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We study the formation of an electronic nematic phase characterized by a broken point-group symmetry in
interacting fermion systems within the weak coupling theory. As a function of interaction strength and chemi-
cal potential, the phase transition between the isotropic Fermi liquid and nematic phase is first order at zero
temperature and becomes second order at a finite temperature. The transition is present for all typical, including
quasi-two-dimensional, electronic dispersions on the square lattice and takes place for arbitrarily small inter-
action when at van Hove filling, thus suppressing the Lifshitz transition. In connection with the formation of
the nematic phase, we discuss the origin of the first-order transition and competition with other broken
symmetry states.
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I. INTRODUCTION

Recently, there have been reports of experimental evi-
dence of inhomogeneous and/or anisotropic quantum ground
states in strongly correlated systems.1–5 The inhomogeneous
phase—dubbed the stripe phase—was observed in high tem-
perature cuprates via elastic neutron scattering experiments.6

Theoretical studies of the inhomogeneous and anisotropic
quantum ground states in connection with generic phases of
a doped Mott insulator have also been carried out.7,8 It was
suggested that as quantum fluctuation, induced by hole dop-
ing, increases, the Mott insulator turns into a smectic—
stripe—phase, and a further increase of quantum fluctuation
will turn a smectic to a nematic phase.7,8 The electronic
smectic and nematic phases are characterized by broken
translational(in one direction) and rotational symmetries, in
analogy with classical liquid crystals.9

The electronic nematic phase which breaks the point-
group symmetry on a square lattice was studied in the ex-
tended Hubbard model. The instability of Fermi liquid to-
ward possible ordered phases including the nematic—called
the Pomeranchuk instability10—were investigated, and it was
shown that the nematic phase is the leading instability within
some range of the parameter space.11–13 Within the weak
coupling theory, the effective Hamiltonian of the quadrupole-
quadrupole density interaction for the nematic phase was
also constructed, where the expectation value of the quadru-
pole density is the order parameter of the nematic phase.14

The study of the nematic phase and possible superconductiv-
ity in the continuum model within the weak coupling ap-
proach showed the non-Fermi-liquid behavior in the single
particle scattering rate14 and an exotic superconducting pair-
ing symmetry15 via the coupling to the collective modes.
Possible probes of the nematic phase were also
discussed.16,17

The nature of the quantum phase transition between the
nematic phase and isotropic Fermi liquid as a function of
chemical potential, for a particular set of parameters(inter-
action strengthF2 and next nearest-neighbor hoppingt8),
was recently studied numerically.18 This computation
showed that the transition is generically first order. On the

other hand, Ref. 19 found anisotropic non-Fermi-liquid be-
havior at the isotropic-nematic quantum critical point—
second-order transition—in the presence of a lattice. There-
fore it is important to investigate whether the nature of
isotropic-nematic transition depends on the type of electron
dispersion, the interaction strength, or the temperature.

In this paper, we investigate the behavior of the free en-
ergy and density analytically, as a function of chemical po-
tential and interaction strength. We also extend the analysis
to finite temperature and quasi-two-dimensional electron dis-
persion. At zero temperature, we show that the nematic tran-
sition is first order as a function of the interaction strength
and chemical potential for all typical two-dimensional(2D)
electronic dispersions since they possess van Hove singulari-
ties. The transition changes to a continuous one at a finite
temperature, but is not strongly affected by small dispersion
in the third direction.

We also find that the transition takes place for arbitrarily
small attractive interaction at the van Hove band filling. In
the absence of interaction, at the van Hove filling, the Fermi
surface changes topology from electron- to hole-like. This
transition, first studied by Lifshitz,20,21causes singularities in
thermodynamic quantities such as compressibility, due to van
Hove singularities, but is not accompanied by any broken
symmetry. This transition was recently revisited in Ref. 22 as
an example of phase transition between different quantum
orders which are not classified by broken symmetry. Our
findings show that the Lifshitz transition does not take place
because the van Hove singularity is avoided due to a sudden
change of the Fermi surface topology. This has implications
for earlier studies of broken symmetry states, such as density
waves. These studies11,13,23–26were based on the existence of
the van Hove singularity, which lead to a divergence of the
relevant susceptibility indicating a transition to an ordered
phase. Our results suggest that these ordered phases may be
preempted by the first-order transition into the nematic
phase.

