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Self-consistent projection operator approach to excitation spectra:
Role of correlated wave function
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A recently proposed combination of a projection operator method with the coherent potential approximation
for the computation of the excitation spectra of solids is further extended. In particular, the effect of electron
correlations on the matrix elements of the self-energy are investigated. This is done with the help of a
Gutzwiller-type variational wave function. Numerical calculations have been performed for a half-filled band
of a hypercubic lattice in infinite dimensions. They show that for strong electron correlations the higher-order
dynamical corrections in an renormalized perturbation expansion are screened except in the low-energy re-
gime. This provides for a justification of earlier work, where a Hartree-Fock approximation with a cutoff
parameter was used for the computation of the static matrix elements.
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I. INTRODUCTION present authof$ proposed a variational method which adia-
batically takes into account those correlations missed in the

Single-site approaches to electron correlations provide foBSF theory. Kakehasf{i*® proposed the dynamical CPA
a good starting point for the understanding of excitationwhich fully takes into account the dynamical spin and charge
spectra and phase diagrams from the weak to the strong Cofluctuations within the single-site approximation. Hirooka
lomb interaction limit! As regards the metal-insulator tran- and Shimizd® extended the CPA for disordered alloys to the
sition, such a theory was first proposed by Hubbard. He demany-body caséhe many-body CPAby using temperature
rived self-consistent equations for the self-energy of stronglyGreen functions. The many-body CPA, the dynamical CPA,
correlated electrons by an equation of motion methd@ihe  and the DMFT have recently been shown to be equivalent to
electrons were shown to behave as in an alloy with a randoreach othef! so that the theories of magnetism and those of
potential and therefore one is usually referring to the coherstrongly correlated electron systems can be considered in a
ent potential approximation(CPA) for that system of unified way within the single-site approximation.
equations—® Gutzwiller'®! proposed a wave function with Several of the theories mentioned above are based on
locally correlated electrons which contains variational pa-temperature Green functions, but one may as well construct a
rameters. Their determination is possible within the so-callegingle-site approximation for the retarded Green function. In
Gutzwiller approximation. Brinkman and Rie found particular, the projection operator metiéd*has been used
within the same approximation a diverging effective mass ato formulate a single-site approximation in terms of the wave
the metal-insulator transition. operator®-38 With the help of the method of incremefits

During the last decade, the single-site theory has gained iane should be able to go beyond that approximation and to
importance because of its relation to the limit of infinite di- account for the momentum dependence of the self-energy.
mensions. Metzner and Vollhatdtdeveloped a theory for Corresponding calculations for the ground state of semicon-
that limit by keeping the bandwidth as a constant. Theyductors and insulators have led to very accurate results, i.e.,
showed that the Gutzwiller approximation becomes exacbnes of quantum chemical accuracy. For a review see Ref.
in that limit. Miller-Hartmanf* proved that the self-energy 38. Reaching a similar accuracy for energy bands would
is independent of momentum in that limit, and derivedopen up the road toward a realistic description of the excita-
a self-consistent equation for it. Subsequently, manytion spectra outside the standard approximations within
investigator®-°developed techniques to solve that equationdensity-functional theory. For that reason we have recently
self-consistently and extended the approach to the dynamicdeveloped as a first step a single-site theory which combines
mean-field theory DMFT). One result obtained within the the projection operator method with the CPA, i.e., the pro-
DMFT is that the Fermi liquid state is so robust that it re- jection operator method CRRM-CPA).*° It was worked out
mains valid until a metal-insulator transition takes place. for a Hubbard Hamiltonian. The projection operator method

In the theory of magnetism single-site theories were dedescribes the dynamics of single-particle excitations by
veloped in order to describe magnetism for metallic as welmeans of a Liouville operatoi. The PM-CPA self-
as insulating state¥-22 Hubbard® and Hasegavfd estab-  consistently takes into account the effects of the dynamics of
lished a theory of single-site spin fluctuatiqf®SB by using  the environment of a given site by making a single-site ap-
an alloy analogy in functional-integral thed¥2® The  proximation. This results in an energy dependent Liouville
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operatorl (z). The latter is determined by the CPA equation. H=Hg+U> NN, (1)
It requires that an impurity Green function embedded in an i
effective medium should be identical with the coherent
Green function of the eff_ect|ve_ medium. _ Ho= 2 (&= mw)Niy + > tija1_TUajm 2)

In order to solve the impurity problem we developed in io ij,o
the previous papé? a renormalized perturbation theory. It
allows for determining the memory function of the retardedbetween sites andj, respectively, and! (a, ) is a creation
Green function by including more and more dynamical vari- ninilati rj'é rfpr N Iy, T I?i\(erit?]w— 7 on sitei
ables in the projected operator space. Within this expansioiga ation OPE a}ro oran electron | SPpim on SHet.

