PHYSICAL REVIEW B 70, 155115(2004

Quantum critical behavior of the one-dimensional ionic Hubbard model
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We study the zero-temperature phase diagram of the half-filled one-dimensional ionic Hubbard model. This
model is governed by the interplay of the on-site Coulomb repulsion and an alternating one-particle potential.
Various many-body energy gaps, the charge-density-wave and bond-order parameters, the electric as well as
the bond-order susceptibilities, and the density-density correlation function are calculated using the density-
matrix renormalization group method. In order to obtain a comprehensive picture, we investigate systems with
open as well as periodic boundary conditions and study the physical properties in different sectors of the phase
diagram. A careful finite-size scaling analysis leads to results which give evidence in favor of a scenario with
two quantum critical points and an intermediate spontaneously dimerized phase. Our results indicate that the
phase transitions are continuous. Using a scaling ansatz we are able to read off critical exponents at the first
critical point. In contrast to a bosonization approach, we do not find Ising critical exponents. We show that the
low-energy physics of the strong-coupling phase can only partly be understood in terms of the strong-coupling
behavior of the ordinary Hubbard model.
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[. INTRODUCTION bosonic charge gap is finjtevith vanishing bond order and
A Motivation bosonic spin gap at a second critical pot, which is of

Kosterlitz-ThoulesgKT) type.

Theoretical studies of the ionic Hubbard mod&tM) Several groups have attempted to verify this phase dia-
date back as far as the early 1976se Ref. 1 and references gram for the IHM using mainly numerical methods. Varia-
therein). The model consists of the usual Hubbard modeftional and Green function quantum Monte Ca@MVC) data
with on-site Coulomb repulsiot supplemented by an alter- Obtained for the BO parameter, the electric polarization, and
nating one-particle potential of strengghit has been used to the localization length were interpreted in favor of a scenario
study the neutral-to-ionic transition in organic charge-With asingle critical pointg and finite BO forU>U..f In a
transfer salfs? and to understand the ferroelectric transition différent calculation using the auxiliary field QMC method,
in perovskite materiald.Based on results obtained from dat@ for the one-particle spectral weight were argued to show
numericatS and approximate methofé, it was generally two critical points with an intermediate metallic pha8&x-
believed that at temperature=0 and fo'r fixedd a single act diagonalization studies of the Berry phdsand energy

phase transition can be foundUf is varied. This quantum gaps®4 have been interpreted as favoring one critical

hase transii 50 int ed insulator-insul t%oint13 or two pointst! in two investigations this issue was
phase transition was also Interpreted as an insulatorinsulatly | nresolved?14 Several density-matrix renormalization
transition from a band insulatglt) < §) to a correlated insu-

, ) ; group (DMRG) studies have been performed focusing on
lator (U> 9). In the present paper, we discuss in detail howgjiferent energy gaps, the localization length, the BO param-
this transition occurs. eter, the BO correlation function, different distribution func-
In 1999, Fabrizio, Gogolin, and Nersesyan used bosonizaions, and the optical conductivit§—*” Some of the results
tion to derive a field-theoretical model which they argued tohave been interpreted to be consistent with a two-critical-
be the effective low-energy model of the one-dimensionapoint scenarid>*’ In Ref. 14 the signature of only one
IHM.® Surprisingly, the authors found, using various ap-phase transition was found and the possible existence of a
proximations, that the field-theoretical model display®  second transition was left undetermined. The phase diagram
quantum critical points adJ is varied for fixed 6. For  of the IHM has also been studied using approximate methods
U <U the system is a band insulat@with finite bosonic  such as the self-consistent mean-field approximéafiofithe
spin and charge gapsas expected from general arguments.slave-boson approximatid,and a real-space renormaliza-
At the first transition pointU.,;, they found Ising critical tion group method? Although these studies led to interest-
behavior as well as metallic behavior in the sense that théng insights, the validity of the approximations in the vicinity
gap to the bosonic charge modes goes to zero at the criticaf the critical region can be questioned on general grounds;
point only. In the intermediate regimé,;<U <U,,, a spon- therefore, we do not focus on these approaches any further
taneously dimerized insulator pha@a which the bosonic here. The present situation can be summarized as being
spin and charge gaps are finiteas found. In this phase the highly controversial.
bond-ordeBO) parameter, which is the ground-state expec- Here we refrain from giving a detailed discussion of the
tation value of the staggered kinetic energy per b¢imd  merits and shortcomings of the various numerical methods
details see beloyyis finite. The authors argued that the sys-used and the possible problems in the interpretation of nu-
tem goes over into a correlated insulator ph@sevhich the  merical results in the literature. Instead, we present a detailed
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study of theT=0 phase diagram of the one-dimensional IHM Heisenberg model, as has been suggested éabigrhas
mainly based on DMRG calculations on systems with bothrecently been questioné@lAs a result of our investigations,
open and periodic boundary conditiof@BC's and PBCs  we are able to resolve many of the controversial issues and
We have calculated a number of different many-bodypresent indications in favor of a scenario with two quantum
energy gaps, including the spin gap, the one-particle(f@ critical points. At the appropriate points in the paper, we will
energy difference of the ground states with+1, N, and  priefly comment on the relationship of our results with the
N-1 electrony and the gaps to the firgtexciton”) and  gnes obtained in earlier publications.
second excited states. A definition of the gaps is given in Sec. The remainder of the paper is organized as follows. In
Il A. Our results explicitly show that different gaps associ- goc | B we introduce the model and discuss the limits in
ated with charge degrees of freedom do not coincide in th?vhich it ,can be treated exactly. In Sec. | C, we discuss the
thermodynamic limit, although they are often believed t0 inj 1 s of our DMRG proceduré. In Séc. ”” our finite-size

the literature(see also Refs. 16 and 14ur data show that .
the exciton gap vanishes at a coupling which depends on and extrapolated data for the energy gaps are discussed. In
Sec. lll, we present our results for the ionicity and show that

and which we define ad.,. At this critical point the spin gap e . ; .
remains finite. The spin gap vanishes at a second criticdl the largeU limit they are consistent with analytical results

coupling, which defines oud.,. obtained by mapping the IHM to an effective Heisenberg

In addition to the energy gaps, we have determined thénodel_. The BO parameter and the related susceptibility are
BO parameter and susceptibility as well as the chargelnvestigated in Sec. IV A. We present results for the electric
density-wave(CDW) order parameter. Since the single-site Susceptibility and the density-density correlation function in
translational symmetry is explicitly broken due to the alter-Sec. IV B. In the numerical calculations of Secs. lll and IV
nating potential, we will avoid using the term “order param-we use OBC's, for which the DMRG algorithm performs
eter” in describing the CDW order and instead use the ternpest. To complete our DMRG study in Sec. V, we present
“jonicity” to refer to the difference in occupancy between results for the energy gaps calculated for PBC's and summa-
sites on the two sublatticés,—ng). We find that the ionicity ~ fize our findings in Sec. VI.
is continuous and nonvanishing for all values of the interac-
tion strength.

From the finite-size scaling of the BO parameter, we find i _ o o
a parameter regime with a nonvanishing dimerization start- 1he one-dimensional IHM is given by the Hamiltonian
ing atU.; and ending atJ.,. We find that the transitions at s '
both critical points are continuous. The BO susceptibility H=-1t>, (c/,¢j11,+H.C)+UX njyny + -2 (= Din,,
shows one isolated divergencelt, separated from a region jo j 2o
of divergence starting atl .. (1)

We have also investigated the electric susceptibility, " ] }
which is finite in the thermodynamic limit fou <U,, and ~ Wherecj, (cj,) destroysicreategan electron with spirr on
diverges at the lower transition poitk,;. For U>U,,, the lattice sitej and njU:CToch. We set the lattice constant equal
behavior is less clear: there seems to be a weak divergené@ 1 and denote the number of lattice sites loyHere we
with system size nedd,, and forU > U,,. This behavior is study the properties of the half-filled system whtxL elec-
consistent with that of the density-density correlation func-trons.
tion, which decays exponentially as expected in a band insu- The system corresponds to the usual Hubbard model with
lator phase folU <U,,, but surprisingly decays as a power an additional local alternating potential. It is useful to con-
law with an exponent between 3 and 3.5 in the StrongSider various IImItlng cases in order to gain InS|ght into pos-
coupling regimel > U,,. sible phases and phase transitions. BerO and 6> 0, the

Using a scaling ansatz for the BO and the electric suscegnodel describes a conventional band insulator with a band
tibility we can determine the critical exponents @g;. In ~ 9ap é. Since the alternating one-particle potential explicitly
contrast to the bosonization appro&aie obtain critical ex- breaks the one-site translational symmetry, the ground state
ponents different from those of the two-dimensional Isinghas finite ionicity.
model. The one-dimensional half-filled Hubbard model without

For (almos) all observables, we find that a careful finite- the alternating potentialé=0) and withU>0 describes a
size scaling analysis is crucial to obtain reliable results in theorrelated insulator with vanishing spin gag"(U) and
thermodynamic limit. Furthermore, since it is necessary tccritical spin-spin and bond-bond correlation functihall
distinguish between fairly small, but finite, gaps and ordergaps associated with the charge degrees of freedom, such as
parameters and vanishing ones, a detailed understanding @fe one-particle gap\i™(U), are finite?? (The gaps dis-
the accuracy of the DMRG data is essential. cussed here are defined in Sec. I) Ahe ionicity and the

