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We show that there can be no direct first-order transition between a Fermi liquid and an insulating electronic
(Wigner) crystalline phase in a clean two-dimensional electron gas in a metal-oxide-semiconductor field-effect
transistor(MOSFET); rather, there must always exist intermediate “microemulsion” phases, and an accompa-
nying sequence of continuous phase transitions. Among the intermediate phases which we find are a variety of
electronic liquid crystalline phases, including stripe-related analogues of classical smectics and nematics. The
existence of these phases can be established in the neighborhood of the phase boundaries on the basis of an
asymptotically exactanalysis, and reasonable estimates can be made concerning the ranges of electron densities
and device geometries in which they exist. They likely occur in clean Si MOSFETs in the range of densities in
which an “apparent metal to insulator transition” has been observed in existing experiments. We also point out
that, in analogy with the Pomaranchuk effect in3He, the Wigner crystalline phase has higher spin entropy than
the liquid phase, leading to an increasing tendency to crystallization with increasing temperature.
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I. INTRODUCTION

In discussions of the theory of the two-dimensional elec-
tron gas(2DEG), it is generally accepted that, as a function
of electron densityn, there is a first-order quantumsT=0d
phase transition from a high-density liquid1 to a low-density
Wigner crystalline phase.2 This assumption is reasonable in
the case of a triangular Wigner crystal due to the presence of
cubic invariants in the Landau free energy,3 and for other
lattices due to the general expectation4 that fluctuations will
always render a freezing transition first order. The transition
is thought to occur when the dimensionless ratiors
;fpnsaBd2g−1/2 exceeds a critical value5 rs=rc,38, where
aB is the effective Bohr radius in the semiconductor. How-
ever, this generally accepted picture is manifestly incorrect
for the 2DEG in a metal-oxide-semiconductor field-effect
transistor(MOSFET), and possibly more generally!

Each electron in the 2DEG in a clean MOSFET drags
along with it an image charge in the ground plane above.
Consequently, at small separations, the interaction between
the electrons is theVsrd,e2/er Coulomb interaction, while
for separations larger than the distance to the gated, it is the
repulsive dipole-dipole interaction,Vsrd,4e2d2/er3. (Heree
is the dielectric constant of the host semiconductor.) In two-
dimensional(2D) systems with dipolar interactions, the fol-
lowing simple argument leads to the concussion that first-
order phase transitions are forbidden: In systems with
interactions that fall more rapidly than 1/r2, there exists a
“forbidden” range of densities in the neighborhood of a first-
order phase transition where macroscopic phase separation
reduces the free energy of the system. However, when we
come to compute the surface tension between two macro-
scopic phases, we find that 1/r3 interactions are marginal: for
shorter range interactions, there is a well-defined scale inde-
pendent surface tension,s, while for longer range interac-
tions, s is scale dependent. Specifically, for dipolar interac-
tions, the interfacial contribution to the free energy of an

arbitrary macroscopic mixture of two phases is(see, e.g.,
Refs. 6 and 7)

Fs =E dss0sûd −
s1

2
E dl ·dl8

Îul − l8u2 + d2
. s1d

Here, the arclength integralds, runs along8 the interfaces

between the two phases,ûssd is the local orientation of the

interface,s0sûd is the (in general orientation dependent and
by assumption positive) short-range piece of the surface ten-
sion,dl runs along the interfaces,8 s1=2e2sDnd2d2/e, andDn
is the density difference between the coexisting phases. The
second(nonlocal) term in Eq.(1) comes from the long-range
parts of the dipolar interaction. One can also view it as the
leading finite-size correction to the capacitance of parallel-
plate capacitors due to the fringing fields.9

It is important to note that the second term in Eq.(1)
gives a negative contribution to the effective surface tension
which diverges logarithmically with length; for example, an
isolated straight segment of interface of lengthL has Fs

=Lhs0−s1 lnfL /2dgj. This implies that there is an absolute
instability of the macroscopically phase separated state - in
the regime of the phase diagram where a classical Maxwell
construction would lead to two-phase coexistence, a state
formed from a “microemulsion” of the two phases(with a
character and length scale to be determined), has lower free
energy. Thus, instead of a first-order transition between two
phases, there must always be an intermediate regime in
which one or more microemulsion phase occurs, bounded by
one or more line of continuous phase transitions.

