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Formation of an electronic nematic phase in interacting fermion systems
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We study the formation of an electronic nematic phase characterized by a broken point-group symmetry in
interacting fermion systems within the weak coupling theory. As a function of interaction strength and chemi-
cal potential, the phase transition between the isotropic Fermi liquid and nematic phase is first order at zero
temperature and becomes second order at a finite temperature. The transition is present for all typical, including
guasi-two-dimensional, electronic dispersions on the square lattice and takes place for arbitrarily small inter-
action when at van Hove filling, thus suppressing the Lifshitz transition. In connection with the formation of
the nematic phase, we discuss the origin of the first-order transition and competition with other broken
symmetry states.
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I. INTRODUCTION other hand, Ref. 19 found anisotropic non-Fermi-liquid be-

Recently, there have been reports of experimental evinavior at the isotrqpic-n_ematic quantum critica_l point—
cond-order transition—in the presence of a lattice. There-

dence of inhomogeneous and/or anisotropic quantum grou A . ;
states in strongly correlated systefr&The inhomogeneous [0'€ it IS important to investigate whether the nature of

phase—dubbed the stripe phase—was observed in high teg__otropip—nematic transition depends on the type of electron
perature cuprates via elastic neutron scattering experirfent _|sperﬁ!on, the interaction _strengrt_]h, kc))r rt]he_tem?err]atl;re.
Theoretical studies of the inhomogeneous and anisotropic " tiS paper, we investigate the behavior of the free en-

quantum ground states in connection with generic phases (?ergy and density analytically, as a function of chemical po-

a doped Mott insulator have also been carried’dut was tial and interaction strength. We also extend the analysis

S o finite temperature and quasi-two-dimensional electron dis-
_sugg_ested that as quantum fluctuation, lnd_uced by hOIG.doé)ersion. At zero temperature, we show that the nematic tran-
ing, increases, the Mott insulator turns into a smectic—

) : ._sition is first order as a function of the interaction strength
stripe—phase, and a further increase of quantum fluctuatioy chemical potential for all typical two-dimensionaD)
will turn a smectic to a nematic pha%&.The electronic

X . i electronic dispersions since they possess van Hove singulari-
smectic and nematic phases are characterized by brokgRs The transition changes to a continuous one at a finite

translationalin one direction and rotational symmetries, in  temperature, but is not strongly affected by small dispersion
analogy with classical liquid crystafs. in the third direction.

The electronic nematic phase which breaks the point- e also find that the transition takes place for arbitrarily
group symmetry on a square lattice was studied in the exsmall attractive interaction at the van Hove band filling. In
tended Hubbard model. The instability of Fermi liquid to- the absence of interaction, at the van Hove filling, the Fermi
ward possible ordered phases including the nematic—callesurface changes topology from electron- to hole-like. This
the Pomeranchuk instabilty—were investigated, and it was transition, first studied by LifshitZ)?* causes singularities in
shown that the nematic phase is the leading instability withirthermodynamic quantities such as compressibility, due to van
some range of the parameter sp&cé® Within the weak Hove singularities, but is not accompanied by any broken
coupling theory, the effective Hamiltonian of the quadrupole-symmetry. This transition was recently revisited in Ref. 22 as
quadrupole density interaction for the nematic phase waan example of phase transition between different quantum
also constructed, where the expectation value of the quadrwrders which are not classified by broken symmetry. Our
pole density is the order parameter of the nematic pMase.findings show that the Lifshitz transition does not take place
The study of the nematic phase and possible superconductibecause the van Hove singularity is avoided due to a sudden
ity in the continuum model within the weak coupling ap- change of the Fermi surface topology. This has implications
proach showed the non-Fermi-liquid behavior in the singlefor earlier studies of broken symmetry states, such as density
particle scattering ratéand an exotic superconducting pair- waves. These studigs323-24vere based on the existence of
ing symmetry® via the coupling to the collective modes. the van Hove singularity, which lead to a divergence of the
Possible probes of the nematic phase were alsoelevant susceptibility indicating a transition to an ordered
discussed®” phase. Our results suggest that these ordered phases may be