In order to obtain a comprehensive picture of the grounddimerization are zero for all values of. These two limiting
state phase diagram, we have studied the different pljases cases suggest that the system will be in two qualitatively
a function ofU) for different §'s which cover a wide range of different phases in the limits <5 andU> 6.
the parameter space. We also consider the limit of large Cou- In the atomic limit,t=0, and for 6<U < §, every second
lomb repulsionU — <o (for fixed § and hopping matrix ele- site of the lattice with on-site energys#2 (A siteg is occu-
mentt) and show that some aspects of the physics of thepied by two electrons while the sites with energ¥2 (B
model in this limit can be understood in terms of an effectivesiteg are empty. The energy difference between the ground

B. Model and exactly solvable limits
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state and the highly degenerate first excited stafe-ld. For  odic or antiperiodic boundary conditions, a symmetry which
U> 6, both theA andB sites are occupied by one electron is not present for OBC’s. As pointed out in Ref. 12, the
and the energy gap i©-4. Thus fort=0 a single critical ground state of the effective Heisenberg model with periodic
point U.(8) =6 with vanishing excitation gap can be found. boundary conditions for systems with 4attice sites or an-
One expects similar critical behavior with at least one criticaltiperiodic boundary conditions for systems with+#2 sites

point to persist for the full problem with finite has a parity eigenvalue of —1 whereas the ground state for
To describe the physics of the IHM in the limit>t, 6, U=0 has a parity eigenvalue of +1. This suggests that the
an effective Heisenberg Hamiltonian IHM undergoes at least one phase transition point with in-

creasingU for fixed &. This level crossing will be replaced
, 2) by level repulsion and approximate symmetries for other
uz- & boundary condition$? In the thermodynamic limit, the effect

derived in Ref. 1 | | h i of the boundaries will disappear and the level repulsion be-
was derived in Ref. 1 analogously to the strong-coupling,,meg vanishingly small. It is important to point out, how-

perturllaatti)on expansign of t:e ur?ual Hubbard rlr_mdel. It haﬁver, that a level crossing on small finite systems does not
recently been pointed out that this strong-coupling mapping, . .ssarily lead to a first-order transition in the thermody-

doesl not t?ke Into_account an gxpllcnlyhbrokgn onfe's"tenamic limit; careful finite-size scaling must be carried out in
translationa symmetr’y‘! However,_ it was shown in Ref. 1 “order to determine the critical behavior.
that the strong-coupling expansion preserves the one-sit€ rr, these considerations, one expects to find at least one

translat_lon symmetry in th_e effective spin Hamﬂ_tpmaralb_ quantum phase transition from a phase with physical proper-
.orlders in the strpng-cquplmg expansion. In gdd|t|0_n, the 'ONties similar to those of a noninteracting band insulator to a
lcity can be derived directly from the effective spin Hamil- phase with properties similar to those of the strong-coupling
tonian as follows. The symmetry of the Hamﬂ_tom@ﬁq. phase of the ordinary Hubbard model. However, the details
(D] implies that after taklng .the thermod_ynamc limit,, of the transition and the physical properties of the different
=Ny, for o=T,| and allj. Using the Ham_|Ito_n!an, Eql), phases remain unclear from these arguments. Furthermore,
and the Hellman-Feynman theorem, the ionicity the behavior of the BO parameter in the critical region can-

1) 42U
) J_ T o

Hug :JZ (Sj S,
j

2 , not be estimated from these simple limiting cases. Therefore,
(Na—ng) =~ [2 (= DXn;) (3  a detailed and careful calculation of the characterizing gaps
I and order parameters is necessary. Since no direct analytic
can be determined via approach is known to be able to treat the parameter values in
the critical regime, we restrict ourselves to numerical calcu-
(Np—Ng) = — ‘_1<ﬁ> - ‘_1(7_EO_ (4) lations using the DMRG method with the details described in
L\ a6 L 96 the next section.

In the following, we measure energies in units of the hop-
ping matrix element—i.e., sett=1. In order to be able to
cover a significant part of the parameter space, we have car-
ried out calculations withd=1, =4, and =20 for weak
B 4Ut? 1 interaction valuedJ) < 6, for strong couplingU> 8, and in
Eo = Lm In2 "2 (5 the intermediate critical regimel ~ 5. For the sake of com-

pactness, we will mostly focus 06=20 when presenting
in the thermodynamic limit. In the limi> &, we can thus results that are generic to all thréaegimes.
derive an analytic expression for the ionicity:

Ust C G hod
(Na—ng)=321In2 (6) . DMRG metho

(U2-62)2" . . . -

We have carried out our calculations using the finite-
It implies that for anyU <o, the ionicity of the IHM is  system DMRG algorithm. Our investigation focuses on the
nonzero and for large) vanishes as 1J%. Since CDW order  ground-state properties for systems with OBC's; i.e., we
is explicitly favored by the Hamiltonian, it is not surprising have performed DMRG runs mostly with OBC’s and one
that the ionicity is nonvanishing for all finite). As will be  target state, the case in which the DMRG algorithm is most
shown in Sec. lll, this expression shows excellent agreemerdfficient. In order to perform the demanding finite-size scal-
with our DMRG data for the IHM. This gives us confidence ing necessary, we have performed calculations for systems
that the effective Heisenberg model indeed gives correctly avith up to L=768 sites, much larger than in an earlier
least certain aspects of the low-energy physics. Since theork.2®

The ground-state energi, of the effective Heisenberg
model [Eq. (2)] is known analytically® and, in terms ofU
and é, is given by

Heisenberg moddlEq. (2)] has a vanishing spin g&p,the In order to investigate the low-lying excitations, we have
mapping suggests that the spin gap also vanishes in the largalso performed calculations targeting up to three states si-
U limit of the IHM. multaneously on systems with OBC's. These numerically

Although the alternating potential breaks the one-sitemore demanding calculations were carried out for systems
translational symmetry explicitly, the model remains invari- with up to L=256 sites for three target states and with up to
ant to a translation by two lattice sites. This leads to a sitel. =450 sites for two target states. In order to compare with
inversion symmetry for closed-chain geometries with peri-exact diagonalization calculations and to extend its finite-size
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scaling to larger systems, we have performed calculations for A. Definition of the gaps

PBC'’s with up toL =64 sites and one to three target states. In | this section, we study excitations between a nondegen-

this case, the maximum system size is limited by the relag ate S=0 ground state and various excited states. In the

tively poor convergence. _ numerical calculations, we have found that for OBC'’s the
The DMRG calculations for OBC's with one target state 5,ound state is nondegenerate with total spm0 for all

were carried out performing up to six finite-system sweepg)arameter values studied here. We define the exciton gap

keeping up tom=800 states. For more multiple states and

for PBC's up to 12 sweeps were performed, keeping up to Ag=Ey(N,S) - Eo(N,S=0) (7)

m=900 states. In order tp test the convergence of Fhe DMRC&S the gap to the first excited state in the sector with the same
runs, the sum of the discarded density-matrix elgenvalu?_EartiCIe numbeN and withS,=0, whereS, is the z compo-
and the convergence do_f the dg;ounc_i-f]ta_tte ?necerY%erﬁ MOMent of the total spin. We also calculate the expectation value
tored. For OBC's, the discarded weight is of order the  tihe total spin operatofS?) so thatS is known.
worst case and th% grom_md—state energy is converged to_ AN The spin gap is defined as the energy difference between
?gssol)lit%;reﬁr ?I]é aggltjr'gchSt cases the absolute error '.Sghe ground state and the lowest-lying energy eigenstate in the
: y in both the energy and the dis._ .
) : , .~ ~S=1 subspace:
carded weight gives us confidence that the wave function is
also well converged and that local quantities are quite accu- Ag=Eyx(N,S=1) - Eyx(N,S=0). (8
rate. . . . _ .
For PBC's, the discarded weight is of the orderlia the ~ YWhen the first excited stat,(N, S in the S,=0 subspace is

worst case and the convergence of the ground-state ener@ySPin triplet withS=1, As=Ag. Within the DMRG, this gap
for most runs is up to an absolute error of 16r better, but  c2N be calculated by dt_etermlnlrjg the ground-state energies in
for extreme cases such as64 and three target states for differentS, subspaces in two different DMRG runs.

parameter values near the phase transition points, the conver- T A< As, we call the lowest excitation a charge excita-

gence in the energy is sometimes reduced to an absolufion: In fact, exact diagonalization calculations for system
error of only 10%. However, we believe that this accuracy is With PBC’S suggest that the gag: corresponds to the gap in

high enough for the purposes of the discussion in Sec. V. the optical co_ndL_Jctivi'[)%‘.4 We have carried out additional ex-
In general, we find that our data are sufficiently accurate®t diagonalization calculations that show that the corre-
so that extrapolation in the number of statasept in the sponding matrix elements of the current operator are also
DMRG procedure does not bring about significant improve-"onzero for OBC's. We therefore expect thigt (for excita-
ment in the resultgat least for OBC’s Details of the ex- tions withS=0 and whenlg <Ag) corresponds to the optical
trapolations and error estimates for particular calculate@@P in the thermodynamic limf. To obtain a deeper under-

quantities are given in the corresponding sections. standing of the excitation spectrum in the critical region, we
also calculate the gap to the second excited state,

ASE: EZ(NIS) - EO(N,S: 0)1 (9)

r selected parameters.