The paper is organized as follows. We describe the effec-
tive model Hamiltonian for the nematic in Sec. II. The mean
field analysis at zero temperature and finite temperature is
given in Sec. III. A possible connection to other competing
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instabilities is discussed in Sec. IV. We also provide the sum-
mary of our findings in the last section, Sec. IV.

II. MODEL

A. Hamiltonian

Our choice of model Hamiltonian is largely motivated by
symmetry considerations and by the philosophy of the weak-
coupling BCS theory. The interaction is chosen with fore-
sight toward the mean-field analysis and with inspiration
from classical liquid crystal theory. In a liquid crystal, each
rodlike molecule defines a direction in space, and the order
parameter for the nematic phase is equally sensitive to their
alignment as well as antialignment. It is a quadrupole
(second-order symmetric traceless) tensor built from these
directions. In two dimensions, it changes sign under a rota-
tion by 90° and is invariant under a rotation by 180°. For an
electron gas, we can construct a similar order parameter from

the momenta of electrons, the quadrupole densityQ̂ij = p̂ip̂j

− 1
2 p̂2di j . The interaction between quadrupole densities(suit-

ably quantized and discretized) is made attractive to favor
the alignment or antialignment of electron momenta, i.e., for-
mation of the nematic phase.

The precise Hamiltonian under consideration is written as

H = o
k

s«k − mdck
†ck + o

q
F2sqdTrfQ̂†sqdQ̂sqdg, s1d

where«k is the single-particle dispersion,F2sqd is the inter-

electron interaction strength, andQ̂sqd is the the lattice ana-
log of the quadrupole density tensor constructed in two-
dimensional square lattice from particle momenta given by

Q̂sqd =
1

N
o
k

ck+q
† Scosky − coskx sinkx sinky

sinkx sinky coskx − cosky
Dck .

s2d

The dispersion is that of a next-nearest-neighbor tight bind-
ing model on a square lattice«k =−2tscoskx+coskyd
−4t8coskxcosky. While F2sqd is an arbitrary short ranged
interaction, for example of the(two-dimensional) Yukawa
form,

F2sqd = −
F2

2

2pk2

s1 + k2q2d3/2. s3d

We shall only be interested in the strength of the interaction
F2, which is assumed to be positive.

III. MEAN-FIELD ANALYSIS

To decouple the quartic interaction in Eq.(1), we concen-
trate on theq=0 interactions[which is equivalent to letting
F2sqd→−1

2F2dq,0 ask→` in Eq. (3)] and define two order
parameters,

D = F2kQ̂xxs0dl andD8 = F2kQ̂xys0dl, s4d

where the expectation valuekck
†ckl is replaced by the Fermi

distributionnFs«k −md, and«k is the the renormalized single-
particle dispersion relation

«k = − 2tscoskx + coskyd − 4t8 coskx cosky

+ Dscoskx − coskyd − D8 sinkx sinky. s5d

A finite t8 does not qualitatively change the physics of the
model. For simplicity, the valuet8=0 was used in theT=0
calculations, but a nonzerot8 was used at finite temperature.

A nonzero expectation value ofQ̂ij indicates that the ro-
tational (lattice point-group) symmetry has been broken and
a preferred direction for electron momenta has been selected.

In particular, a nonzero expectation value ofQ̂xy indicates
that this direction is not parallel to either of the crystal axes.
The profile of both the interaction and the bare dispersion
favor alignment along the crystal axes, as long as the cou-

pling constants for diagonalQ̂xx and off-diagonalQ̂xy ele-
ments are the same,F2

xx=F2
xy. Hence we expectD8 to vanish.

