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Phases intermediate between a two-dimensional electron liquid and Wigner crystal
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We show that there can be no direct first-order transition between a Fermi liquid and an insulating electronic
(Wigner crystalline phase in a clean two-dimensional electron gas in a metal-oxide-semiconductor field-effect
transistor(MOSFET); rather, there must always exist intermediate “microemulsion” phases, and an accompa-
nying sequence of continuous phase transitions. Among the intermediate phases which we find are a variety of
electronic liquid crystalline phases, including stripe-related analogues of classical smectics and nematics. The
existence of these phases can be established in the neighborhood of the phase boundaries on the basis of an
asymptotically exaanalysis, and reasonable estimates can be made concerning the ranges of electron densities
and device geometries in which they exist. They likely occur in clean Si MOSFETSs in the range of densities in
which an “apparent metal to insulator transition” has been observed in existing experiments. We also point out
that, in analogy with the Pomaranchuk effecfite, the Wigner crystalline phase has higher spin entropy than
the liquid phase, leading to an increasing tendency to crystallization with increasing temperature.
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I. INTRODUCTION arbitrary macroscopic mixture of two phases(iee, e.g.,
Refs. 6 and y

In discussions of the theory of the two-dimensional elec-
tron gas(2DEG), it is generally accepted that, as a function -~ oy d -dl’
of electron densityn, there is a first-order quantuT =0) Fg=fd500(9) Y f ST (1)
phase transition from a high-density liqbith a low-density V=1
Wigner crystalll_ne phas’e.'l_'hls assumption is reasonable in ere, the arclength integrals, runs alon§ the interfaces
the case of a triangular Wigner crystal due to the presence o AT . ,
cubic invariants in the Landau free enefggnd for other between theAtwo phaseg(s) is the local orientation of the
lattices due to the general expectafidhat fluctuations will  interface,oq(6) is the(in general orientation dependent and
always render a freezing transition first order. The transitiorby assumption positiyeshort-range piece of the surface ten-
is thought to occur when the dimensionless ratip sion,dl runs along the interfacésy, = 26?(An)%d?/ €, andAn
=[n(ag)?] V2 exceeds a critical valGers=r.~38, where s the density difference between the coexisting phases. The
ag is the effective Bohr radius in the semiconductor. How-secondnonloca) term in Eq.(1) comes from the long-range
ever, this generally accepted picture is manifestly incorrecparts of the dipolar interaction. One can also view it as the
for the 2DEG in a metal-oxide-semiconductor field-effectleading finite-size correction to the capacitance of parallel-
transistor(MOSFET), and possibly more generally! plate capacitors due to the fringing fieRls.

Each electron in the 2DEG in a clean MOSFET drags It is important to note that the second term in Ed)
along with it an image charge in the ground plane abovegives a negative contribution to the effective surface tension
Consequently, at small separations, the interaction betweemhich diverges logarithmically with length; for example, an
the electrons is th&/(r) ~ €?/er Coulomb interaction, while isolated straight segment of interface of lendthhas F,,
for separations larger than the distance to the daieis the  =L{og—0o In[L/2d]}. This implies that there is an absolute
repulsive dipole-dipole interactioV(r) ~ 4e’d?/ er®. (Heree  instability of the macroscopically phase separated state - in
is the dielectric constant of the host semicondugtortwo-  the regime of the phase diagram where a classical Maxwell
dimensional(2D) systems with dipolar interactions, the fol- construction would lead to two-phase coexistence, a state
lowing simple argument leads to the concussion that firstformed from a “microemulsion” of the two phaseésith a
order phase transitions are forbidden: In systems witlcharacter and length scale to be determjnbds lower free
interactions that fall more rapidly than ?/ there exists a energy. Thus, instead of a first-order transition between two
“forbidden” range of densities in the neighborhood of a first-phases, there must always be an intermediate regime in
order phase transition where macroscopic phase separatiarhich one or more microemulsion phase occurs, bounded by
reduces the free energy of the system. However, when wene or more line of continuous phase transitions.
come to compute the surface tension between two macro- At this point we would like to compare this situation with
scopic phases, we find thatrfnteractions are marginal: for the Coulomb caséno ground plang where macroscopic
shorter range interactions, there is a well-defined scale indgshase separation is forbidden. The nature of the phases that
pendent surface tensiom, while for longer range interac- result from the “Coulomb frustrated phase separafiéh in
tions, o is scale dependent. Specifically, for dipolar interac-what would otherwise have been the forbidden range of den-
tions, the interfacial contribution to the free energy of ansities is an issue of potentially relevance in many highly
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correlated materials. However, the inhomogeneities that oc-
cur in this situation are typically microscopic in scale, and so
difficult to distinguish from more familiar charge density
wave structure$? Moreover, the relevant microscopic details
are difficult to treat with any degree of rigo(lt is an
interesting® question, which we would like to reopen,
whether there are intermediate phases between the Fermi lic
uid and Wigner crystal phases in the 2DEG with pure Cou-
lomb interactions.