II. ENERGY GAPS

. . . f
One important way to characterize the different phases of° X o . -
the IHM are the energy differences between many-bod¥j In the literature, gaps to excitations which can be classi

eigenstates. Gaps to excited states can be used to character';e?r% r?cseghk?é?viei)acIta:gﬂrr]\zl-zigtgﬁ:r?efailggIﬁ;[esdesz):gk\;\zgh d(;flf
phases by making contact with the gaps obtained ir} g 9

bosonization calculations and also form the basis for ex eri-erent numbers of particleghis gap is commonly called the
P “charge gapj. In particular, one can definemparticle gap

mentally measurable excitation gaps, found, for example, in
inelastic neutron scattering, optical conductivity, or photo- A, =[Ey(N +p,Si;,) + Eo(N = p,S) = 2E¢(N,S=0)1/p,
emission experiments. In addition to the gaps themselves, (10)
however, matrix elements between ground and excited states
as well as the density of excited states are important in formwhich is essentially the difference in chemical potential for
ing the full experimentally relevant dynamical quantities. Anadding and subtracting particles. The spit%,, is the mini-
example is the matrix element of the current operator thamal value, 1/2 or 0 fop odd and even, respectively. Either
comes into calculations of the optical conductivity. We havethe one-particle gap; or the two-particle gag\, is com-
investigated the behavior of the matrix elements for the dymonly used. The calculation d; or A, is numerically less
namical spin and charge structure factors and for the opticalemanding than that af¢ since it is sufficient to calculate
conductivity using exact diagonalization on systems withthe ground-state energies in the subspaces with the corre-
both PBC'’s and OBC's. sponding particle humbers. However, since these gaps in-
In the following, we present DMRG calculations of the volve changing the particle number and, for1, the spin
gaps to first and second excited states, the spin gap, and tgeantum number, it is nat priori clear if they can be used to
one-particle gap in which a careful finite-size scaling on syscharacterize possible phase transition points ofNparticle
tems of up to 512 sites is carried out. As we shall see, this isystem. In many cases of interest, the difference betagen
necessary in order to resolve the behavior of the gaps in th&,, and Ag vanishes forL—«, but in other systemsgan
transition regime and to distinguish between scenarios witexample is the Hubbard chain with an attractive interagtion
one or two critical points. their behavior differs. As we shall se&; andAg do behave
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05 =20 and varioud.. For comparison, the spin gap fdar

=300 is also shown. The exciton gap develops a local mini-
mum aroundU=21.38, which, for increasing., becomes
sharper. Furthermore, the value at the minimum becomes
smaller and seems to approach zero. There is a cuspfior
all system sizes shown here at a certdito the right of the
minimum and then a smooth decay towards zero gap with
further increasingJ. As illustrated forL=300, this corre-
sponds to a level crossing with the first trip[&=1) excita-
tion, which becomes the first excited state for all larger
values—i.e.,Ag=Ag. The data foré=1 and §=4 behave

. . : ‘ similarly, but the increase to the right of the minimyuop to
21 212 214 216 218 the cusp is substantially steeper.

(@) " AgL=128 —+—
L=200 —»—
L=300 —o—
L=400 ——

As, L =300 —a—

u In Fig. 1(b), we displayAg, the gap to the second excited
05 r T T T stateAgg, and the spin gapg (calculated using the ground
®) AAE = state in theS,=1 sectoy for L=128. It can be seen that

Z‘: Age< Ag for U values to the left of the minimum iag. A

similar behavior is found fo6=4 andé=1. This means that
there is more than org=0 excitation below the lowest-lying
S=1 excitation, consistent with a scenario in which a con-
< 025} 1 tinuum of S=0 excitations becomes gaplesslyy;. This is
the scenario predicted to occur at the first quantum critical
point in the bosonization approatBince system sizes for
calculations ofAgg were limited toL=128(L=256 for some
parameter valugswe did not attempt to systematically ex-
. . ) - trapolateAgg to the thermodynamic limit.
21 212 214 216 218 We next discuss the finite-size scaling fif to the left of
U the cusp. FotJ sufficiently far from the critical regiofi.e.,
the minimum), the finite-size corrections are small and the
FIG. 1. The exciton gap\g for finite system sized and §  data can safely be extrapolated to the thermodynamic limit
=20. The spin gaps for L=300 is also shown for comparisaf)  ysing a quadratic polynomial in L/ leading to a finite ex-
The exciton gap, the spin gays;, and the gap to the second excited cijton gap. Close to the minimum, the scaling becomes more
stateAsg for L=128. complicated. At smaller system sizes, we find=Ag and
the scaling is nonlinear. However, at larger system sizes,
differently nearUc;. In this work we focus our investigation there is a crossover to linear scaling with(L) # Ag(L). The
on A;. We have also calculatefl, and find that it behaves crossover length scale becomes largetUaapproaches the
similarly to A4, although it generally takes on slightly larger position of the minimum. As a consequence, a reliable finite-

0

values for finite systems. size extrapolation in the critical region requires very large
Gaps are also used to characterize the phase diagragystem sizes.
within the bosonization approaéi? It is generally believed To investigate the behavior &s— o, we interpolate¢ as

that the bosonic charge gap defined there can be identifieal function ofU for fixed L close to the minimum with cubic
with the gap to the first excited state with spin quantumsplines. From the interpolation we can read off the minimal
numberS=0 (i.e., the exciton gap\¢ [Eq. (7)] as long as value of the gapA,,,(L) and the positionU,,,(L) for the
Ag<Ag) and the bosonic spin gap withs [Eq. (8)], al-  different system sizes. Figure 2 shows the resulting,(L)
though a formal proof is missing. as a function of 1L for §=1, 4, and 20. A linear extrapola-

Based om\g, Ag, andAgg and the very limited knowledge tion of the data givesA,(L=%,6=1)=3X1073, AL
on matrix elements due to the small system sizes available tox §=4)=5x104 and A,(L=%,8=20=-1x 104
exact diagonalization, no reliable characterization of the meyyithin the accuracy of our data and our extrapolation, these
tallic or insulating behavior of different phases and transitionminimal gaps can be considered to be zero. In analogy with
points can be given. the atomic limit, we interpret the vanishing of the exciton
gap as defining a critical poidt. The critical couplingU,,
can be determined from fittind ,i,(L) to a linear function in
1/L, as shown fors=20 in Fig. 3. The extrapolation is simi-

In this section, we calculate excited states within thelar for the others values and we obtait (6=1)=2.71,
S,=0 sector. Due to the additional numerical difficulty of U.(6=4)=5.61, andU.(6=20)~21.39. As will be dis-
calculating excited states in the same quantum number secussed in Sec. IV B, the vanishing of the exciton gap is ac-
tor, we are restricted to systemslof 450 lattice sites foAg ~ companied by a diverging electric susceptibility.
andL =256 sites forAgg. Examining the BO parameter and the related susceptibil-

In Fig. 1(a), Ag as a function ofU is presented for ity in Sec. IVA, we will present evidence in favor of a

B. Gaps to excited states
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excited state on systems of uplte450 (the largest size we
were able to reaghwe find that the first excited state does
not have the opposite alternation pattern. Instead, the alter-
nation pattern is the same as in the ground state near the
004 | j ends, but reverses itself in the middle of the chain. This
change in the alternating BO parameter is evenly spread over
the chain so that it has a cosinelike form with two nodes. In
0 | J order to investigate the ground-state manifold in the thermo-
dynamic limit, this buildup of domain walls makes it neces-
sary to apply an additional field such as the dimerization
. . . field p introduced by us in Sec. IV A. For appropriate orien-
Y 0001 0002 0003 0004 tation and sufficient strength of this field, the dimerization
L pattern of the ground state reverses compared to the case
FIG. 2. Finite-size scaling analysis of the minimal value of ’[heWith no field. Even with this field, however, the buildup
L A : , of domain walls makes it difficult to follow the formation of
exciton gapAg. The solid lines are linear fits through the four ) . -
system sizes showi=256, 300, 350, 400, the ground-state manifold when taking the limits-~ and
p—0. Therefore, we have not performed such a procedure

