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We calculate the thermal conductivity of interacting electrons in disordered metals. In our analysis we point
out that the interaction affects thermal transport through two distinct mechanisms, associated with quantum
interference corrections and energy exchange of the quasiparticles with the electromagnetic environment,
respectively. The latter is seen to lead to a violation of the Wiedemann-Franz law. Our theory, valid to all orders
in perturbation theory, predicts a strong enhancement of the Lorenz«atib over the value predicted by the
Wiedemann-Franz law, when the electrons encounter a large environmental impedance.
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The Wiedemann-Franz law relates the electronic thermal This conclusion was challenged by Livanet al!' and
conductivity x and the electrical conductivity and states  Arfi? who found for a two-dimensional system with long-
that the Lorenz ratid.=«/oT is a universal constant given range Coulomb interaction additional contributions to the
by L=ﬂ2k§/3e2. In this equatiorkg is the Boltzmann con- thermal conductivity. Recently, the issue has been reexam-
stant, -e the electron charge, an@l the temperature. The ined by Niven and Smith? who also concluded that the
validity of the Wiedemann-Franz law relies mainly on a Wiedemann-Franz law is violated.
single-particle description of the transport properties, on the In this article we study the problem by means of the qua-
Fermi statistics of the charge carriers, and on the assumptiaiclassical Green’s function approach, which has proved to
of purely elastic scatteringln a Fermi liquid, one expects be a powerful tool in describing the dynamical properties of
that this law still holds at low enough temperature, when thesuperconductot$ and the transport in hybrid mesoscopic
quasiparticles cannot exchange energy during collisionsstructures® Recently it was further demonstrated that both
Deviations from the Wiedemann-Franz law as recently ob-Coulomb blockade phenomenon and quantum interference
served in the normal state of a copper oxide superconductaorrections to the charge transport can be conveniently de-
have thus been interpreted as an evidence for the breakdovearibed within this theoretical framewotR Advantages of
of Fermi-liquid theory? the method are that it is not restricted to the linear response

The effects of Coulomb interaction on the electrical trans+egime, and often provides more compact derivations than
port at low temperature can be broadly grouped in two mairthe standard diagrammatic techniques.
types. From one side, transport implies adding charges to a A perturbative calculation of the thermal conductivity, be-
conductor. This has an energy cost that depends on the siz@es confirming Ref. 13, allows us to clarify the origin of
and shape of the conductor itself. For example, in tunnethe apparent discrepancies in the literature. To do so we sepa-
junctions the energy transfer between quasiparticles and thate the different physical mechanisms by their different
electrodynamical environment causes the Coulomb blockadenge of exchanged energies and relevant length scales. For
phenomenon. On the other hand, Coulomb interaction leadsstance, the quantum interference effects occur over dis-
in a disordered conductor to an additional source of randontances from the mean free path up to the thermal diffusion
scattering that interferes with the scattering from the impuridength\zZD/kgT, and imply energy exchanges larger than the
ties. This is a quantum effect and depends on the details démperatureT. These yield corrections are logarithmically
charge diffusion. divergent and can be readily related to the scale-dependent

