` results or by a scaling plot of the finite-
size data. As discussed next, accurate exponents atUc1 can
be extracted from both the BO and the electric susceptibili-

ties, and a more accurate estimate ofŨc2 can be obtained
from the BO susceptibility.

In order to understand the behavior of the BO susceptibil-
ity, it is useful to first examine the behavior of the BO pa-
rameterkBl as a function of the applied dimerization fieldr.
From ther dependence ofkBl it becomes also apparent that
following the standard procedure of first applying a finiter,
then takingL→`, and afterwardsr→0 will lead to the
same results for the BO parameter as presented in Fig. 10
(see the discussion in Sec. II B). In Fig. 11 kBlsrd is shown
for d=20, three representative values ofU, and different sys-
tem sizes. ForU=19,Uc1, the system is in a phase with
vanishing BO parameter, and the slope atr=0 remains finite
for all system sizes, corresponding to a finite susceptibility.
The valueU=21.42 is in the intermediate regime where we
have found a finite BO parameter in the thermodynamic
limit. As can be seen in the main part of the figure, a jump in
kBlsrd develops. As the system size increases, the absolute
value of dimerization field at which the jump occurs be-
comes smaller. This is the behavior expected in a dimerized
phase in a system with OBC’s. Therefore, the jump in
kBlsrd provides additional evidence in support of an interme-
diate phase with finite dimerization. For the approximate cal-
culation of the susceptibilityxBO<fkBlsrd−kBls−rdg / s2rd,
we have takenr=10−4 which is small enough to stay to the
right of the jump for all system sizes considered. Finally, for
U=50@Uc2, kBlsrd goes to zero foruru→0 and increasing
system size, consistent with the behavior in a phase without
spontaneous dimerization. However, the slope at smalluru
becomes steeper with increasing system size, indicating a
divergence ofxBO.

In Fig. 12, the BO susceptibility as a function ofU is
shown ford=1, 4, 20 and differentL. For all d values, one
observes a two-peak structure that becomes progressively
more well defined with increasing system size. There is a
narrow peak at aU value that agrees well withUc1 deter-
mined earlier whose height grows rapidly with system size.
It signals the onset of spontaneous dimerization. For some-
what largerU there is a minimum inxBO, surrounded by a
narrow region in which its value saturates with system size.
To demonstrate this more clearly, the finite-size scaling for a
representativeU located in the dip region is shown for each
d in Fig. 12(d). For still largerU values, a second, broad
peak develops. The position of this second maximum is
roughly atŨc2, theU value at which the BO parameter van-
ishes. We argue that the second peak is related to the second
phase transition from the dimerized phase into an undimer-
ized phase. To the right of the second peak,xBO does not
seem to saturate for increasing system size, implying that
xBO is divergent for allUùUc2. One can understand this
divergent behavior by studying the BO susceptibility for the
ordinary Hubbard modelxBO

HM. One finds thatxBO
HM is diver-

gent for allU.0 because the bond-bond correlation function
is critical.21 A finite-size extrapolation ofxBO is shown in
Fig. 13 for largeU values for bothd=0 andd=20. We find a
power-law divergencexBOsLd,Lz, with z<0.68 for the or-
dinary Hubbard model andz<0.65 for the IHM. These val-
ues are in good agreement, considering the accuracy of the fit
and additional finite-size effects.

Since xBO diverges for allU to the right of the second
peak, it is difficult to accurately determine the critical cou-
pling Ũc2. However, two different ways of estimatingŨc2sdd
underestimate and overestimate its value. In the first method,
Ũc2 is estimated as the lowestU value for whichxBO seems
to diverge for increasingL and the available system sizes. It
is then still possible that there is a crossover above a length
scale unreachable by us andxBO scales to a finite value. This

tends to underestimateŨc2. In the second method,Ũc2 is
taken to be the position of the second peak at fixedL, ex-
trapolated toL→`. Since the peak position decreases for

increasingL, this method tends to overestimateŨc2. From

these two procedures, we obtain the bounds 21.55, Ũc2sd
=20d,21.69. For the other values ofd, it is very difficult to
accurately determine the lower bound with the data avail-

able. We therefore only give the upper boundŨc2sd
=1d,2.95 andŨc2sd=4d,5.86.

It is generally believed that a quantum critical point is
accompanied by a vanishing characteristic energy scale.28 At

Ũc2 the most obvious candidate isDS, consistent with our

numerical data(see Figs. 4 and 5) and implying thatŨc2
=Uc2. This is assumed in the following discussion.