spontaneously dimerized phase faf,;<U<U,. The and do not show results faxe for U>Uc,; we believe that
dimerized phase has an Ising-like symmetry. Following thePther quantities are more suitable for the investigation of the
standard procedure of applying a small symmetry breakinﬁ”?ders quantur'n.crltlc':al behawor. We. also fmd it problem-
field, taking the thermodynamic limit, and only afterwards atic to perform finite-size scaling for this quantity for PBC's,
sending the field to zero, the ground state in the dimerizedU€ t0 nonmonotonic behavior of the gap with system size
phase is expected to be twofold degenefeggardless of the and level crossings of various excited state=e Sec. Y. We
boundary conditions appligd The exciton gapAg would empha5|ze tha? such problems do not occur for tr_le one-
therefore formally vanish after these limits are taken. How-Particle and spin gaps presented below: the excitations are
ever, in our calculationdg increases as a function &f to ~ Well defined since they are characterized by a change in con-
the right of U.; (but before the cusp is reachefr finite served quantum numbers and the finite-size scaling is well
systems, as seen in Figal Unfortunately, the finite-size Pehaved. _
scaling for the exciton gap fdd.;<U <U_, is problematic. . Sufficiently far to.the left qfucl, the data presented in
Since there is only a small region with @0 excitation ~ Fig. 1(a) suggest a linear closing of the exciton gap, which
lying below the triplet excitation, there is only a very limited 9€ts rounded off in the critical region for finite systems. The
range ofU values in which theéS=0 excitation is accessible Iarge_rL, th_e closer tdJ.; the deviation from linear behavior
within the DMRG. Within this region, we find thatg scales ~ S€ts in. This suggests thag~ U, U close to but below the
to a finite value. The problem lies in the formation of the first critical point. It implies that the product of the critical
ground-state manifold when extrapolating to the thermody€Xponentsz;»;=1 at the first critical point? wherez, is the
namic limit (after a symmetry breaking field has been ap_dynammal_ critical exponent ang is t_he exponent associated
plied). While the level crossing scenario presented in theVith the divergence of the correlation length.
Introduction helps to identify the first excited state for Our finding of a vanishing exciton gap at the coupling
=U,, as the state whose energy would presumably extrapdpf OBC’s is consistent with results obtained using PBC'’s
late to the ground-state energy for PBC's, the situation igtndL=4n. For this case, a ground-state level crossing of two
more complicated for OBC’s. By calculating the bond expec-SPin singlets alJ=U,(L, ) (implying a zero exciton gap
tation valuegsee Sec. IV Aof the ground state and the first was found using exact diagonalization of small
systemd11214 A change of the site inversion symmetry at

0.06

Apin@)

214 U=U, was also observed. In Sec. V, we will argue that
U,(L—02,8) coincides withU.(8).** The presence of the
U, ~21.39 ; ;
2138 | ground-state level crossings might lead one to speculate that
discontinuous behavior will persist in the thermodynamic
3 limit, implying a first-order phase transition &k (L=, ).
EE However, we find no discontinuous behavior for systems
= with OBC'’s, either on finite systems or in the— o extrapo-
2134 b lations. In order to agree with the results obtained for OBC's
in the thermodynamic limit, the discontinuous behavior for
PBC’s must become progressively smoothed out asx.
22 T o0 oo00e 0006 008
1L C. Spin gapAg
FIG. 3. Finite-size scaling analysis of thevalue at the mini- The spin gap\s is shown in Fig. 4 as a function &f for

mum of the exciton gapg for 6=20. The solid line represents a 6=20 and system sizes betweer 16 and 512. In Fig. @),
linear least-squares extrapolation of the data yieldipg~ 21.39. one can see that the spin gap systematically scales towards
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05 v v r v 1
(@) L=16 ——
L=32 —%—
L=64 —a— 075 |
L=128 —B—
L=512 —%—
& 025 < 0.5
025 |
0 . . X 0
21 212 214 216 218
U
0.5 r FIG. 5. The exciton gap\g, the spin gapAs, and the one-
®) particle gapA, for 6=20 after extrapolating to the thermodynamic
e —— , limit L— . The inset shows the result for a larger rangeJof
u=2105 ¥ |
U=2125 @
venn 8 values of 8, Ag close toU.; becomes significantly smaller.
“ Us21s A As a consequence, the region in whigh is nonvanishing
<4 025 U=2185 4 1 . .
[, e | for U>U,, is less pronounced @=1. In this caseAsatU,;

is only a factor of 6 larger than the estimated accuracy of our
,_a—-'//'/. data(this has to be compared to the factor of 20 #&r4 and
MM 40 for 6=20) with a fast decrease fdd >U_;. We take the
M estimate of accuracy from comparison of DMRG calcula-
tions for the one-particle gap of the usual 1D Hubbard model
L with Bethe ansatz results. We find that the difference is about
|AHMDMRG_ AHM.exact =9 003 in the worst case. We therefore
FIG. 4. The spin gapg for finite systemd. as a function olU interpret this small spin gap to be finite fé=1 and in a
and (b) the finite-size scaling analysis fdé=20 for choserlJ val- ~ small region ofU =U_,. For § substantially smaller than 1, it

ues. The system sizés=64, 128, 200, 256, 300, 350, 400, 450, and is impossible to resolve a nonvanishing at U= U, using
512 are shown irib) and are used for a least-squares fit to a third-the DMRG.

order polynomial in 1L (solid lines. The dashed line ib) shows The spin gap data in Fig. 5 indicate th& goes to zero
the value ofAg at the largest system size in order to illustrate theyery smoothly between 21.55 and 21.8 and remains zero
nonmonotonic behavior. from there on. We here defirid,, as the coupling at which

Ag goes to zero. As we have argued in Sec. | B, the mapping
zero above a certaid value. However, it is crucial that the onto a Heisenberg model at strong coupliiig. (2)] sug-
finite-size scaling is carried out carefully and systematicallygests that the spin gap should vanish at sufficiently lafge
in order to determine the behavior in the thermodynamicHowever, we cannot strictly speaking exclude thhp=cc
limit. As can be seen in the scaling as a function of far from the spin gap data. We give further evidence in support
representativé) values in Fig. 4b) and as was pointed out in of two transition points at finitéJ below.

Ref. 16, there is nonmonotonic behavior as a function &f 1/ Note that the extrapolatedrig. 5) as well as the large-

for U<Ug;. In addition, the minimum ofAg as a function of  data(Fig. 4) for Ag display an inflection point in the vicinity
1/L shifts to larger system sizes as the critical region is apof U,,. This might be an indication of a nonanalyticity re-
proached. This makes an extrapolation to the thermodynamigted to the phase transition ;.

limit in the critical region a difficult task which requires
fairly large system sizes. In order to carry out an accurate
extrapolation, we fit to a cubic polynomial in L/

Figure 5 shows the extrapolated spin gap 120 pre- In Fig. 6&), A, as a function ol is shown foré=20 and
sented together with the extrapolated valuesfgrand Az differentL. Away from the critical regior{which is between
(for the reasons given in the last subsection the latter onlyJ =21.15 andJ = 22), the finiteL data rapidly approach the
shown forU < Uyg,). All three gaps are approximately equal thermodynamic limit and accurate results foj(L=o) can
for U< U, (see the inset Close to the transition, as can be easily be obtained by fitting to a polynomial inlL/Close to
seen on the expanded scale in the main @atgoes to zero U, the data for largé develop a minimum. A& increases,
at U.,, while Ag and A, stay finite and arg¢almost; see be- the position of the minimum shifts to largér values. The
low) equal. We find a region dff > U, in which Ag¢(L=%)  shape is quite rounded for the small system sizes, but be-
has a value that is clearly nonzero, well above the accuracgomes sharper for the largest sizes.
of the data which is of the order of the symbol size. The In the critical region, the finite-size scaling is again deli-
behavior is similar for5=4 (not shown. For even smaller cate. We examind; as a function of 1L for a number olU

D. One-particle gapA;
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for 6=0.6 andé=2 (in our unity, and this difference was
found to be 0.04 ford=0.6 and 0.03 ford=2. At the same
time A4(8,Up,n) was concluded to be zero. The authors in-
terpreted this as an indication of a second transition gaint
addition toU.; which they determined from the vanishing of
the exciton gap While we have not carried out calculations
at these values o, our results suggest that;(5, Ui is
small, but nonzero. Therefore, we believe thayg;, is not
associated with a second phase transition. In fact, as we have
seen in Sec. Il C, the spin gap goes to zero at a substantially
higher value oU thanU,,;,, and we associate this value with
UC2'
Up to a small differencésee Fig.  A;(L=x) and Ag(L
=) are equal fold <Ug;. In fact, the values are virtually
125 o identical for the largest few system sizes and deviate only at
° (b) smaller sizes. We therefore believe that the difference in the
| U=2L3 . ] extrapolated gaps stems from differences in the fitting to the
a scaling function at smaller system sizes and thatlL=«)
015} rna 4] =Ag(L=2) for U<U,= U, is consistent with our results.
At this coupling,A;(L=») starts to become larger thaxy
os | ] and, asU further increases, grows approximately linearly in
T H—— + U as one would expect in a Mott insulator.

It is important to note that our data fdr; as determined
025 | ] from ground-state calculations do not suffer from the subtle-
ties discussed in Sec. Il B in connection with the behavior of

the exciton gapA; is characterized by a difference of par-
ticle number which is a conserved quantity and the finite-size
scaling is smooth and well behaved. A further confirmation
FIG. 6. The one-particle gafy; for 5=20.(a) Results for finite  of regular behavior is thaig(L) =~ A;(L) for U<U,; and for
systems withL=16-512.(b) The finite-size scaling behavior for sufficiently largelL, despite different finite-size effects for
L=64, 128, 200, 256, 300, 350, 400, 450, 512. The solid lingb)in  smaller systems.
show least-squares fits to a third-order polynomial i1/ To summarize the behavior of the finite-size extrapolated
N . aps, we find that fo <U_;, Ae.=Ag=A; as in a noninter-
values neatl, fo_r .5:20 in Fig. Q_b). The data sufﬁmenf[ly gctpi)ng band insulator. Ablcilis aEpproSachled, the gaps to two
away from the minimungon both sitegshow linear behavior (or more S=0 excitations drop belowi and at least one of

in 1/L.for smaller system sizgs! but then deviate from linean, o, goes to zero all_,. The one-particle gap, reaches a
behawor and saturate at a finite value for largevalues. oo inimum aroundJ,; and then increaseginearly for
This behavior is directly related to the dependence of the large U), and the spin gap\s goes to zero smoothly at
rr;]lmmum .0; A1, which shifts to _Iargerrl]J andl becomﬁ_sh Uco>Ug;. This smooth decay of the spin gap makes it diffi-
sharper with increasing system size. The scale on which @j; 15 quantitatively estimat®l,,. Since the above behavior

deviation from the linear behavior can be observed shifts Qg gimilar for the widely different potential strengths studied
larger system sizes &$ approaches).;. In order to perform here,5=1, 4, and 20, we believe that it is generic fit 5.
the finite-size scaling analysis, we fit to cubic polynomials in

1/L, as we did for the spin gap. We have carried out this
procedure for6=1 and 4 and find that\,(L,U) behaves IIl. IONICITY
similarly.