In the 1980s these quantum interferences were shown t@normalization of the electrical conductivity. Here the tem-
lead to corrections to the electrical conductivity beyond theperature acts as an infrared cutoff. The interaction effects
standard Fermi-liquid results. It turned out that these correcresponsible for the deviations from the Wiedemann-Franz
tions may, in fact, be incorporated into a scale-dependeriaw are associated with the long-range part of the Coulomb
renormalization of the Landau Fermi-liquid parametefs. interaction and their singular behavior has the temperature as
Within this framework, Castellani and co-work&slemon-  the upper cutoff. We successively concentrate on the long-
strated that the scale-dependent corrections to the thermednge part of the Coulomb interaction. In particular, to all
conductivity are the same as the corrections to the electricalrders in perturbation theory, we predict a sizable enhance-
conductivity. This led them to conclude that the Wiedemanniment of the Lorenz ratio when the sheet resistance is of the
Franz law is valid up to the metal-insulator transition. orderh/€? in the case of a two-dimensional electron system,
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and a strong enhancement of the Lorenz ratio for thin metalrange interactions or in the case of Coulomb interaction,
lic wires when the total resistance of the wire is larger thanwhen the screening length is short compared to the other
h/ €. relevant length scales, Eq®) and(6) remain valid. This is
From now on we use units where=kg=1, but we put demonstrated in the Appendix.
back the constants in the final results. We start with a brief In the dirty limit, the variation of the Green'’s function is
introduction of the quasiclassical formalism. For a more de-on space and time scales larger than the elastic mean free
tailed description we defer the reader to Ref. 17. Within thispath| =vr7 and scattering time., respectively. In this limit
formalism the short-distance behavior of the electron Green’sne may expand the Green’s functigin spherical harmon-
function is taken into account in an averaged way from thdcs and keep tha- and p-wave components onhyg(p)=0s
outset by introducing the quasiclassical Green's function+pg,+.... TheEilenberger equation is then replaced (fy
which solves the Eilenberger equati®n =v27/d) the Usadel equatiot?, as

[(9'[1 + é,tz + UFE) . é’x]gtltz(xa ﬁ) == I[i(xiﬁ)ig(xvﬁ)] . (l) atgs(x) - Dax[gs(yxgs] = O! (7)

function, the Eilenberger equation fgris homogeneous and linear o-model matrix field theor§.As a result, the currents
requires a normalization condition, which can be chosen off® expressed in terms of trewave component of the

the form @g‘:]:i. The Green'’s function has a two-by-two ma- Green's function, as

trix structure in Keldysh space, ) eN,D .
o ja, =- 2 f de(G:Ad0", ®
. (9 9
9= ( 0 A)- (2
g
, _NgD S
Matrix products imply both summation and integration over Jox,t) = > de e(9soxDs)" 9)

Keldysh indices and time variables, respectively. We recall

that, whereas the diagonal componentsgotlescribe the with e corresponding to the Fourier transform of the relative
spectral properties of the system, the off-diagonal Keldyshime t;—t,. As a simple application of the formalism we de-
component carries information about the distribution func-rive the Drude formula for the electrical and thermal conduc-
tion. In this respect, the Keldysh component of EL).is the tivity. In the absence of interactions the Green’s functipn

quantum analog of the Boltzmann equation. reads
Impurity scattering is introduced by means of the standard 1 2F
white-noise random potential and is described by the self- gs(x,t;e):< ) (10)
energy in the self-consistent Born approximation as 0 -1
. i dp. A In thermal equilibrium the functionF is given by F
21, (%) =—2—Tf Q—dgtltz(X,p), (8)  =tanMe/2T). Near local equilibrium with a local tempera-

ture T(x) and a local chemical potentigl(x) the Drude ex-
where 7 is the elastic scattering time anfly is the pressions for both electrical and heat currents are found, so
d-dimensional solid angle. The charge current density has ththat

form jo= 26?DNy(V ule), (11

_ dp . R
Je(Xat)=e7TNoUFJ Q_pgtKltz (X,p)|t1=t2- (4) T,

d jo= ngZNODT(— VT, (12
The expression for the heat current density is not obvious. In
the absence of interactions, but in the presence of disordeand in particular the Wiedemann-Franz law holds.
the heat current is found from the thermal average of the To include the effects of the Coulomb interaction, we

operatof introducé®2324a Hubbard-Stratonovich matrix field
1 . . .
Jox D) = = W, VWD + VW ()W (x,1)], ¢= (¢1 "’2> (13
m b2 1

(5 whose fluctuations describe the retarded, advanced, and

where the dots denote the time derivatives of the Heisenberjé('lldys’h components of the screened Coulomb interaction
operators. The quasiclassical implementation of this expres- B ie2<<¢1¢1> <¢1¢2)) 1<VK VR>