Since the peak inxBO at Uc1 is well defined and has a
clear growth with system size, it is reasonable to perform a
finite-size scaling analysis. We use a scaling ansatz of the
form

xsU,Ld = L2−hx̃sL/jd, s14d

with j,uU−Ucu−n. As can be seen in Fig. 14, data ford
=20 and system sizes ofL=128 and greater collapse onto

FIG. 11. The BO parameterkBl as a function of applied dimer-
ization fieldr for d=20 andU=21.42. The upper inset shows data
for U=19 and the lower inset data forU=50.
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one curve. The best fit is obtained withUc1=21.385 and the
critical exponentsh1=0.45 andn1=1. The latter value is
consistent with the valuen1=1 extracted from the divergence
of the length scale discussed above. We have also applied the
scaling ansatz ford=1 and 4. For decreasingd, the quality of
the collapse of the data for the available systems sizes be-
comes poorer and the extracted exponents therefore become
less reliable. The best fit is again obtained withn1=1 for
both d, h1sd=4d<0.55 andh1sd=1d<0.65. For the critical

coupling we obtainUc1sd=1d<2.7 andUc1sd=4d<5.6, in
excellent agreement with the values found by other means.
The differences in theh1 obtained for differentU is most
likely due to the limited accuracy in extracting the exponent.
Since the scaling works better for largerd, we conclude that
h1<0.5. Note that this value ofh1 is not in agreement with
the value expected in the two-dimensional Ising transition,
h=1/4.8

It is also possible to collapse the finite-size data onto one
curve at the second transition point using the scaling ansatz
(14). We find that the best results are obtained forj
,expfA/ sU−Uc28 dBg, indicating that the divergence of the
susceptibility atUc2 may indeed be exponential as expected
for a KT-like transition. However, fitting the limited amount

FIG. 12. The BO susceptibility
xBO as a function ofU for (a) d
=1, (b) d=4, and (c) d=20 and
different L. (d) Finite-size scaling
of xBO for a U located in the dip
region of (a)–(c).

FIG. 13. The BO susceptibilityxBO as a function of 1/L for the
ordinary Hubbard modelsd=0d and U=10 and the ionic Hubbard
model ford=20 andU=50. DMRG data are indicated by the cor-
responding symbols and the solid curves represent a least-squares
fit to the indicated forms. FIG. 14. A scaling analysis ofxBO for d=20.
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of data available to this form does not produce completely
unambiguous results for all fit parameters. Therefore, we
have not further attempted to obtain results forA, B, Uc28 , and
h2 with this method.

B. Electric susceptibility and the density-density correlation
function

In order to further investigate the physical properties of
the different phases and transition points, we calculate the
electric polarization and susceptibility.32 The polarization is
given by

kPl =
1

L
o

j

xjknj↑ + nj↓l, s15d

wherexj = j −L /2−1/2 is theposition along the chain, mea-
sured from the center. The polarization is the response due to
a linear electrostatic potential

Hel = − Eo
j

xjsnj↑ + nj↓d, s16d

which is added to the Hamiltonian(1). The electric suscep-
tibility

xel = U ]kPlsEd
]E

U
E=0

s17d

is the susceptibility associated with this field.
The electric susceptibility has been used to investigate the

metal-insulator transition in thet-t8-Hubbard model.32 In this
model, both a phase in whichxel diverges asL2 (a perfect
metal) and a phase in which for increasing system sizexel
scales to a finite value(an insulator) were found when vary-
ing U for fixed nearest-neighbor hoppingt and next-nearest-
neighbor hoppingt8.

In contrast to the ordinary Hubbard model, the polariza-
tion does not always vanish at fieldE=0 in the IHM. For
U=0, d.0, one findskPl=−1/2. This is due to the alternat-
ing ionic potential which induces a charge displacement to
the sites with lower potential energy. Due to the OBC’s, a
chain with even lengthL starts and ends with a different
potential, inducing a dipole moment. This is a boundary ef-
fect. In the strong-coupling limitU@d, we find that kPl
→0, as expected. The electric suceptibilityxel can be calcu-
lated by discretizing the derivative asfkPlsEd−kPlsE
=0dg /E. The fieldE must be taken to be small enough so that
the system remains in the linear response regime.30 Note that
it is necessary to subtractkPlsE=0d since it is nonzero in
general.