At this point we would like to compare this situation with
the Coulomb case(no ground plane) where macroscopic
phase separation is forbidden. The nature of the phases that
result from the “Coulomb frustrated phase separation10,11” in
what would otherwise have been the forbidden range of den-
sities is an issue of potentially relevance in many highly
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correlated materials. However, the inhomogeneities that oc-
cur in this situation are typically microscopic in scale, and so
difficult to distinguish from more familiar charge density
wave structures.12 Moreover, the relevant microscopic details
are difficult to treat with any degree of rigor.(It is an
interesting13 question, which we would like to reopen,
whether there are intermediate phases between the Fermi liq-
uid and Wigner crystal phases in the 2DEG with pure Cou-
lomb interactions.)

The character of the microemulsion of the two coexisting
phases is determined by minimizingFs in Eq. (1); the result

depends on how anisotropic the functions0sûd is. The case

wheres0sûd is independent ofû has been considered in dif-
ferent contexts, including lipid films(e.g., Ref. 14), two-
dimensional uniaxial ferromagnets(e.g., Ref. 15), and the
2DEG in MOSFET’s.16,17 The resulting phase diagram in-
cludes both stripe and bubble phases, with stripes preferred
in the center of the phase separated region and bubbles gen-
erally thought to be slightly lower in energy when one phase
is in extreme minority. Current estimates7 place the differ-
ence between the dilute stripe and bubble energies at about
6%. In the earlier literature, it was assumed14,15 that there is
a direct first-order transition between uniform stripe and
bubble phases. This is incorrect, even at mean-field level,
since, as we have shown, first-order phase transitions are
forbidden. Thus, a sequence of continuous phase transitions
(which we discuss below) must replace the putative first-
order transition.16

In the present case, where at least one of the two coexist-

ing phases is crystalline, the angular dependence ofs0sûd is
not negligible, reflecting the tendency of crystals to facet.

Clearly, a strong angle dependence ofs0sûd tends to favor
stripe phases(where all interfaces lie along the direction in

which s0sûd is minimal) relative to any form of bubble
phase.

In the present paper, we characterize the phase diagram,
and in particular, the universal aspects of the intermediate
phases and phase transitions that are expected at low or zero
temperature in an ideal MOSFET(i.e., in the absence any
disorder). We will consider explicitly the case in whichd is
large compared to the spacing between electrons,nd2@1, as
in this limit (as we shall see) fluctuation effects are para-
metrically small and an appropriate mean-field theory pro-
vides a valid zeroth-order description of the phases. In Sec. I,
we first discuss the mean-field phase diagram, then in Secs.
II and III we discuss the effects of weak thermal and quan-
tum fluctuations, respectively. In Sec. IV, we discuss some of
the implications of the present results for the properties of
real devices(which, alas, have non-negligible disorder), and
in Sec. V we discuss some incompletely developed ideas
concerning further implications of the present line of analy-
sis.

II. MEAN-FIELD PHASE DIAGRAM

Two dimensionless parameters determine the physics of
the 2DEG in a MOSFET,rs (defined above) andaB/d. Let us
start with a discussion of the zero-temperature mean-field

phase diagram of this system, assuming only uniform states.
If nd2@1, the free energy per unit area can be represented by
the sumfsnd= f sCd+ f seld of the energy density of a capacitor
f sCd=send2/2C and the internal free-energy density of the
electron liquid f seld. Here C=sedd−1 is the capacitance per
unit area. At high electron densities,rs!1, the kinetic energy
of the electrons is much larger than their potential energy, so
the system forms a Fermi liquid. At small densitiesrs@1
(but still nd2@1) the Coulomb energy of the electrons is
much larger than the kinetic energy, so the ground state is
crystalline.

However, at even smaller densities whennd2!1, the
electrons interact only via dipole interactions, so the kinetic
energy is larger than the potential, and the system again has
a Fermi liquid groundstate.[See discussion surrounding Eq.
(12).] For d/aB@1, this implies that the phase diagram of
the system has reentrant transitions as a function ofn (along
the dashed-dotted trajectory in Fig. 1) from a Fermi liquid
phase forn.nc< rc

−2spaB
2d−1 to a Wigner crystal phase for

nc.n.nc1,spd2d−1, to a Fermi liquid phase fornc1.n.
With decreasingd/aB, nc1 and nc move toward each other,
until for d,dc, rcaB, the Wigner crystal phase disappears
entirely. This is represented by the dashed line in Fig. 1.