. T urthermoren;,=a; 8, n is the chemical potential.
procedure a decoupling approximation was made. . io o ) .
. : : The single-particle excitation spectrum is obtained from
The corresponding static matrix elements were evaluate ;
o . . e retarded Green function'as

by a Hartree-Fock approximation with a phenomenological
cutoff parameteq. The latter was equal to 1 for the metallic / T
and O for the insulating state. This way a satisfactory excita- Gijo(2) = (\airr
tion spectrum was obtained for all interaction strengths,
when the case of half filling was considered for a hypercubisvherez=w+ié with § being an infinitesimal positive num-
lattice in infinite dimensions. ber. The Liouville operatoL is a superoperator acting on an

The use of the Hartree-Fock approximation for the matrixoperatorA as LA=[H,A]_. The inner product between the
elements in the strongly correlated regime, however, cannaiperatorsA andB is defined by(A|B)=([A*,B],).
be justified in general. We need to examine the effects of In the PM-CPA?® we approximate the Liouville operator
electron co.rrellat|ons on the.statlc matnx.elements and henqg:y means of an energy dependent Liouville operE(a) for
on the excitation spectrum in more detail. In the present pa- fective Hamiltoniami(2):
per, we calculate various static matrix elements of then effective Hamiltonia (2
memory function with respect to the ground state by adopt- ~ t
ing for the latter a Gutzwiller-type variational wave H(2) =Ho+ E 2,(2)8;,8,- (4)
function® We clarify the role of local correlations on the 7
excitation spectrum. In particular we will justify the phenom- Here X () is a site-diagonal self-energy called the coherent
enological cutoff parameter introduced in our previouspotential. The diagonal Green function to the Liouville op-

paper:° eratorL(z), which we call the coherent Green function, is
In the following section, we briefly review the PM-CPA btainec(i Qs ’

and summarize the self-consistent equations to be solved. In

Sec. lll, we calculate various static quantities that appear in

the memory function. As mentioned above we apply for that F.(2) =f
purpose a Gutzwiller-type variational wave functfdnThe Z €
wave function that we use here describes best the local elegzhere p(e) is the density of state€DOS) per atom for the
tron correlations for weak correlations, but also leads to thg,gninteracting system specified b

correct atomic limit for a half-filled band. A conventional ' The coherent potential introduced in Ed) is determined
single-site approximation to the static matrix elements doegg|f.consistently from the CPA condition that the impurity

not lead to a Fermi-liquid behavior of the single-particle ex-Green function embedded in the effective medium is identi-
citations. We treat this problem in Sec. Il B, and obtain thecy| with the coherent one, i.e.,

memory function for correlated electrons in Sec. Il C.

We present numerical results in Sec. 1V for the excitation G(2)=F,(2). (6)
spectrum in infinite dimensions. The inclusion of electron
correlations shows the development of the upper and loweFhe impurity Green function is given by
Hubbard bands in the intermediate interaction regime. It is i - i -
also found that the Hubbard bands are well described by the Gg)(z) =[F (2™~ Ag)(z) +3,17 ()
zeroth approximation in the renormalized perturbation
scheme because of the screening of the higher-order terms. AV =U(n_»+ U26<;>(Z)_ (8)
This justifies the Hartree-Fock approximation with a phe-
nomenological cutoff parameter for the calculation of theThe first term on the right-hand sidRHS) in Eq. (8) is the
static quantities. A summary is given and the remainingHartree-Fock potential. The reduced memory function
problems are discussed in the last Sec. V. GS)(Z) in the second term is given by

wheree, andt;; are the atomic level and the transfer integral

z-L 7

ia-T ), (3)

p(e)de
+u - EU(Z) -€

©)

G)(@ = (AL liz-LY@TA)). 9
Il. PROJECTION OPERATOR CPA ) ]
Here the operatoA] is defined byAl =al on,_, and én_,

We adopt here the Hubbard Hamiltort&Awith an intra- ~ =ni_,—(ni—,). The Liouville operator."(2)=QLY(2)Q acts
atomic Coulomb interactiok): on a space that is orthogonal § JT(,)}. This is achieved
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through the projection operatorQ=1-P, where P

