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We calculate the thermal conductivity of interacting electrons in disordered metals. In our analysis we point
out that the interaction affects thermal transport through two distinct mechanisms, associated with quantum
interference corrections and energy exchange of the quasiparticles with the electromagnetic environment,
respectively. The latter is seen to lead to a violation of the Wiedemann-Franz law. Our theory, valid to all orders
in perturbation theory, predicts a strong enhancement of the Lorenz ratiok /sT over the value predicted by the
Wiedemann-Franz law, when the electrons encounter a large environmental impedance.
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The Wiedemann-Franz law relates the electronic thermal
conductivity k and the electrical conductivitys and states
that the Lorenz ratioL=k /sT is a universal constant given
by L=p2kB

2 /3e2. In this equationkB is the Boltzmann con-
stant, −e the electron charge, andT the temperature. The
validity of the Wiedemann-Franz law relies mainly on a
single-particle description of the transport properties, on the
Fermi statistics of the charge carriers, and on the assumption
of purely elastic scattering.1 In a Fermi liquid, one expects
that this law still holds at low enough temperature, when the
quasiparticles cannot exchange energy during collisions.2

Deviations from the Wiedemann-Franz law as recently ob-
served in the normal state of a copper oxide superconductor
have thus been interpreted as an evidence for the breakdown
of Fermi-liquid theory.3

The effects of Coulomb interaction on the electrical trans-
port at low temperature can be broadly grouped in two main
types. From one side, transport implies adding charges to a
conductor. This has an energy cost that depends on the size
and shape of the conductor itself. For example, in tunnel
junctions the energy transfer between quasiparticles and the
electrodynamical environment causes the Coulomb blockade
phenomenon. On the other hand, Coulomb interaction leads
in a disordered conductor to an additional source of random
scattering that interferes with the scattering from the impuri-
ties. This is a quantum effect and depends on the details of
charge diffusion.

In the 1980s these quantum interferences were shown to
lead to corrections to the electrical conductivity beyond the
standard Fermi-liquid results. It turned out that these correc-
tions may, in fact, be incorporated into a scale-dependent
renormalization of the Landau Fermi-liquid parameters.4–9

Within this framework, Castellani and co-workers10 demon-
strated that the scale-dependent corrections to the thermal
conductivity are the same as the corrections to the electrical
conductivity. This led them to conclude that the Wiedemann-
Franz law is valid up to the metal-insulator transition.

This conclusion was challenged by Livanovet al.11 and
Arfi12 who found for a two-dimensional system with long-
range Coulomb interaction additional contributions to the
thermal conductivity. Recently, the issue has been reexam-
ined by Niven and Smith,13 who also concluded that the
Wiedemann-Franz law is violated.

In this article we study the problem by means of the qua-
siclassical Green’s function approach, which has proved to
be a powerful tool in describing the dynamical properties of
superconductors14 and the transport in hybrid mesoscopic
structures.15 Recently it was further demonstrated that both
Coulomb blockade phenomenon and quantum interference
corrections to the charge transport can be conveniently de-
scribed within this theoretical framework.16 Advantages of
the method are that it is not restricted to the linear response
regime, and often provides more compact derivations than
the standard diagrammatic techniques.

A perturbative calculation of the thermal conductivity, be-
sides confirming Ref. 13, allows us to clarify the origin of
the apparent discrepancies in the literature. To do so we sepa-
rate the different physical mechanisms by their different
range of exchanged energies and relevant length scales. For
instance, the quantum interference effects occur over dis-
tances from the mean free path up to the thermal diffusion
lengthÎ"D /kBT, and imply energy exchanges larger than the
temperatureT. These yield corrections are logarithmically
divergent and can be readily related to the scale-dependent
renormalization of the electrical conductivity. Here the tem-
perature acts as an infrared cutoff. The interaction effects
responsible for the deviations from the Wiedemann-Franz
law are associated with the long-range part of the Coulomb
interaction and their singular behavior has the temperature as
the upper cutoff. We successively concentrate on the long-
range part of the Coulomb interaction. In particular, to all
orders in perturbation theory, we predict a sizable enhance-
ment of the Lorenz ratio when the sheet resistance is of the
orderh/e2 in the case of a two-dimensional electron system,
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and a strong enhancement of the Lorenz ratio for thin metal-
lic wires when the total resistance of the wire is larger than
h/e2.