The character of the microemulsion of the two coexisting
phases is determined by minimizikg. in Eq. (1); the result

depends on how anisotropic the functiog(@) is. The case

whereoy(6) is independent of) has been considered in dif-
ferent contexts, including lipid filmge.g., Ref. 14 two-
dimensional uniaxial ferromagnets.g., Ref. 15 and the n., n. n¢ N4

2DEG in MOSFET's'®" The resulting phase diagram in-

cludes both stripe and bubble phases, with stripes preferred FIG. 1. TheT=0 phase diagram of the 2DEG in an MOSFET.
in the center of the phase separated region and bubbles geHe dashed line indicates the mean-field critical densitid),
erally thought to be slightly lower in energy when one phasevhere the free energies of the uniform Wigner cryswC.) and

is in extreme minority. Current estimafeslace the differ- Fe_rml |IQUId(F.L:) phases cross. The_ solid _Ilnes mark the bound-
ence between the dilute stripe and bubble energies at aboffies Of the regime of the intermediate microemuls{stripe or -
6%. In the earlier literature, it was assunetf that there is bubb!g phases. At meap-fleld Ievgl, 'these. solid Ilngs are Lifshitz
a direct first-order transition between uniform stripe andtransmons. They approximately coincide with the regime of macro-

. ic two-ph xisten@e <n<n rived from a Maxwell
bubble phases. This is incorrect, even at mean-field levepCOPIC two-phase coexiste Ge +) derived fro 1 a Vaxwe
. : - construction. The hatched area represents the regime in which the
since, as we have shown, first-order phase transitions al

1€ - .
. B ~ . régions of the two coexisting phases have sizes of order the electron
forbidden. Thus, a sequence of continuous phase transitio J gp

hich di bel | h e fi r},%acing, so quantum fluctuations are order 1, and hence may sub-
(which we . _|chss elowmust replace the putative first- stantially alter the mean-field character of the phases and phase
order transitiort!

. transitions. The cross-hatched areas denote the regimes of Coulomb
In the present case, where at least one of the two coexisfrysirated phase separation where even the mean-field character of

ing phases is crystalline, the angular dependenag)@) is  the phase diagram is not known.

not negligible, reflecting the tendency of crystals to facet.

Clearly, a strong angle dependenceo@t@) tends to favor phase diagram of this system, assuming only uniform states.
stripe phasegwhere all interfaces lie along the direction in If nd?> 1, the free energy per unit area can be represented by

which oy(8) is minima) relative to any form of bubble the sumf(n)=f(©+{ of the energy density of a capacitor
phase. f©=(en?/2C and the internal free-energy density of the

In the present paper, we characterize the phase diagra@lectron liquid f). Here C=(ed)™ is the capacitance per
and in particular, the universal aspects of the intermediat&nit area. At high electron densitigg<1, the kinetic energy
phases and phase transitions that are expected at low or ze?bthe electrons is much larger than their potential energy, so
temperature in an ideal MOSFETe., in the absence any the system forms a Fermi liquid. At small densities>1
disordey. We will consider explicitly the case in whicthis ~ (but still nd®?>1) the Coulomb energy of the electrons is
large compared to the spacing between electrod®> 1, as much Igrger than the kinetic energy, so the ground state is
in this limit (as we shall seefluctuation effects are para- crystalline. N
metrically small and an appropriate mean-field theory pro- However, at even smaller densities whetf<1, the
vides a valid zeroth-order description of the phases. In Sec. glectrons interact only via dipole interactions, so the kinetic
we first discuss the mean-field phase diagram, then in Secgnergy is larger than the potential, and the system again has
Il and 11l we discuss the effects of weak thermal and quan2 Fermi liquid groundstatg¢See discussion surrounding Eq.
tum fluctuations, respectively. In Sec. IV, we discuss some of12).] For d/ag>1, this implies that the phase diagram of
the implications of the present results for the properties othe system has reentrant transitions as a functiam @fong
real devicegwhich, alas, have non-negligible disorfleand  the dashed-dotted trajectory in Fig) ftom a Fermi liquid
in Sec. V we discuss some incompletely developed ideaBhase fom>n.=r:*(mag)™ to a Wigner crystal phase for
concerning further implications of the present line of analy-Nc>n>ng ~ (7d?)™, to a Fermi liquid phase fong>n.
sis. With decreasingd/ag, n.; andn, move toward each other,

until for d<d;~r.ag, the Wigner crystal phase disappears
Il. MEAN-FIELD PHASE DIAGRAM entirely. This is represented by the dashed line in Fig. 1.
As a next step, we improve this phase diagram by allow-

