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Using a scattering technique, combined with density-functional theory, a computational study of the
electron-transport properties of multiwall carbon nanotube(MWNT) telescopes and shuttles is presented.
When the inner nanotube of a MWNT is displaced by an amountdx with respect to the outer tube, we predict
that the interwallp-p coupling,gp-p, is significantly modified, leading to unexpected conductance oscillations
for values ofdx of the order of the interatomic spacing. An analytical model is presented, which provides a
mapping betweengp-p and electron-transport measurements.
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Multiwall carbon nanotubes(MWNTs) are coaxial cylin-
ders with low translational and rotational energy barriers,
which allow the inner tubes to easily slide with respect to the
outer tubes.1 This is demonstrated by recent experiments,
which show that it is possible to slide the inner walls of a
MWNT in a “telescoping”-like motion2,3 and has led to the
suggestion of low friction, MWNT-based nanoelectrome-
chanical systems(NEMS), such as oscillators with frequen-
cies in excess of 1 GHz.4–6 For single wall nanotubes
(SWNTs), electronic properties are primarily determined by
chirality,7 whereas in MWNTs the interwall interaction can
cause the formation of pseudogaps8 and in the case of tele-
scoping nanotubes, resonances in the differential conduc-
tance of ballistic structures.9–11 The aim of this article is to
demonstrate that of all the naturally occurring MWNTs with
random chiralities, there is a certain class of tubes, namely
armchair-armchair double-wall NTs, which have the remark-
able property of exhibiting large conductance oscillations as
a function of an atomic-scale displacement between inner
and outer tubes. Apart from the small fraction of naturally
occurring examples, such structures could be engineered by
starting from two single-wall armchair NTs and inserting one
inside the other using a scanning probe tip. One consequence
of our work is that in contrast with incommensurate
MWNTs, such devices are predicted to be the ultimate
nanoscale actuators, with an atomic-scale sensitivity.

We begin with an analysis of the electron transport prop-
erties of the telescoping MWNT shown in Fig. 1(a), as func-
tion of the displacementdx of the inner tube relative to the
outer tube. Using a first principles approach, we predict that
transport properties are strongly modified by displacements
dx of order the interatomic spacing. By developing a mini-
mal analytical model, which agrees well with the first-
principles results, we also demonstrate that the strength of
the interwall coupling can be probed experimentally by mea-
suring the electrical conductance as a function ofdx. Our
analysis is also applied to the shuttle structure shown in Fig.
1(b), whose electronic properties are closely related to those
of the corresponding telescope.

The problem of computing thedx dependence of the con-
ductance is quite different from the problem considered in
Ref. 10, which computes the energy dependence of the elec-
tron transmission coefficient fordx=0 only. To illustrate this,
we note that since a NT is formed by repeatedly joining

together identical slices of carbon atoms(which form the
unit cells of the NT), the lengthL of the overlap region in a
telescope can be written asL=Nb+dx, whereb is the length
of a slice of the inner or outer NT anddx is a displacement
lying between ±b/2 (i.e., dx=L modulo b). For an infinite
MWNT, theab initio, mean-field HamiltonianH is a periodic
function ofdx, with periodb, and therefore to compute trans-
port properties as a function of displacement,H must be
recomputed self-consistently, for each value ofdx.

The telescope shown in Fig. 1(a) comprises two coaxial
SWNTS, with the inner NT connected to a SWNT extending
to +` and the outer NT connected to a larger diameter
SWNT extending to −̀ . As a definite example, we focus on
the armchair(6,6)@(11,11) MWNT, which has an interwall
separation of 3.4 Å. This system is typical of most armchair
MWNTs, as it does not possess axial symmetry. As a prelude
to developing an analytical description, we first calculate
transport properties using a recursive Green’s function scat-
tering technique, developed in Ref. 12, combined with a
Hamiltonian generated using the first-principles density-
functional theory code,SIESTA.13 In what follows, we use the
local density approximation parametrized by Perdue and
Zunger14 and nonlocal norm-conserving pseudopotentials.15

The valence electrons are described by a single-z basis set.
The cutoff radius for thes andp orbital is chosen to be 4.1
a.u.

