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A recently proposed combination of a projection operator method with the coherent potential approximation
for the computation of the excitation spectra of solids is further extended. In particular, the effect of electron
correlations on the matrix elements of the self-energy are investigated. This is done with the help of a
Gutzwiller-type variational wave function. Numerical calculations have been performed for a half-filled band
of a hypercubic lattice in infinite dimensions. They show that for strong electron correlations the higher-order
dynamical corrections in an renormalized perturbation expansion are screened except in the low-energy re-
gime. This provides for a justification of earlier work, where a Hartree-Fock approximation with a cutoff
parameter was used for the computation of the static matrix elements.
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I. INTRODUCTION

Single-site approaches to electron correlations provide for
a good starting point for the understanding of excitation
spectra and phase diagrams from the weak to the strong Cou-
lomb interaction limit.1 As regards the metal-insulator tran-
sition, such a theory was first proposed by Hubbard. He de-
rived self-consistent equations for the self-energy of strongly
correlated electrons by an equation of motion method.2,3 The
electrons were shown to behave as in an alloy with a random
potential and therefore one is usually referring to the coher-
ent potential approximation(CPA) for that system of
equations.4–9 Gutzwiller10,11 proposed a wave function with
locally correlated electrons which contains variational pa-
rameters. Their determination is possible within the so-called
Gutzwiller approximation. Brinkman and Rice12 found
within the same approximation a diverging effective mass at
the metal-insulator transition.

During the last decade, the single-site theory has gained in
importance because of its relation to the limit of infinite di-
mensions. Metzner and Vollhardt13 developed a theory for
that limit by keeping the bandwidth as a constant. They
showed that the Gutzwiller approximation becomes exact
in that limit. Müller-Hartmann14 proved that the self-energy
is independent of momentum in that limit, and derived
a self-consistent equation for it. Subsequently, many
investigators15–19developed techniques to solve that equation
self-consistently and extended the approach to the dynamical
mean-field theory(DMFT). One result obtained within the
DMFT is that the Fermi liquid state is so robust that it re-
mains valid until a metal-insulator transition takes place.

In the theory of magnetism single-site theories were de-
veloped in order to describe magnetism for metallic as well
as insulating states.20–22 Hubbard21 and Hasegawa22 estab-
lished a theory of single-site spin fluctuations(SSF) by using
an alloy analogy in functional-integral theory.23–26 The

present authors27 proposed a variational method which adia-
batically takes into account those correlations missed in the
SSF theory. Kakehashi28,29 proposed the dynamical CPA
which fully takes into account the dynamical spin and charge
fluctuations within the single-site approximation. Hirooka
and Shimizu30 extended the CPA for disordered alloys to the
many-body case(the many-body CPA) by using temperature
Green functions. The many-body CPA, the dynamical CPA,
and the DMFT have recently been shown to be equivalent to
each other,31 so that the theories of magnetism and those of
strongly correlated electron systems can be considered in a
unified way within the single-site approximation.

Several of the theories mentioned above are based on
temperature Green functions, but one may as well construct a
single-site approximation for the retarded Green function. In
particular, the projection operator method32–34has been used
to formulate a single-site approximation in terms of the wave
operator.35–38 With the help of the method of increments39

one should be able to go beyond that approximation and to
account for the momentum dependence of the self-energy.
Corresponding calculations for the ground state of semicon-
ductors and insulators have led to very accurate results, i.e.,
ones of quantum chemical accuracy. For a review see Ref.
38. Reaching a similar accuracy for energy bands would
open up the road toward a realistic description of the excita-
tion spectra outside the standard approximations within
density-functional theory. For that reason we have recently
developed as a first step a single-site theory which combines
the projection operator method with the CPA, i.e., the pro-
jection operator method CPA(PM-CPA).40 It was worked out
for a Hubbard Hamiltonian. The projection operator method
describes the dynamics of single-particle excitations by
means of a Liouville operatorL. The PM-CPA self-
consistently takes into account the effects of the dynamics of
the environment of a given site by making a single-site ap-
proximation. This results in an energy dependent Liouville
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operatorL̃szd. The latter is determined by the CPA equation.
It requires that an impurity Green function embedded in an
effective medium should be identical with the coherent
Green function of the effective medium.

In order to solve the impurity problem we developed in
the previous paper40 a renormalized perturbation theory. It
allows for determining the memory function of the retarded
Green function by including more and more dynamical vari-
ables in the projected operator space. Within this expansion
procedure a decoupling approximation was made.

The corresponding static matrix elements were evaluated
by a Hartree-Fock approximation with a phenomenological
cutoff parameterq. The latter was equal to 1 for the metallic
and 0 for the insulating state. This way a satisfactory excita-
tion spectrum was obtained for all interaction strengths,
when the case of half filling was considered for a hypercubic
lattice in infinite dimensions.