The nature of the quantum phase transition between thpreempted by the first-order transition into the nematic
nematic phase and isotropic Fermi liquid as a function ofphase.
chemical potential, for a particular set of parameiénger- The paper is organized as follows. We describe the effec-
action strengthF, and next nearest-neighbor hopping, tive model Hamiltonian for the nematic in Sec. Il. The mean
was recently studied numerically. This computation field analysis at zero temperature and finite temperature is
showed that the transition is generically first order. On thegiven in Sec. Ill. A possible connection to other competing
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instabilities is discussed in Sec. IV. We also provide the sum- gy = — 2t(cosk, + cosk,) — 4t" cosk, cosk,

mary of our findings in the last section, Sec. IV. . .
y g + A(cosk, — cosk,) — A’ sink, sink,. (5)

Il. MODEL A finite t’ does not qualitatively change the physics of the

A. Hamiltonian model. For simplicity, the valu¢ =0 was used in thd=0
Our choice of model Hamiltonian is largely motivated by calculations, but a nonzeté was used at finite temperature.

symmetry considerations and by the philosophy of the weak- A nonzero expectation value @; indicates that the ro-
coupling BCS theory. The interaction is chosen with fore-tational(lattice point-group symmetry has been broken and
sight toward the mean-field analysis and with inspiration2 preferred direction for electron momenta hf:\s been selected.
from classical liquid crystal theory. In a liquid crystal, eachIn particular, a nonzero expectation value @f, indicates
rodlike molecule defines a direction in space, and the ordethat this direction is not parallel to either of the crystal axes.
parameter for the nematic phase is equally sensitive to theifhe profile of both the interaction and the bare dispersion
alignment as well as antialignment. It is a quadrupolefavor alignment along the crystal axes, as long as the cou-

(second-order symmetric tracelggensor built from these pjing constants for diagonad,, and Oﬁ_diagona@)(y ele-
d_|rect|ons. In two ghmensmns, it change_s sign under a rotaments are the samE*=F¥. Hence we expeck’ to vanish.
tion by 90° and is invariant under a rotation by 180°. For anThis observation has been confirmed by numerical
electron gas, we can construct a similar order parameter frogyculations®
the momenta of electrons, the quadrupole den&iy pip; In general, unlike in the continuum moé&ivith full ro-
—%628,]. The interaction between quadrupole densitmst-  tational symmetry, the coupling constaft§ andF}’ can be
ably quantized and discretizeds made attractive to favor different. In such cases, a finit¢' is possible. In fact broken
the alignment or antialignment of electron momenta, i.e., forsymmetry states with oblique alignment, such as diagonal
mation of the nematic phase. stripes, have been discussed in Ref. 27.

The precise Hamiltonian under consideration is written as

H= g (81— weke + 2 FA@)TIQN@Q@)], (1)
q

A. Free energy

The resulting mean-field grand-canonical free energy den-
whereg, is the single-particle dispersioRy(q) is the inter- sity is given by
electron interaction strength, afglqg) is the the lattice ana- F(uA) = iA_Z FEA A 5
log of the quadrupole density tensor constructed in two- (,4) = F, 2 ol.4), (6)

dimensional square lattice from particle momenta given by
) ) whereF, is
cosk, — cosk,  sink, sink, )

k.