Before computing transport properties, it is useful to ex-
amine the band structure of an infinite(6,6)@(11,11)
MWNT. Since the Hamiltonian and overlap matrix elements
depend on the positions of the carbon atoms of the inner NT
relative to those on the outer NT, this band structure depends
on the displacementdx of the inner NT relative to the outer
NT. Figures 2(a) and 2(b) show the calculated band structure
of an infinite, nondisplaced(6,6)@(11,11) MWNT, corre-
sponing todx=0.

Figure 2(a) shows that for positivek, in the vicinity of the
Fermi energy, the band structure of the infinite MWNT pos-
sesses twop bands with positive slope and twop* bands
with negative slope. Several features of this band structure
are relevant to understanding transport in telescopes and
shuttles. First, as shown in Fig. 2(b), in the vicinity of the
Fermi energy, small energy gaps of the order 2 meV, open at
the band crossings. In what follows we demonstrate that os-
cillations in transport properties arise over a wide energy
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range and therefore these gaps are unimportant at most en-
ergies. Secondly, thep* bands of the inner NT are shifted
relative to those of the outer NT, mainly due to charge trans-
fer between the NTs. This feature is demonstrated in Fig.
2(c), which shows the band structure arising when all matrix
elements between orbitals on the outer NT and orbitals on
the inner NT are artificially set to zero. In this case, thep
bands are almost coincident, whereas thep* bands on the
different tubes remain shifted relative to each other. Finally,
the p band of the inner NT is shifted relative to that of the
outer NT, mainly due to the interwall interaction. This is

demonstrated by the fact that the main effect of switching on
the interwall matrix elements[i.e., in going from Figs.
2(a)–2(c)] is to shift thep bands, whilst leaving the others
almost unaffected. The latter feature is crucial, since it pro-
duces largep-p scattering in telescopes and shuttles, while
scattering involving other channels remains negligible. In
view of the linearity of the bands nearEF, the wave-vector
differencedkp-p=k2−k1 between the twop bands is almost
independent of energy. However, the Fermi wave vectorsk1
andk2 of thep bands are extremely sensitive to the displace-
ment dx of the inner tube relative to the outer tube. This is
illustrated in Fig. 2(d), which shows the dependence ofdkp-p
and sk1+k2d /2 on dx. For such an infinite MWNT, these
quantitites are periodic functions ofdx, with period equal to
the repeat distanceb=2.45 Å of the MWNT.

Having examined band structure as a function of displace-
mentdx, we now turn to transport properties of the telescop-
ing (6,6)@(11,11) double-wall NT and demonstrate that the
abovedx dependence of thep wave vectors is accessible via
conductance measurements on a telescope or shuttle. For
scattering regions of lengthL=Nb+dx, Figs. 3(a) and 3(b)
and [Figs. 4(a) and 4(b)] showab initio results for the elec-
trical conductanceGsEFd=TsEFd in units of 2e2/h as a func-
tion of dx, for a telescope(shuttle) with two values of the

FIG. 1. (a) A telescoping MWNT in which a small-diameter NT
is inserted a distanceL into a larger diameter NT. The NTs are each
connected to reservoirs on the left- and right-hand sides of the
structures. In both cases, electrons are scattered at the points, sepa-
rated by a distanceL, where an NT terminates.(b) A “shuttle”
system, in which a large-diameter SWNT(the shuttle) of lengthL is
placed outside a small-diameter inner-wall NT, which in turn is
connected to external reservoirs.

FIG. 2. (a) Ab initio (6,6)@(11,11) band structure close to the
Fermi energy(0 eV). (b) Gap opening due to interwall interaction.
(c) Band structure with no interwall interaction.(d) The difference
dkp-p=k2−k1 and average of the Fermi wave vectorsk1 and k2 in
the p bands as a function ofdx.