A plot of xel as a function ofU for various system sizes is
shown in Fig. 15(a) for d=20. ForU!Uc1 and increasingL,
xel converges to a finite value, similar to the behavior in a
noninteracting band insulator and in the correlated insulator
phase of thet-t8-Hubbard model.32 The data clearly develop
a maximum atUc1 whose height increases markedly with
system size, indicating a divergence at the first critical point.
The finite-size scaling of this height is consistent with a
power-law increase,L2−h1, with h1<0.46. This increase is
weaker than theL2 divergence(which impliesh=0) found in

Ref. 32 and associated with a perfect metal. ForU slightly
larger thanUc1, the data again seem to saturate with system
size. Assuming the scaling form of Eq.(14), the data close to
Uc1 can be collapsed on a single curve as demonstrated in
Fig. 15(b). The best fit is obtained forn1=1 andh1<0.45.
Both of these exponents are in excellent agreement with
those found in the scaling analysis forxBO. We have carried
out a finite-size scaling analysis ford=4 andd=1 and also
find diverging peaks atUc1, as well as collapse of the data
onto a single curve using the scaling form(14) with expo-
nentsh1sd=1d=0.52,h1sd=4d=0.45, andn1=1 (for bothd).
The critical U values obtained from this scaling procedure
are Uc1sd=1d=2.68, Uc1sd=4d=5.59, and Uc1sd=20d
=21.38, which compare well to the values for the critical
coupling obtained from the gaps and from the BO parameter
and susceptibility.

The data ford=20 andd=4 for the largest system sizes
L=256 andL=512 suggest that a second peak may develop
aroundUc2. In order to investigate the behavior ofxelsLd
more precisely in this region, we fit a quadratic polynomial
to kPlsEd through several data points and then take the de-
rivative of this fit function atE=0. This procedure should
eliminate errors caused by a small linear response regime.
Results obtained from this procedure ford=20 indicate a
weak divergence atU=21.65, corresponding to aU value
nearUc2. In addition, we find an even weaker divergence for
all U .21.65. The larger theU value, the smaller the coef-

FIG. 15. (a) The electric susceptibilityxel for d=20 plotted as a
function of U. (b) A scaling analysis of the data of(a).
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ficient of the diverging part, so that the divergence is very
difficult to observe numerically deep in the strong-coupling
phase. One generally expects the divergence ofxel to be
connected to the closing of a gap to excited states which
possess at least some “charge character”(in the sense dis-
cussed below). At Uc1 the divergence is accompanied by the
closing of the exciton gap, leading to a consistent picture.

The situation is less clear forUùUc2. This issue can fur-
ther be investigated by examining the behavior of the
density-density correlation function

Cdensrd = kni ni+rl − knilkni+rl, s18d

shown in Fig. 16 ford=1 and differentU.Uc2. Here we
have averaged over a number ofi values(typically six) for
each r and have performed the calculation on anL=256
lattice. For each value ofU, it is evident that the correlation
function behaves linearly on the log-log scale above some
value ofr, indicating that the dominant long-distance behav-
ior is a power law.(For r close to the system size, finite-size
effects from the open boundaries also appear.) Note that the
sign of the correlation function is negative forr .0, so that
the negative is plotted. A least-squares fit to the linear portion
of the curve yields an exponent of approximately 3–3.5 for
all values ofU.Uc2. This behavior is markedly different
from the behavior forU,Uc1, where we find a clear expo-
nential decay as in a noninteracting band insulator, and from
the behavior atUc1, where we find a power-law decay with
an exponent of<2. Note that if the decay were exponential
for U.Uc2, we would expect the correlation length to
change quickly withU, leading to a marked variation in the
slope. We have ruled out finite-size effects as an origin of the
power-law tails as well as possible symmetry breaking due to
the OBC’s by comparing calculations forL=128 and L
=256 with OBC’s andL=64 with PBC, which yield identical
values except for distancesr near the lattice size(or half the
lattice size for PBC’s).

We have performed calculations ford=20 and have found
similar behavior. The exponent of the power-law tails has a

comparable value to the ones given above, even at very large
U values such asU=50, where the prefactor of the power-
law part is <2310−6. It therefore seems justified to con-
clude that this power-law decay is a generic feature of the
strong-coupling phase for alld.