The use of the Hartree-Fock approximation for the matrix
elements in the strongly correlated regime, however, cannot
be justified in general. We need to examine the effects of
electron correlations on the static matrix elements and hence
on the excitation spectrum in more detail. In the present pa-
per, we calculate various static matrix elements of the
memory function with respect to the ground state by adopt-
ing for the latter a Gutzwiller-type variational wave
function.41 We clarify the role of local correlations on the
excitation spectrum. In particular we will justify the phenom-
enological cutoff parameter introduced in our previous
paper.40

In the following section, we briefly review the PM-CPA
and summarize the self-consistent equations to be solved. In
Sec. III, we calculate various static quantities that appear in
the memory function. As mentioned above we apply for that
purpose a Gutzwiller-type variational wave function.41 The
wave function that we use here describes best the local elec-
tron correlations for weak correlations, but also leads to the
correct atomic limit for a half-filled band. A conventional
single-site approximation to the static matrix elements does
not lead to a Fermi-liquid behavior of the single-particle ex-
citations. We treat this problem in Sec. III B, and obtain the
memory function for correlated electrons in Sec. III C.

We present numerical results in Sec. IV for the excitation
spectrum in infinite dimensions. The inclusion of electron
correlations shows the development of the upper and lower
Hubbard bands in the intermediate interaction regime. It is
also found that the Hubbard bands are well described by the
zeroth approximation in the renormalized perturbation
scheme because of the screening of the higher-order terms.
This justifies the Hartree-Fock approximation with a phe-
nomenological cutoff parameter for the calculation of the
static quantities. A summary is given and the remaining
problems are discussed in the last Sec. V.

II. PROJECTION OPERATOR CPA

We adopt here the Hubbard Hamiltonian10,2 with an intra-
atomic Coulomb interactionU:

H = H0 + Uo
i

ni↑ni↓, s1d

H0 = o
i,s

se0 − mdnis + o
i,j ,s

tijais
† ajs, s2d

wheree0 andtij are the atomic level and the transfer integral
between sitesi and j , respectively, andais

† saisd is a creation
(annihilation) operator for an electron with spins on site i.
Furthermore,nis=ais

† ais. m is the chemical potential.
The single-particle excitation spectrum is obtained from

the retarded Green function as1

Gij sszd = SUais
† U 1

z− L
ajs

† D , s3d

wherez=v+ id with d being an infinitesimal positive num-
ber. The Liouville operatorL is a superoperator acting on an
operatorA as LA=fH ,Ag−. The inner product between the
operatorsA andB is defined bysAuBd=kfA+,Bg+l.

In the PM-CPA,40 we approximate the Liouville operator

by means of an energy dependent Liouville operatorL̃szd for

an effective HamiltonianH̃szd:

H̃szd = H0 + o
is

Ssszdais
† ais. s4d

HereSsszd is a site-diagonal self-energy called the coherent
potential. The diagonal Green function to the Liouville op-

erator L̃szd, which we call the coherent Green function, is
obtained as

Fsszd =E rsedde

z− e0 + m − Ssszd − e
, s5d

wherersed is the density of states(DOS) per atom for the
noninteracting system specified bytij .

The coherent potential introduced in Eq.(4) is determined
self-consistently from the CPA condition that the impurity
Green function embedded in the effective medium is identi-
cal with the coherent one, i.e.,

Gs
sidszd = Fsszd. s6d

The impurity Green function is given by

Gs
sidszd = fFsszd−1 − Ls

sidszd + Ssszdg−1, s7d

Ls
sidszd = Ukni−sl + U2Ḡs

sidszd. s8d

The first term on the right-hand side(RHS) in Eq. (8) is the
Hartree-Fock potential. The reduced memory function

Ḡs
sidszd in the second term is given by

Ḡs
sidszd = sAis

† ufz− L̄sidszdg−1Ais
† d. s9d

Here the operatorAis
† is defined byAis

† =ais
† dni−s and dni−s

=ni−s−kni−sl. The Liouville operatorL̄sidszd=QLsidszdQ acts
on a space that is orthogonal tohuajs

† dj. This is achieved
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through the projection operatorQ=1−P, where P
=o jsuajs

† dsajs
† u. Lsidszd is a Liouville operator for an impurity

HamiltonianHsidszd with a Coulomb interaction on sitei em-
bedded in the effective medium:

Hsidszd = H̃szd − o
s

Ssszdais
† ais + Uni↑ni↓. s10d

The memory function(9) is calculated by means of the
renormalized perturbation theory(RPT) as40

Ḡs
sidszd =

Ḡ0s
sid szd

1 − L̄Is
sidszdḠ0s

sid szd
, s11d

L̄Is
sidszd =

− Ssszd + Us1 − kni−sld
kni−sls1 − kni−sld

. s12d

Ḡ0s
sid is a screened memory function defined by

Ḡ0s
sid szd = sAis

† ufz− L̄0szd − L̄I
sidszdQ̄g−1Ais

† d. s13d

Here L̄0szd=QL̃szdQ and L̄I
sidszd=QLI

sidszdQ. The Liouvillean
LI

sidszd acts on a given operatorA according toLI
sidszdA

=f−osSsszdnis+Uni↑ni↓ ,Ag−. Moreover, Q̄=1−P̄, P̄
=oisuAis

† dxis
−1sAis

† u, andxis=kni−sls1−kni−sld.
The RPT interpolates between the weak and strong Cou-

lomb interaction limits. Note that the operatorL̄I
sidszdQ̄ in Eq.