FIG. 3. Ab initio conductanceGsEFd as a function ofdx in a (6,6)@(11,11) telescope for scattering regions of length(a) N=10, and(b)
N=250. Analytic description ofTsEd for the telescope model of length(c) N=10 and(d) N=250.
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number of over-lapping slicesN. Perhaps the most striking
feature of these results is the presence of large oscillations on
the scale ofdx,b. To demonstrate that these unexpected
oscillations are a direct consequence of thedx dependence of
the Hamiltonian, we now develop an analytical description
of these oscillations based on retaining only thep-p inter-
wall coupling. This approximation is partly justified by com-
paring Figs. 2(a) and 2(c), which show that switching on the
interwall coupling yields a large shift in thep bands, while
leaving the other bands almost unchanged. A restriction to
p-p coupling is further suggested by comparing the energy
dependence of the transmission coefficient of shuttles and
telescopes. Fordx=0, Fig. 5 shows the electron transmission
coefficient TsEd versus energy for fixed values ofN. For
energies in the approximate range ±1 eV, where only thep
andp* scattering channels are open, the transmission coeffi-
cient of the telescope(shuttle) oscillates between 0 and 1(1
and 2). For higher energies, where four more scattering chan-
nels are open, these exhibit remarkably different behaviors,
namely,TsEd for the telescope continues to oscillate between
0 and 1, whereasTsEd of the shuttle increases by 4 and
oscillates between 5 and 6. This difference reflects the fact
that for the telescope, only thep band of the outer tube
scatters into thep band of the inner tube and no other chan-
nels are transmitted, whereas for the shuttle, only thep band
of the inner tube is scattered by the presence of the shuttle,
while all other channels are transmitted with a probability of
almost unity.

In view of these results, we develop a minimal description
of transport in telescopes(and shuttles), based onp-p
scattering, which captures the essential physics of charge
transfer and interwall coupling. The model is shown in
Fig. 6, where a “circle” at positionj represents the amplitude
of a p state on slicej of one of the nanotubes. For a
telescope, slices numbered −`, j øN belong to the outer

NT and slices N+1ø j ,` belong to the inner NT.
For a shuttle, slicesN+1ø j ø2N belong to the inner NT
and all others belong to the outer NT. In both cases,
the Hamiltonian has diagonal matrix elementsHii =«0
for i ø0 and i ù2N+1,Hii =«1 for 1ø i øN, and Hii =«2
for N+1ø i ø2N, where the different values of«1 and
«2 reflect the effect of charge transfer between the NTs.
For sites i , j ø0,i , j ùN+1,1ø i , j øN, and N+1ø i , j
ø2N, the nearest-neighborp-p hopping matrix elements are
set to −g, while for 1ø i øN, the interwallp-p coupling is
Hi,i+N=Hi+N,i =−gp, wheregp,g. The coupling between the
hybridized regions of lengthN slices and the left lead is
H0,1=H1,0=−ga. For the shuttle(telescope) the coupling to
the right lead isHN,2N+1=H2N+1,N=−gb,sH2N,2N+1=H2N+1,2N

=−gbd. All other matrix elements are zero. In what follows,
we find that good agreement with theab initio results is
obtained by allowinggp-p to vary with dx, while all other
parameters are independent ofdx.

For both systems, the leads possess a dispersion relation
E=«0−2g cosk and feed electrons towards the hybridized
region with a wave vectorksEd=cos−1fs«0−Ed /2gg and
group velocityvsEd given by "v=dE/dk=2g sinksEd. The
transmission coefficient from one lead to the other is given
by TsEd=f"vsEdgagb/g2g2uG1au2, wherea=N for the shuttle,
a=2N for the telescope, andGij is the retarded Green’s func-
tion of the structure.