Our findings forxel andCdensrd are consistent with a sce-
nario in which there is a continuum of gapless excitations for
U.Uc2, where matrix elements of charge operators such as
the densitynj =nj↑+nj↓ are nonvanishing for some of the
states belonging to this continuum. These are the states men-
tioned above which possess charge character. To further con-
firm this idea, we have calculated matrix elementskmunju0l,
where uml denotes themth excited state andu0l the ground
state, for up tom=4, d=20,U.Uc2, andL=32. We find that
the third excited state is the firstS=0 state, for both the
ordinary Hubbard model and the IHM(the fourth state as
well as them=1,2 states haveS=1). For the ordinary Hub-
bard model,k3unju0l vanishes for allj to within the accuracy
of our data and thisS=0 state can be classified as a spin
excited state since its excitation energy is well below the
charge gap. In contrast,k3unju0l is nonvanishing for the IHM
and shows a nontrivial dependence onj which has a wave-
length of approximately the lattice size, implying that the
wave vector characterizing the excitation is nearq=0.

As a consequence, this state contributes to the dynamical
charge structure factor in the IHM but not in the ordinary
Hubbard model. This shows that although several similarities
between the strong-coupling phase of the IHM and the Hub-
bard model were found, low-lying excitations in both models
are of quite different nature. As we have verified, the energy
of u3l becomes smaller for increasingU, in contrast to the
behavior of the one-particle gap which increases linearly
with U. Due to the numerical effort necessary to target such
a large number of states, we were unable to perform these
calculations on larger lattices in order to carry out a finite-
size scaling analysis of the matrix elements.

It is important to note that the power-law decay ofCdensrd
and the divergence ofxel for UùUc2 do not necessarily im-
ply that the Drude weight is finite in this parameter regime or
nearUc1, wherexel diverges roughly asL1.5. Therefore, we
refrain here from classifying the dimerized phase, theU
ùUc2 strong-coupling phase, and the transition pointUc1 as
being metallic or insulating. ForU,Uc1 all our results are
similar to those found in a noninteracting band insulator. To
further investigate the metallic and insulating behavior in
different parts of the phase diagram, it would be necessary to
calculate dynamical correlation functions using, e.g., the dy-
namical DMRG.33 Such an investigation would exceed the
scope of the current paper.

V. PERIODIC BOUNDARY CONDITIONS

Up to this point, we have only presented DMRG results
obtained for systems with OBC’s. Here we will argue that
the results for energy gaps determined for PBC’s are consis-
tent with the ones discussed in Sec. II. We present further
evidence thatUc2 obtained from the closing of the spin gap

for OBC’s and the coupling constantŨc2 at which the BO
parameter vanishes coincide.

FIG. 16. The negative of the density-density correlation function
−fknini+rl−knilkni+rlg for U.Uc2. The indicated lines are least-
squares fits over a range ofr in which the behavior is linear on the
log-log scale. The solid line has exponent −3.27 and the dashed line
exponent −3.4.
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Here we investigate the level crossing point of the ground
state and the first excited stateUx, as well as the crossing of
the first and second excited statesUxx. In Ref. 11(and further
references therein), the crossing points of ground and excited
states of finite systems are associated with phase transition
points. In particular, the crossing of the ground state and the
first excited state with opposite site-inversion parity were
shown to correspond to a jump in the charge Berry phase.
The crossing of the first and second excited states which are
spin singlets and spin triplets with opposite site-inversion
symmetry and zero total momentum was argued to be asso-
ciated with a jump in the spin Berry phase and to character-
ize a second transition. While the direct calculation of the
Berry phases is beyond the scope of this paper, it is possible
for us to analyze the finite-size behavior of the level cross-
ingsUx andUxx. We therefore must calculate the energies of
the ground state and the first two excited states simulta-
neously. Sufficiently accurate DMRG results for these ener-
gies can only be obtained for system sizes of up toL=64,
small compared to the ones studied for OBC’s, but neverthe-
less much larger than the ones that can be reached with exact
diagonalization.11–14 We show results for PBC’s for systems
with L=12, 16, 24, 32, and 64—i.e., system sizes with 4n
sites—so that the site-inversion symmetry of the ground state
is guaranteed to change sign withU, as discussed in Sec. I B.
We find nonmonotonic behavior of the level crossing points
as a function of system size at a scale beyond the system
sizes which can be investigated using exact diagonalization.

The finite-size scaling ofUx andUxx for d=1 is shown in
Fig. 17. The error bars result from the uncertainty in deter-
mining the closing or crossing points as well as from the
poorer convergence of the DMRG algorithm for PBC’s. Nev-
ertheless, ford=1 they are only of the order of the symbol
size or smaller. Ford=4 andd=20, the convergence forL
=64 is poorer aroundUx andUxx, but we obtain qualitatively
similar behavior up to the larger error bars.