From now on we use units where"=kB=1, but we put
back the constants in the final results. We start with a brief
introduction of the quasiclassical formalism. For a more de-
tailed description we defer the reader to Ref. 17. Within this
formalism the short-distance behavior of the electron Green’s
function is taken into account in an averaged way from the
outset by introducing the quasiclassical Green’s function,
which solves the Eilenberger equation18

f]t1
+ ]t2

+ vFp̂ · ]xgǧt1t2
sx,p̂d = − ifŠsx,p̂d,ǧsx,p̂dg. s1d

In contrast to the Dyson equation for the ordinary Green’s
function, the Eilenberger equation forǧ is homogeneous and
requires a normalization condition, which can be chosen of

the form ǧǧ=1̌. The Green’s function has a two-by-two ma-
trix structure in Keldysh space,

ǧ = SgR gK

0 gAD . s2d

Matrix products imply both summation and integration over
Keldysh indices and time variables, respectively. We recall
that, whereas the diagonal components ofǧ describe the
spectral properties of the system, the off-diagonal Keldysh
component carries information about the distribution func-
tion. In this respect, the Keldysh component of Eq.(1) is the
quantum analog of the Boltzmann equation.

Impurity scattering is introduced by means of the standard
white-noise random potential and is described by the self-
energy in the self-consistent Born approximation as

Št1t2
sxd = −

i

2t
E dp̂

Vd
ǧt1t2

sx,p̂d, s3d

where t is the elastic scattering time andVd is the
d-dimensional solid angle. The charge current density has the
form

j esx,td = epN0vFE dp̂

Vd
p̂gt1t2

K usx,p̂dut1=t2
. s4d

The expression for the heat current density is not obvious. In
the absence of interactions, but in the presence of disorder,
the heat current is found from the thermal average of the
operator2

j Qsx,td = −
1

m
fĊ+sx,td ¹ Csx,td + ¹ C+sx,tdĊsx,tdg,

s5d

where the dots denote the time derivatives of the Heisenberg
operators. The quasiclassical implementation of this expres-
sion reads

j Qsx,td =
ipN0vF

2
s]t2

− ]t1
d E dp̂

Vd
p̂gt1t2

K usx,p̂dut1=t2
. s6d

Generally, in an interacting system Eqs.(5) and (6) have to
be modified.19–21 On the other hand, in the case of short-

range interactions or in the case of Coulomb interaction,
when the screening length is short compared to the other
relevant length scales, Eqs.(5) and (6) remain valid. This is
demonstrated in the Appendix.

In the dirty limit, the variation of the Green’s function is
on space and time scales larger than the elastic mean free
path l =vFt and scattering timet, respectively. In this limit
one may expand the Green’s functionǧ in spherical harmon-
ics and keep thes- and p-wave components only:ǧsp̂d= ǧs

+ p̂ǧp+. . .. TheEilenberger equation is then replaced bysD
=vF

2t /dd the Usadel equation,22 as

]tǧssxd − D]xfǧs]xǧsg = 0, s7d

which is the analog of the saddle-point condition in the non-
linear s-model matrix field theory.6 As a result, the currents
are expressed in terms of thes-wave component of the
Green’s function, as

j esx,td = −
eN0D

2
E desǧs]xǧsdK, s8d

j Qsx,td =
N0D

2
E de esǧs]xǧsdK, s9d

with e corresponding to the Fourier transform of the relative
time t1− t2. As a simple application of the formalism we de-
rive the Drude formula for the electrical and thermal conduc-
tivity. In the absence of interactions the Green’s functionǧ
reads

ǧssx,t;ed = S1 2F

0 − 1
D . s10d

In thermal equilibrium the functionF is given by F
=tanhse /2Td. Near local equilibrium with a local tempera-
ture Tsxd and a local chemical potentialmsxd the Drude ex-
pressions for both electrical and heat currents are found, so
that

j e = 2e2DN0s¹m/ed, s11d

j Q =
p2

3
kB

22N0DTs− ¹ Td, s12d

and in particular the Wiedemann-Franz law holds.
To include the effects of the Coulomb interaction, we

introduce16,23,24a Hubbard-Stratonovich matrix field

f̌ = Sf1 f2

f2 f1
D s13d

whose fluctuations describe the retarded, advanced, and
Keldysh components of the screened Coulomb interaction

− ie2Skf1f1l kf1f2l
kf2f1l kf2f2l

D =
1

2
SVK VR

VA 0
D . s14d

In the presence of the fieldf̌, one first adds a term ieff̌ ,ǧg to
the right-hand side of the Eilenberger(1) or the Usadel equa-
tion (7). Secondly, the resulting solutionǧffg is averaged

over the fluctuations off̌ according to Eq.(14). Analogously

RAIMONDI et al. PHYSICAL REVIEW B 70, 155109(2004)