To computeGij , we start from Green’s functiongij of the
disconnected structure arising whenga=gb=0. In this case,
g00 is the Green’s function on the right-most slice of the
isolated semi-infinite left lead andg2N+1,2N+1=g00 is the

FIG. 4. (a) Ab initio conductance of the shuttle(6,6)@(11,11) nanotube as a function ofdx for scattering lengths(a) N=10 and(b)
N=250. Analytic desciption of transmission for the shuttle model of lengths(c) N=10 and(d) N=250.

FIG. 5. Transmission coefficient vs energy for a telescope(a)
and shuttle(b).

FIG. 6. Model representation of a(a) telescoping nanotube, and
(b) shuttle nanotube.
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Green’s function on the left-most slice of the isolated semi-
infinite right lead. The Green’s functionG1a is then obtained
by solving Dyson’s equation,

GsEd =1S
g11 g1a

ga1 gaa
D−1

gb 0

0 gb

ga 0

0 ga

g00
−1 0

0 g00
−1
2

−1

. s1d

In this expression, the surface Green’s function of the iso-
lated leads isg00=−g−1exp 1ksEd. To obtain the Green’s
function of the isolated hybridized region of lengthN, we
introduce the wave vectorsk1sEd and k2sEd, defined to be
solutions of

E = s«1 + «2d/2 − 2g coskjsEd − s− 1d jÎfs«1 − «2d/2g2 + gp
2 .

s2d

In terms of these quantities, the Green’s function
of the isolated hybridized region of lengthN slices
is given by g11=gNN=Afc2Ss1,NdSs2,N+1d+s2Ss2,Nd
Ss1,N+1dg, g2N+1,2N+1=Afs2Ss1,NdSs2,N+1d+c2Ss2,Nd
Ss1,N+1dg, g1N=Afc2Ss1,1dSs2,N+1d+s2sink2Ss2,1d
Ss1,N+1dg, and g1,2N+1=AfcsgfSs1,1dSs2,N+1d−Ss2,1d
Ss1,N+1dg, where s=sinu ,c=cosu ,Ssi , jd=sinki j ,cotu=
−gp / fÎfs«1−«2d /2g2+gp

2g−s«1−«2d /2g, and A=−f2gSs1,N
+1dSs2,N+1dg−1. These expressions combine to yield

TsEd =
4g1a

2 sga
2gb

2/g2dsin2 ksEd
X + 4g1a

2 sga
2gb

2/g2dsin2 ksEd
, s3d

where

X = f1 + gaa
2 gb

4/g2 + 2gaasgb
2/gdcosk − g1a

2 ga
2gb

2/g2gf1

+ g11
2 ga

4/g2 + 2g11sga
2/gdcosk − g1a

2 ga
2gb

2/g2g + fg11ga
2/g

− gaagb
2/gg2. s4d

For a given choice of thedx-independent parameters
ga/g ,gb/g, andksEFd, Eq. (3) provides a mapping between
the dx-dependent parametersk1,k2, and u of the infinite
MWNT and the dimensionless conductanceTsEFd. Figure
2(d) shows that thedx dependence of the averagesk1

+k2d /2 is negligibly small(of order 0.1%), whereasdkp-p

depends more strongly ondx. This can be modeled by allow-
ing only gp-p to vary with dx, while keeping«1/g and«2/g
constant. In this way, the dependence ofTsEFd on dx yields
the dx dependence ofgp-p and vice versa.

To demonstrate this, we use theab initio results of Fig.
2(d) for dkp-p, to determinegp for eachdx. For the clean
limit, wherega/g=gb/g=1, choosing«1 and«2 to yield the
correct zero-couplingp-band structure nearEF, shown in
Fig. 2, and substituting these into Eq.(3), yields the analytic
results shown in Figs. 3(c), 3(d), 4(c), and 4(d). These dem-
onstrate that the above analysis based onp-p scattering
yields good agreement with a first-principles description, and
therefore, the nonmonotonic behavior in the conductance as
a function ofdx can be used to extract the electronic inter-
wall coupling from conductance measurements.
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