J(,| )(a ol- L®(2) is a Liouville operator for an impurity

HamlltomanH(')(z) with a Coulomb interaction on siieem-
bedded in the effective medium:
E Eo(z)a1ToaiU+ UniTnil'

HO(2) =H(2) - (10)

The memory function9) is calculated by means of the

renormalized perturbation theo(RPT) as'®

G
G(I ( ) O(r(z) ’ (11)
1-L2GY(2)
~2,(2+U1 - (ni,))
(') - g i—o 2
S -0 2
68{), is a screened memory function defined by

62 = (Al [z~ Lo@ - L' @QIA,).  (13)

Here Lo(z) QL(2Q and7')(z) QL(I)(Z)Q The Liouvillean
(z) acts on a given operatoA according to L(')(z)A

PHYSICAL REVIEW B 70, 155112(2004

=[-2,2,(9n,+Un;n; ,Al..  Moreover, Q=1-P, P
=2 AL Xir (Al,], andxio=(ni_p) (1 =(ni_,).

The RPT interpolates between the weak and strong Cou-
lomb interaction limits. Note that the operaHP(z)Q in Eq.
(13) is negligible in both limits. In the inteimediate regime,
we expand the screened memory funct'@ﬁ? (2) with re-
spect toL ')(z)Q up to the first order exactly. For the higher-
order terms, we make use of a decoupling approximation
within the operator spadiia), 5(a!,__a—,))}. Hereal, (a,)
is the creation(annihilatior) operator for an electron with
momentumk and spinc. This is called the first-order renor-
malized perturbation theorgthe RPT-1.4° We have then

[ AGU(z [AGu(@):

Gl =[GG2)]o*+ =T
=

(14)

The first term on the RHS of E@l4) is the zeroth expan-
sion term(the RPT-0. [G(()'()r(z)]o, [AGg()f(z)]l, andﬁ(f(z) are
given as follows:

(O)(Ek, Eyr, Sku)

[G <'>(z>]o——

[AGH@h=15 =

KK K’

R(')(z

: (15
N3k k’ K’ - E - 2 (Z) - €y + (9

1 XE?)(EKY Ek’lek”)AU(i_Eo_ i0'(2)150'(2)16k1 e-k’1€k") ’ (16)
_’Ea'_ E(,.(Z) — €~ & t e

N— > A(Z-F-342),3 (2), € € ) - (17)

K, kr K’

Here'e,=ey— u+U{n;_,) andig(z):EU(z)—U(ni_g). N is the number of sites ang} is an eigenvalue df; with momentunk.
The functionsxff’)(ek,ek,,ek,,) and Ag(z,i,,(z),ek,ek,,ek,,) in Egs.(15—(17) are given by

X e € €e) =N 25 ilk)i k(KD (oD riraaeneraCKIDEK K'Y,

Ky KL K]

(18

(RN KDL 1D e kroterirad ka Y i) <I|k

Ao’(zlia(z)vek! Gk"ek”) = N3 2

ko K] K]

Here (k|i)=(i|k)*=1/ N exp(ik -R;), and

(19
zZ—- le - Eki + Ek'l’
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= = 3,2 KKy] ) o S = 22 [K')
X1} S + o (2K
X(ilkp) i + Ulxo'L{ )klk KIokk' K

= L)kl )
X(Ai0'|ak0'5(ak/_(rak”—0'))l (20)

(L Eg) klkierrkk' K'o

(XO)klkik’l’trkk’k”a = (aiﬁlﬁ(ali_gawl’— )|aizg5(a;_gak"—g)),
(21)

(L Oigkproiere = (allg5(a1zi_gakg-g) A 88, ai0-0)) K
+ (@ 0@, Aol AL - ilK)
- @@y, a-o)lalauA-KD).
(22)

The functionsxff)(ek, €, €) and A,,(z,i(,(z) ) €y €k + €K1)
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IIl. WAVE FUNCTION APPROACH TO THE STATIC
MATRIX ELEMENTS

A. Weak-scattering approximation and wave function

In the first-order renormalized perturbation scheme,
the effects of the static correlations appear only via
XEJ(_))(Ek,Ekr,fku) and A (z,2(2),€,€',€") as seen from Egs.
(14—17). Since A, is related to higher-order terms in the
expansion series, we approximate it in the following by the
Hartree-Fock vaIue\ffHF), and introduce the renormalization
constantsA, andB,, so that the correct zeroth order moment
of A, is reproduced:

A(z23(2),€€,€)=-3(D[F(z-€ +€) +F(z- e+ €)
+F(-z+e+€)]+B,UK, (z €, €
~AL222 (), (29)

Here AU':<ni—u'>(1_<ni—u'>)/<ni—o'>0(1_<ni—a'>0)! Bo':(l
=2 N1 (1-2ni_,)0), and (), denotes the Hartree-Fock
average.