. . C
sink, sink,  cosk, - cosk,

A 1
Q) = NE Cl+q< 1

K Fo(wA) = - = f deD(e)in(1+ePem),  (7)
2 P
The dispersion is that of a next-nearest-neighbor tight bind/ith D(e) being the density of stata®OS) of the single-
ing model on a square lattices,=—2t(cosk,+cosk,) particle _dlsperS|om5): .Its exact expression isee Appendix
- 4t' cosk, cosk,. While F,(q) is an arbitrary short ranged for details and definitions

interaction, for example of thétwo-dimensiongl Yukawa e\2
form, . AZ- (5)
Faq)=- 2T @ TR |\ e (27 [
2(q) = 2 (1L+&P)¥ \/1—<a> (2t) —(5)
We shall only be interested in the strength of the interaction (8)

F,, which is assumed to be positive.
where No=1/(2t7?). For |e|>4t, D(e) vanishes. Note the

lll. MEAN-FIELD ANALYSIS logarithmic van Hove(vH) singularities in the DOS at
(/2)?=A%. These singularities occur when the constant en-
ergy contour(Fermi surfacg meets the boundary of the first
Brillouin zone as shown in Fig. 1. Due to these remnants of
the vH singularity of the noninteracting system, the free en-
ergy F(u,A) will exhibit nonanalytic behavior atu/2)?
— (A IO =AZ?. This behavior is to be contrasted with the free energy in

A=FAQu(00 andA”=Fa(Qq(0, @ the presence of density wave order parameters, whegr)e/ all
where the expectation valuelck> is replaced by the Fermi singularities are smoothed. Ultimately, persistence of
distributionng(g, - ), andey is the the renormalized single- nonanalyticities inF(«,A) leads to the first-order isotropic-
particle dispersion relation nematic quantum phase transition.

To decouple the quartic interaction in E@), we concen-
trate on theq=0 interactiongwhich is equivalent to letting
Fz(q)ﬂ—%anq’o ask— in Eq. (3)] and define two order
parameters,
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FIG. 1. Shapes of the Fermi surfa@eS) for different values of

 andA. Lines (11/2)2=A2 mark the van Hove singularities in the FIG. 2. Plots of free energy as a function affor different

DOS which correspond to the FS touching the boundary of thevalues of the chemical potentig,No=0.1) centered at=0; (b)

Brillouin zone. 1=t (d) = puc (s€€ text
B. Zero temperature psl2t = 1,087 H4FNo), (11
First we analyze the free energy density in the limit of = o . ) )
zero temperaturé3— ). In this limit this is the limit of metastability of the isotropic phaga
=0) which becomes unstable fdp|<u.. Hence,A must
Fo(u,A) = (E - un) 9) have a finite equilibrium value in this regiotmematic
0 ’ - ’

phasé. The phase transition actually takes place slightly out-

side this region afu|= u,
whereE andn are the energy and particle density per unit g bl = e

cell.

The energy integral can be evaluated exactly, but the den- o2t = 1.3 H4FNo), (12
sity integral cannot. The combined expression for the free
energy(for A, u/2<2t, and neglecting terms independent of

A)is We stress again thai,> u+, which indicates that the nem-
atic transition takes precedence over the Pomeranchuk insta-
5 bility (divergence of susceptibilify In Fig. 3, we show the
1 A i > A
F={=—+2Ny|—+Np ine of the first-order phase transition in the parameter space
F2 of interaction strengtlr, and chemical potential.

The nontrivial local minima are located at

2 |A+ =
o
X|{A+—=]1In + - , 10 I
( 2) 2 (w—=p) (10) o4l
isotropic
where for brevity all energy quantities are in units of 2ny 0.2 _

results extracted from this expression are valid up to qua-

dratic order inu and A. The details of the calculations are &

outlined in the Appendix. ey
The free energy for different chemical potentials is plotted

as a function ofA in Fig. 2. As the chemical potential de-

nematic

creases, the free energy develops local minima at fiite isotropic

(the nematic phagewhich then become the global minima -0.4

for |u|<uc. It is clear that the transition between isotropic ' ' '

and nematic phases is first order. 0 0.05 01 0.15 0.2
From Eq.(10), one can also show th&=0 is always an FyN,

extremum of the free energy. However, no local minimum of

the free energy can be located in the regifip/2)? FIG. 3. Phase diagram in the F, parameter space. Solid curve,

-A? <(u./2)?, where given by u. (12), is the line of the first-order transition.
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FIG. 4. Equilibrium value of the order parameterThe shaded
region indicates negative curvature of the free energy. Lités
=(u/2)? are marked by dot-dashed lines.