For all d studied, the finite-size extrapolation ofUx leads
to critical couplings in agreement with the ones given in Sec.
II C, up to the smaller numerical accuracy available with
PBC’s. Using a quadratic polynomial for the extrapolation,
we find Uxsd=1d=2.71, Uxsd=4d=5.63, and Uxsd=20d

=21.42.(Due to complicated finite-size effects, we only use
the data forLø32 for d=4 andd=20.) The angle of crossing
of E0 andE1 decreases with increasing system size. This is
consistent with a continuous critical behavior atUc1 in the
thermodynamic limit. We have examined the finite-size scal-
ing of DE=E1−E0 for U.Ux and find the behavior to be
nonmonotonic with 1/L and therefore difficult to extrapolate.
However, we do find thatDE,DS for all finite systems for
Ux,U,Uxx. The behavior is not inconsistent with a van-
ishing exciton gap in this region.

The nonmonotonic behavior ofUxx, as seen in Fig. 17,
makes anL→` extrapolation difficult. In fact, an extrapola-
tion using the system sizes available to exact diagonalization
would give aUc2 which is substantially larger than if the two
largest system sizes were included. This could explain the
discrepancy in the size of the region between the two critical
points found here and obtained in Ref. 11. By extrapolating
the finite-size data using a quadratic polynomial in 1/L, we
obtain UxxsL=` ,d=1d=2.84, UxxsL=` ,d=4d=5.97, and
UxxsL=` ,d=20d=21.75. The values forUxx and forUc2 ob-
tained from the BO susceptibility are in fairly good agree-
ment. The differences indicate that even larger system sizes
are needed to perform an accurate finite-size extrapolation
for PBC’s.

In order to confirm that the spin gap is finite in the inter-
mediate phase, we have performed finite-size extrapolation
for this gap for systems with PBC’s and up to 32 sites forU
values nearUc1. For d=20, where the spin gap is largest and
has the smallest relative error, we findDS

PBCsL=`d<0.071
and DS

OBCsL=`d<0.070 for U=21.40, which is a value of
the coupling very close to the extrapolated values forUc1
obtained with both with OBC’ssUc1<21.39d and with
PBC’s sUc1<21.42d. For U values which are in the interme-
diate phase as extrapolated from both types of boundary con-
ditions, we find a similar correspondence. ForU=21.5 we
obtain DS

PBCsL=`d<0.03 while DS
OBCsL=`d<0.02. Recall

that our error estimate for OBC’s wasuD1
HM,DMRG

−D1
HM,exactu=0.003 for OBC’s (see Sec. II); the error for

PBC’s is at least a factor of 3 larger. This correspondence
supports the contention that the spin gap in the thermody-
namic limit at Uc1 and in the intermediate phase are the
same, independent of the boundary conditions applied.

Since the transitionUc2 is associated with the closing of
the spin gap, the gap to the excitations atUxx should scale to
zero with system size. The inset of Fig. 17 shows that
DEsUxxd=DSEsUxxd indeed closes in the thermodynamic
limit. Since one of the two states that are degenerate atUxx is
a spin triplet, this implies a vanishing spin gap. We thus
obtain further(indirect) evidence that the couplings at which
the BO susceptibility diverges and the spin gap closes coin-
cide, consistent with a two-critical-point scenario. In particu-
lar, the angle of the crossing of the first and second excited
state also decreases with increasingL, consistent with a con-
tinuous transition atUc2.

VI. SUMMARY

In this paper, we have presented density-matrix renormal-
ization group results that elucidate the nature of the quantum

FIG. 17. Crossing points of excited states for PBC’s ford=1 as
a function of inverse system size. The inset shows the extrapolation
of DSsUxxd as a function of inverse system size.
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critical behavior found in the half-filled ionic Hubbard
model. By carrying out extensive and precise numerical cal-
culations and by carefully choosing the quantities used to
probe the behavior, we have been able to investigate the
structure of the transition more accurately than in previous
work. This has allowed us to resolve a number of outstand-
ing uncertainties and ambiguities. We have worked at three
different strengths of the alternating potentiald covering a
significant part of the parameter space and find the same
qualitative behavior for all threed values. In particular, we
have carried out extensive finite-size scaling analyses of
three different kinds of gaps: the exciton gap, the spin gap,
and the one-particle gap. We find that for fixedd and in the
thermodynamic limit, the exciton gap goes to zero as a func-
tion of U at a first critical pointUc1, and the spin gap goes to
zero at a distinct second critical pointUc2.Uc1 and is
clearly nonzero atUc1. While Uc2 for the spin gap is finite to
within our resolution, we cannot completely rule out an un-
resolvably small spin gap for largeU—i.e., Uc2→`. The
one-particle gap(the two-particle gap behaves similarly)
reaches a minimum close toUc1, but never goes to zero and
never becomes smaller than the spin gap.