(13) is negligible in both limits. In the intermediate regime,

we expand the screened memory functionḠ0s
sid szd with re-

spect toL̄I
sidszdQ̄ up to the first order exactly. For the higher-

order terms, we make use of a decoupling approximation
within the operator spacehuaks

† dsak8−s
† ak9−sddj. Hereaks

† saksd
is the creation(annihilation) operator for an electron with
momentumk and spins. This is called the first-order renor-
malized perturbation theory(the RPT-1).40 We have then

Ḡ0s
sid szd = fḠ0s

sid szdg0 +
fDḠ0s

sid szdg1

1 − R̄s
sidszd

. s14d

The first term on the RHS of Eq.(14) is the zeroth expan-

sion term(the RPT-0). fḠ0s
sid szdg0, fDḠ0s

sid szdg1, andR̄s
sidszd are

given as follows:

fḠ0s
sid szdg0 =

1

N3 o
k,k8,k9

Xs
s0dsek,«k8,«k9d

z− ẽs − S̃sszd − ek − ek8 + ek9

, s15d

fDḠ0s
sid szdg1 =

1

N3 o
k,k8,k9

Xs
s0dsek,ek8,ek9dDs„z− ẽs − S̃sszd,S̃sszd,ek,ek8,ek9…

z− ẽs − S̃sszd − ek − «k8 + «k9

, s16d

R̄s
sidszd =

1

N3 o
k,k8,k9

Ds„z− ẽs − S̃sszd,S̃sszd,ek,ek8,ek9…. s17d

Hereẽs=e0−m+Ukni−sl andS̃sszd=Ssszd−Ukni−sl. N is the number of sites andek is an eigenvalue oftij with momentumk.

The functionsXs
s0dsek,ek8 ,ek9d andDs(z,S̃sszd ,ek,ek8 ,ek9) in Eqs.(15)–(17) are given by

Xs
s0dsek,ek8,ek9d = N3 o

k1,k18,k19

ki uk1lki uk18lkk19uilsx0dk1k18k19skk8k9skkuilkk8uilki uk9l, s18d

Ds„z,S̃sszd,ek,ek8,ek9… = N3 o
k1,k18,k19

ki uklki uk8lkk9uilfL IQ
sidszdgkk8k9sk1k18k19skk1uilkk18uilki uk19l

z− ek1
− ek18

+ ek19
. s19d

Here kku il=ki ukl* =1/ÎN expsik ·Rid, and
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sL IQ
siddk1k18k19skk8k9s = − S̃sszdki uklkk1uildk18k8dk19k9 − S̃−sszdki uk8l

3kk18uildk1kdk19k9 + S̃−sszdkk9uil

3ki uk19ldk1kdk18k8 + Usx0
−1L U

siddk1k18k19skk8k9s

− L̄Is
sidszdkk1uilkk18uilki uk19l

3„Ais
† uaks

† dsak8−s
† ak9−sd…, s20d

sx0dk1k18k19skk8k9s = „ak1s
† dsak18−s

† ak19−sduaks
† dsak8−s

† ak9−sd…,

s21d

sL U
siddk1k18k19skk8k9s = „ak1s

† dsak18−s

† ak19−sduAis
† dsak8−s

† ak9−sd…ki ukl

+ „ak1s
† dsak18−s

† ak19−sduaks
† Ai−s

† ak9−s…ki uk8l

− „ak1s
† dsak18−s

† ak19−sduaks
† ak8−s

† Ai−s…kk9uil.

s22d

The functionsXs
s0dsek,ek8 ,ek9d andDs(z,S̃sszd ,ek,ek8 ,ek9)

were obtained previously in the Hartree-Fock approximation
as40

xssek,ek8,ek9d = fs− ek − ẽsdfs− ek8 − ẽ−sdfsek9 + ẽ−sd

+ fsek + ẽsdfsek8 + ẽ−sdfs− ek9 − ẽ−sd,

s23d

Ds
sHFd

„z,S̃sszd,e,e8,e9… = − S̃sszdfF̂sz− e8 + e9d

+ F̂sz− e + e9d + F̂s− z+ e + e8dg

+ UKssz,e8,e9d − L̄Is
sidszdŜs

s2dszd.

s24d

Here fsvd is the Fermi distribution function. The functions

F̂szd, Kssz,e8 ,e9d, andŜs
s2dszd are defined by

F̂szd =E rsedde

z− e
, s25d

Kssz,e8,e9d

=E dv dv9rsvdrsv9dffsẽs + vd − fsẽ−s + v9dg
z− v − e8 + v9

+E dv dv8rsvdrsv8dffs− ẽ−s − v8d − fsẽ−s + vdg
z− v − v8 + e9

,

s26d

Ŝs
s2dszd =E de de8de9rsedrse8drse9dxsse,e8,e9d

z− ek − ek8 + ek9
. s27d

Note thatU2Ŝs
s2dszd is the self-energy in second-order pertur-

bation theory.