This observation has been confirmed by numerical
calculations.18

In general, unlike in the continuum model14 with full ro-
tational symmetry, the coupling constantsF2

xx andF2
xy can be

different. In such cases, a finiteD8 is possible. In fact broken
symmetry states with oblique alignment, such as diagonal
stripes, have been discussed in Ref. 27.

A. Free energy

The resulting mean-field grand-canonical free energy den-
sity is given by

Fsm,Dd =
1

F2

D2

2
+ F0sm,Dd, s6d

whereF0 is

F0sm,Dd = −
1

b
E d«Ds«dlns1 + e−bs«−mdd, s7d

with Ds«d being the density of states(DOS) of the single-
particle dispersion(5). Its exact expression is(see Appendix
for details and definitions)

Ds«d = N0 Re5 1

Î1 −S «

4t
D2

K11 −

D2 − S«

2
D2

s2td2 − S«

2
D226 ,

s8d

where N0=1/s2tp2d. For u«u.4t, Ds«d vanishes. Note the
logarithmic van Hove(vH) singularities in the DOS at
s« /2d2=D2. These singularities occur when the constant en-
ergy contour(Fermi surface) meets the boundary of the first
Brillouin zone as shown in Fig. 1. Due to these remnants of
the vH singularity of the noninteracting system, the free en-
ergy Fsm ,Dd will exhibit nonanalytic behavior atsm /2d2

=D2. This behavior is to be contrasted with the free energy in
the presence of density wave order parameters, where all
singularities are smoothed. Ultimately, persistence of
nonanalyticities inFsm ,Dd leads to the first-order isotropic-
nematic quantum phase transition.
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B. Zero temperature

First we analyze the free energy density in the limit of
zero temperaturesb→`d. In this limit

F0sm,Dd = sE − mnd, s9d

whereE and n are the energy and particle density per unit
cell.

The energy integral can be evaluated exactly, but the den-
sity integral cannot. The combined expression for the free
energy(for D ,m /2,2t, and neglecting terms independent of
D) is

F = S 1

F2
+ 2N0DD2

2
+ N0

33SD +
m

2
D2

ln*D +
m

2

4
* + sm → − md4 , s10d

where for brevity all energy quantities are in units of 2t. Any
results extracted from this expression are valid up to qua-
dratic order inm and D. The details of the calculations are
outlined in the Appendix.

The free energy for different chemical potentials is plotted
as a function ofD in Fig. 2. As the chemical potential de-
creases, the free energy develops local minima at finiteD
(the nematic phase), which then become the global minima
for umu,mc. It is clear that the transition between isotropic
and nematic phases is first order.

From Eq.(10), one can also show thatD=0 is always an
extremum of the free energy. However, no local minimum of
the free energy can be located in the regionusm /2d2

−D2u, smp /2d2, where

m* /2t = 1.08e−1/s4F2N0d, s11d

this is the limit of metastability of the isotropic phasesD
=0d which becomes unstable forumu,m* . Hence,D must
have a finite equilibrium value in this region(nematic
phase). The phase transition actually takes place slightly out-
side this region atumu=mc,

mc/2t = 1.39e−1/s4F2N0d. s12d

We stress again thatmc.m* , which indicates that the nem-
atic transition takes precedence over the Pomeranchuk insta-
bility (divergence of susceptibility). In Fig. 3, we show the
line of the first-order phase transition in the parameter space
of interaction strengthF2 and chemical potential.

The nontrivial local minima are located at

FIG. 1. Shapes of the Fermi surface(FS) for different values of
m andD. Lines sm /2d2=D2 mark the van Hove singularities in the
DOS which correspond to the FS touching the boundary of the
Brillouin zone.