We have extracted the position and value at the minima As argued in Sec. | B, the effective strong-coupling model
by interpolating the data for fixet with cubic splines and (2) predicts that the ionicityn,—ng) ~1/U? for largeU. For
then extrapolating th. — c with a fit to a quadratic polyno- t=0, on the other hand, one expects a discontinuous jump
mial. We obtainU,;,(6=1)=2.71, Ui,(6=4)=5.63, and from (ny,—ng)=2 to(ny—ng)=0 at the single transition point
Unin(6=20)=21.40 for the positions and\;(6=1,Uyn) U.. Here we explore the behavior &fi,—ng) for all U cal-
~0.02, A1(6=4,U,;) =0.05, and A1(6=20,Ui)=0.08.  culated within the DMRG.

The minimal values are finite to within the resolution of the In Fig. 7 we compare Eq6) for §=1, 4, 20 and various
data and the extrapolation, although the values are small) to results obtained from DMRG with OBC’s ard=32.
especially at smalb. Therefore,A; is certainly larger than By also considering larger system sizep to L=512) and

Ag atU¢; and is finite in the critical region. The positions of PBC’s (up toL=64), we have verified that the=32 results
the minima are very close to but at a slightly largérvalue  shown are already quite close to the thermodynamic limit for
thanU,,. The largest differencl) i(8) —U:1(d) turns outto  U> 4. On the scale of the figure the difference betwéen
be 0.02(for §=4). In Ref. 16, calculations were carried out =32 andL=% is negligible. For largeJ, the DMRG data

4
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found similar behavior ofny—ng) for =1 and 4.

The behavior ofn,—ng) for PBC’s (and L=4n), which
we have checked using the DMRG for uplte64, is quite
different. For finiteL, the data display a jump discontinuity
in the critical region which decreases in size for increasing
The origin of this jump is the ground-state level crossing at
U,(L,d). Since we do not observe any discontinuity in the
ionicity calculated for OBC'’s for6=1, 4, 20 and up td-
=512, and since the jump obtained for PBC’'s becomes
smaller with system size, we expect that the jump vanishes in
the thermodynamic limit an¢h,—ng) becomes a continuous

function.
FIG. 7. The ionicity(ny—ng) for =1, 4, 20. The solid lines IV. ORDER PARAMETERS AND SUSCEPTIBILITIES
indicate analytical results from E¢6) and the symbols numerical o
DMRG results forL =32 sites. A. Bond order parameter and susceptibility

_ _ _ o _ The energy gaps have given us indications for two critical
agree quite well with the analytical prediction, B6). This  points. To study the nature of the intervening phase and the

gives a strong indication that the largemapping of the possibility of dimerization in more detail, we calculate the
IHM onto an effective Heisenberg modebk applicable at BO parameter

large but finiteU. It is therefore tempting to conclude that L

U, <. One should nevertheless keep in mind that the ex- _ et o 4ol e

cellent agreement of the numerical data and the analytical ® L- 12( DCeaoCio + €Cjener- (1)

prediction for the ionicity does not constitute a proof of this ] o

statement. We will return to this issue. This quantity has been used to characterize dimerized phases
The DMRG data fokn,—ng) for L=32 shown in Fig. 7 in other models—e.g., the frustrated Heisenberg chain inves-

are continuous as a function &f for all U. We examine tigated in Ref. 29. Since the OBC's break the symmetry be-

(na—ng) more carefully as a function of system size in thetWeen even and odd bond)#0 for all finite systems.

vicinity of the first phase transition &t for §=20 in Fig. 8. Therefore, a spontaneous dimerization can be obtained di-

The main plot shows DMRG data for variolsas a function ~ 'ectly by extrapolatingB) to L —c—i.e., without adding a
of U for 6=20. While the data are continuous as a functionsSymmetry-breaking field explicitly. One can form the corre-
of U for all sizes, there is significant size dependence besponding BO susceptibilitygo by adding a term
tweenU=21.2 and 21.5, near the first critical point ;. _ [P T

We have extrapolated the data to the thermodynamic limit Hdim‘PE (= D/(Cfe16Cj0 * CjoCi10) (12)
using a second-order polynomial inlland have checked he

that other extrapolation schemes do not lead to significanio the Hamiltonian(1) and taking

differences in the extrapolated values. Thex extrapolated

curve is shown in the inset. While the curve is still continu- Yeo = M _ (13)
ous, an inflection point can be observed closdJtg. This p =0

might be related to nonanalytic behavior dt;. We have In practice, the derivative is discretized as

. [(B)(p)—(B)(=p)]/(2p) wherep is taken to be small enough
Ao so that the system remains in the linear response reffime.
Due to the additional symmetry breaking by the external
dimerization fieldp, the DMRG runs converge more rapidly
than in thep=0 case, making it easier to reach larger system
s sizes. Thus we were able to calculgig, on lattices of up to
21.3 214 215 L=768 sites.

0.3

0751

0.7 1

(ny-ng)

065 F 116 —+— Figure 9a) shows(B) as a function ofU for §=20 and
g i differentL. The data develop a well-defined maximum near

06 T =128 & U, for largeL. The width of the “peak” fol.=512 gives a
t:gfg i first indication that there is a region in which the dimeriza-

0.55 . tion is nonvanishing. Typical results for the finite-size scaling

213 214 215 of (B) are presented in Fig.(§). For U<Uy,,, the data ex-

v trapolate linearly to zero in 1/ In the opposite limit

FIG. 8. The ionicity (na—ng) for finite systems withL ~ U>Uc, we find (B)~1/L* with «~0.5-0.6. A similar
=16,32,...,512 fov=20. The inset shows tHe— « extrapolated  slow decay of the BO parameter has also been found in the

value. standard and extended Hubbard models at half-fiffinghe
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0 0005 001 FIG. 10. The bond-order paramet@)., in the thermodynamic
0 ; ; H o . d . !
0 0.02 0.04 0.06 0.08 limit for (a) 6=1, (b) 5=4, and(c) 6=20 plotted as a function df

1L near the transition points.

system sizes > 200. In carrying out the finite-size extrapo-
lation, we fit to a linear form for the largest system sizes if it
is clear that_. has been reached, as can be seen in the inset

FIG. 9. (8) The bond order paramet¢B) for §=20 for finite
systems as a function &f for various system sizegb) The scaling
of the data as a function of the inverse system siZe The solid

lines are least-squares fits to the data as described in the text. TI% 'I:'g#.g(b%b the finite-si t latidB).. is sh
inset shows an expanded view of the scaling@ovalues near the n Fig. 10, the finite-size extrapolatid).. is shown as a

critical point. function of U for §=1, 4, and 20. As can be se€B)..=0 to
well within the error of the extrapolation fdd <U;;. For

substantial finite-size corrections thus require very large sysd > U, we find a region of width between 0.2 and Qi4.,
tems to distinguish between scaling to zero with a slowa factor of 5-10 larger than the extent of the dimerized phase
power law and scaling to a finite—oo limit. Below, but  claimed to be found in Ref. 36n U in which (B)., is dis-
close toU.,, the data for small initially display power-law- tinctly finite. The onset of finitéB)., at U, is rather steep for
like finite-size scaling with« <1, but for larger system size, all three values o, but seems to be continuous. This steep
one finds a crossover to a linear scaling of the BO parameteinset suggests a critical exponent of the order parameter that
(to zerg asL—<. There is also a crossover in the behavioris substantially smaller than 1. Within bosonization the first
for U values near but abowd,;. One again finds a crossover critical point was predicted to be Ising-like witB;=1/88
from a power law withk<1 for smaller system sizes to The falloff to zero adJ increases, on the other hand, is slow,
linear behavior that can be extrapolated to finite values ofvith a small or vanishing slope. This behavior would be
(B).. for larger system sizes. The crossover length scale inconsistent with a second critical point at which the critical
creases abl approaches).; until it becomes larger than the €xponent for the order parameter is larger than 1 or at which
largest system size considered here. This length dcaten @ higher-order phase transition such as a Kosterlitz-Thouless
be used to estimate the correlation length, which diverges dtansition takes placéAs can be seen by comparing Figs.
the first (continuou$ critical point. We have been able to 10@-1Qc), the height of the maximum increases with in-
calculatel for U values on both sides &f,; and find that it ~ creasings. For J significantly smaller than 1, the BO param-
diverges approximately d&)-U,,|. This implies;=1 (see  eter is so small that it cannot be concluded to be finite within
also below. Taking into account thaz;»;=1 as extracted the numerical accuracy of the DMRG. For the couplings at
from the linear closing oAA\g, one findsz;=1 for the dynami- ~ which the finite dimerization sets in we obtah(5=20)
cal critical exponent. ~21.39 andU.(6=4) =5.61, which are in excellent agree-