Due to the explicitly broken one-site translational symme-
try, the ionicity is finite for all finiteU. ForU@d the ionicity
found numerically agrees very well with the one obtained
analytically from the strong-coupling mapping of the ionic
Hubbard model onto an effective Heisenberg model.

We have also studied the bond-order parameter, the order
parameter associated with dimerization, as well as the asso-
ciated bond-order susceptibility. The result of the delicate
finite-size extrapolation indicates that there is a finite bond-
order parameter in the intermediate region betweenUc1 and
Uc2. Here we again cannot strictly rule outUc2→` on the
basis of the bond-order parameter. There is a divergence in
the bond-order susceptibility at bothUc1 and atUc2, as one
would expect from two continuous quantum phase transi-
tions. However, the bond-order susceptibility diverges in the
entire strong-coupling phaseUùUc2, albeit more weakly
than atUc1. We have pointed out that this is in accordance
with the behavior found in the strong-coupling phase of the
ordinary Hubbard model.

We find that the electric susceptibility is finite forU,Uc1
but diverges roughly asL1.5 at Uc1. This divergence is
weaker than the one found for noninteracting electrons(with
d=0) and in the metallic phase of thet-t8-Hubbard model.32

A finite-size scaling analysis of both the bond-order suscep-
tibility and the electric susceptibility yield the same critical
exponents atUc1. However, the valueh1<0.5 is not consis-
tent with the critical exponents of the classical two-
dimensional Ising model.8

The electric susceptibility also seems to diverge, albeit
quite weakly, for UùUc2. Correspondingly, the density-
density correlation function has a long-distance decay which
is of power-law form, but with a small prefactor which be-
comes smaller with increasingU, and a relatively large ex-
ponent of approximately 3–3.5. We speculate that this behav-

ior is related to the mixed spin and charge character of
excitations present in the strong-coupling phase of the ionic
Hubbard model, in contrast to the ordinary Hubbard model.

We point out that the divergence of the electric suscepti-
bility at Uc1 and for UùUc2 does not necessarily imply a
finite Drude weight. Based on our results for various energy
gaps and the electric susceptibility, we therefore cannot un-
ambiguously classify all different phases and transition
points as being metallic or insulating.

Finally, we have presented DMRG results for the position
of the crossing of the ground state and the first excitedUx
and the crossing of the first two excited statesUxx on systems
with periodic boundary conditions on up to 64 sites. The
finite-size extrapolation ofUx givesUc1. Due to the loss of
accuracy, it is somewhat less clear that the finite-size ex-
trapolation ofUxx corresponds toUc2. However, the extrapo-
lated value of the spin gap corresponds to the one obtained
when extrapolating using OBC’s. This further establishes the
finiteness of the spin gap in the dimerized phase.

The behavior of all of the quantities we have presented
here supports a scenario with two transition points at finite
Uc1 andUc2, with a dimerized phase in the intermediate re-
gion. Due to the reported difficulties with the formation of
the second state of the ground-state manifold in the dimer-
ized phase when using OBC’s, we have not been able to
determine the finite-size behavior of the exciton gap for
U.Uc1. However, we do believe that the behavior of the
other quantities clearly establishes the existence of the
dimerized phase. One might nevertheless ask the question of
whether other scenarios are consistent with our data.

One possibility would be that there is no dimerization for
U.Uc1. However, this is inconsistent with our results for the
spin gap, the bond-order parameter, and the divergence of the
bond-order susceptibility atUc1. Therefore, we feel that such
a scenario is not supported by our calculations.

Another possibility would be that there is a single dimer-
ized phase forU.Uc1—i.e., thatUc2→`. While an unre-
solvably small gap and dimerization at largeU cannot be
strictly ruled out by a numerical calculation with finite reso-
lution, we can put quite strong limits on the spin gap and
dimerization for a value ofU that is only a fraction oft
greater thanUc1. In addition, we have made arguments in-
volving the strong-coupling limit that support the plausibility
of a finite Uc2. Together with the divergence of the suscepti-
bilities at two distinct parameter values, we feel that an in-
terpretation of our numerical results in favor of a scenario
with an intermediate dimerized phase and a finite value for
Uc2 is compelling.
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