III. WAVE FUNCTION APPROACH TO THE STATIC
MATRIX ELEMENTS

A. Weak-scattering approximation and wave function

In the first-order renormalized perturbation scheme,
the effects of the static correlations appear only via

Xs
s0dsek,ek8 ,ek9d and Ds(z,S̃szd ,e ,e8 ,e9) as seen from Eqs.

(14)–(17). SinceDs is related to higher-order terms in the
expansion series, we approximate it in the following by the
Hartree-Fock valueDs

sHFd, and introduce the renormalization
constantsAs andBs so that the correct zeroth order moment
of Ds is reproduced:

Ds„z,S̃szd,e,e8,e9… = − S̃sszdfF̂sz− e8 + e9d + F̂sz− e + e9d

+ F̂s− z+ e + e8dg + BsUKssz,e8,e9d

− AsL̄Is
sidszdŜs

s2dszd. s28d

Here As=kni−sls1−kni−sld / kni−sl0s1−kni−sl0d, Bs=s1
−2kni−sld / s1−2kni−sl0d, and k l0 denotes the Hartree-Fock
average.

Equation (28) is a weak-scattering approximation, and

correlation effects onḠ0s
sid szd are linearized because both

fḠ0s
sid szdg0 and fDḠ0s

sid szdg1 depend linearly on the remaining
correlation termXs

s0dsek,ek8 ,ek9d.
For the calculation ofXs

s0dsek,ek8 ,ek9d defined by Eq.(18),
we consider the ground state and adopt a variational wave
function C of the Gutzwiller-type41

uCl = p
i

s1 − hiOiduf0l. s29d

Hereuf0l denotes the Hartree-Fock wave function. The local
operatorOi =dni↑dni↓ describes local electron correlations on
site i, and thehhij are variational parameters. The wave func-
tion describes best the on-site correlations from the weak to
the intermediate Coulomb interaction regime. For a half-
filled band it leads to the correct atomic limit.

The variational parameterhi is determined from the sta-
tionary condition to the ground state energy]kHl /]hi =0. In
the single-site approximation, it is given by

hi =
− kOiH̃Oil0 + ÎkOiH̃Oil0

2 + 4kOiH̃l0kOi
2l0

2kOiH̃l0kOi
2l0

, s30d

and the average value of an operatorA is given by

kAl = kAl0 + o
i

− hiskOiÃl0 + kÃOil0d + hi
2kOiÃOil0

1 + hi
2kOi

2l0
.

s31d

HereÃ=A−kAl0 andkOi
2l0=kni↑l0f1−kni↑l0gkni↓l0f1−kni↓l0g.

We apply the above formula to the calculation of
Xs

s0dsek,ek8 ,ek9d given by Eq.(18). For that purpose, we ex-
pressx0 as a thermal average instead of an inner product.
Adopting Eq.(31), we obtain
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Xs0dsek,ek8,ek9d = xsek,ek8,ek9d −
h

1 + h2kOi
2l0

X1sek,ek8,ek9d

+
h2

1 + h2kOi
2l0

X2sek,ek8,ek9d. s32d

Here and in the following we consider the half-filled band
for a nonmagnetic state, and omit the spin indexs for brev-
ity. ThenX1sek,ek8 ,ek9d andX2sek,ek8 ,ek9d are given by

X1sek,ek8,ek9d

= −
1

N
o
K

o
k1k18

d−k+k1−k18+k9,Kffsek9dfs− ek18
dfsek1

dfs− ekd

+ fs− ek9dfsek18
dfs− ek1

dfsekdg

+
1

N
o
K

o
k1k18

d−k+k1−k8+k18,Kffsek18
dfs− ek8dfsek1

dfs− ekd

+ fs− ek18
dfsek8dfs− ek1

dfsekdg, s33d

X2sek,ek8,ek9d =
1

4N
o
K

o
k1k18

d−k8+k1−k18+k9,Kffsek9d − fsek1
dgffsek18

d − fsek8dg

−
1

4N
o
K

o
k1k18

d−k+k1−k18+k9,Kffsek1
dfsekd − fs− ek1

dfs− ekdgffsek18
dfsek9d − fs− ek18

dfs− ek9dg

+
1

4N
o
K

o
k1k18

d−k+k1−k8+k18,Kffsek1
dfsekd − fs− ek1

dfs− ekdgffsek18
dfsek8d − fs− ek18

dfs− ek8dg

+
1

8
hffsekd − fsek9dgffs− ek8d − fsek8dg + ffs− ekd − fsek8dgffs− ek9d − fsek9dg + ffsek9d − fsek8dgffsekd − fs− ekdgj.

s34d

HereK denotes the reciprocal lattice vector of the system.