This diverging crossover length scale makes it essential tonent with the results obtained from the vanishing\ef The
treat system sizes that are significantly larger than the scalalue obtained fo=1, U.(6=1)~=2.67, is also in reason-
L., even close to the critical poirl;. In order to obtain ably good agreement with the results obtained from the
reliable results, we have calculatéB), for a number of analysis of the gaps.
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In Fig. 12, the BO susceptibility as a function bf is
shown foré=1, 4, 20 and different. For all § values, one
observes a two-peak structure that becomes progressively
more well defined with increasing system size. There is a
narrow peak at aJ value that agrees well withl,,; deter-
mined earlier whose height grows rapidly with system size.
It signals the onset of spontaneous dimerization. For some-
what largerU there is a minimum inygo, surrounded by a

1 narrow region in which its value saturates with system size.
l OF 1 To demonstrate this more clearly, the finite-size scaling for a

(B

: bo2 =% representativé) located in the dip region is shown for each
03p U=2142 0 B 0 5 in Fig. 12d). For still largerU values, a second, broad

001 0.005 0 0.005 0.01 peak develops. The position of this second maximum is
e roughly atU.,, theU value at which the BO parameter van-

ishes. We argue that the second peak is related to the second
phase transition from the dimerized phase into an undimer-
ized phase. To the right of the second pegks does not
seem to saturate for increasing system size, implying that
; o o : is divergent for allU=U_,. One can understand this
While our de}Ea SUQQESt that g critical CO[,Jp“_ng' Wl,th ()j(tioergent be%avior by studyincgzl the BO susce;&tibility for the
<B>f=0 for U>U,,, exists, no reliable quantitative estimate ordinary Hubbard modej(g'g". One finds thab(Eo is diver-

of Ug, can be given based on the DMRG data for the BOgent for allu >0 because the bond-bond correlation function
parameter. Due to the close proximity of the two critical is critical?! A finite-size extrapolation ofygo is shown in
points, we were not able to obtain quantitative results for thd-ig. 13 for largeU values for boths=0 and$=20. We find a
critical exponentss; and 3, at the critical points, either by a Power-law divergencego(L) ~ L, with {~0.68 for the or-
direct fit of theL =2 results or by a scaling plot of the finite- dinary Hubbard model ang~=0.65 for the IHM. These val-
size data. As discussed next, accurate exponerits,atan ~ Ues arein good agreement, considering the accuracy of the fit
be extracted from both the BO and the electric susceptibili@nd additional finite-size effects.

. . ~ . Since xgo diverges for allU to the right of the second
ties, and a more accurate estimatelly, can be obtained peak, it is difficult to accurately determine the critical cou-
from the BO susceptibility. ~

In order to understand the behavior of the BO susceptibilpling Uca. However, two different ways of estimatigy(9)

ity, it is useful to first examine the behavior of the BO pa- underestimate and overestimate its value. In the first method,

rameter(B) as a function of the applied dimerization fighd ~ Uc2 is estimated as the lowesk value for whichygo seems
From thep dependence ofB) it becomes also apparent that to dlvergeT for mqreasmg and the available system sizes. It
following the standard procedure of first applying a finite is then still possible that there is a crossover above a length
then takingL —, and afterwardsp— 0 will lead to the scale unreachable by us aggl, scales to a finite value. This
same results for the BO parameter as presented in Fig. 1@nds to underestimatd.,. In the second methodJ, is
(see the discussion in Sec. 1).Bn Fig. 11(B)(p) is shown taken to be the position of the second peak at fikeex-

for 5=20, three representative valuesthfand different sys-  rapolated toL —ce. Since the peak position decreases for
tem sizes. FolU=19<Uy,,, the system is in a phase with increasingL, this method tends to overestimaig,. From
vanishing BO parameter, and the slopga0 remains finite  these two procedures, we obtain the bounds 24.85,(5

for all system sizes, corresponding to a finite susceptibility=20) <21.69. For the other values éf it is very difficult to

The valueU=21.42 is in the intermediate regime where we gccurately determine the lower bound with the data avail-
have found a finite BO parameter in the thermodynamic

limit. As can be seen in the main part of the figure, a jump inable' we ther~efore only give the upper bourd;(d
(B)(p) develops. As the system size increases, the absolufel) <2.95 andUc,(5=4) <5.86. N o
value of dimerization field at which the jump occurs be- It is generally believed that a quantum critical point is
comes smaller. This is the behavior expected in a dimerizeg§ccompanied by a vanishing characteristic energy s€ale.
phase in a system with OBC's. Therefore, the jump inU., the most obvious candidate i, consistent with our
(B)(p) provides additional evidence in support of an interme-numerical data’see Figs. 4 and)5and implying thatDcz
diate phase with finite dimerization. For the approximate cal=U_,. This is assumed in the following discussion.

culation of the susceptibilitygo= [(B)(p) =(B)(—p)]/(2p), Since the peak invgo at U, is well defined and has a
we have takep=10"* which is small enough to stay to the clear growth with system size, it is reasonable to perform a
right of the jump for all system sizes considered. Finally, forfinite-size scaling analysis. We use a scaling ansatz of the
U=50>U,,, (B)(p) goes to zero fotp| —0 and increasing form

system size, consistent with the behavior in a phase without —| 2~

spontaneous dimerization. However, the slope at sifpall XU,L=L7LE), (14
becomes steeper with increasing system size, indicating with é~|U-U™". As can be seen in Fig. 14, data fér
divergence ofygo. =20 and system sizes &f=128 and greater collapse onto

FIG. 11. The BO parametéB) as a function of applied dimer-
ization field p for 6=20 andU=21.42. The upper inset shows data
for U=19 and the lower inset data ftf=50.
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one curve. The best fit is obtained with;=21.385 and the coupling we obtainU;,(6=1)=2.7 andU.,(6=4)=5.6, in
critical exponentsy;=0.45 andv;=1. The latter value is excellent agreement with the values found by other means.
consistent with the value, =1 extracted from the divergence The differences in thep; obtained for differentJ is most

of the length scale discussed above. We have also applied tfikely due to the limited accuracy in extracting the exponent.

scaling ansatz foé=1 and 4. For decreasing the quality of

Since the scaling works better for larg&rwe conclude that

the collapse of the data for the available systems sizes bgn=0.5. Note that this value of; is not in agreement with
comes poorer and the extracted exponents therefore becorfte Va'ge expected in the two-dimensional Ising transition,

less reliable. The best fit is again obtained with=1 for
both 8, ,(6=4)~0.55 and#,(5=1)=0.65. For the critical

10

n=1/4!

It is also possible to collapse the finite-size data onto one
curve at the second transition point using the scaling ansatz
(14). We find that the best results are obtained r

8=0,U=016(5) + ~exdA/(U-U.,)B], indicating that the divergence of the
036L™" — susceptibility atU., may indeed be exponential as expected
$=20,U=50 = for a KT-like transition. However, fitting the limited amount
101 <<<<<<<< 003
i L=64 —&—
2 L=128 B
R 0.025 | L=25 —6— |
. L=512 -
b e . 5 oo f PSS V21395 g
.l =
DU
5 0015 }
1 2
100 . 2 o001}
10° 107 10! =
1L 0.005
FIG. 13. The BO susceptibilitygo as a function of 1L for the 0

ordinary Hubbard model5=0) and U=10 and the ionic Hubbard
model for =20 andU=50. DMRG data are indicated by the cor-
responding symbols and the solid curves represent a least-squares
fit to the indicated forms.
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of data available to this form does not produce completely 350

. . ) ) 1=32 —%—
unambiguous results for all fit parameters. Therefore, we 300 b (a) X L=64 —a ]
have not further attempted to obtain resultsAoB, U;,, and [=178 —0

L=512 —%—
B. Electric susceptibility and the density-density correlation 200 | ]

Xel.