As a next step, we improve this phase diagram by allow-
ing for the possibility of inhomogeneous states. There is a
range of forbidden densities about the critical density in
which macroscopic phase separation into regions of high-

FIG. 1. TheT=0 phase diagram of the 2DEG in an MOSFET.
The dashed line indicates the mean-field critical densityncsdd,
where the free energies of the uniform Wigner crystal(W.C.) and
Fermi liquid (F.L.) phases cross. The solid lines mark the bound-
aries of the regime of the intermediate microemulsion(stripe or
bubble) phases. At mean-field level, these solid lines are Lifshitz
transitions. They approximately coincide with the regime of macro-
scopic two-phase coexistencesn−,n,n+d derived from a Maxwell
construction. The hatched area represents the regime in which the
regions of the two coexisting phases have sizes of order the electron
spacing, so quantum fluctuations are order 1, and hence may sub-
stantially alter the mean-field character of the phases and phase
transitions. The cross-hatched areas denote the regimes of Coulomb
frustrated phase separation where even the mean-field character of
the phase diagram is not known.
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and low-density phase has lower free energy than the uni-
form state.

Let us briefly review the salient features of the Maxwell
construction for phase coexistence, as applied in the present
context. For given average density,n, we consider a state in
which a fraction,x, of the system is at a higher than average
density,n+.n, and a fractions1−xd is at a lower than aver-
age density,n−,n, such thatxn++s1−xdn−=n. We then
minimize the total free energy with respect ton+ andn−. The
result of this minimization is an implicit expression for the
densities of the two coexisting phases,

m+ +
n+

C
= m− +

n−

C
=

ffsn−d − fsn+dg
Dn

, s2d

wherem±=−]f seldsn±d /]n± are the chemical potentials in the
two phases, andDn;fn+−n−g. Phase coexistence occurs for
n−,n,n+, where the fraction of the two phases is deter-
mined by the lever rule,

x = sn − n−d/Dn. s3d

Equation (2) is somewhat complicated, but it can be
greatly simplified when the forbidden region is relatively
small sDn!ncd; in this case, we can linearize the density
dependence of the free energy about the critical density,

f seldsn±d = f seldsncd − m±sn± − ncd + ¯ , s4d

where ¯ represents higher-order terms in powers ofsn±

−ncd. To this level of approximation,

n± = nc ±
Dn

2
; Dn =

sm− − m+de
e2d

. s5d

The discontinuity of the chemical potentialsm−−m+d.0 is
determined by microscopic physics, and is only small to the
extent that the putative transition is weakly first order.
Whether or not the transition is strongly first order, ford
large,Dn is self-consistently small.

The validity of the Maxwell construction rests on the im-
plicit assumption that the interface energy between the coex-
isting phases is positive, so the amount of interface is mini-
mized. As we have seen, in the dipolar case this assumption
is invalid. We can construct a state with lower free energy by
making an inhomogeneous mixture of the two coexisting
phases to increase the amount of interface. To complete the
mean-field analysis, one should minimize Eq.(1) with re-
spect to the shape of the minority phase regions at given area
of the phase, the area being given, to first approximation, by
the Maxwell rule.

A. Stripe phases

To begin with, let us consider only striped phases. This is
fully justified in the case of strong anisotropy of the surface
energy.(As we will see later even in the opposite case when

ssûd is isotropic, there are regions in the phase diagram
where this assumption is relevant.) The interfacial free-
energy density for a striped phase is easily computed from
Eq. (1) to be

fs = L−1h2s0 − 4s1 lnfL+L−/dLgj, s6d

whereL± are the widths of the high- and low-density regions,
respectively, andL=L++L− is the period of the stripe struc-
ture. Minimizing Eq.(6) at fixed areal fraction of the high-
density phase,x;L+/L, we get

L− =
d

x
e1+g, L+ =

d

s1 − xd
e1+g s7d

with g=s0/2s1. It is important to note that asx→0, the
stripes of the high density phase approach a finite limiting
width, L+→L0=de1+g, although the spacing between stripes,
L−, diverges in proportion to 1/x. Also, because the mini-
mized value offs=−4s1/L is negative, the region of stability
of the striped phase in fact extends somewhat beyond the
edges(n− andn+) of the two-phase region derived from the
Maxwell construction.

Finally, it is necessary to estimate the magnitude ofg; if it
is of order 1, thenL0,d, but if g@1, thenL0 is exponen-
tially larger than atomic lengths. So long as the stripe phase
occurs in a relatively narrow range ofn, we can use Eq.(5)
to estimates1, with the result thatg,s0e

2/efm+−m−g2,
which is a ratio of microscopic electronic energies. Thus,
except under special circumstances, we expect thatg,1,
and hence thatL0,d. However, so long asnd2@1, the stripe
widths are still large compared to the spacing between elec-
trons, which validates the macroscopic approach taken here.