B. Two-point approximation to the static average

The expression ofXs0dsek,ek8 ,ek9d presented in the last
subsection contains the umklapp sums because of an inter-
ference effect:X1 andX2 do not depend only onek,ek8 ,ek9,
but also onk,k8 ,k9. Therefore these expressions are not suit-
able for the single-site approximation.

The R=0 approximation42 is an often used single-site ap-
proximation. However, when applied to the matrix elements

X1 and X2, the Fermi-liquid propertyL̃s
sids0+d=Ls

sids0+d
−Ukni−sl=0 is generally not satisfied. For that reason we
extend the approximation as follows. TheR=0 approxima-
tion implies a replacement offsek1sd [or fsek18sd] by a repre-

sentative valueknisl0 in the umklapp sums of, e.g., Eq.(33).
As an extension, we shall approximate the umklapp sum
with respect tok1 andk18 by an average of two representative
values leading to a single-site approximation. We call this
approximation the two-point approximation. For example,
we may take pointsk1,k18d=sk,k9d with a weight r1, and
sk1,k18d=s−k9 ,−kd with a weight r2 in the first sum of the
RHS of Eq.(33), and pointsk1,k18d=sk,k8d with a weights1

and sk1,k18d=sk8 ,kd with a weights2 in the second sum. Be-
causefsekdfs−ekd=0 andfsekd2= fsekd when the ground state,
we end up with

X1sek,ek8,ek9d = − r2ffs− ekdfsek9d + fsekdfs− ek9dg. s35d

In the same way, we obtain

X2sek,ek8,ek9d =
1

4
hu1ffsek9d − fsek8dg

2 − v1ffsekd − fs− ekdgffsek9d − fs− ek9dg − v2ffs− ekd − fsek9dg
2

+ w1ffsekd − fs− ekdgffsek8d − fs− ek8dg + w2ffs− ekd − fsek8dg
2j

+
1

8
hffsekd − fsek9dgffs− ek8d − fsek8dg + ffs− ekd − fsek8dgffs− ek9d − fsek9dg + ffsek9d − fsek8dgffsekd − fs− ekdgj.

s36d
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Substituting Eqs.(28) and (32) into Eqs.(15)–(17), and
usingX1 andX2 given by Eqs.(35) and (36), we obtain the
screened memory function as

Ḡ0
sidszd = Ms0d

„z− S̃szd…

+
Ms1d

„z− S̃szd,S̃szd…

1 − Rsid
„z− S̃szd… + L̄I

sidszdŜs2d
„z− S̃szd…

,

s37d

Ms0dszd = Ŝs2dszd −
ĥ

1 + ĥ2M1
s0dszd +

ĥ2

1 + ĥ2M2
s0dszd, s38d

Ms1d
„z,S̃szd… = − S̃szdM̃s1dszd + UM̄s1dszd

− L̄I
sidszdMs0dszdŜs2dszd, s39d

M̃s1dszd = M̃0
s1dszd −

ĥ

1 + ĥ2M̃1
s1dszd +

ĥ2

1 + ĥ2M̃2
s1dszd,

s40d

M̄s1dszd = −
ĥ

1 + ĥ2M̄1
s1dszd +

ĥ2

1 + ĥ2M̄2
s1dszd, s41d

Rsidszd = − S̃szd E de de8de9rsedrse8drse9dfF̂sz− e8 + e9d

+ F̂sz− e + e9d − F̂sz− e − e8dg. s42d

Hereĥ=h /4. The functionsMn
s0dszd sn=1,2d in Eq. (38) are

given byŜs2dszd [see Eq.(27)] in which xse ,e8 ,e9d has been
replaced by 4X1se ,e8 ,e9d and 16X2se ,e8 ,e9d, respectively.

The M̃n
s1dszd sn=0,1,2d in Eq. (40) are defined byŜs2dszd in

which xse ,e8 ,e9d has been replaced byxse ,e8 ,e9dfF̂sz−e8

+e9d+F̂sz−e+e9d−F̂sz−e−e8dg, 4X1se ,e8 ,e9dfF̂sz−e8+e9d
+F̂sz−e+e9d−F̂sz−e−e8dg, and 16X2se ,e8 ,e9dfF̂sz−e8+e9d
+F̂sz−e+e9d−F̂sz−e−e8dg. In the same way, theM̄n

s1dszd sn
=1,2d in Eq. (41) are defined byŜs2dszd in which xse ,e8 ,e9d
has been replaced by 4X1se ,e8 ,e9dKsz,e8 ,e9d and

16X2se ,e8 ,e9dKsz,e8 ,e9d, respectively. Here F̂szd and
Ksz,e8 ,e9d are given by Eqs.(25) and (26).