Two dimensionless parameters determine the physics afig for the possibility of inhomogeneous states. There is a
the 2DEG in a MOSFET; (defined aboveandag/d. Letus  range of forbidden densities about the critical density in
start with a discussion of the zero-temperature mean-fieldvhich macroscopic phase separation into regions of high-

2
1/d;
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and low-density phase has lower free energy than the uni- f,= L‘1{200—401 In[L,L_/dL]}, (6)

form state. _ ) ) )
Let us briefly review the salient features of the Maxwell WhereL. are the widths of the high- and low-density regions,

construction for phase coexistence, as applied in the presefSPectively, and.=L.+L_is the period of the stripe struc-
context. For given average density,we consider a state in ture. _M|n|m|zmg Eq.(6) at fixed areal fraction of the high-
which a fractionx, of the system is at a higher than averagedensity phasex=L./L, we get

density,n,>n, and a fraction(1-x) is at a lower than aver- d d

age density,n_<n, such thatxn,+(1-x)n_=n. We then L=2 Y L= (1_)()61+y (7)
minimize the total free energy with respectrtpandn_. The

result of this minimization is an implicit expression for the with y=0,/20. It is important to note that ag— 0, the

densities of the two coexisting phases, stripes of the high density phase approach a finite limiting
N N [N - f(n)] width, L, — Ly=de'*”, although the spacing between stripes,

pot — =g+ — == 2) L_, diverges in proportion to X/ Also, because the mini-

C c An mized value off ,=—40/L is negative, the region of stability

of the striped phase in fact extends somewhat beyond the
edges(n_ andn,) of the two-phase region derived from the
Maxwell construction.

Finally, it is necessary to estimate the magnitudey;df it
is of order 1, therLy~d, but if y>1, thenlL, is exponen-
x=(n-n.)/An. (3) tially larger than atomic lengths. So long as the stripe phase

. . . . occurs in a relatively narrow range of we can use Eq5)
Equation (2) is somewhat complicated, but it can be estimatec,, with the result thaty~ og€?/ e s u_J,

greatly simplified when the forbidden region is relatively \ nih js 4 ratio of microscopic electronic energies. Thus,

small (An<n); in this case, we can linearize the density except under special circumstances, we expect fhatL,
dependence of the free energy about the critical density, 544 hence that,~ d. However, so long asd?> 1, the stripe

where u, =—df©)(n,)/on, are the chemical potentials in the

two phases, andn=[n,—n_]. Phase coexistence occurs for
n_<n<n,, where the fraction of the two phases is deter-
mined by the lever rule,

f€(n,) = FE(ny) = wy(ny =N + -+, (4) widths are still Iarge compared to the.spacing between elec-

- T trons, which validates the macroscopic approach taken here.

where - -- represents higher-order terms in powers (of In short, at mean-field level, as a function of decreasing
-n). To this level of approximation, density the system evolves from the Fermi liquid phase,

through intermediate stripe phases, to the Wigner crystal, as
(5) summarized in Fig. @).

ed (1) Starting in the uniform Fermi liquid phase, as the den-
sity is varied across,, the system undergoes a transition to

The discontinuity of the chemical potentigk_—u.)>0 is ; - -
determined by microscopic physics, and is only small to théd stripe phase, consisting of a periodic array of far separated

extent that the putative transition is weakly first order.Strlpes of Wigner crystal, with characteristic width. This

Whether or not the transition is stronaly first order. fbr transition is analogous to a Lifshitz transition, in that the
large, An is self-consistently small gy ' period of the ordered phase diverges at the transtidinus,

The validity of the Maxwell construction rests on the im- the argumenfsthat fluctuations will generally drive an oth-

- : . erwise continuous freezing transition first order do not apply;
plicit assumption that the interface energy between the CO®%he continuous character of this transition is robust.

ist_ing phases is positive, SO the amount of ‘mefface Is mim— (2) There is, of course, some coupling between the trans-
mized. As we have seen, in the dipolar case this assumpthn ' '

o . : ational motion of the crystalline order in neighboring
Is invalid. We can construct a state with lower free energy bystripes so at mean-field level the crystalline order will be

making an inhomogeneous mixture of the two CoeXis’[inglocked from stripe to stripe. Consequently, the stripe ground
phases to increase the amount of interface. To complete th P pe. q Y pe 9

. ) L : Sate breaks translation symmetry not only in the direction
mean-field analysis, one should minimize Ed) with re- : . . e
L . . é)erpendlcular to the stripes, but along the stripe direction as
Spect to the shape of the minority phaS(_a regions at given ar Well. However, near the transition, whexe<1, the spacing
of the phase, the area being given, to first approximation, b% ' ' ' ’

the Maxwell rule.