In short, at mean-field level, as a function of decreasing
density the system evolves from the Fermi liquid phase,
through intermediate stripe phases, to the Wigner crystal, as
summarized in Fig. 2(a).

(1) Starting in the uniform Fermi liquid phase, as the den-
sity is varied acrossn+, the system undergoes a transition to
a stripe phase, consisting of a periodic array of far separated
stripes of Wigner crystal, with characteristic widthL0. This
transition is analogous to a Lifshitz transition, in that the
period of the ordered phase diverges at the transition.19 Thus,
the arguments4 that fluctuations will generally drive an oth-
erwise continuous freezing transition first order do not apply;
the continuous character of this transition is robust.

(2) There is, of course, some coupling between the trans-
lational motion of the crystalline order in neighboring
stripes, so at mean-field level the crystalline order will be
locked from stripe to stripe. Consequently, the stripe ground
state breaks translation symmetry not only in the direction
perpendicular to the stripes, but along the stripe direction as
well. However, near the transition, wherex!1, the spacing
between stripes is large compared toL0, so this coupling is
exponentially small; consequently, this locking can be ne-
glected for all practical purposes. Therefore, this phase
should operationally be classified as an electron smectic,20 in
which translation symmetry is unbroken along the stripe di-
rection.(There remains the interesting academic question of
principle whether or not quantum fluctuations are able to
truly stabilize this smectic phase atT=0, this is closely re-
lated to the issue of whether “floating phases” are stable in
quasi-1D electronic systems.17,21)

(3) Near x=1/2, the stripes of Wigner crystal and the
intervening Fermi liquid are comparable in width. Asx→1,
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the system is better thought of as stripes of Fermi liquid
separated by broad regions of Wigner crystal. At some point,
the crystalline order becomes so rigid that the coupling
across the liquid stripes is no longer negligible. At this point,
the striped state is fully crystalline, in the sense that transla-
tion symmetry is broken in both directions, and the structure
factor contains Bragg peaks. However, this phase is still
qualitatively distinct from the Wigner crystal. Since gener-
ally speaking the Fermi wave vector is unrelated to the
Bragg vectors of the Wigner crystal, the liquid in the stripe
“rivers” can still conduct current in the stripe direction. For
want of a better name, we christen this state a striped “con-
ducting crystalI.”(See Fig. 2.)

(4) At x=1, the transition from the conducting to Wigner
crystal mirrors the smectic to Fermi liquid transition; it is
also a Lifshitz transition at which the period of the stripe
order diverges.

B. Bubble phases

So far, this analysis ignores the possibility of bubble
phases. Whether or not there is a regime in which the lowest
energy mean-field state is a bubble phase depends, as we
mentioned before, on the degree of anisotropy of the micro-

scopic surface tensions0sûd. It may happen, due to the an-

isotropy of the Wigner crystal, thats0sûd is sufficiently an-

isotropic that bubble phases never intrude upon the phase
diagram. It is also possible to force the issue by artificially

enhancing the anisotropy ofs0sûd. This can be done by ex-
plicitly breaking the rotational symmetry of the 2DEG, for
instance, by applying an in-plane magnetic field or by using
a sufficiently anisotropic surface in the construction of the
MOSFET. In this case, no more need be said.

However, the Wigner crystal is generally thought to be
triangular. In this case the surface energy is sufficiently iso-
tropic that forx near 0 or 1, there will be a range ofx in
which bubble phases have lower energy than the stripe
phase; forx near 0, such a phase consists of far separated
crystallites in a metallic sea, while forx near 1, it is far
separated bubbles of fluid in a Wigner crystalline host. We
will call these phases bubble crystals I and II, respectively.
[See Fig. 2(d).] As x→0 or x→1, the period of the bubble
crystals diverge, leading at mean-field level to another Lif-
shitz transition, much as in the stripe case.(However, fluc-
tuation effects are much different near these transition in the
bubble and stripe cases, as we will discuss in the next sec-
tions.)

However, this is not the end of the story. The stripe phase
is always the lower energy one nearx=1/2, so if abubble
phase occurs for smallx, there must be a critical value ofx
=xc at which the energy of the bubble and stripe phases
cross, seemingly implying a first-order transition. Since we
have proven in general that first-order transitions are forbid-
den, this first-order transition, too, must be replaced by a
regime of intermediate phases consisting of a mixture of
bubble and stripe phases.16 Now, however, because of the
large anisotropy of the stripe phase, the surface tension be-
tween these two phases must be highly anisotropic. Thus,
this intermediate phase will most probably be of the form of
alternating mega-stripes of bubble and stripe phase regions.
These regions are shown in Fig. 2(d) by hatched boxes.