Equation (28) is a weak-scattering approximation, and

were obtained previously in the Hartree-Fock approximatiorcorrelation effects org(i (z) are linearized because both

ago

Xa.(Ek, €, Ek”) = f(_ € _A&"o.)f(_ €r _A&"_o.)f(é'kr/ +E_0)
+ f(ek +z(r)f(6k’ +E—u‘)f(_ € _’E—u’):
(23)

APP(ZS (2),e,€ €)= -3, (2[F(z- € + ¢
+F(z- e+ &) +F(-z+e+€)]
+UK,(z€,€) - LN232(2).
(24)

Here f(w) is the Fermi distribution function. The functions

F(2), K,(z,€ ,¢), andS?(2) are defined by
Fio= [ 9% 25)

K(z €€
_ j do do”p(w)p(w”)[f(E€, + w) ~ fle,

Z-w—-€ + o'

+ wl!)]

+ )]

+J do do'p(w)p(e’)[f(-¢., - o) — f(e,
Z-w-w +¢€
(26)

32 = fdédf de’p(e)p(e’)p(e) Xl €' €"). 27

Z— €~ € T €

[G(')(z)]o and [AG (z)]l depend linearly on the remaining
correlation termX (ek,ek/ ek”)

For the calculatlon oX (ek, €, €) defined by Eq(18),
we consider the ground state and adopt a variational wave
function ¥ of the Gutzwiller-typé!

vy =1 (1-70)|¢p). (29

Here| o) denotes the Hartree-Fock wave function. The local
operatorO; = on;; dn; describes local electron correlations on
sitei, and the{ 7} are variational parameters. The wave func-
tion describes best the on-site correlations from the weak to
the intermediate Coulomb interaction regime. For a half-
filled band it leads to the correct atomic limit.

The variational parametey, is determined from the sta-
tionary condition to the ground state enewit)/d7;=0. In
the single-site approximation, it is given by

_ —(OFI0)0+ V(O,FI0)2 + 4(0F1)o(0%, 0
7= ~ ’
2(OH)o(O%,

and the average value of an operatois given by

((OAY + (AO,)o) + 74 OAC; do
1+ 77| <02>O

(W= (R + X, —
(31)
Here A=A~ (A) and(0f)o=(i ol 1~(i; Yol Yol L =(ny )ol.

We apply the above formula to the calculation of
X( (€, €, €r) given by Eq.(18). For that purpose, we ex-

Note thatUzs, 2)(z) is the self-energy in second-order pertur- pressy, as a thermal average instead of an inner product.

bation theory.

Adopting Eq.(31), we obtain
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Xl( €, €7y Ek”)

1
=== 2 5—k+k1—k1+k”,K[f(Ek”)f(_ fki)f(fkl)f(‘ )

Xz(Ek, €r,y Ekrr) . (32) N K k1k:,L
+ (= a0 fleg) F(= a)f(ed]

X(O)(Gk, €/, Ekn) = X( €k, €k’ Ekrr) - Xl( €k, €’y Ek”)

7
1+ 7%0%)

772

+ —_—
1+ 7%0%)

1
+ NE > ki +k KL F(€) F (=€) Fler ) (= &)

Here and in the following we consider the half-filled band K Kok
for a nonmagnetic state, and omit the spin in@efor brev-
ity. Then X (e, €¢ , ) andXy(e, €, ) are given by * 1= g fle) T(= &) fled], (33
|
1
Xo( €, €, €r) = mE > 5—k’+kl—ki+k",K[f(€k”) - f(fkl)][f(eki) - ()]
K kqky

1
- mz > Ok i kL F &) (&) = F(= ) F(= ed ][ f (&) f(ew) = (= ) (- €]
Y

1
+ _2 E 5—k+kl—k'+k’,K[f(fkl)f(fk) -f(= fkl)f(_ e [[f(e)f(e0) — f(— ) (- €)]
4N“¢ - 1 1 1

+ é{[f(fk) ~ flew) (= ew) = flen)] + [f(- &) — Fle) [f(- €)= flee)] + [f(ee) — flew) [f(ed) — f(= el ]}
(34)