FIG. 2. Plots of free energy as a function ofD for different
values of the chemical potentialsF2N0=0.1d centered atD=0; (b)
m=mp, (d) m=mc (see text).

FIG. 3. Phase diagram in them-F2 parameter space. Solid curve,
given bymc (12), is the line of the first-order transition.
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±D/2t = 1.47e−1/s4F2N0d − 1.36e1/s4F2N0dS m

2t
D2

. s13d

Equation(13) is valid for umu,mc. Figure 4 shows the be-
havior of the order parameter. The order parameter jump and
the width of the nematic window decrease exponentially as
the coupling strengthF2 goes to 0. The unstable regionuD2

−sm /2d2u, sm* /2d2 is shaded in Fig. 4. A local minimum of
the free energy can only be found outside this area, which
explains the discontinuous character of the phase transition,
since the equilibrium value of the order parameter must jump
to avoid it. The dot-dashed linessm /2d2=D2 are where the
change in topology of the Fermi surface takes place, the
Lifshitz transition. As shown in Fig. 4, these lines are em-
bedded in the unstable region. Therefore, our results indicate
that, in the presence of interaction, the Lifshitz transition is
not realized due to the formation of the nematic phase.

The density as a function ofm is shown in Fig. 5. Notice
that the dotted line is the density in the absence of nematic
order. Its derivative atm=0 is singular, which signals the

Lifshitz transition. However, once the nematic order sets in,
the density at half filling becomes smooth, but shows a dis-
continuity atmc.

C. Finite temperature

To investigate the robustness of the first-order isotropic-
nematic transition, we study the transition at finite tempera-
ture and with a finite interplane hopping termtz. These cal-
culations are performed numerically using the same
technique as in Ref. 18. The first-order transition is robust
against a smalltz=0.1t term, but changes to a second-order
one at a finite temperature.

The phase diagram for finite temperatures is shown in Fig.
6 for a fixedF2N0=0.11 and a finite next-nearest-neighbor
hoppingt8 st8=−0.4td. The full width of the nematic window
is from m /2t=−0.94 to −0.57.18 It is worth noting that the
first-order transition does not alter qualitatively with a finite
t8.

A negative(positive) t8 shifts the window of the nematic
phase to the hole-(electron-) doped side. At low tempera-
tures the transition is still first order surrounded by a meta-
stable region(which indicates the presence of unstable local
minima). However, at aboutT/2t=0.1, the metastable region
disappears and the transition becomes continuous.

The discontinuity in the isotropic-nematic transition at
zero temperature can be traced to the presence of the lattice,
which dictates the form of the dispersion relation and the
presence of the van Hove singularity, and the sharpness of
Fermi distribution. With increasing temperature, the thermal
fluctuation will smear the sharpness of the Fermi distribution
function, which results in a smaller jump in the order param-
eter and finally in a continuous transition. This expectation is
confirmed by the numerics presented here.

FIG. 4. Equilibrium value of the order parameterD. The shaded
region indicates negative curvature of the free energy. LinesD2

=sm /2d2 are marked by dot-dashed lines.

FIG. 5. The electron density per unit cell. The jump in the den-
sity is a signature of a first-order phase transition.

FIG. 6. The finite temperature phase diagram for the isotropic-
nematic transition. The first-order transition persists at low tempera-
tures. However, the metastable region gets smaller and smaller with
increasing temperature. Finally, aroundT/2t=0.1, the phase transi-
tion becomes continuous.
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IV. DISCUSSION AND SUMMARY

There has been a number of one-loop renormalization
group studies for the Hubbard model taking into account the
Fermi surface only at the saddle points,s±p ,0d ands0, ±pd,
namely, the two patch model at van Hove filling. These stud-
ies showed that there are antiferromagnetic andd-wave pair-
ing instabilities in Hubbard model.23,24,28 Recently the two
patch model was revisited, and truncation of the Fermi sur-
face near the saddle points was suggested.25