III. THERMAL EFFECTS

A. The Pomaranchuk effect

The most dramatic effect of finiteT is its effect on the
balance between the liquid and Wigner crystalline phases,
the fraction of the Wigner crystal phase grows as the tem-
perature increases.16 This phenomenon is similar to the Po-
meranchuk effect in He3 and has the same origin: the spin
entropy of the crystal phase is substantially larger than that
of the liquid state. The same considerations lead, as well, to
the conclusion that the crystalline phase is preferred relative
to the liquid in the presence of an in-plane magnetic field,Hi.

Due to the Pauli exclusion principle, an effective ex-
change energy of order the Fermi energy,EF

* ,"2n/2m*

quenches the spin entropy in the liquid phase. In contrast, the
exchange22 energy in the Wigner crystal is exponentially
small, J~expf−aÎrsg wherea is a number of order 1. For
example an estimate made in Ref. 23 yieldsJ,10−7Ry*

where Ry* =e4m* /2"2e is the effective Rydberg. Thus a com-
bination of the quantum character of the liquid and the small-
ness of exchange processes in the solid imply that the solid
phase is stabilized by nonzeroT relative to the liquid phase,

FIG. 2. Schematic representation of the sequence of intermedi-
ate states as the 2DEG evolves from the Fermi liquid(FL) to the
Wigner crystal(W.C.). In a, b, and c, we assume thatssud is suffi-
ciently anisotropic that bubble phases are suppressed.(a) The mean-
field phase diagram. Under appropriate circumstances, this also rep-
resents the true sequence of phase transitions atT=0. (b) The phase
diagram at nonzero temperature with a rotationally invariant Hamil-
tonian. (c) The phase diagram at nonzero temperature with a pre-
ferred axis, for instance, due to an in-field magnetic field. Vertical
lines represent phase transitions and wavy lines crossovers. Phases
with power-law order are named in italics. The smectic phase in(a)
is weakly unstable to crystallization at mean-field level, but may be
stabilized by quantum fluctuations.(d) The phase diagram including
bubble phases atT=0 in the presence of quantum fluctuations. The
hatched areas correspond to the sequence of transitions involving
megastripes of bubble and stripe phases discussed in the text.
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for n nearnc, the 2DEG freezes upon heating. In the present
context, this means that for fixedn, the relative fraction of
Wigner crystalline regions increases with increasingT or Hi.
A simple estimate of the magnitude of this effect can be
made for the range of temperaturesJ!T!EF

* =Ry* /psrsd2

and "mBHi !EF
* , where the entropy of the liquid is negli-

gible, as are the subtleties of the ground-state magnetic struc-
ture of the Wigner crystal. In this case,

fsn−,T,Hid < fsn−,0,0d − kBTn− lnf2 coshs"mBHi/kBTdg
s8d

and fsn+,T,Hid< fsn+,0 ,0d. The fact that temperature and
magnetic field stabilize the Wigner crystal in qualitatively
similar fashion is one of the striking aspects of this relation:
For T@"mBHi, fsn−,T,Hid− fsn−,0 ,0d<−kBTn− lnf2g while
for T!"mBHi, fsn−,T,Bd− fsn−,0 ,0d<−"mBHin−.

Of course, at high enough temperatures, all tendencies to
ordered states are suppressed. This occurs above the charac-
teristic temperature at which the Wigner crystal melts. In the
limit of very large rs, this occurs at the classical melting
temperature of the Wigner crystal, which has been estimated
in accurate numerical experiments24 to be

Tmelt= Ase2/edÎpn = 2A Ry* /rs s9d

whereA=1/125f1±0.04g. However, at smallerrs, whereEF

of the competing fluid phase is larger than the putative clas-
sical melting temperature, the implied reduction of the en-
tropy of the fluid state means that the melting temperature is
set, byTmelt~EF. Far from the Lifshitz points, the melting
temperatures of the various microemulsion phases are deter-
mined by these same considerations, and are of similar mag-
nitude. Here, the fraction of the system that is crystalline is a
nonmonotonic function ofT, first increasing and then drop-
ping to zero atTmelt. Near the Lifshitz points, more delicate
considerations determine the melting point.