An = My
niznct?; Anz(’u—’u)e.

etween stripes is large comparedLiy so this coupling is
exponentially small; consequently, this locking can be ne-
glected for all practical purposes. Therefore, this phase
A. Stripe phases should operationally be classified as an electron smé‘b_hic, _
o ) _ _ . which translation symmetry is unbroken along the stripe di-
To begin with, let us consider only striped phases. This igection. (There remains the interesting academic question of
fully justified in the case of strong anisotropy Qf the surfaceprincime whether or not quantum fluctuations are able to
energy.(As we will see later even in the opposite case wheny|y stapilize this smectic phase &t0, this is closely re-
o(6) is isotropic, there are regions in the phase diagraniated to the issue of whether “floating phases” are stable in
where this assumption is relevanfThe interfacial free- quasi-1D electronic systemé?)
energy density for a striped phase is easily computed from (3) Near x=1/2, the stripes of Wigner crystal and the
Eqg. (1) to be intervening Fermi liquid are comparable in width. As->1,
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Conducting Crystall isotropic that bubble phases never intrude upon the phase
we | C__ Smectic | FL diagram. It is also possible to force the issue by artificially
| | . . ~ .
n_ 2 n, enhancing the anisotropy ofy(6). This can be done by ex-

plicitly breaking the rotational symmetry of the 2DEG, for

Conducting instance, by applying an in-plane magnetic field or by using

we < Crystal | Nematic FL a sufficiently anisotropic surface in the construction of the
®) ~ ! ! MOSFET. In this case, no more need be said.
However, the Wigner crystal is generally thought to be
wC Smectic FL triangular. In this case the surface energy is sufficiently iso-
I I tropic that forx near 0 or 1, there will be a range &fin
(© which bubble phases have lower energy than the stripe
Conducting Bubble  Stripes ~ Bubble = Hexatic phase; forx near 0, such a phase consists of far separated
WC Crystal Il Crystal I, M Crystal I  FL crystallites in a metallic sea, while for near 1, it is far
| | ””” “NE | ' separated bubbles of fluid in a Wigner crystalline host. We
@ will call these phases bubble crystals | and Il, respectively.

FIG. 2. Schematic representation of the sequence of intermedLSee Fig. 2d)] As x—0 orx—1, the period of the bubble

ate states as the 2DEG evolves from the Fermi lig&d) to the CrYStaIS di\./.erge’ leading ‘f"t mean—field level to another Lif-
Wigner crystal(W.C)). In a, b, and ¢, we assume that6) is suffi- Shlt_z transition, much as n the stripe Caédowever,_fluq-
ciently anisotropic that bubble phases are suppresagthe mean- tuation effects are much different near these Fransmon in the
field phase diagram. Under appropriate circumstances, this also reF-Ubble and stripe cases, as we will discuss in the next sec-
resents the true sequence of phase transitiofis 8t (b) The phase ~ UONS) o .
diagram at nonzero temperature with a rotationally invariant Hamil-  However, this is not the end of the story. The stripe phase
tonian. (c) The phase diagram at nonzero temperature with a prelS always the lower energy one neer1/2, so if abubble
ferred axis, for instance, due to an in-field magnetic field. VerticalPhase occurs for smak, there must be a critical value af
lines represent phase transitions and wavy lines crossovers. PhaseX; at which the energy of the bubble and stripe phases
with power-law order are named in italics. The smectic phage)in  Cross, seemingly implying a first-order transition. Since we
is weakly unstable to crystallization at mean-field level, but may behave proven in general that first-order transitions are forbid-
stabilized by quantum fluctuation@l) The phase diagram including den, this first-order transition, too, must be replaced by a
bubble phases at=0 in the presence of quantum fluctuations. Theregime of intermediate phases consisting of a mixture of
hatched areas correspond to the sequence of transitions involvirgubble and stripe phasé%Now, however, because of the
megastripes of bubble and stripe phases discussed in the text. |arge anisotropy of the stripe phase, the surface tension be-
tween these two phases must be highly anisotropic. Thus,
the system is better thought of as stripes of Fermi liquidthis intermediate phase will most probably be of the form of
separated by broad regions of Wigner crystal. At some pointdlternating mega-stripes of bubble and stripe phase regions.
the crystalline order becomes so rigid that the couplingThese regions are shown in Figd2 by hatched boxes.
across the liquid stripes is no longer negligible. At this point,
the striped state is fully crystalline, in the sense that transla-
tion symmetry is broken in both directions, and the structure lll. THERMAL EFFECTS
factor contains Bragg peaks. However, this phase is still
qualitatively distinct from the Wigner crystal. Since gener- . o
ally speaking the Fermi wave vector is unrelated to the The most dramatic effect of finit& is its effect on the
Bragg vectors of the Wigner crystal, the liquid in the stripePalance between the liquid and Wigner crystalline phases,
“rivers” can still conduct current in the stripe direction. For the fraction of the Wigner crystal phase grows as the tem-
want of a better name, we christen this state a striped “corPerature increasé8.This phenomenon is similar to the Po-
ducting crystall.”(See Fig. 2. meranchuk effect in Heand has the same origin: the spin
(4) At x=1, the transition from the conducting to Wigner entropy of the crystal phase is substantially larger than that
crystal mirrors the smectic to Fermi liquid transition; it is Of the liquid state. The same considerations lead, as well, to
also a Lifshitz transition at which the period of the stripe the conclusion that the crystalline phase is preferred relative
order diverges. to the liquid in the presence of an in-plane magnetic field,
Due to the Pauli exclusion principle, an effective ex-
change energy of order the Fermi ener@’,é~h2n/2m*
B. Bubble phases guenches the spin entropy in the liquid phase. In contrast, the