155109-2



to the noninteracting case[cf. Eq. (10)], one can define the
distribution function in the presence of interactions via the
relation between the Keldysh and the retarded, advanced
components of the Green’s functionkgKl=kgRlF−FkgAl. We
further assume a system which is—with the exception of a
weak temperature gradient—translational invariant. It is then
convenient to expand the distribution function as

Fe−vsx1d < Fe−vsxd − ]TFe−vsxd ¹ T · sx1 − xd s15d

and to Fourier transform from real to momentum space. The
correction to the thermal current is finally obtained asdj Q
=dj Q

a +dj Q
b with

dj Q
a = DN0 ¹ TE de eE dv

2p
]TfFe−vsxdFesxdg

3 Imo
q

1

s− iv + Dq2d2Vv
Rsqd s16d

and

dj Q
b = DN0 ¹ TE de eE dv

2p
Fesxd]TFe−vsxd

3
4

d
Imo

q

Dq2

s− iv + Dq2d3Vv
Rsqd, s17d

whered is the dimension of the system under consideration.
Our result [Eqs. (16) and (17)] for the thermal current is
equivalent to the thermal conductivity found13 by using the
diagrammatic method and the Matsubara technique. We no-
tice that the diffusive pole appearing in Eqs.(16) and (17)
originates from the Usadel equation(7).

Using the relationFeFe−v=1−sFe−Fe−vdBsv /2Td with
Bsxd=cothsxd allows us to evaluate thee-integrations in Eqs.
(16) and (17) with the result

E de e]TsFeFe−vd = − v2]TBS v

2T
D , s18d

E de eFe]TFe−v = −
2p2T

3
]vFvBS v

2T
DG +

v3

3T
]vBS v

2T
D .

s19d

From Eqs.(18) and(19) we observe thatdj Q
a is dominated by

diffusive modes of frequencyuvu,T, whereas modes with
frequenciesuvu.T give the dominant contribution todj Q

b . To
appreciate the role played by the different frequency ranges,
we begin by evaluating the current in two dimensions. The
retarded component of the dynamically screened Coulomb
interaction reads

VRsq,vd <
1

2N0

k2d

q

− iv + Dq2

− iv + Dk2dq
, s20d

where k2d=4pe2N0 is the screening vector in two dimen-
sions. By considering firstdj Q

b , one notices that the momen-
tum integration to be performed is identical to the momen-
tum integral in the correction to the electrical
conductivity,4–7 i.e., the integration is logarithmically diver-

gent in the ultraviolet and must be cut off with the diffusive
conditionDq2t,1. In thev-integration there is a minor dif-
ference at low frequenciesuvu,T due to the second term on
the right-hand side of Eq.(19). In two dimensions, with loga-
rithmic accuracy, this difference is negligible and one has

dj Q
b <

p2

3

T

e2dss− ¹ Td, s21d

whereds=−e2/ s2p2dlns1/Ttd is the interaction correction to
the electrical conductivity andTt,1. The other contribution
to the thermal current,dj Q

a , does not depend on the ultravio-
let cutoff 1 /t, so that

dj Q
a < − D ¹ TE

0

T

dv

2p
vE d2q

s2pd2

3 ImS 1

− iv + Dq2

k2d

q

1

− iv + Dqk2d
D s22d

since the temperature acts as an upper cutoff in the frequency
integration. In contrast, in the limit of good metallic screen-
ing whenk2d→`, the integration becomes infared divergent.
By combining the two contributions, we finally write the
expression for the thermal conductivity in a form which
shows that, although the Wiedemann-Franz law is violated,

k =
p2

3

kB
2T

e2 Fs + ds +
1

2

e2

ph
lns"Dk2d

2 /kBTdG , s23d

the integration of diffusive modes in the region
T,Dq2,v,t−1 yields the same scaling equations fors and
k,

d ln s

d ln l
=

d ln k

d ln l
, s24d

so that the apparent discrepancies in the literature are not
contradictory.