On the other hand, the instability of the Fermi liquid to-
ward the formation of the nematic phase—Pomeranchuk
instability—with other competing orders were also recently
investigated using different methods in the extended Hub-
bard model11–13,26and thet-J model.29 In Ref. 11, the authors
noticed that the nematic instability is driven by the attractive
(repulsive) interaction between electrons in the same(differ-
ent) patches via forward scatterings in the Hubbard model.
This finding is consistent with our effective Hamiltonian,
where −F2scoskx−coskydscoskx8−cosky8d suggests an attrac-
tive interaction between electrons nears±p ,0d and s±p ,0d,
and a repulsive one betweens±p ,0d ands0, ±pd. While the
understanding of the effective interaction for the nematic
phase from the microscopic Hamiltonian is still missing, it
suggests that the effective nematic interaction is hidden in
the extended Hubbard model.

Our discovery of a strong tendency toward the nematic
phase near van Hove filling suggests that the two patch
model should be revisited. Since the nematic order occurs for
extremely small interaction near van Hove filling, the exis-
tence of saddle points itself should be addressed. Since the
Fermi surface topology “suddenly” changes from closed to
open as indicated in our result, we speculate that the insta-
bility toward competing orders such as antiferromagnetic and
charge density wave(which are sensitive to the topology of
the Fermi surface and enhanced by van Hove singularity)
would be suppressed by the formation of the nematic phase.

In summary, we have investigated a model Hamiltonian
exhibiting the nematic phase. At zero temperature the
isotropic-nematic transition takes place for arbitrarily small
coupling at van Hove band filling. Away from the van Hove
filling, a finite minimum interaction is required to stabilize
the nematic phase. The phase transition is first order as a
function of interaction strength(chemical potential) for a
fixed chemical potential(interaction strength) as shown in
Fig. 3. The strong tendency toward the nematic phase for an
arbitrary small interaction at van Hove filling suggests that
the Lifshitz transition is suppressed in the presence of inter-
actions. At a finite temperature the transition becomes second
order, while it remains first order for a quasi-2D dispersion.
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APPENDIX A: DERIVATION OF FREE ENERGY

The Density of states is defined and evaluated as

Ds«d =
1

N
o
k

ds« − «kd

= N0 Re5 1

Î1 −S «

4t
D2

K11 −

D2 − S«

2
D2

s2td2 − S«

2
D226 ,

sA1d

where Ksmd is the complete elliptic integral of the first
kind,30 andN0=1/s2p2td. The functionKsmd has a logarith-
mic singularity atm=1. At zero temperature, the free energy
density is[cf. Eq. (6)]

F =
1

F2

D2

2
+ sE − mnd. sA2d

HereE is the energy density

E = E
−4t

m

d««Ds«d = − s4td2N0

3Re5Î1 −S m

4t
D2

E11 −

D2 − Sm

2
D2

s2td2 − Sm

2
D226 ,

sA3d

where Esmd is the complete elliptic integral of the second
kind.30 And n is the electron density

n = E
−4t

m

d«Ds«d <
1

2
+ s2tN0dm

+ s2tN0dFSD −
m

2
Dln

1

4
UD −

m

2
U − sm → − mdG .

sA4d

This expression is a leading order expansion insD±m /2d.
Here, for brevity,m andD are in units of 2t.

Expanding the energy density to the same order, the com-
bined free energy(neglecting terms independent ofD) is
given in Eq.(10). Equating to zero the first derivative of the
free energy with respect toD gives an equation for its local
extrema. Nontrivial minima are easily found atm=0. In Eq.
(13) location of these minima is given to quadratic order in
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m. Using this expression we can find the chemical potential
mc [Eq. (12)] at which they become global minima. Equating
to zero the second derivative of the free energy with respect

to D, we find the chemical potentialm* [Eq. (11)] at which
the extremum atD=0 changes from a local minimum to a
maximum.
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