So far, this analysis ignores the possibility of bubbleeXChangéZ energy_in the Wigner crystal is exponentially

phases. Whether or not there is a regime in which the Iowes%ma”’ Jerexf~ars] where a is a number of order 1. For

. ; . S
energy mean-field state is a bubble phase depends, as gxample an estimate made in Ref. 23 yielits 10"Ry

W W 24 H -
mentioned before, on the degree of anisotropy of the micro\—N‘?nIere Ry=e'm /2h’eis the effective Rydberg. Thus a com

) ] - bination of the quantum character of the liquid and the small-
scopic surface tensiom(6). It may happen, due to the an- negs of exchange processes in the solid imply that the solid

isotropy of the Wigner crystal, thato(@) is sufficiently an-  phase is stabilized by nonzeTorelative to the liquid phase,

A. The Pomaranchuk effect

155114-4



PHASES INTERMEDIATE BETWEEN A TWO-.. PHYSICAL REVIEW B 70, 155114(2004

for n nearn., the 2DEG freezes upon heating. In the presenthan with true long-range order, as shown schematically in
context, this means that for fixed the relative fraction of Fig. 2(c).

Wigner crystalline regions increases with increasingr H;. Because first-order transitions are forbidden, the transition
A simple estimate of the magnitude of this effect can bebetween the isotropic fluid and the nematic phase must be of
made for the range of temperaturés T<E-=Ry/m(r)?>  the Beresinskii-Kosterlitz-Thoules¢BKT) type. Near the
and iugH, <Eg, where the entropy of the liquid is negli- mean field Lifshitz point we can estimate this transition tem-
gible, as are the subtleties of the ground-state magnetic struperature as follows: The distance between stripes is large so

ture of the Wigner crystal. In this case, the stripes of minority phase evaporate when the energy to
break off a piece~agly, is less than the configurational
f(n_,T,H) = f(n_,0,0 —kgTn_ In[2 costiri ugH/kgT)] entropy of a state where rare droplets of the minority phase

(8) are distributed randomly. Equating these two free energies

leads to the estimate
and f(n,,T,H,) =f(n,,0,0. The fact that temperature and

magnetic field stabilize the Wigner crystal in qualitatively TIn[x(1 =x)]| ~ opLo. (10
similar fashion is one of the striking aspects of this relation:

For T> fiugHy, F(n_, T,H) ~f(n_,0,0 =~ —kgTn_ In[2] while In the presence of an in-plane magnetic field, there is no

_ g N_ sharply defined nematic phase, since rotational symmetry is
for T<fugh,, f(n_,T,B)=f(n_,0,0 ~—hugHn.. explicitly broken. However, by the same token, free disloca-