B. Thermal fluctuations in the stripe phases

Let us now consider the role of thermal fluctuations on the
stripe phases. We distinguish two cases:

(1) If the Hamiltonian is rotationally invariant, then the
smectic phase is unstable at any nonzero temperature to the
proliferation of dislocations. Thus, the mean-field smectic
phase is replaced by a nematic phase, which, in keeping with
the Mermin-Wagner theorem, does not actually break rota-
tional symmetry, but rather has power-law orientational or-
der. A free dislocation has a logarithmically divergent energy
in both the Wigner and conducting-crystal phases, so they are
robust against thermal fluctuations at low temperatures, al-
though with power law rather than long-range crystalline or-
der. The resulting phase diagram is shown schematically in
Fig. 2(b).

(2) If, however, the Hamiltonian has a preferred axis, for
instance, if we consider the 2DEG in the presence of an
in-plane magnetic field, the effects of low-temperature ther-
mal fluctuations are much less severe. Here, the smectic and
both crystalline phases remain well defined at nonzeroT,
although again with power-law spatial correlations rather

than with true long-range order, as shown schematically in
Fig. 2(c).

Because first-order transitions are forbidden, the transition
between the isotropic fluid and the nematic phase must be of
the Beresinskii-Kosterlitz-Thouless(BKT) type. Near the
mean field Lifshitz point we can estimate this transition tem-
perature as follows: The distance between stripes is large so
the stripes of minority phase evaporate when the energy to
break off a piece,,s0L0, is less than the configurational
entropy of a state where rare droplets of the minority phase
are distributed randomly. Equating these two free energies
leads to the estimate

Tculnfxs1 − xdgu , s0L0. s10d

In the presence of an in-plane magnetic field, there is no
sharply defined nematic phase, since rotational symmetry is
explicitly broken. However, by the same token, free disloca-
tions in the smectic state have a logarithmically divergent
energy, so a power-law smectic phase exists at nonzeroT.
With increasing temperature, the smectic to liquid phase
transition is also of the BKT type. Indeed, so long as the
symmetry breaking term in the Hamiltonian is small, the
transition temperature is roughly the same as in Eq.(10),
above.

C. Thermal fluctuations in the bubble phases

We now consider the effect of thermal fluctuations on
bubble phases. As can be seen from Eq.(1), the interaction
energy between far separated bubbles decreases at larger0 as

Vbubble, s1L0
4/r0

3, s11d

where L0 and r0 are the radius of and distance between
bubbles. Thus, where the bubbles are far separated, because
of the screening by the ground plane the BKT melting tem-
perature will tend to rapidly to zero,TBKT~ fs1−xdxg3/2, as
the spacing between bubbles increases. The result is that,
near the mean-field Lifshitz point the bubble phase is always
melted by the thermal fluctuations. On the other hand, at
smallerr0 the bubble phase survives thermal fluctuations in
the usual sense that the correlations of bubble positions ex-
hibit power-law decay.

The nature of the transition between the bubble phase and
the uniform phase is not, presently, settled. Of course, a di-
rect first-order transition is forbidden. One possibility is that
there is a sequence of two BKT transitions, as in the
Halperin-Nelson theory25 of melting, with an intermediate
hexatic phase. Alternatively, there may be a further set of
hierarchical microemulsion phases.

IV. QUANTUM FLUCTUATIONS

A. Stripe phases

So long asnL0
2@1 snd2@1d, the stripes are many elec-

trons wide, so quantum fluctuations of their positions are
intrinsically small; 1 /nL0

2 is a small parameter in the prob-
lem, which permits an asymptotically exact treatment of
quantum fluctuation effects. At zero temperature, the
conducting-crystal phase is clearly stable in the presence of
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small quantum fluctuations, although, as mentioned previ-
ously, the jury is still out on whether the smectic phase is
unstable to crystallization.20,21Only where the stripe width is
of order of the interelectron distance(i.e., whennL0

2,1),
quantum fluctuations become very significant. This applies to
the hatched region in Fig. 1, where the quantum properties of
the system are still uncertain.

The quantum nature of the system near the Lifshitz points
is determined by the quantum nature of the interface between
the crystal and the liquid, a problem which itself is still un-
solved. This interface may be quantum rough or quantum
smooth. If it is smooth, the Lifshitz transition from the uni-
form fluid to smectic phase is not fundamentally affected by
quantum fluctuations, provided the width of the stripes is
large enough. However, if an isolated interface is rough, the
stripe order in the vicinity of the mean-field Lifshitz point is
quantum melted; in this case, for the rotationally invariant
system, the proscription against first order transitions implies
that there must be an intermediate zero temperature nematic
phase between the isotropic and the stripe ordered phases. It
was recently shown13 that a nematic Fermi fluid is necessar-
ily a non-Fermi liquid in the sense that quasiparticles are not
well defined elementary excitations. We believe that, depend-
ing on microscopic details and on the value ofnd2, both
scenarios are possible.