function
150 |

In order to further investigate the physical properties of
the different phases and transition points, we calculate the 100 f
electric polarization and susceptibil#§.The polarization is

given by oF
1 of
<P>:E2 XNy +1; ), (15) v
J
wherex;=j—-L/2-1/2 is theposition along the chain, mea- 0025 y e
sured from the center. The polarization is the response due to (b _ L=64 —%—
a linear electrostatic potential 002 | ] Z _e_E' 1
2
Ho=-EX Xj(njg + 1)), (16) 2 0015 |
i =)
which is added to the Hamiltonigfi). The electric suscep- 3 001 |
tibility 2
KP)(E) 000 3
Xel = TE (17) p=1.55,U,,=21377
E=0 T e
0 L . ; ;
is the susceptibility associated with this field. 40 20 0 20 40
The electric susceptibility has been used to investigate the L U-Uer)

metal-insulator transition in thiet’-Hubbard modet? In this
model, both a phase in whick, diverges ad.? (a perfect
meta) and a phase in which for increasing system sjze

scales to a finite valugn insulatoy were found when vary-  Ref. 32 and associated with a perfect metal. Boslightly
ing U for fixed nearest-neighbor hoppiti@nd next-nearest- |arger thanU,,, the data again seem to saturate with system
neighbor hopping'. size. Assuming the scaling form of E.4), the data close to
In contrast to the ordinary Hubbard model, the polariza-y_, can be collapsed on a single curve as demonstrated in
tion does not always vanish at fiel=0 in the IHM. For  Fig. 15b). The best fit is obtained for,=1 and 7;~0.45.
U=0, 6>0, one findgP)=-1/2. This is due to the alternat- Both of these exponents are in excellent agreement with
ing ionic potential which induces a charge displacement tahose found in the scaling analysis fgso. We have carried
the sites with lower potential energy. Due to the OBC's, aout a finite-size scaling analysis fé=4 and5=1 and also
chain with even lengtiL starts and ends with a different find diverging peaks at).;, as well as collapse of the data
potential, inducing a dipole moment. This is a boundary ef-onto a single curve using the scaling forit¥) with expo-
fect. In the strong-coupling limitU> 6§, we find that(P) nentsz,(8=1)=0.52, 7,(6=4)=0.45, andv,=1 (for both §).
—0, as expected. The electric suceptibilify can be calcu- The critical U values obtained from this scaling procedure
lated by discretizing the derivative afP)(E)—(P)(E  are Ug(6=1)=2.68, U (6=4)=5.59, and Ug(6=20)
=0)]/E. The fieldE must be taken to be small enough so that=21.38, which compare well to the values for the critical
the system remains in the linear response regitidote that  coupling obtained from the gaps and from the BO parameter
it is necessary to subtra¢P)(E=0) since it is nonzero in and susceptibility.
general. The data for6=20 andé=4 for the largest system sizes
A plot of x, as a function o for various system sizes is L=256 andL=512 suggest that a second peak may develop
shown in Fig. 16a) for 6=20. ForU<U,, and increasing,, = aroundU¢,. In order to investigate the behavior gf,(L)
Xel CONverges to a finite value, similar to the behavior in amore precisely in this region, we fit a quadratic polynomial
noninteracting band insulator and in the correlated insulatoto (P)(E) through several data points and then take the de-
phase of the-t’-Hubbard modet? The data clearly develop rivative of this fit function atE=0. This procedure should
a maximum atU.; whose height increases markedly with eliminate errors caused by a small linear response regime.
system size, indicating a divergence at the first critical pointResults obtained from this procedure f6=20 indicate a
The finite-size scaling of this height is consistent with aweak divergence atJ=21.65, corresponding to d value
power-law increasel.®"", with 7,~0.46. This increase is nearU.,. In addition, we find an even weaker divergence for
weaker than th&? divergencgwhich impliesy»=0) found in  all U >21.65. The larger th&) value, the smaller the coef-

FIG. 15. (a) The electric susceptibility for §=20 plotted as a
function of U. (b) A scaling analysis of the data ¢).
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0 8=1,L=256 comparable value to the ones given above, even at very large
107 | U=3 = ] U values such at)=50, where the prefactor of the power-
3:§ i law part is=~2x 10°°. It therefore seems justified to con-
107} IiIJ=—7f(5) ; . clude that this power-law decay is a generic feature of the

strong-coupling phase for adl
Our findings forye andCgye{r) are consistent with a sce-
nario in which there is a continuum of gapless excitations for
U>U,,, where matrix elements of charge operators such as
the densityn;=n;;+n;; are nonvanishing for some of the
states belonging to this continuum. These are the states men-
tioned above which possess charge character. To further con-
", firm this idea, we have calculated matrix elemefmtn;|0),
10° 10! 10° where|m) denotes thamth excited state an{®) the ground
r state, for up tan=4, §=20,U > U, andL=32. We find that
] _ _ ) _ the third excited state is the fir§=0 state, for both the
FIG. 16. The negative of the densny_-de_nsny co_rrelann funCtlonOFdinal’y Hubbard model and the IHNthe fourth state as
i) =(niXni)] for U>Ugp. The indicated lines are least- o) 55'them=1, 2 states hav&=1). For the ordinary Hub-

squares fits over a range ofn which the behavior is linear on the |, 4 model{3|n:|0) vanishes for alj to within the accuracy
log-log scale. The solid line has exponent —3.27 and the dashed line VA o .
exponent —3.4. of our data and thisS=0 state can be classified as a spin

excited state since its excitation energy is well below the

o , ) ) ) charge gap. In contras3|n;|0) is nonvanishing for the IHM
ficient of the diverging part, so that the divergence is very.

o ) . -~ Yand shows a nontrivial dependence jowhich has a wave-
difficult to observe numerically deep in the strong-coupling

. length of approximately the lattice size, implying that the
phase. One generally expects the divergencedpfto be yave vector characterizing the excitation is ngaio.

connected tlo the CIOS'”? r?f a gar']) to G.}X(,i':]ed Statesd\_/vhlch As a consequence, this state contributes to the dynamical
possess at least some “charge charadiérthe sense dis- charge structure factor in the IHM but not in the ordinary

cussed beloy At U, the divergence is accompanied by the 124 model. This shows that although several similarities

closing qf th? ex_citon gap, leading to a cpn;istent picture. between the strong-coupling phase of the IHM and the Hub-
The situation Is less clear fdul_> .U°2' This issue can fur- bard model were found, low-lying excitations in both models
ther _be mve_zsUgated k_)y examining the behavior of the,.o of quite different nature. As we have verified, the energy
density-density correlation function of |3) becomes smaller for increasingy in contrast to the
Caor(1) = (N Niap) = (NN, (18) bghavior of the one—partjcle gap which increases linearly
with U. Due to the numerical effort necessary to target such
shown in Fig. 16 foré=1 and differentU>U.,. Here we a large number of states, we were unable to perform these
have averaged over a numberiofalues(typically six) for  calculations on larger lattices in order to carry out a finite-
eachr and have performed the calculation on BR256  size scaling analysis of the matrix elements.
lattice. For each value adf, it is evident that the correlation It is important to note that the power-law decay@f,(r)
function behaves linearly on the log-log scale above somend the divergence of,, for U=U,, do not necessarily im-
value ofr, indicating that the dominant long-distance behav-ply that the Drude weight is finite in this parameter regime or
ior is a power law(Forr close to the system size, finite-size nearU,,, where x,, diverges roughly a& ' Therefore, we
effects from the open boundaries also appédote that the refrain here from classifying the dimerized phase, the
sign of the correlation function is negative for-0, so that =U,, strong-coupling phase, and the transition paipi as
the negative is plotted. A least-squares fit to the linear portiomeing metallic or insulating. Fad <U,, all our results are
of the curve yields an exponent of approximately 3-3.5 forsimilar to those found in a noninteracting band insulator. To
all values ofU>U,. This behavior is markedly different further investigate the metallic and insulating behavior in
from the behavior folJ <U,,;, where we find a clear expo- different parts of the phase diagram, it would be necessary to
nential decay as in a noninteracting band insulator, and frorgalculate dynamical correlation functions using, e.g., the dy-
the behavior atJ.;, where we find a power-law decay with namical DMRG32 Such an investigation would exceed the
an exponent of=2. Note that if the decay were exponential scope of the current paper.
for U>U., we would expect the correlation length to
change quickly withlJ, leading to a marked variation in the V. PERIODIC BOUNDARY CONDITIONS
slope. We have ruled out finite-size effects as an origin of the . .
power-law tails as well as possible symmetry breaking due to UP to this point, we have only presented DMRG results
the OBC’'s by comparing calculations fdr=128 andL  Obtained for systems with OBC’s._Here we will argue thaj[
=256 with OBC’s and_=64 with PBC, which yield identical ~the results for energy gaps determined for PBC’s are consis-
values except for distancesear the lattice sizéor half the ~ tent with the ones discussed in Sec. Il. We present further
lattice size for PBC’s evidence thatJ., obtained from the Elosing of the spin gap
We have performed calculations fé= 20 and have found for OBC’s and the coupling constakt., at which the BO
similar behavior. The exponent of the power-law tails has gparameter vanishes coincide.

- [y ) - (X))
s
&
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32 ” T y T =21.42.(Due to complicated finite-size effects, we only use

the data folL < 32 for §=4 and5=20.) The angle of crossing

of Ey andE; decreases with increasing system size. This is

consistent with a continuous critical behaviorld; in the

thermodynamic limit. We have examined the finite-size scal-

ing of Ag=E;-E, for U>U, and find the behavior to be

nonmonotonic with 1 and therefore difficult to extrapolate.

However, we do find thag<Ag for all finite systems for

0 0 o0s 008 U, <U<Uyy. The behavior is not inconsistent with a van-

24 | 1 ishing exciton gap in this region.