Of course, at high enough temperatures, all tendencies tﬁ)ons in the smectic state have a logarithmically divergent
ordered states are suppressed. This occurs above the char ﬁ'ergy S0 a power-law smectic phase exists at nonEero

teristic temperature at which the Wigner crystal melts. In th ith increasing temperature, the smectic to liquid phase

limit of very large I’S,.thIS oceurs at t_he classical me]tlng transition is also of the BKT type. Indeed, so long as the
temperature of the Wigner crystal, which has been eSt'mate%/mmetry breaking term in the Hamiltonian is small, the

in accurate numerical experimetftso be /mmelry breaking term In e Hamitorian is sma
Trmeir= A(€%/e)\mn = 2A Ry /r (9y  above.

whereA=1/1291+0.04. However, at smallerg, whereEg
of the competing fluid phase is larger than the putative clas- ) .
sical melting temperature, the implied reduction of the en- e now consider the effect of thermal fluctuations on

tropy of the fluid state means that the melting temperature j§uPble phases. As can be seen from #g, the interaction
set, by T,e Er. Far from the Lifshitz points, the melting energy between far separated bubbles decreases atjage
temperatures of the variou§ micrpemulsion phaseg are deter- Voubpie~ o123, (11)
mined by these same considerations, and are of similar mag-
nitude. Here, the fraction of the system that is crystalline is avhere L, and r, are the radius of and distance between
nonmonotonic function of, first increasing and then drop- bubbles. Thus, where the bubbles are far separated, because
ping to zero afT,,. Near the Lifshitz points, more delicate of the screening by the ground plane the BKT melting tem-
considerations determine the melting point. perature will tend to rapidly to zerdig.rec[(1-x)x]*? as
the spacing between bubbles increases. The result is that,
near the mean-field Lifshitz point the bubble phase is always

C. Thermal fluctuations in the bubble phases

B. Thermal fluctuations in the stripe phases melted by the thermal fluctuations. On the other hand, at
Let us now consider the role of thermal fluctuations on thesmallerrg the bubble phase survives thermal fluctuations in
stripe phases. We distinguish two cases: the usual sense that the correlations of bubble positions ex-

(1) If the Hamiltonian is rotationally invariant, then the hibit power-law decay.
smectic phase is unstable at any nonzero temperature to the The nature of the transition between the bubble phase and
proliferation of dislocations. Thus, the mean-field smecticthe uniform phase is not, presently, settled. Of course, a di-
phase is rep|aced by a nematic phase, which, in keeping WitfﬁCt first-order transition is forbidden. One pOSSIbI'Ity is that
the Mermin-Wagner theorem, does not actually break rotathere is a sequence of two BKT transitions, as in the
tional symmetry, but rather has power-law orientational or-Halperin-Nelson theofy of melting, with an intermediate
der. A free dislocation has a logarithmically divergent energynexatic phase. Alternatively, there may be a further set of
in both the Wigner and conducting-crystal phases, so they af@ierarchical microemulsion phases.
robust against thermal fluctuations at low temperatures, al-
though with power law rather than long-range crystalline or- IV. QUANTUM FLUCTUATIONS
der. The resulting phase diagram is shown schematically in
Fig. 2b).

(2) If, however, the Hamiltonian has a preferred axis, for So long asnL§>1 (ncP>1), the stripes are many elec-
instance, if we consider the 2DEG in the presence of artrons wide, so quantum fluctuations of their positions are
in-plane magnetic field, the effects of low-temperature therintrinsically small; 1hL§ is a small parameter in the prob-
mal fluctuations are much less severe. Here, the smectic areim, which permits an asymptotically exact treatment of
both crystalline phases remain well defined at nonZBro quantum fluctuation effects. At zero temperature, the
although again with power-law spatial correlations ratherconducting-crystal phase is clearly stable in the presence of