HereK denotes the reciprocal lattice vector of the system. sentative valugn;,,), in the umklapp sums of, e.g., E®3).
As an extension, we shall approximate the umklapp sum
B. Two-point approximation to the static average with respect tdk; andk; by an average of two representative
values leading to a single-site approximation. We call this

The expression oX (g, €, €) presented in the last e . S
. . .__approximation the two-point approximation. For example,
subsection contains the umklapp sums because of an |ntevrv—e may take pointk,,k))=(k,k") with a weightry, and
ference effectX; and X, do not depend only ow, €, €, y P M ' gntry,

but also ork,k’,k”. Therefore these expressions are not suit{k1 k) =K', =) with a_weight{rz " tr:e first sum of the
able for the single-site approximation. RHS of Eq.(33), and point(ky,k;)=(k,k’) with a weights;

The R=0 approximatiof? is an often used single-site ap- and (ki,ky)=(k’,k) with a wezightsz in the second sum. Be-
proximation. However, when applied to the matrix elementscausef(e)f(-€J=0 andf(e)°=f(e) when the ground state,

X; and X,, the Fermi-liquid property?\S)(O*)=AS)(O+) we end up with

-U(n,_»=0is gen_erall_y not satisfied. For that rea_son we Xy(€ €0 €0r) = — P F(= €) f () + F(€) (= €)]. (35)
extend the approximation as follows. TRe=0 approxima-
tion implies a replacement d(eklg) [or f(ekig)] by a repre- In the same way, we obtain

1
Xo( €, €t €r) = Z{ul[f(ek") ~ f(&)? —val f(e) = F(= e[ f (&) = F(= )] = vl (- &) = f(&) ]
+wy[ f(e) = (- € [ f(e&) = f(= &)]+ Wi f(= &) — f(&)]3
+ %{[f(ék) —f(en) (- &) — fle) ]+ [T(— &) — f(e) [ (- &) — (&) ]+ [f(e) — Tle) [ f(€) — F(— &)}
(36)
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Substituting Eqs(28) and (32) into Egs.(15—17), and
using X; and X, given by Eqgs(35) and(36), we obtain the

screened memory function as
GY(2=MO(z-3(2)
MPz-32),32)
1-RY(z-52) +LP22?(z-32)
(37

=+

——=MP(2), (39

MO (z) =3 (z) - 772

M3 (2) = - S(2MY(2) + UMD (2)

- LM (232 (2), (39)
|\7|<1>(z):ix|gl>(z)— ; WZM(l(z)+ : |v|<1>(z)
(40)
_ ~ ‘2 _
MD(z) = - o 772M<1’(z>+ ;leé”(z), (41)

R'@=-3 f de de'de’p(p(e)p()[F(z— €' + )

+F(z-e+e)-F(z-e-€)]. (42)

Here »=7/4. The functionsl\/lf?)(z) (n=1,2 in Eq.(38) are
given by>@(2) [see Eq(27)] in which x(e, €', €") has been
replaced by X(e,€',€") and 16<,(e, €’ ,€"), respectively.

The I'\“/Iﬁ]l)(z) (n=0,1,2 in Eq. (40) are defined by ?(2) in
which x(e,€’,€’) has been replaced by(e,e’,e”)[le(z—e’
+e)+F(z-e+€)-F(z—e—€')], 4Xy(e, €, €)[F(z—€ +€")
+F(z-e+€)—-F(z—e-¢€)], and 1&,(e, €' ,€")[F(z—€ +€")

+|5(z—e+e")—|5(z—e—e’)]. In the same way, thﬁf})(z) (n

=1,2) in Eq. (41) are defined by, ?(2) in which x(e, €', €")
has been
16X,(€,€',€")K(z, €', €"),
K(z,€',€") are given by Eqs(25) and(26).

C. Fermi-liquid condition and screened memory function

The two-point approximation has introduced several pa-
rameters as is seen from Eq85) and (36). They are re-

:0_. When we
introduce a functionM(z,i(z)) such that Gg)(z):M(z

—i(z),i(z)), this condition is expressed ad(0",0)=0.
Substituting Eq(37) into this equation, we obtain the fol-

duced by the Fermi-liquid condition ¥(0%)

lowing explicit Fermi-liquid conditions:

3@ =0, (43)

replaced by X{(e, €' ,€")K(z, €' ,€") and
respectively. Here F(z) and

PHYSICAL REVIEW B 70, 155112(2004

M7(0%) = M{(0%) =0, (44)
MP(0%) =0, (45)
ML) = 0. (46)

Equation (43) is automatically satisfied. Equatiof#4)
leads to the conditionr,=0. This implies thatM(lo)(z)
I:M(ll)(z)zM(ll)(z)zo. Equation(45) yields the following re-
ation:

Up+vp— 2w +w—20+3=0. (47)

Here we adopted a Gaussian DQ&)=(1/\57r)exp(—eZ),
andw=w;+w, andv=v;+v,. Finally, the condition(46) is
equivalent to the following relation:

2U1_2W1+02_W2:O. (48)

We therefore obtairM(zl)(z):O.