p/2t

FIG. 6. The finite temperature phase diagram for the isotropic-
nematic transition. The first-order transition persists at low tempera-
tures. However, the metastable region gets smaller and smaller with

2
£A/2t= 1,47 VN0 - 1.36e1’<4FzNo>(ﬁ> .13
2t increasing temperature. Finally, aroum2t=0.1, the phase transi-

. . . ) tion becomes continuous.
Equation(13) is valid for |u| < u.. Figure 4 shows the be-

havior of the order parameter. The order parameter jump an
the width of the nematic window decrease exponentially a
the coupling strengthr, goes to 0. The unstable regigh?
—(u/2)? < (u/2)? is shaded in Fig. 4. A local minimum of
the free energy can only be found outside this area, which
explains the discontinuous character of the phase transition,
since the equilibrium value of the order parameter must jump

Eifshitz transition. However, once the nematic order sets in,
the density at half filling becomes smooth, but shows a dis-
continuity at ..

C. Finite temperature

to avoid it. The dot-dashed lingg./2)°=A? are where the
change in topology of the Fermi surface takes place, th?ure and with a finite interplane hopping tetyn These cal-

Lifshitz transition. As shown in Fig. 4, these lines are em-
bedded in the unstable region. Therefore, our results indica
that, in the presence of interaction, the Lifshitz transition is

not realized due to the formation of the nematic phase.

The density as a function @f is shown in Fig. 5. Notice
that the dotted line is the density in the absence of nematig ¢, 4 fixed FoNo=

To investigate the robustness of the first-order isotropic-
nematic transition, we study the transition at finite tempera-

culations are performed numerically using the same

t(\:echnique as in Ref. 18. The first-order transition is robust

against a smalt,=0.1t term, but changes to a second-order
one at a finite temperature.

The phase diagram for finite temperatures is shown in Fig.
0.11 and a finite next-nearest-neighbor

order. Its derivative atu,ZO is Singular, which Signals the hopplngt’ (t’:—0.4t). The full width of the nematic window

0.6 |

FyNg =01

0.55 | pe/2t = 0.11

o
o
I

0.45

n (electrons per unit cell)

e
e

-0.2

p/ 2t

0.1

0.2

is from u/2t=-0.94 to —0.5728 It is worth noting that the
first-order transition does not alter qualitatively with a finite
t'.

A negative(positive) t’ shifts the window of the nematic
phase to the holetelectrony doped side. At low tempera-
tures the transition is still first order surrounded by a meta-
stable regioniwhich indicates the presence of unstable local
minima). However, at about/2t=0.1, the metastable region
disappears and the transition becomes continuous.

The discontinuity in the isotropic-nematic transition at
zero temperature can be traced to the presence of the lattice,
which dictates the form of the dispersion relation and the
presence of the van Hove singularity, and the sharpness of
Fermi distribution. With increasing temperature, the thermal
fluctuation will smear the sharpness of the Fermi distribution
function, which results in a smaller jump in the order param-

FIG. 5. The electron density per unit cell. The jump in the den-eter and finally in a continuous transition. This expectation is
sity is a signature of a first-order phase transition.

confirmed by the numerics presented here.
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IV. DISCUSSION AND SUMMARY discussions. V.O. is supported by grants from NEMR

.. 99-78074 and DMR 02-13706and from the David and Lu-
There has been a number of one-loop renormahzatmr&iIIe Packard foundation

group studies for the Hubbard model taking into account the
Fermi surface only at the saddle pointss,0) and(0, £7),
namely, the two patch model at van Hove filling. These stud- ~ APPENDIX A: DERIVATION OF FREE ENERGY
ies showed that there are antiferromagnetic éweave pair-
ing instabilities in Hubbard modéf:?428 Recently the two
patch model was revisited, and truncation of the Fermi sur- 1
face near the saddle points was sugge&ted. D(e) = NE e — &)
On the other hand, the instability of the Fermi liquid to- k
ward the formation of the nematic phase—Pomeranchuk s\2
instability—with other competing orders were also recently AZ- (5)
investigated using different methods in the extended Hub- =NgR Kl 1- 5 )
2_[ 2
@-(3
(A1)

The Density of states is defined and evaluated as

bard modef-1326and thet-J model?® In Ref. 11, the authors \/1 _< £ \?
noticed that the nematic instability is driven by the attractive

(repulsive interaction between electrons in the safdifer-

ent) patches via forward scatterings in the Hubbard model.