(hop) (bagpr)/ 2

'WNOUF(%— atl)f d—pf)g[<t (X, (6)  Inthe presence of the field, one first adds a terneli¢, §] to
2 Qg "2 the right-hand side of the Eilenbergdy or the Usadel equa-

Generally, in an interacting system E@S) and(6) have to  tion (7). Secondly, the resulting solutiogl ¢] is averaged

be modified®2! On the other hand, in the case of short- over the fluctuations o$ according to Eq(14). Analogously

- = 14
sion reads VA 0 (14

JQ(X!t) =
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to the noninteracting cadef. Eq. (10)], one can define the gent in the ultraviolet and must be cut off with the diffusive
distribution function in the presence of interactions via theconditionDg?7< 1. In the w-integration there is a minor dif-
relation between the Keldysh and the retarded, advanceférence at low frequencigs| < T due to the second term on
components of the Green’s functidgX)=(g®F-F(g"). We the right-hand side of E¢19). In two dimensions, with loga-
further assume a system which is—with the exception of d@ithmic accuracy, this difference is negligible and one has
weak temperature gradient—translational invariant. It is then

convenient to expand the distribution function as b]'gz 7’_2150(_ vT), (21)

3¢
FeoX) =Feo(¥) =F () VT (x,=x) (15
d to Fourier transform f It ) ThWhel’e50':—92/(27Tz)|n(1/TT) is the interaction correction to
and to rouner transtorm from reat to Momentim space. I, gjactrical conductivity an@iT<<1. The other contribution

COVQ?C“‘?Q to the thermal current is finally obtained &g to the thermal currenigjg, does not depend on the ultravio-
=gt dq with let cutoff 1/7, so that

d
§3=DNoVT f dee f ﬁaT[Fe_w(X)FE(X)] d%q

(2m)?

><Im< 1 ko 1 ) (22)

-iw+ quF_ iw+ DQkyg

.
d
ﬂ%z—DVTJ =
mY —— V(@) (16) o0 2T
X
q (—iw+Dg?)? o\

and

since the temperature acts as an upper cutoff in the frequency
integration. In contrast, in the limit of good metallic screen-
5 ing whenk,q— o0, the integration becomes infared divergent.
% 4 Im> .D—qVR(q), (17) By combining the two contributions, we finally write the
d 4§ (-iw+Dg)® expression for the thermal conductivity in a form which

d
5jg=DNOVTf deef 2 (X)dF (%)
21

. . . . . _shows that, although the Wiedemann-Franz law is violated,
whered is the dimension of the system under consideration.

Our result[Egs. (16) and (17)] for the thermal current is 712k2B-|- 1e? 5

equivalent to the thermal conductivity foulicby using the K= 2|t oo + >h In(AiDr5y/kgT) |, (23)

diagrammatic method and the Matsubara technique. We no-

tice that the diffusive pole appearing in Eq46) and(17)  the integration of diffusive modes in the region

originates from the Usadel equation. T<Dq?, o< 7 !yields the same scaling equations foand
Using the relationF F._,=1-(F.~F_,)B(w/2T) with K,

B(x) =cothx) allows us to evaluate theintegrations in Egs.

(16) and(17) with the result dinoc _dInk
® dinl  dinl
= - 2 _
fde corlFdeu) =0 &TB< ZT)’ (18) so that the apparent discrepancies in the literature are not

contradictory.
22T w w3 o We observe that in the last term of H@3), responsible
Jde eF oF._,=— —&w[wB<—)] + —awB(—). for the violation of the Wiedemann-Franz law, only the ex-
3 21 3T 21 treme long wavelength modes of the dynamically screened
(199  Coulomb interaction witlDg? < |w| < T are relevanicf. Egs.
a . (16) and(18)]. It has been shown in Ref. 25 that these modes
From_Eqs(18) and(19) we observe thadq is dominated b.y can be conveniently handled by making the following gauge
diffusive modes of frequencjw|<T, whereas modes with transformation
frequenciesw| > T give the dominant contribution t@'g. To
appreciate the role played by the different frequency ranges,
we begin by evaluating the current in two dimensions. The

retarded component of the dynamically screened Coulomb . .
interaction reads where d,¢(x,t) =ep(x,t). In the case of only homogeneous

field fluctuations, Eq(25) gives the Green’s function to all
(20) orders in the interaction when inserting @Etz the Green'’s