Equations(47) and (48) show that one can express the
five parametersyy, vq, vy, Wy, andw, by means of three
parametersi;, v, andw, i.e.,v;=U;—4v+3w+3/2,v,=-U;
+50-3w-3/2, w;=u;—3v+2w+3/2, wW,=-uU;+3v-w
—-3/2. Making use of these relations and the resullt?)(z)
=MP(2=M"(2)=0 as well asM\’(2)=0, we obtain the
following final expression for the screened memory function
in the two-point approximation:

Gl(2) =2@(z-3(2)
MD(z-3(2),3(2)

~-Ri(z- E(Z)) + ED(Z)Q(Z)(z— i(z)) )
(49

LP2MO23?(2),
(50)

MD(z3(2) =-3(2MV(2) -

i

MO(2) =2/ + 8u; - 20 W] 53%@, (5D
7

Uy
e @ (52)

MV (z) = M (2) +

MP(2) = 4(uy - Diny(2) + [~ 4w —w) + 2]p(2), (53)

({[f(e) - f(eH P

~ dede’ d€'p(e)p(e )p(€”)

o - [ Gt

+2[f(¢) - (- O2F(z- € +€")
~[f(€') - f(- ©2F(z- e-€)

~[f(&") - f(- OFF(z- e+ €), (54)
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PM-CPA
DMFT+NRG

FIG. 1. Quasiparticle weight vs Coulomb in-
teraction curves in the PM-CR&olid curvg and
the DMFT + NRG (dotted curve (Ref. 43 at the
ground state. A half-filled band on a hypercubic
lattice in infinite dimensions is assumed. The en-
ergy unit is chosen so that the second moment of
the noninteracting density of states becomes 1/2.

de de’de"p(e)p(€')p(€")

my(2) =J {[f(e) - f(e) P
+2[f(e") — f(- )P+ 6[f(e") - f(- €1}
XF(z— € +¢) - 3[f(e) — f(- & PF(z— e~ €)
~3[f(&") - f(- OPF(z- e+ €")). (55)

Z—-e—€ +¢€

Here the lowest moment cEg)(z) does not necessarily re-
produce the exact valu@,_,)(1—-(n,_,))=1/4. Toimprove

=0.3145 andn,(0*)=0.1442. The quasiparticle weightis
obtained from the following formulé®

_1-(U/Uy)?

T 1+(U/U,)%°
Here Uy, is defined by the RHS of Eq(58), and
U,=1/y/M@(0").

(59

IV. NUMERICAL RESULTS

this point, we have introduced a constant prefactor into the The memory function presented in the last section allows

first term(i.e., [GV'(2)]o) on the RHS of Eq(49), and deter-
mined it so that the correct moment is reproduced. Note th

as a result there is no correlation correction to the first tern)

(the RPT-0. The local correlations modify only the second
term viaM®(z,2(2)). Equationg11) and(49)<55), and the
CPA equations(6) determine self-consistently the single-
particle excitation spectrum of the system.

us to investigate the correlation effects on the excitation
spectrum. We performed numerical calculations of the exci-
ation spectrum for a half-filled band on a hypercubic lattice
in infinite dimensions. In this case, the DOS for the nonin-
teracting system is given by the Gaussian functjde)

=(1/Vmexp(—-€%). The present theory contains two param-
etersu; andv—w. These parameters should take the values
0=<u;=1 andv-w~0 for physical reasons. We choose the

The self-consistent equation for the determination of theparameters here so that the calculdtes{m* = =) yields the

critical Coulomb interactiotd;(gap for a gap formation is
obtained by using the previous redfilas follows:

U=4/cy +df’, (56)
(1) — 4 i’ (1)
df’ =dg + dy. 57
3 30 1_'_;]2 32 (57)

Here ¢”'=3/8+3/2r, dy=1/4, anddyy=2u,~4(1-3/m)
X (v—w)=6/1 for the Gaussian DOS.

The critical Coulomb interactiokd ,(m* =) for the di-
vergence of the effective mass is determined from th
equatior?