It is worth mentioning why the quantum nature of the
crystal-liquid interface is so subtle. Consider the motion of a
step in the interface. Quantum-mechanically, an isolated step
might be expected to propagate along the interface.26 Be-
cause the steps interact by a short-range dipolar interaction,
the steps should then form a delocalized 1D quantum liquid
along the interface. However, because of the density mis-
match between the solid and liquid, the situation is more
complicated. Motion of the step requires a flux of mass into
the liquid of a magnitude proportional to the density differ-
ence between the solid and liquid and to the step’s velocity.
In a Fermi liquid this flux of mass is carried by quasiparti-
cles, making the step motion highly dissipative. Thus, char-
acterizing the interface involves interesting, but as far as we
know unsolved issues in dissipative quantum mechanics.

B. Bubble phases

In contrast to stripe phases, quantum fluctuations always
melt the bubble phases when the bubbles are sufficiently
dilute. To see this, we can estimate the characteristic poten-
tial energy of a bubble crystal as in Eq.(11), and can make a
corresponding dimensional estimate of the bubble kinetic en-
ergy Kbubble,"2/ r0

2m* , where m* is the bubble effective
mass. Therefore the ratio of these energies is

Vbubble

Kbubble
, Ss1L0

4m*

"2 D 1

r0
s12d

vanishes asr0→`. This analysis fleshes out the same argu-
ment mentioned in the introduction that leads to the conclu-
sion that there is no stable Wigner crystal phase at smalld.
However, whereas in that case, the proportionality constant
is aB

* , in the present case the same constant is parametrically
large, both due to the explicit factors ofL0 and due to the fact

that m* increases with increasingL0 (in a way that depends
on whether the interface is quantum rough or smooth). The
result is that, for largend2, the regime in which the bubble
crystal is quantum melted is extremely small. However, if
nd2,1 quantum melting is a significant phenomenon.

The character of the bubble liquid phase is different de-
pending on the character of the minority phase. When the
majority phase is Wigner crystalline with dilute inclusions of
liquid, the melting of the bubble crystal results in a type of
“conducting crystal”.16 In this state, crystalline long-range
order coexists with fluid-like conductivity, but in this case
the conductivity is associated with the motion of the bubbles
themselves. Phenomenologically this state is similar to the
“supersolid” phase which has been discussed27 in the context
of He4. In both cases the number of electrons(or aroms) is
not equal to the number of the crystalline sites.28 The differ-
ence is that unlike the case of He4 where vacancies are
bosons, in our case the statistics of the droplets is not known,
and hence the liquid state may not be a superfluid. Therefore,
we refer to this state as a “conducting crystal II” in Fig. 2(d)
to distinguish it from the highly anisotropic conducting crys-
tal [see Figs. 2(a) and 2(d)] which originates from the exis-
tence of stripes.

When the Fermi liquid is the majority phase, with a fluid
of “icebergs” floating in it, no spatial symmetries need be
broken. However, elementary excitation spectrum is likely to
be different from that of a conventional Fermi liquid.

Since the majority phase already brakes rotational sym-
metry, the bubble crystallization transition which transforms
the system from the conducting crystal to the insulating
bubble crystal phase can be a simple continuous transition.
However, the freezing of the icebergs into a triangular crystal
of Wigner crystalline bubbles is more problematic. As with
the thermal transition, there may be a two-step freezing tran-
sition, with an intermediate quantum hexatic phase,13 or an-
other hierarchy of microemulsion phases. The sequence of
the phases atT=0 is shown in Fig. 2(d).

V. EXPERIMENTAL CONSEQUENCES

Obviously, there are many experimental consequences of
the existence of intermediate phases, of which we here list
only a few. It should be kept in mind that macroscopic spatial
symmetry breaking, the sort which precisely characterizes
the various phases we have discussed, does not truly occur in
2D in the presence of quenched disorder. This complicates
the actual observation of various phenomena.