Gt,t,0GP) = ei¢(x’t1@tlt2(xi DI (25

1 Ky —lw+DQ’

VR0, ) = . :
2No q ~lw+Dragd function in the absence of interaction. In genegg), has a
where k,y=4me’N, is the screening vector in two dimen- perturbative expansion in terms of gradientsqofWhereas
sions. By considering firsfj g, one notices that the momen- the gauge factors drop in the expression for the electrical
tum integration to be performed is identical to the momen-current, i.e., the long wavelength modes of the Coulomb in-
tum integral in the correction to the electrical teraction do not modify the electrical conductivity, they sur-

conductivity?~" i.e., the integration is logarithmically diver- vive in the heat current to yield
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No (dP . <Ky e KT
jo=- ?0 f Q—:vpp f de{ g(x,t;p, € K= E%o{l + 2R/(h/€)]. (30
From the retarded Coulomb interaction as given in 4)
we determine the impedance of a thin film as RE/#)
=(1/4m0)In(ADK5 ks T/E?). Due to the weak logarithmic
(26) 2d . .
energy dependence of the impedance, the thermal conductiv-
) . ity is to good accuracy obtained from E@30) with R
To consider the effvect of the long wavelength modes it is_ ReZ(ksT/%). As a third example we consider a
sufficient to expand to first order in the gradient of, so  RGtransmission line, as a model of a gated wire. The im-
that only the second term of E(26) is modified sincep has  pedance is Rz:%\;’m, whereR, andC, are respec-
Gaussian correlations. Equati¢@6) makes then clear the tjyely, the resistance and capacitance per unit length. We find

physical origin of the violation of the Wiedemann-Franz law. 5 contribution to the thermal conductivity that is proportional
While the first term on the rlght-hand side reprOduceS tth the square root of the temperature, as

noninteracting contribution to the thermal current, the second

- %e[@b(x,t)é(x,t;f»e) +§(x,t;ﬁ,e>3><x,t)>]K}.

may be interpreted as the effect of the time dependent fluc- _ 77_2@ 24 Gk—B Vikg TRy/Cy 31
tuations of the quasiparticle energy in the presence of an K=327%4 3 2’ e (3D

electromagnetic environment. Indeed, the extra heat current. ) )
is proportional to the correlation of voltage and current fluc-With ~ 2.456 tg/ez approximate numerical value for
tuations in the systemd] o=(¢(x,t)d«(x,1)), which then 3¢(3/2T'(3/2)/2%% N
leads to the strikingly simple result ~In summary, we calculated the thermal conductivity of
disordered metals. In the two-dimensional electron system,
21T 1 the §qa|ing equations for the thermal and thg electrical con-
o= — B (- VT) = Za Vi (x,0)y(x,)). (27)  ductivity are the same, nevertheless, the Wiedemann-Franz
3 ¢ 2 law does not hold. The deviations from the Wiedemann-
Franz law are comparable in size to the localization effects.
Notice that due to the linear current-voltage characteristics olt is interesting to note that this is in qualitative agreement
the system under consideration only the first order in thevith observations made in the cupraté§:The resistivity of
Coulomb interaction contributes to the heat current. By using®CCO in Ref. 3 shows a well pronounced low temperature
the fluctuation dissipation theorefor equivalently Eq(14)]  anomaly that has been attributed to localization effects, and
at the same time the low temperature heat conductivity is