This finding is consistent with our effective Hamiltonian, where K(m) is the complete elliptic integral of the first
where 5(cosk, - cosky)(cosk, —cosk;) suggests an attrac-  kind 20 andNy=1/(272t). The functionK(m) has a logarith-
tive interaction between electrons ndarr,0) and (7,0),  mjc singularity atm=1. At zero temperature, the free energy
and a repulsive one betweesr,0) and(0, £m). While the  density is[cf. Eq. (6)]
understanding of the effective interaction for the nematic
phase from the microscopic Hamiltonian is still missing, it 1 A2
suggests that the effective nematic interaction is hidden in F=——+(E-un). (A2)
the extended Hubbard model. Fp 2
Our discovery of a strong tendency toward the nemati
phase near van Hove filling suggests that the two patc
model should be revisited. Since the nematic order occurs for “
extremely small interaction near van Hove filling, the exis- 5
tence of saddle points itself should be addressed. Since the E= f deeD(e) =~ (4t)"No
Fermi surface topology “suddenly” changes from closed to -4t
open as indicated in our result, we speculate that the insta- )2
(2
2

ereE is the energy density

bility toward competing orders such as antiferromagnetic and 5
charge density wavewhich are sensitive to the topology of %R 1- (ﬁ) Bl 1-
the Fermi surface and enhanced by van Hove singujarity 4t 5 (M 21|
would be suppressed by the formation of the nematic phase. (2)°- (E)
In summary, we have investigated a model Hamiltonian

exhibiting the nematic phase. At zero temperature the (A3)
isotropic-nematic transition takes place for arbitrarily small
coupling at van Hove band filling. Away from the van Hove
filling, a finite minimum interaction is required to stabilize
the nematic phase. The phase transition is first order as a
function of interaction strengtlichemical potential for a
fixed chemical potentia{interaction strengthas shown in = f deD(s) =~ }4.

: _ n eD(e) (2tNo)
Fig. 3. The strong tendency toward the nematic phase for an 2
arbitrary small interaction at van Hove filling suggests that
the Lifshitz transition is suppressed in the presence of inter- wy 1
actions. At a finite temperature the transition becomes second + (ZtNO)[<A B E)In 4 ‘
order, while it remains first order for a quasi-2D dispersion.

where E(m) is the complete elliptic integral of the second
kind.2% And n is the electron density

I

-4t

AlK
2

‘—WA-M
(A4)

This expression is a leading order expansion Ant w/2).
Here, for brevity,u andA are in units of 2

This work was supported by NSERC of CanadX, Expanding the energy density to the same order, the com-
CHC, HYK), Canada Research ChalYK), Canadian In- bined free energyneglecting terms independent &) is
stitute for Advanced ReseardhlYK), Alfred P. Sloan Re- given in Eq.(10). Equating to zero the first derivative of the
search FellowshigHYK), and Emerging Material Knowl- free energy with respect th gives an equation for its local
edge program funded by Materials and Manufacturingextrema. Nontrivial minima are easily found @at0. In Eq.
Ontario (HYK). V.O. thanks W. Metzner and D. Huse for (13) location of these minima is given to quadratic order in
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. Using this expression we can find the chemical potentiato A, we find the chemical potential. [EqQ. (11)] at which
e [EQ.(12)] at which they become global minima. Equating the extremum at\=0 changes from a local minimum to a
to zero the second derivative of the free energy with respeanaximum.
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