1

U= = = . (58)
V- 22(0%9z- MD(0%)

Here 332(0%)/9z=-0.1572 for a Gaussian DOS. Further-
more, MD(0*) is obtained from Eq.(52) with (0"

best value 4.10 as obtained by the numerical renormalization
group approacd (NRG) and that the condition
Ua(gap <Ug(m*=x) is satisfied. The latter requires the
inequalityv —w<-0.2625. Taking into account the physical
conditionv-w~0, we choose the valuag=0.715 andv
—-w=-0.30. These values yield the critical Coulomb interac-
tion Uy(gap=4.09. In the numerical calculations, we
adopted the Fourier representation of the memory function.
When|2(2)|> 1, the moment expansion to the memory func-

tion is useful to avoid numerical problems.
The quasiparticle weight g is calculated from Eq59).

Snith the above parameters the curve obtained by the NRG

approach is reproduced very walee Fig. 1. Although there
is some ambiguity for the choice of-w between -0.5 and
-0.2, the calculated DOSs are not sensitive to a particular
choice even in the intermediate Coulomb interaction regime
(see Fig. 2

Figure 3 shows the calculated DOS for various values of
the Coulomb interactiot). For U=<2.0, the correlation cor-
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% FIG. 2. Densities of states when the parameter
B o3} _ v-w is varied under the conditioh) ,(m* = o)
pre =4.10. The Coulomb interactiod is fixed to be
Q oz | 1 0.9Up(m* =0),

01 | E

0

Energy

rections to the static average in the DOS are negligible. Foneglects the correlation effects on the higher-order terms, and
U=3.0, the weight around=+1.0 is enhanced due to cor- partly to the local ansat®29) which is less suitable for the
relations. WherlU=3.5, we find a dip arouné=0 due to  strong Coulomb interaction regime.

correlations and the shoulders ai=+2.5 are reduced, A characteristic feature of the spectrum for strong Cou-
showing the formation of the upper and lower Hubbardlomb interactions is that the upper and the lower Hubbard
bands. Betweety=3.7 and 4.1, the Fermi-liquid state per- Pands for high-energy excitations are mainly described by
sists in the present correlation calculations, while in thethe first term in Eq(49), i.e., the RPT-0 with the use of the
Hartree-Fock approximation a non-Fermi-liquid state with-Hartree-Fock wave function as shown in Fig. 5. This feature
out a gap appears betwebk=3.7 andU=4.2. In our previ- 1ustifies the cutoff parameter=1 for U<Ug(m* =) and

ous paper, we described the spectrum in this region by mearf= 0 for U= Uc,(m*=<¢), introduced into the second term of

of the first termi.e., the RPT-O terinon the RHS of Eq49)  Ed- (37) in our previous papéf This was done in order to
introducing a cutoff factog=0 into the second term. For simulate within the Hartree-Fock approximation scheme ef-

U=4.1 an insulator state with a finite gap appears in thgecfcively the correlation effects in the strong Coulomb inter-
present approach. action regime. , o

Figure 4 shows more precisely the formation of the upper '€ lattice spectral functionp(w) is given by
and lower Hubbard bands due to correlations. The quasigapm * Im{[z- ,~2(2)]"%} for the half-filled band. Its momen-
around w=0 is less pronounced than that obtained by theum dependence is given by the band enefghecause the
NRG calculations. The weight of the peaksat +U/2 is  self-energy is momentum independent in infinite dimensions.
considerably lower than the one in the NRG. This is partlyFigure 6 shows the spectral functiop&e,,w) calculated at
attributed to the weak coupling approximati¢28) which ~ U=3.5 for different .. Note thatg=- at the I point

(VY T T T T
06 .
0.5

0.4

FIG. 3. DOS for various Coulomb interac-
tions (U). Solid curvegdotted curvepare calcu-
lated from the matrix elements witfwithout)
electron correlations.

03

DOS (states/atom spin)

0.2

0.1
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U.s T T T T
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06  U=0.99Uc2 NRG -oeeeee
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&
é 04 - . FIG. 4. DOS near the critical Coulomb inter-
2 action in various methods: the PM-CPA in the
g 03 L 4 Hartree-Fock approximation schenein solid
pre curve, the PM-CPA with use of the Gutzwiller-
Q ST, type wave functior(solid curve, and the DMFT

02 i with use of the NRQdotted curvg

Energy

(0,...,0 and g=c at theR point (7, ...,7). Moreover, linearizes the correlation effects, we obtained an explicit
p(—€, w)=p(g,—w) for a half-filled band on the hypercubic form of the memory function.