1 ( do © larger than what would be expected from the Wiedemann-
(D1, ) pr (X, 1)) =— = f —B(—)E Im VR(q, ») Franz law. In the low temperature resistivity of TI-2201 in
) 27 \2T(x) q Ref. 26, no indications of localization effects are seen and
do ® the Wiedemann-Franz law is perfectly obeyed within the ex-
:f ETB<F(X))¢U ReZ(w), (28) perimental accuracy. Quantitatively, on the other hand, the

agreement of our theory with Ref. 3 remains poor, since the
sheet resistance was estimatedRas= h/(60e?), from which
direct contact can be made with the conventional perturbawe expect a much smaller enhancement of the heat conduc-
tion theory, i.e., Withéjg in Eq. (16). tivity than observed experimentally. By measuring the Lo-
Instead of parametrizing the local voltage fluctuations inrenz ratio in a gated film or wire as function of the gate
terms of an interactio’/(q,w), we will in the following  capacitance, it should be possible to test our predictions ex-
parametrize them in terms of the impedance of the local eleggerimentally.
tromagnetic environmenZ(w). By doing so, the thermal o )
conductivity reads R.R. and G.S. acknowledge partial financial support from
MIUR under Grant No. COFIN2002022534. We acknowl-
5 5 edge valuable discussions with U. Eckern, C. Castellani, and
_ kel +‘7_k8f ( E/2kgT ) ReZ(E/h) C. Di Castro.
T’ e SinhE/2ksT))  he?

(29

APPENDIX: HEAT CURRENT FOR INTERACTING

. . ELECTRONS
where for clarity we put back thé and kz. We will now

discuss three different examples for the impedaBc&he We obtain the conservation law for the energy by consid-
simplest situation consists of a purely ohmic environmentering thes-wave part of the Keldysh component of the Eilen-
whereZ(E/#)=R. The thermal conductivity is found linear berger equatiofiEq. (1)]. The impurity self-energy does not
in the temperature, strong deviations from the Wiedemanneontribute to thes-wave part of the equation. We recall that
Franz law are found when the environmental resistance is dfy setting the relative timey=t,—t, to zero, the Eilenberger
the order of the resistance quantimte? or larger. The ex- equation becomes the continuity equation for charge. The
plicit result is continuity equation for energy is obtained by first taking the
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derivative with respect tgy and then taking they=0 limit, as  pression as a total time derivative so that the correction to the

. energy density reads
‘9{ [ NfdpagK(f) 'xt)} [
- - ﬂ- T L 1 L
ot °) Qqin g 5p5:—‘—1VXK(x,t;x,t), (A5)
o[ I
+,9X[—i7-rNoJ Q—pﬁvppgK(p,n;x,t)} while the energy current density remains unchanged. This
d

justifies the use of Eq(6) even in the presence of the
_ dp . . interaction?’
= enNg¢y(X,1) f —g (P, mx.1). (A1) In the case in which the interaction has a finite range, we
g exploit the fact thaty(x,t;x;,t;) depends only weakly on
On the left-hand side of the equation appear the energy defthe center-of-mass coordinate+x,)/2 as compared to the
sity and energy current in the absence of the interaction. Téelative coordinate =x—x;. By expanding with respect to
appreciate this we recall that the time representation of théhe center-of-mass coordinate one then finds

distribution function reads in thermal equilibrium i r r
" . . p.=—— | drV + -, tx——2,t), A6
dp , . 2 2inTy P 4f ' (r)X<X 2 %75 ) (A6)
—gPyx)=-—F—+ (A2)
Oy Ty 6 )
i r r
in the small % limit. By using the above expansion in the 5]Q=ZJdFV(f)fﬁt1X <X+ Stx- iatl) . (A7)
energy density defined by the expression under the time de- =t

rivative in Eq.(Al), one obtains the standard expression forrg conclude this Appendix, we refer to the results of Moreno
the specific heat in a noninteracting electron gas, and Colema#? and Paul and Kotliad! who derived the heat