A. Stripe phases
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small quantum fluctuations, although, as mentioned previthat m" increases with increasinlg, (in a way that depends
ously, the jury is still out on whether the smectic phase ison whether the interface is quantum rough or smpothe
unstable to crystallizatioff21 Only where the stripe width is result is that, for largenc?, the regime in which the bubble
of order of the interelectron distancee., when nL§~1), crystal is quantum melted is extremely small. However, if
quantum fluctuations become very significant. This applies tmd®~ 1 quantum melting is a significant phenomenon.
the hatched region in Fig. 1, where the quantum properties of The character of the bubble liquid phase is different de-
the system are still uncertain. pending on the character of the minority phase. When the
The quantum nature of the system near the Lifshitz pointsnajority phase is Wigner crystalline with dilute inclusions of
is determined by the quantum nature of the interface betweeliquid, the melting of the bubble crystal results in a type of
the crystal and the liquid, a problem which itself is still un- “conducting crystal’® In this state, crystalline long-range
solved. This interface may be quantum rough or quantunorder coexists with fluid-like conductivity, but in this case
smooth. If it is smooth, the Lifshitz transition from the uni- the conductivity is associated with the motion of the bubbles
form fluid to smectic phase is not fundamentally affected bythemselves. Phenomenologically this state is similar to the
quantum fluctuations, provided the width of the stripes is‘supersolid” phase which has been discusgéedthe context
large enough. However, if an isolated interface is rough, thef He*. In both cases the number of electraos aroms is
stripe order in the vicinity of the mean-field Lifshitz point is not equal to the number of the crystalline sit&3he differ-
quantum melted; in this case, for the rotationally invariantence is that unlike the case of Hevhere vacancies are
system, the proscription against first order transitions impliebosons, in our case the statistics of the droplets is not known,
that there must be an intermediate zero temperature nematnd hence the liquid state may not be a superfluid. Therefore,
phase between the isotropic and the stripe ordered phaseswe refer to this state as a “conducting crystal II” in FigdR
was recently showh that a nematic Fermi fluid is necessar- to distinguish it from the highly anisotropic conducting crys-
ily a non-Fermi liquid in the sense that quasiparticles are notal [see Figs. &) and Zd)] which originates from the exis-
well defined elementary excitations. We believe that, dependence of stripes.
ing on microscopic details and on the value raf, both When the Fermi liquid is the majority phase, with a fluid
scenarios are possible. of “icebergs” floating in it, no spatial symmetries need be
It is worth mentioning why the quantum nature of the broken. However, elementary excitation spectrum is likely to
crystal-liquid interface is so subtle. Consider the motion of abe different from that of a conventional Fermi liquid.
step in the interface. Quantum-mechanically, an isolated step Since the majority phase already brakes rotational sym-
might be expected to propagate along the interfddBe-  metry, the bubble crystallization transition which transforms
cause the steps interact by a short-range dipolar interactiothe system from the conducting crystal to the insulating
the steps should then form a delocalized 1D quantum liquidubble crystal phase can be a simple continuous transition.
along the interface. However, because of the density misHowever, the freezing of the icebergs into a triangular crystal
match between the solid and liquid, the situation is moreof Wigner crystalline bubbles is more problematic. As with
complicated. Motion of the step requires a flux of mass intathe thermal transition, there may be a two-step freezing tran-
the liquid of a magnitude proportional to the density differ- sition, with an intermediate quantum hexatic ph&se; an-
ence between the solid and liquid and to the step’s velocityother hierarchy of microemulsion phases. The sequence of
In a Fermi liquid this flux of mass is carried by quasiparti- the phases af=0 is shown in Fig. &).
cles, making the step motion highly dissipative. Thus, char-
acterizing the interface involves interesting, but as far as we

know unsolved issues in dissipative quantum mechanics. V. EXPERIMENTAL CONSEQUENCES
Obviously, there are many experimental consequences of
B. Bubble phases the existence of intermediate phases, of which we here list

In contrast to stripe phases, quantum fluctuations alwaygnly a few. It should be kept in mind that macroscopic spatial

melt the bubble phases when the bubbles are sufficientl ymmetry breaking, the sort which precisely characterizes
he various phases we have discussed, does not truly occur in

dilute. To see this, we can estimate the characteristic pote D in the presence of auenched disorder. This complicates
tial energy of a bubble crystal as in Ed.1), and can make a h | pb . qf : h ) P
corresponding dimensional estimate of the bubble kinetic enth® actual observation of various phenomena. \
27020 © . The majority of industrially produced Si MOSFET’s have
ergy Kpuppie~7°/rgm, where m is the bubble effective :
mass. Therefore the ratio of these energies is gate;s 'relatlvely 'close t(.) the 2DE@d;, so the electron
liquid is weakly interacting at alh. However, a small num-

Vouple [ oilgm’ | 1 ber of high mobility Si MOSFET'YFor a review, see Ref.