C. Fermi-liquid condition and screened memory function

The two-point approximation has introduced several pa-
rameters as is seen from Eqs.(35) and (36). They are re-

duced by the Fermi-liquid conditionL̃sids0+d=0. When we

introduce a functionM(z,S̃szd) such that Ḡ0
sidszd=M(z

−S̃szd ,S̃szd), this condition is expressed asMs0+,0d=0.
Substituting Eq.(37) into this equation, we obtain the fol-
lowing explicit Fermi-liquid conditions:

Ŝs2ds0+d = 0, s43d

M1
s0ds0+d = M̄1

s1ds0+d = 0, s44d

M2
s0ds0+d = 0, s45d

M̄2
s1ds0+d = 0. s46d

Equation (43) is automatically satisfied. Equation(44)
leads to the conditionr2=0. This implies thatM1

s0dszd
=M̃1

s1dszd=M̄1
s1dszd=0. Equation(45) yields the following re-

lation:

u1 + v1 − 2w1 + w − 2v + 3
2 = 0. s47d

Here we adopted a Gaussian DOSrsed=s1/Îpdexps−e2d,
and w=w1+w2 and v=v1+v2. Finally, the condition(46) is
equivalent to the following relation:

2v1 − 2w1 + v2 − w2 = 0. s48d

We therefore obtainM̄2
s1dszd=0.

Equations(47) and (48) show that one can express the
five parametersu1, v1, v2, w1, and w2 by means of three
parametersu1, v, andw, i.e., v1=u1−4v+3w+3/2, v2=−u1
+5v−3w−3/2, w1=u1−3v+2w+3/2, w2=−u1+3v−w
−3/2. Making use of these relations and the resultsM1

s0dszd
=M̃1

s1dszd=M̄1
s1dszd=0 as well asM̄2

s1dszd=0, we obtain the
following final expression for the screened memory function
in the two-point approximation:

Ḡ0
sidszd = Ŝs2d

„z− S̃szd…

+
Ms1d

„z− S̃szd,S̃szd…

1 − Rsid
„z− S̃szd… + L̄I

sidszdŜs2d
„z− S̃szd…

,

s49d

Ms1d
„z,S̃szd… = − S̃szdM̃s1dszd − L̄I

sidszdMs0dszdŜs2dszd,

s50d

Ms0dszd = Ŝs2dszd + 8fu1 − 2sv − wdg
ĥ2

1 + ĥ2Ŝs2dszd, s51d

M̃s1dszd = M̃0
s1dszd +

ĥ2

1 + ĥ2M̃2
s1dszd, s52d

M̃2
s1dszd = 4su1 − 1dm̃1szd + f− 4sv − wd + 2gm̃2szd, s53d

m̃1szd =E de de8de9rsedrse8drse9d
z− e − e8 + e9

„hffse9d − fse8dg2

+ 2ffse8d − fs− edg2jF̂sz− e8 + e9d

− ffse8d − fs− edg2F̂sz− e − e8d

− ffse9d − fs− edg2F̂sz− e + e9d…, s54d
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m̃2szd =E de de8de9rsedrse8drse9d
z− e − e8 + e9

„hffse9d − fse8dg2

+ 2ffse9d − fs− e8dg2 + 6ffse8d − fs− edg2j

3F̂sz− e8 + e9d − 3ffse8d − fs− edg2F̂sz− e − e8d

− 3ffse9d − fs− edg2F̂sz− e + e9d…. s55d

Here the lowest moment ofḠ0
sidszd does not necessarily re-

produce the exact valuekni−sls1−kni−sld=1/4. To improve
this point, we have introduced a constant prefactor into the

first term(i.e., fḠ0
sidszdg0) on the RHS of Eq.(49), and deter-

mined it so that the correct moment is reproduced. Note that
as a result there is no correlation correction to the first term
(the RPT-0). The local correlations modify only the second

term viaMs1d(z,S̃szd). Equations(11) and(49)–(55), and the
CPA equations(6) determine self-consistently the single-
particle excitation spectrum of the system.

The self-consistent equation for the determination of the
critical Coulomb interactionUc1sgapd for a gap formation is
obtained by using the previous result40 as follows:

U = 4Îc2
s0d + d3

s1d, s56d

d3
s1d = d30

s1d +
ĥ2

1 + ĥ2d32
s1d. s57d

Here c2
s0d=3/8+3/2p, d30

s1d=1/4, andd32
s1d=2u1−4s1−3/pd

3sv−wd−6/p for the Gaussian DOS.
The critical Coulomb interactionUc2sm* = `d for the di-

vergence of the effective mass is determined from the
equation40

U =
1

Î− ]Ŝs2ds0+d/]z− M̃s1ds0+d
. s58d

Here ]Ŝs2ds0+d /]z=−0.1572 for a Gaussian DOS. Further-

more, M̃s1ds0+d is obtained from Eq.(52) with m̃1s0+d

=0.3145 andm̃2s0+d=0.1442. The quasiparticle weightZ is
obtained from the following formula:40

Z =
1 − sU/Uc2d2

1 + sU/U2d2 . s59d

Here Uc2 is defined by the RHS of Eq.(58), and

U2=1/ÎM̃s1ds0+d.