= (272 3)NgT. current operator in an interacting electron system. Consider

Clearly due to the term on the right-hand side of &),  glectrons with kinetic energy, and interactionv(k), such
both the expressions for energy and current density will bg5t the Hamiltonian reads

modified. By exploiting the functional dependence of

A . _— . . 1
gK(p,n.,x,t) on the internal field$, we rewrite the right- H=> Vi Wi+ ZV(K)nny:, (A8)
hand side of Eq(Al) as ks 2

i J wheres is the spinn(k) denotes the density, and in,: the
> f dx;V(x - Xl)IlX (X, tx3,t), (A3) " normal ordering of the Fermionic operators. The heat current
operator becomes
whereV(x—X,) is the statically screened Coulomb interac-

tion, and o= IEE Vie(Wy Wies— Wi Wi
k,s
mNo [ dp/ 8g¥(P, n=0:x,1) '
XK(x,t;xl,tl):—of—p<L>, (A4) i ..
€ Qd 6¢2(X11t1) + ZE VkV(k):n_knk — N Ng:. (Ag)
k

is the dynamical part of the symmetric density-density cor-

relation function. When the statically sceened interaction is¥hen using the free particle dispersiep=k?2/2m, the first
short rangedV(x-x;)=Vé(x—x;), by making use of the line of Eq.(A9) agrees with Eq(5). The term in the second
symmetry ofy® with respect to the interchange of its pairs of line, on the other hand, is consistent with F47) and dis-
arguments(x,t) and(xq,t;), it is possible to write the ex- appears for thé&-independent interaction.

1G. V. Chester and A. Thellung, Proc. Phys. Soc. Lond@n1005 Tabet, Phys. Rev. B33, 6169(1986.
(1961). 9C. Castellani and C. DiCastro, Phys. Rev.38, 5935(1986.

2]. S. Langer, Phys. Rel28 110(1962. 10C. castellani, C. DiCastro, G. Kotliar, P. A. Lee, and G. Strinati,

SR. W. Hill et al,, Nature(London 414, 711 (2007). Phys. Rev. Lett.59, 477(1987.

4B. L. Altshuler and A. G. Aronov, Sov. Phys. JETBO, 968  ID. Livanov, M. Yu. Reizer, and A. V. Sergeev, Sov. Phys. JETP
(1979. 72, 760(1991).

5B. L. Altshuler and A. G. Aronov, Solid State Commu#6, 429  12B. Arfi, J. Low Temp. Phys86, 213(1992.
(1983. 13p. R. Niven and R. A. Smith, cond-mat/0301451.

6A. M. Finkelstein, Zh. Eksp. Teor. FiB84, 168(1983; Sov. Phys.  *Non-equilibrium Superconductivitgdited by D. N. Langenberg
JETP 57, 97 (1983. and A. I. Larkin(North-Holland, Amsterdam, 1986

7C. Castellani, C. DiCastro, P. A. Lee, and M. Ma, Phys. Rev. B5C. J. Lambert and R. Raimondi, J. Phys.: Condens. Mat&gr
30, 527 (1984. 901 (1998.

8C. Castellani, C. DiCastro, P. A. Lee, M. Ma, S. Sorella, and E.1®P. Schwab and R. Raimondi, Ann. Phyd.eipzig) 12, 471

155109-5



RAIMONDI et al. PHYSICAL REVIEW B 70, 155109(2004)

(2003. 243, zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. @,
173, Rammer and H. Smith, Rev. Mod. Phy&8, 323(1986. 214204(2007).
18G., Eilenberger, Z. Phys214, 195 (1968 25p, Kopietz, Phys. Rev. Leti81, 2120(1999.
19G. Catelani and I. L. Aleiner, cond-mat/0405333. 26C. Proustet al,, Phys. Rev. Lett.89, 147003(2002.
203, Moreno and P. Coleman, cond-mat/9603079. 2"\We notice that—consistently—exact agreement between the heat
21]. Paul and G. Kotliar, Phys. Rev. B7, 115131(2003. current as given in Eqg16) and (17) with Niven and Smith
22K. D. Usadel, Phys. Rev. Let25, 507 (1970). (Ref. 13 is obtained by neglecting the momentum dependence
23A. Kamenev and A. Andreev, Phys. Rev. @, 2218(1999. of the statically screened interaction.

155109-6