“\ T ) (12 29) and p-type of GaAs double layetd with large d
~1000 A have been studied in the past few years, and found
vanishes agy—o°. This analysis fleshes out the same argu-to exhibit transport anomalies that have been interpreted as
ment mentioned in the introduction that leads to the concluevidence for an unexpected metal-insulator transition. While
sion that there is no stable Wigner crystal phase at sthall these devices certainly are not ideal, in the sense that they
However, whereas in that case, the proportionality constarttave non-zero quenched disorder, we would like to propose
is a*B, in the present case the same constant is parametricaltifat a natural explanation of those phenomena is that they
large, both due to the explicit factors lof and due to the fact reflect the existence in the zero disorder limit of the elec-

Kbubble o
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tronic microemulsion phases identified in the present paperergy scales than in the bulk Wigner crystal. There is thus the
One robust consequence of two-phase coexistence is theg¢ry real possibility that the magnetic structure of the inter-
the conductivity is a decreasing function of the volume frac-faces is very rich, and characterized by substantial energy
tion of Wigner crystal. This volume fraction, in turn, is scales.
strongly temperature and magnetic field dependent due to the o
Pomeranchuk effect, as explained above. As a result, the B. Superconductivity
fraction of crystal grows with temperature and magnetic The parallels between the 2DEG in a MOSFET and Cou-
field, leading to a corresponding increase of the resistivitylomb frustrated phase separation in a doped Mott insulator
As has been pointed out previoudfithis basic physics may naturally lead one tspeculateconcerning the possibility of
underly the transport anomalies observed in lat@ MOS-  superconductivity in the present system. In the bubble related
FETs. In particular, it offers a candidate explanation of theconducting-crystal phase, each bubble has a fixed number of
anomalous metalliedp/dT> 0) temperature dependence and electrons; when that number is even, the bubbles are likely
large positive magneto resistance observed in these systemgsonic and a supersolid phase with low superfluid density is
despite the fact that the resistivity, itself, exceeds the loffepossiblet®2? In the hatched region of the phase diagram,
Regel limit. [Ideally, one might want to explore the scaling where quantum effects are most severe, a more robust
relation between the temperature and magnetic field depemechanism is possible, based on the “spin-gap proximity
dence of the resistivity implied by the thermodynamic rela-effect:"®2 Small clusters of Wigner crystdgbe they stripe or
tion in Eq.(9).] bubble likg will often have a spin gap(Near the cluster
Of course, each new phase has different patterns of spatiaige, this gap may be larger than in the bulklhere this
symmetry breaking, and hence has new collective modes argiap is large enough, it suppresses single-particle exchange
modified hydrodynamics. Even when the effects of quenchegéetween the crystal clusters and the surrounding Fermi fluid,
disorder or thermal fluctuations restore the symmetry at madsut pair exchange is still permitted. When this dominates, it

roscopic distances, the existence of these collective modesduces global superconductivity by a process analogous to
can have readily detectable consequences for the dynamicgle conventional proximity effect.

responses of the system. Small explicit symmetry breaking

fields can be used to overcome the destructive effects of C. Double layers

guenched disorder and reveal the true tendency to symmetry |n a double layer system, with two nearby 2DEG's, the
breaking. For instance, an in-plane magnetic field explicitlytyo |ayers screen each other in much the same way as the
breaks rotational symmetry; where some form of stripe Ofnetal layer screens the 2DEG in a MOSFET. However, here
nematic phase exists in the absence of quenched disorder, thg types of phases, and the available experiments are still
small symmetry breaking produced by such a field can givgicher. One particularly interesting point is that the conduc-
rise to a large resistivity anisotropy, as has been seen for thg/ity measured in drag can explore the nature of the inter-

analogous states in quantum Hall deviées. layer screening. The presence of a crystalline component of
an electron fluid has the potential to greatly increase the drag
VI. EXTENSIONS conductivity relative to a Fermi liquid; in particular, whereas

the drag conductivity vanishes @s-0 in a Fermi liquid, we

_ We end with some speculative observations conceminggyieve it can approach a nonzero constant in some of the
intermediate phases of the 2DEG. intermediate phases we have explored.

A. Spin physics D. Other applications

Other than the Pomeranchuk effect, we have largely ig- The presentideas are pretty clearly applicable in a host of
nored the physics of the electron spins. The exchange intefdditional physical contexts. What is needed is short-range
actions in the Wigner crystal phase are generally found to béndency to phase separation, i.e., a concave local free en-
very small?2 and so are only important at very low tempera- €9y, opposed by dipolar forces. Under appropriate circum-
tures. AtT=0, however, the fact that the magnetic Hamil- Stances, this situation may pertain in the 2DEG at higher
tonian is highly frustrated and may have important multispindensitiesrs<r. and it certainly applies in various regimes to
ring exchange interactions, can lead to a variety of possiblée physics of lipid films and planar ferromagnets.
magnetic phases, and t_hls complexny could be_ inherited, to ACKNOWLEDGMENTS
some degree, by the intermediate phases discussed here.

Moreover, at a liquid-crystalline interface, the quantum dy- This work was supported in part by the National Science
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effective exchange interactions, likely with much larger en-and DMR-0228104B.S).
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