IV. NUMERICAL RESULTS

The memory function presented in the last section allows
us to investigate the correlation effects on the excitation
spectrum. We performed numerical calculations of the exci-
tation spectrum for a half-filled band on a hypercubic lattice
in infinite dimensions. In this case, the DOS for the nonin-
teracting system is given by the Gaussian functionrsed
=s1/Îpdexps−e2d. The present theory contains two param-
etersu1 and v−w. These parameters should take the values
0&u1&1 andv−w,0 for physical reasons. We choose the
parameters here so that the calculatedUc2sm* = `d yields the
best value 4.10 as obtained by the numerical renormalization
group approach43 (NRG) and that the condition
Uc1sgapd,Uc2sm* = `d is satisfied. The latter requires the
inequalityv−w,−0.2625. Taking into account the physical
condition v−w,0, we choose the valuesu1=0.715 andv
−w=−0.30. These values yield the critical Coulomb interac-
tion Uc1sgapd=4.09. In the numerical calculations, we
adopted the Fourier representation of the memory function.

WhenuS̃szdu@1, the moment expansion to the memory func-
tion is useful to avoid numerical problems.

The quasiparticle weight vsU is calculated from Eq.(59).
With the above parameters the curve obtained by the NRG
approach is reproduced very well(see Fig. 1). Although there
is some ambiguity for the choice ofv−w between −0.5 and
−0.2, the calculated DOSs are not sensitive to a particular
choice even in the intermediate Coulomb interaction regime
(see Fig. 2).

Figure 3 shows the calculated DOS for various values of
the Coulomb interactionU. For U&2.0, the correlation cor-

FIG. 1. Quasiparticle weight vs Coulomb in-
teraction curves in the PM-CPA(solid curve) and
the DMFT1 NRG (dotted curve) (Ref. 43) at the
ground state. A half-filled band on a hypercubic
lattice in infinite dimensions is assumed. The en-
ergy unit is chosen so that the second moment of
the noninteracting density of states becomes 1/2.
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rections to the static average in the DOS are negligible. For
U.3.0, the weight aroundv= ±1.0 is enhanced due to cor-
relations. WhenU=3.5, we find a dip aroundv=0 due to
correlations and the shoulders atv< ±2.5 are reduced,
showing the formation of the upper and lower Hubbard
bands. BetweenU=3.7 and 4.1, the Fermi-liquid state per-
sists in the present correlation calculations, while in the
Hartree-Fock approximation a non-Fermi-liquid state with-
out a gap appears betweenU=3.7 andU=4.2. In our previ-
ous paper, we described the spectrum in this region by means
of the first term(i.e., the RPT-0 term) on the RHS of Eq.(49)
introducing a cutoff factorq=0 into the second term. For
Uù4.1 an insulator state with a finite gap appears in the
present approach.

Figure 4 shows more precisely the formation of the upper
and lower Hubbard bands due to correlations. The quasigap
aroundv=0 is less pronounced than that obtained by the
NRG calculations. The weight of the peaks atv= ±U /2 is
considerably lower than the one in the NRG. This is partly
attributed to the weak coupling approximation(28) which

neglects the correlation effects on the higher-order terms, and
partly to the local ansatz(29) which is less suitable for the
strong Coulomb interaction regime.

A characteristic feature of the spectrum for strong Cou-
lomb interactions is that the upper and the lower Hubbard
bands for high-energy excitations are mainly described by
the first term in Eq.(49), i.e., the RPT-0 with the use of the
Hartree-Fock wave function as shown in Fig. 5. This feature
justifies the cutoff parameterq=1 for U,Uc2sm* = `d and
q=0 for U.Uc2sm* = `d, introduced into the second term of
Eq. (37) in our previous paper.40 This was done in order to
simulate within the Hartree-Fock approximation scheme ef-
fectively the correlation effects in the strong Coulomb inter-
action regime.

The lattice spectral functionrksvd is given by

−p−1 Imhfz−ek−S̃szdg−1j for the half-filled band. Its momen-
tum dependence is given by the band energyek because the
self-energy is momentum independent in infinite dimensions.
Figure 6 shows the spectral functionsrsek,vd calculated at
U=3.5 for different ek. Note that ek=−` at the G point

FIG. 2. Densities of states when the parameter
v−w is varied under the conditionUc2sm* = `d
=4.10. The Coulomb interactionU is fixed to be
0.99Uc2sm* = `d.