The nonmonotonic behavior dd,,, as seen in Fig. 17,

. . , . makes arl. — oo extrapolation difficult. In fact, an extrapola-

0 002 004 006 008 01 tion using the system sizes available to exact diagonalization

1L would give aU., which is substantially larger than if the two

FIG. 17. Crossing points of excited states for PBC's derl as Iqrgest sySte.m Size_s were inCIUd.ed' This could explair_1_the

a function of inverse system size. The inset shows the extrapolatioﬂ's.Crepancy in the size of the region between the two le_cal

of Ag(Uy,) as a function of inverse system size. points .four?d here and_ obtained in Ref. 11. By. ex_trapolatmg
the finite-size data using a quadratic polynomial ih.1Wwe

Here we investigate the level crossing point of the ground?Ptain Uy (L=%,5=1)=2.84, Uy(L=%=,6=4)=5.97, and
state and the first excited stdtl, as well as the crossing of Ux(L=%,6=20)=21.75. The values fdd,, and forU, ob-
the first and second excited statés. In Ref. 11(and further ~ tained from the BO susceptibility are in fairly good agree-
references therejnthe crossing points of ground and excited ment. The differences indicate that even larger system sizes
states of finite systems are associated with phase transiticifé needed to perform an accurate finite-size extrapolation
points. In particular, the crossing of the ground state and thér PBC's.
first excited state with opposite site-inversion parity were In order to confirm that the spin gap is finite in the inter-
shown to correspond to a jump in the charge Berry phasdnediate phase, we have performed finite-size extrapolation
The crossing of the first and second excited states which afér this gap for systems with PBC’s and up to 32 sitesUor
spin singlets and spin triplets with opposite site-inversionvalues neat.,. For =20, where the spin gap is largest and
symmetry and zero total momentum was argued to be ass#as the smallest relative error, we fisdg>(L=o0)~0.071
ciated with a jump in the spin Berry phase and to characterand ASP%(L=2)~0.070 forU=21.40, which is a value of
ize a second transition. While the direct calculation of thethe coupling very close to the extrapolated values Wy
Berry phases is beyond the scope of this paper, it is possiblebtained with both with OBC's(U.;~21.39 and with
for us to analyze the finite-size behavior of the level crossPBC’s(U.;~21.42. For U values which are in the interme-
ings U, andU,,. We therefore must calculate the energies ofdiate phase as extrapolated from both types of boundary con-
the ground state and the first two excited states simultaditions, we find a similar correspondence. Rdr21.5 we
neously. Sufficiently accurate DMRG resullts for these enerebtain AL =) ~0.03 while AZ®%(L=x)~0.02. Recall
gies can only be obtained for system sizes of up.#64, that our error estimate for OBC’s Wagi,ATMvDMRG
small compared to the ones studied for OBC's, but nevertheaATM'exa°1:o_oo3 for OBC's(see Sec. It the error for
less much larger than the ones that can be reached with exgeBC's is at least a factor of 3 larger. This correspondence
diagonalizationt**4We show results for PBC's for systems supports the contention that the spin gap in the thermody-
with L=12, 16, 24, 32, and 64—i.e., system sizes with 4 namic limit at U,; and in the intermediate phase are the
sites—so that the site-inversion symmetry of the ground statsame, independent of the boundary conditions applied.
is guaranteed to change sign with as discussed in Sec. I B.  Since the transitiotJ., is associated with the closing of
We find nonmonotonic behavior of the level crossing pOiI’ltSthe Spin gap, the gap to the excitationgja; should scale to
as a function of system size at a scale beyond the systegero with system size. The inset of Fig. 17 shows that
sizes which can be investigated using exact diagonalizatiom(U,,)=AggU,,) indeed closes in the thermodynamic

The finite-size scaling of, andU, for §=1 is shown in  |imit. Since one of the two states that are degeneralt,ais
Fig. 17. The error bars result from the uncertainty in detery spin triplet, this implies a vanishing spin gap. We thus
mining the closing or crossing points as well as from thegptain further(indirect evidence that the couplings at which
poorer convergence of the DMRG algorithm for PBC’s. Nev-the BO susceptibility diverges and the spin gap closes coin-
ertheless, fo=1 they are only of the order of the symbol cjde, consistent with a two-critical-point scenario. In particu-
size or smaller. Fob=4 and 6=20, the convergence fdr |ar, the angle of the crossing of the first and second excited

=64 is poorer arount, andU,,, but we obtain qualitatively  state also decreases with increasingonsistent with a con-
similar behavior up to the larger error bars. tinuous transition at.,.

For all § studied, the finite-size extrapolation 0Of, leads
to critical couplings in agreement with the ones given in Sec.
II C, up to the smaller numerical accuracy available with
PBC's. Using a quadratic polynomial for the extrapolation, In this paper, we have presented density-matrix renormal-
we find U,(6=1)=2.71, U,(6=4)=5.63, and U,(6=20) ization group results that elucidate the nature of the quantum

28 p
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22

VI. SUMMARY
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critical behavior found in the half-filled ionic Hubbard ior is related to the mixed spin and charge character of
model. By carrying out extensive and precise numerical calexcitations present in the strong-coupling phase of the ionic
culations and by carefully choosing the quantities used tddubbard model, in contrast to the ordinary Hubbard model.
probe the behavior, we have been able to investigate the We point out that the divergence of the electric suscepti-
structure of the transition more accurately than in previoudility at U, and forU=U,, does not necessarily imply a

work. This has allowed us to resolve a number of outstandfinite Drude weight. Based on our results for various energy
ing uncertainties and ambiguities. We have worked at thre€aPs and the electric susceptibility, we therefore cannot un-
different strengths of the alternating potentiatovering a  @mbiguously classify all different phases and transition

significant part of the parameter space and find the samCiNts TIIS beinr? metallic or ir(ljsulating. s for th y
qualitative behavior for all threé values. In particular, we Finally, we have presented DMRG results for the position

have carried out extensive finite-size scaling analyses Ogaéhti;gizgggogft?hee%irrcsnfjggosé?(tc?t:g2t$§§fg§ts$)s(feu§g
three different kinds of gaps: the exciton gap, the spin gap, . - . .
and the one-particle gap. We find that for fixéend in the with periodic boundary conditions on up to 64 sites. The

T i finite-size extrapolation o), givesU,;. Due to the loss of
thermodynamic limit, the exciton gap goes to zero as a func b x 9 cl

. . . . . accuracy, it is somewhat less clear that the finite-size ex-
tion of U at a first critical poinlU,, and the spin gap goes o yanojation ofU,, corresponds ttJ,. However, the extrapo-

zero at a distinct second critical poitde;>Uc; and IS |5ted value of the spin gap corresponds to the one obtained
clearly nonzero at¢;. While U, for the spin gap is finite o \yhen extrapolating using OBC's. This further establishes the
within our resolution, we cannot completely rule out an un-finiteness of the spin gap in the dimerized phase.
resolvably small spin gap for largg—i.e., U,,—%. The The behavior of all of the quantities we have presented
one-particle gap(the two-particle gap behaves similarly here supports a scenario with two transition points at finite
reaches a minimum close td,;, but never goes to zero and U, andU,,, with a dimerized phase in the intermediate re-
never becomes smaller than the spin gap. gion. Due to the reported difficulties with the formation of
Due to the explicitly broken one-site translational symme-the second state of the ground-state manifold in the dimer-
try, the ionicity is finite for all finiteU. ForU> §the ionicity ~ ized phase when using OBC'’s, we have not been able to
found numerically agrees very well with the one obtaineddetermine the finite-size behavior of the exciton gap for
analytically from the strong-coupling mapping of the ionic U>U.,. However, we do believe that the behavior of the
Hubbard model onto an effective Heisenberg model. other quantities clearly establishes the existence of the
We have also studied the bond-order parameter, the ordélimerized phase. One might nevertheless ask the question of
parameter associated with dimerization, as well as the asswhether other scenarios are consistent with our data.
ciated bond-order susceptibility. The result of the delicate One possibility would be that there is no dimerization for
finite-size extrapolation indicates that there is a finite bondU > U,;. However, this is inconsistent with our results for the
order parameter in the intermediate region betwdgnand  spin gap, the bond-order parameter, and the divergence of the
U.,. Here we again cannot strictly rule out,— o on the bond-order susceptibility ai.;. Therefore, we feel that such
basis of the bond-order parameter. There is a divergence i scenario is not supported by our calculations.
the bond-order susceptibility at both,; and atU.,, as one Another possibility would be that there is a single dimer-
would expect from two continuous quantum phase transiized phase fold >U.—i.e., thatU.,—o. While an unre-
tions. However, the bond-order susceptibility diverges in thesolvably small gap and dimerization at large cannot be
entire strong-coupling phase =U,,, albeit more weakly strictly ruled out by a numerical calculation with finite reso-
than atU.;. We have pointed out that this is in accordancelution, we can put quite strong limits on the spin gap and
with the behavior found in the strong-coupling phase of thedimerization for a value ol that is only a fraction oft
ordinary Hubbard model. greater tharlJ.,. In addition, we have made arguments in-
We find that the electric susceptibility is finite for<U,,  Vvolving the strong-coupling limit that support the plausibility
but diverges roughly as!® at Ug. This divergence is of a finite U.,. Together with the divergence of the suscepti-
weaker than the one found for noninteracting electiovith ~ bilities at two distinct parameter values, we feel that an in-
6=0) and in the metallic phase of the’-Hubbard modet?  terpretation of our numerical results in favor of a scenario
A finite-size scaling analysis of both the bond-order suscepwith an intermediate dimerized phase and a finite value for
tibility and the electric susceptibility yield the same critical U¢, is compelling.
exponents al.;. However, the valuey; = 0.5 is not consis-
tent with the critical exponents of the classical two- ACKNOWLEDGMENTS
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