The majority of industrially produced Si MOSFET’s have
gates relatively close to the 2DEG,d!dc, so the electron
liquid is weakly interacting at alln. However, a small num-
ber of high mobility Si MOSFET’s(For a review, see Ref.
29.) and p-type of GaAs double layers30 with large d
,1000 Å have been studied in the past few years, and found
to exhibit transport anomalies that have been interpreted as
evidence for an unexpected metal-insulator transition. While
these devices certainly are not ideal, in the sense that they
have non-zero quenched disorder, we would like to propose
that a natural explanation of those phenomena is that they
reflect the existence in the zero disorder limit of the elec-
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tronic microemulsion phases identified in the present paper.
One robust consequence of two-phase coexistence is that

the conductivity is a decreasing function of the volume frac-
tion of Wigner crystal. This volume fraction, in turn, is
strongly temperature and magnetic field dependent due to the
Pomeranchuk effect, as explained above. As a result, the
fraction of crystal grows with temperature and magnetic
field, leading to a corresponding increase of the resistivity.
As has been pointed out previously,16 this basic physics may
underly the transport anomalies observed in larged Si MOS-
FETs. In particular, it offers a candidate explanation of the
anomalous metallic(dr /dT.0) temperature dependence and
large positive magneto resistance observed in these systems
despite the fact that the resistivity, itself, exceeds the Ioffe-
Regel limit. [Ideally, one might want to explore the scaling
relation between the temperature and magnetic field depen-
dence of the resistivity implied by the thermodynamic rela-
tion in Eq. (9).]

Of course, each new phase has different patterns of spatial
symmetry breaking, and hence has new collective modes and
modified hydrodynamics. Even when the effects of quenched
disorder or thermal fluctuations restore the symmetry at mac-
roscopic distances, the existence of these collective modes
can have readily detectable consequences for the dynamical
responses of the system. Small explicit symmetry breaking
fields can be used to overcome the destructive effects of
quenched disorder and reveal the true tendency to symmetry
breaking. For instance, an in-plane magnetic field explicitly
breaks rotational symmetry; where some form of stripe or
nematic phase exists in the absence of quenched disorder, the
small symmetry breaking produced by such a field can give
rise to a large resistivity anisotropy, as has been seen for the
analogous states in quantum Hall devices.31

VI. EXTENSIONS

We end with some speculative observations concerning
intermediate phases of the 2DEG.

A. Spin physics

Other than the Pomeranchuk effect, we have largely ig-
nored the physics of the electron spins. The exchange inter-
actions in the Wigner crystal phase are generally found to be
very small,22 and so are only important at very low tempera-
tures. At T=0, however, the fact that the magnetic Hamil-
tonian is highly frustrated and may have important multispin
ring exchange interactions, can lead to a variety of possible
magnetic phases, and this complexity could be inherited, to
some degree, by the intermediate phases discussed here.
Moreover, at a liquid-crystalline interface, the quantum dy-
namics of the interface itself(mentioned above) can produce
effective exchange interactions, likely with much larger en-

ergy scales than in the bulk Wigner crystal. There is thus the
very real possibility that the magnetic structure of the inter-
faces is very rich, and characterized by substantial energy
scales.

B. Superconductivity

The parallels between the 2DEG in a MOSFET and Cou-
lomb frustrated phase separation in a doped Mott insulator
naturally lead one tospeculateconcerning the possibility of
superconductivity in the present system. In the bubble related
conducting-crystal phase, each bubble has a fixed number of
electrons; when that number is even, the bubbles are likely
bosonic and a supersolid phase with low superfluid density is
possible.16,27 In the hatched region of the phase diagram,
where quantum effects are most severe, a more robust
mechanism is possible, based on the “spin-gap proximity
effect:”32 Small clusters of Wigner crystal(be they stripe or
bubble like) will often have a spin gap.(Near the cluster
edge, this gap may be larger than in the bulk.) Where this
gap is large enough, it suppresses single-particle exchange
between the crystal clusters and the surrounding Fermi fluid,
but pair exchange is still permitted. When this dominates, it
induces global superconductivity by a process analogous to
the conventional proximity effect.

C. Double layers

In a double layer system, with two nearby 2DEG’s, the
two layers screen each other in much the same way as the
metal layer screens the 2DEG in a MOSFET. However, here
the types of phases, and the available experiments are still
richer. One particularly interesting point is that the conduc-
tivity measured in drag can explore the nature of the inter-
layer screening. The presence of a crystalline component of
an electron fluid has the potential to greatly increase the drag
conductivity relative to a Fermi liquid; in particular, whereas
the drag conductivity vanishes asT→0 in a Fermi liquid, we
believe it can approach a nonzero constant in some of the
intermediate phases we have explored.

D. Other applications

The present ideas are pretty clearly applicable in a host of
additional physical contexts. What is needed is short-range
tendency to phase separation, i.e., a concave local free en-
ergy, opposed by dipolar forces. Under appropriate circum-
stances, this situation may pertain in the 2DEG at higher
densitiesrs, rc and it certainly applies in various regimes to
the physics of lipid films and planar ferromagnets.
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