We observe that in the last term of Eq.(23), responsible
for the violation of the Wiedemann-Franz law, only the ex-
treme long wavelength modes of the dynamically screened
Coulomb interaction withDq2, uvu,T are relevant[cf. Eqs.
(16) and(18)]. It has been shown in Ref. 25 that these modes
can be conveniently handled by making the following gauge
transformation

ǧt1t2
sx;p̂d = eiw̌sx,t1dǧ̃t1t2

sx;p̂de−iw̌sx,t2d, s25d

where]tw̌sx ,td=ef̌sx ,td. In the case of only homogeneous
field fluctuations, Eq.(25) gives the Green’s function to all

orders in the interaction when inserting forǧ̃t1t2
the Green’s

function in the absence of interaction. In general,ǧ̃t1t2
has a

perturbative expansion in terms of gradients ofw. Whereas
the gauge factors drop in the expression for the electrical
current, i.e., the long wavelength modes of the Coulomb in-
teraction do not modify the electrical conductivity, they sur-
vive in the heat current to yield
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j Q = −
N0

2
E dp̂

Vd
vFp̂E deHeg̃Ksx,t;p̂,ed

−
1

2
e†kf̌sx,tdǧ̃sx,t;p̂,ed + ǧ̃sx,t;p̂,edf̌sx,tdl‡KJ .

s26d

To consider the effect of the long wavelength modes it is

sufficient to expandǧ̃ to first order in the gradient ofw, so
that only the second term of Eq.(26) is modified sincew has
Gaussian correlations. Equation(26) makes then clear the
physical origin of the violation of the Wiedemann-Franz law.
While the first term on the right-hand side reproduces the
noninteracting contribution to the thermal current, the second
may be interpreted as the effect of the time dependent fluc-
tuations of the quasiparticle energy in the presence of an
electromagnetic environment. Indeed, the extra heat current
is proportional to the correlation of voltage and current fluc-
tuations in the system,dj Q=kf1sx ,tddj esx ,tdl, which then
leads to the strikingly simple result

j Q =
p2

3

kB
2T

e2 ss− ¹ Td −
1

2
s ¹ kf1sx,tdf1sx,tdl. s27d

Notice that due to the linear current-voltage characteristics of
the system under consideration only the first order in the
Coulomb interaction contributes to the heat current. By using
the fluctuation dissipation theorem[or equivalently Eq.(14)]

kf1sx,tdf1sx,tdl = −
1

e2 E dv

2p
BS v

2TsxdDoq

Im VRsq,vd

=E dv

2p
BS v

2TsxdDv ReZsvd, s28d

direct contact can be made with the conventional perturba-
tion theory, i.e., withdj Q

a in Eq. (16).
Instead of parametrizing the local voltage fluctuations in

terms of an interactionVRsq ,vd, we will in the following
parametrize them in terms of the impedance of the local elec-
tromagnetic environment,Zsvd. By doing so, the thermal
conductivity reads

k =
p2

3

kB
2T

e2 s +
skB

e2 E dES E/2kBT

sinhsE/2kBTdD
2ReZsE/"d

h/e2 ,

s29d

where for clarity we put back the" and kB. We will now
discuss three different examples for the impedanceZ. The
simplest situation consists of a purely ohmic environment
whereZsE/"d=R. The thermal conductivity is found linear
in the temperature, strong deviations from the Wiedemann-
Franz law are found when the environmental resistance is of
the order of the resistance quantumh/e2 or larger. The ex-
plicit result is

k =
p2

3

kB
2T

e2 sf1 + 2R/sh/e2dg. s30d

From the retarded Coulomb interaction as given in Eq.(20)
we determine the impedance of a thin film as ReZsE/"d
=s1/4psdlns"Dk2d

2 kBT/E2d. Due to the weak logarithmic
energy dependence of the impedance, the thermal conductiv-
ity is to good accuracy obtained from Eq.(30) with R
=ReZskBT/"d. As a third example we consider a
RC-transmission line, as a model of a gated wire. The im-
pedance is ReZ= 1

2
ÎR0/2uvuC0, whereR0 andC0 are respec-

tively, the resistance and capacitance per unit length. We find
a contribution to the thermal conductivity that is proportional
to the square root of the temperature, as

k =
p2

3

kB
2T

e2 s + 2.456
kB

e2s
Î"kBTR0/C0

h/e2 , s31d

with 2.456 the approximate numerical value for
3zs3/2dGs3/2d /23/2.

In summary, we calculated the thermal conductivity of
disordered metals. In the two-dimensional electron system,
the scaling equations for the thermal and the electrical con-
ductivity are the same, nevertheless, the Wiedemann-Franz
law does not hold. The deviations from the Wiedemann-
Franz law are comparable in size to the localization effects.
It is interesting to note that this is in qualitative agreement
with observations made in the cuprates:3,26 The resistivity of
PCCO in Ref. 3 shows a well pronounced low temperature
anomaly that has been attributed to localization effects, and
at the same time the low temperature heat conductivity is
larger than what would be expected from the Wiedemann-
Franz law. In the low temperature resistivity of Tl-2201 in
Ref. 26, no indications of localization effects are seen and
the Wiedemann-Franz law is perfectly obeyed within the ex-
perimental accuracy. Quantitatively, on the other hand, the
agreement of our theory with Ref. 3 remains poor, since the
sheet resistance was estimated asRh<h/ s60e2d, from which
we expect a much smaller enhancement of the heat conduc-
tivity than observed experimentally. By measuring the Lo-
renz ratio in a gated film or wire as function of the gate
capacitance, it should be possible to test our predictions ex-
perimentally.