lattice. For largd e, the spectrum shows a single peak be- The R=0 approximation to the matrix elements obtained

cause correlations are weak in that limit. WHeg~ U, two  from the Gutzwiller-type local ansatz is not consistent with a
peaks appear due to local excitations aroupdu+e, and  Fermi-liquid description of the excitation spectrum. We

€o—u+e.+U. When|g|~0, we find a low-energy quasipar- therefore adopted a two-point approximation for the evalua-
ticle peak atw~0 as well as Mott-Hubbard peaks gt|  tion of the umklapp sums in the memory function. The two-

~U/2. The effect of electron correlations on the static ma-point approximation introduces additional parameters of
trix elements enhances the Mott-Hubbard type incohereniveighting factors. The Fermi-liquid condition reduces the

peaks, hence reducing the states near the Fermi level. number of parameters. Remaining are two parameters which
are directly related to the critical Coulomb interactions

U (gap and U,(m* =<0). In this sense, the present theory
V. SUMMARY does not determine these critical Coulomb interactions. Nev-
ertheless, one can investigate the correlation effects on other
We have investigated in the present paper the effects ajuantities by taking reasonable values for the two param-
correlation on the static matrix elements in the memory funceters. The changes of the DOS are very small when the pa-
tion of the projection operator method CPA. These matrixrameters are varied under the condition thap(m* =)
elements were calculated by means of a Gutzwiller-type=4.10(the NRG valug
variational wave function within a single-site approximation.  The obtained self-energy shows a simple structure. There
By making use of the weak-scattering approximation thais no local correlation effect to the zeroth order term in the

HFq=1 """
06 U=40 HFg=0 - :
LA —_—
05 - -
E FIG. 5. DOS calculated by usinga) the
g 04r T Hartree-Fock approximation plus a cutaff=1
E (dashed curve (b) the Hartree-Fock approxima-
f;; 03 | . tion and a cutoffg=0 (dotted curvg, and(c) the
§ present scheme based on the local ansatz wave
02k 4 function (solid curvg. The Coulomb interaction
parameter is kept fixed =4.0.
01} 4

Energy
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0.7 L) L] L) L] L) L) Ll Ll

0.6

0.5
’§_ 0.4 FIG. 6. Spectral functions for various kinetic
3 energiese,=0,1,2, including the effects of elec-
e 03 tron correlations on the static matrix elements

(solid curve$ and without correlationgdotted
0.2 curves.
0.1

expansion of the screened memory function. The local corhas to improve the variational wave function so as to de-
relation term appears only via ti&linear term in the first Scribe the low-energy excitations due to Coulomb interac-
order expansion term. We have shown that the local correldiOns. _ L
tions on the static matrix elements improve the excitation Second, we adopted a weak-scattering approximation in
spectrum in the intermediate Coulomb interaction regimethe calculations of the static matrix elements. This implies
The upper and |0wer Hubbard bands are deve|0ped by th@eglec“ng the COI’I’e|atI0r_1 effeCtS on the hlghel’-ordel’ matrix
correlation corrections near the critical Coulomb interac-€lementsA,(z, & €, &) in the expansion of the screened
tions. Furthermore these bands are well described by the z&emory function. When the Coulomb interactithis in-
roth order term in the screened memory function. As thecreasgd, electrons are localized to avoid a double occupancy
result, the effects of electron correlations on the static averof @ site, so that the operator space used by tThe correlated
ages justify to use instead a Hartree-Fock approximatioglectrons is reduced frorfe,,d(a,,_,a-,)} to {A,}. This
scheme with a cutoff function, as proposed in our previoudmplies thatA,(z, €, €, €) vanishes in the strongly corre-
paper® lated regime, i.e.A,(z, &, €0, €r) —0 because the matrix
The present theory contains two problems which shouldalements([fg)klkik,l,gkk,k,,oqo whenU — o [see Eq.(19)].
be improved in the future. First, we introduced phenomenosych a screening effect on the higher-order terms should
logical parameters to describe the Fermi-liquid property offurther localize the electrons. We therefore expect that in the
the system. This originated in the difficulty that a simpleintermediate Coulomb interaction regime the higher-order
single-site approximation to the static averages with respedorrections should enhance the peaks of the Hubbard bands
to the Gutzwiller-type local ansatz variational wave functionat w=+U. Solving these problems is left for future investi-
is not consistent with a Fermi-liquid behavior of the single-gations toward a quantitative and analytic description of the
particle excitation spectrum. To remove the difficulty, oneexcitation spectrum.
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