FIG. 3. DOS for various Coulomb interac-
tions sUd. Solid curves(dotted curves) are calcu-
lated from the matrix elements with(without)
electron correlations.
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s0, . . . ,0d and ek=` at the R point sp , . . . ,pd. Moreover,
rs−ek,vd=rsek,−vd for a half-filled band on the hypercubic
lattice. For largeueku, the spectrum shows a single peak be-
cause correlations are weak in that limit. Whenueku,U, two
peaks appear due to local excitations arounde0−m+ek and
e0−m+ek+U. Whenueku,0, we find a low-energy quasipar-
ticle peak atv,0 as well as Mott-Hubbard peaks atuvu
,U /2. The effect of electron correlations on the static ma-
trix elements enhances the Mott-Hubbard type incoherent
peaks, hence reducing the states near the Fermi level.

V. SUMMARY

We have investigated in the present paper the effects of
correlation on the static matrix elements in the memory func-
tion of the projection operator method CPA. These matrix
elements were calculated by means of a Gutzwiller-type
variational wave function within a single-site approximation.
By making use of the weak-scattering approximation that

linearizes the correlation effects, we obtained an explicit
form of the memory function.

The R=0 approximation to the matrix elements obtained
from the Gutzwiller-type local ansatz is not consistent with a
Fermi-liquid description of the excitation spectrum. We
therefore adopted a two-point approximation for the evalua-
tion of the umklapp sums in the memory function. The two-
point approximation introduces additional parameters of
weighting factors. The Fermi-liquid condition reduces the
number of parameters. Remaining are two parameters which
are directly related to the critical Coulomb interactions
Uc1sgapd and Uc2sm* = `d. In this sense, the present theory
does not determine these critical Coulomb interactions. Nev-
ertheless, one can investigate the correlation effects on other
quantities by taking reasonable values for the two param-
eters. The changes of the DOS are very small when the pa-
rameters are varied under the condition thatUc2sm* = `d
=4.10 (the NRG value).

The obtained self-energy shows a simple structure. There
is no local correlation effect to the zeroth order term in the

FIG. 4. DOS near the critical Coulomb inter-
action in various methods: the PM-CPA in the
Hartree-Fock approximation scheme(thin solid
curve), the PM-CPA with use of the Gutzwiller-
type wave function(solid curve), and the DMFT
with use of the NRG(dotted curve).

FIG. 5. DOS calculated by using(a) the
Hartree-Fock approximation plus a cutoffq=1
(dashed curve), (b) the Hartree-Fock approxima-
tion and a cutoffq=0 (dotted curve), and(c) the
present scheme based on the local ansatz wave
function (solid curve). The Coulomb interaction
parameter is kept fixedU=4.0.
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expansion of the screened memory function. The local cor-
relation term appears only via theS̃-linear term in the first
order expansion term. We have shown that the local correla-
tions on the static matrix elements improve the excitation
spectrum in the intermediate Coulomb interaction regime.
The upper and lower Hubbard bands are developed by the
correlation corrections near the critical Coulomb interac-
tions. Furthermore these bands are well described by the ze-
roth order term in the screened memory function. As the
result, the effects of electron correlations on the static aver-
ages justify to use instead a Hartree-Fock approximation
scheme with a cutoff function, as proposed in our previous
paper.40

The present theory contains two problems which should
be improved in the future. First, we introduced phenomeno-
logical parameters to describe the Fermi-liquid property of
the system. This originated in the difficulty that a simple
single-site approximation to the static averages with respect
to the Gutzwiller-type local ansatz variational wave function
is not consistent with a Fermi-liquid behavior of the single-
particle excitation spectrum. To remove the difficulty, one

has to improve the variational wave function so as to de-
scribe the low-energy excitations due to Coulomb interac-
tions.

Second, we adopted a weak-scattering approximation in
the calculations of the static matrix elements. This implies
neglecting the correlation effects on the higher-order matrix
elementsDssz,ek,ek8 ,ek9d in the expansion of the screened
memory function. When the Coulomb interactionU is in-
creased, electrons are localized to avoid a double occupancy
of a site, so that the operator space used by the correlated
electrons is reduced fromhaks

† dsak8−s
† ak9−sdj to hAis

† j. This
implies thatDssz,ek,ek8 ,ek9d vanishes in the strongly corre-
lated regime, i.e.,Dssz,ek,ek8 ,ek9d→0 because the matrix

elementssL̃ IQ
siddk1k18k19skk8k9s→0 when U→` [see Eq.(19)].

Such a screening effect on the higher-order terms should
further localize the electrons. We therefore expect that in the
intermediate Coulomb interaction regime the higher-order
corrections should enhance the peaks of the Hubbard bands
at v= ±U. Solving these problems is left for future investi-
gations toward a quantitative and analytic description of the
excitation spectrum.
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