R.R. and G.S. acknowledge partial financial support from
MIUR under Grant No. COFIN2002022534. We acknowl-
edge valuable discussions with U. Eckern, C. Castellani, and
C. Di Castro.

APPENDIX: HEAT CURRENT FOR INTERACTING
ELECTRONS

We obtain the conservation law for the energy by consid-
ering thes-wave part of the Keldysh component of the Eilen-
berger equation[Eq. (1)]. The impurity self-energy does not
contribute to thes-wave part of the equation. We recall that
by setting the relative timeh= t1− t2 to zero, the Eilenberger
equation becomes the continuity equation for charge. The
continuity equation for energy is obtained by first taking the
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derivative with respect toh and then taking theh=0 limit, as

]

]t
F− ipN0E dp̂

Vd

]

]h
gKsp̂,h;x,tdG

+ ]xF− ipN0E dp̂

Vd

]

]h
vFp̂gKsp̂,h;x,tdG

= epN0ḟ1sx,td E dp̂

Vd
gKsp̂,h;x,td. sA1d

On the left-hand side of the equation appear the energy den-
sity and energy current in the absence of the interaction. To
appreciate this we recall that the time representation of the
distribution function reads in thermal equilibrium

E dp̂

Vd
gKsp̂,h;x,td = −

2i

ph
+

2ipT2h

6
+ . . . sA2d

in the smallh limit. By using the above expansion in the
energy density defined by the expression under the time de-
rivative in Eq.(A1), one obtains the standard expression for
the specific heat in a noninteracting electron gas,cv
=s2p2/3dN0T.

Clearly due to the term on the right-hand side of Eq.(A2),
both the expressions for energy and current density will be
modified. By exploiting the functional dependence of
gKsp̂ ,h ;x ,td on the internal fieldf̌, we rewrite the right-
hand side of Eq.(A1) as

i

2
E dx1Vsx − x1d

]

]t1
xKsx,t;x1,t1d, sA3d

whereVsx−x1d is the statically screened Coulomb interac-
tion, and

xKsx,t;x1,t1d =
pN0

e
E dp̂

Vd
K dgKsp̂,h = 0;x,td

df2sx1,t1d L , sA4d

is the dynamical part of the symmetric density-density cor-
relation function. When the statically sceened interaction is
short ranged,Vsx−x1d=Vdsx−x1d, by making use of the
symmetry ofxK with respect to the interchange of its pairs of
arguments,sx ,td and sx1,t1d, it is possible to write the ex-

pression as a total time derivative so that the correction to the
energy density reads

dre = −
i

4
VxKsx,t;x,td, sA5d

while the energy current density remains unchanged. This
justifies the use of Eq.(6) even in the presence of the
interaction.27

In the case in which the interaction has a finite range, we
exploit the fact thatxKsx ,t ;x1,t1d depends only weakly on
the center-of-mass coordinatesx+x1d /2 as compared to the
relative coordinater =x−x1. By expanding with respect to
the center-of-mass coordinate one then finds

dre = −
i

4
E drVsr dxSx +

r

2
,t;x −

r

2
,tD , sA6d

dj Q =
i

4
E drVsr dr]t1

xUSx +
r

2
,t;x −

r

2
,t1DU

t1=t

. sA7d

To conclude this Appendix, we refer to the results of Moreno
and Coleman20 and Paul and Kotliar,21 who derived the heat
current operator in an interacting electron system. Consider
electrons with kinetic energyek and interactionVskd, such
that the Hamiltonian reads

H = o
k,s

ekCk,s
+ Ck,s +

1

2
Vskd:n−knk:, sA8d

wheres is the spin,nskd denotes the density, and :n−knk: the
normal ordering of the Fermionic operators. The heat current
operator becomes

j Q =
i

2o
k,s

¹kesCk,s
+ Ċk,s − Ċk,s

+ Ck,sd

+
i

4o
k

¹kVskd:n−kṅk − ṅ−knk:. sA9d

When using the free particle dispersionek =k2/2m, the first
line of Eq. (A9) agrees with Eq.(5). The term in the second
line, on the other hand, is consistent with Eq.(A7) and dis-
appears for thek-independent interaction.
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