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Making use of a variational approach to Kohn-Luttinger superconductivity, we study the superconducting
state of two coupled CuO2 planes. The bilayer is described in terms of at-t8 Hubbard model with weak
interplane hopping. For parameters relevant to overdoped cuprates, we find a substantial increase of the mean
field transition temperatureTc, when compared with the single layer model. This increase is driven by the
enhanced density of states of the bilayer.
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High temperature superconductivity occurs in a large
class of layered compounds, whose common structural ele-
ments are the CuO2 layers. The compounds differ in the
chemical composition of the layers separating these basic
structural elements. Materials with similar chemistry of the
separating layers are usually grouped into families. The com-
pounds within a given family may be further classified ac-
cording to the numbern of closely spaced CuO2 layers.
Within a given family, the transition temperatureTc for op-
timally chosen doping is an increasing function ofn for
n,3, the functionTcsnd acquires a maximum forn=3, and
for n.3 it decreases.1

Recent experiments2 indicate that fornù3 the doping
levels of the CuO2 planes are not equal: the inner layers are
underdoped, while the outer layers are overdoped. Since the
functionTcsnd for nù3 depends on the precise magnitude of
the charge disproportionation, in this paper we do not con-
sider this region and concentrate only onn=1 and 2. We just
note in passing that only phenomenological theories have
been proposed for differently doped CuO2 planes: Kivelson
has predicted an increase ofTc in such a situation, based on
the picture that the overdoped layers provide an increased
phase stiffness, while the underdoped layers exhibit an en-
hanced pairing scale.3 On the other hand, Chakravartyet al.
have explained the observed shape ofTcsnd within a phe-
nomenological picture4 with three assumptions:(i) different
doping levels of the CuO2 planes,(ii ) competing order pa-
rameters within a plane, and(iii ) the contribution of inter-
layer tunneling to the energy is negligible in the normal state.

The last assumption of Chakravartyet al. which guaran-
tees the increase ofTc betweenn=1 and 2 is in fact the
basic assumption of Anderson’s interlayer tunneling theory,5

which stimulated a large body of experimental and theoreti-
cal work on the coupling between the CuO2 planes.6 In
its original formulation, Anderson’s theory described the
superconducting transition as being driven by kinetic energy
gain in thec axis direction. However, it has been shown later
that the interlayer contribution is only a small part of
the condensation energy in single layer compounds.7 There-
fore interlayer tunneling cannot be regarded as the main driv-
ing force for Tc, but nevertheless it does contribute to an
enhancement ofTc.

As a first step towards a fully microscopic theory ofTcsnd,

we will study in this paper theTc of a bilayer system as a
function of the bilayer coupling. We have chosen to study
overdoped systems, which have long been suspected to be-
have as Fermi liquids in their normal state. Recent experi-
ments put this hypothesis on a much more solid basis. In
particular, it has been shown that the Wiedemann-Franz law
is obeyed in the overdoped state of Tl2201,8 and also theT2

scaling of the resistivity(both in plane and out of plane) has
been established in overdoped La2−xSrxCuO4.

9 Moreover,
very recently the angular dependence of thec-axis magne-
toresistance has been shown to agree with the assumption of
coherentc-axis transport in overdoped Tl2201.10 This latter
conclusion is consistent with the recent results of angle-
resolved photoemission spectroscopy in Bi2212, which also
provide evidence for a coherent bilayer splitting.11

On the theoretical side, the old prediction that the super-
conducting instability is a generic property of Fermi liquids
at low temperatures12 has been recently reformulated in a
way enabling quantitative characterization of the properties
of Kohn-Luttinger superconductors within a well-controlled
approximation which becomes essentially exact in the weak-
coupling limit.13 In the present paper we apply this technique
to the study of superconductivity in a bilayer system.

Based on the results of angle-resolved photoemission
spectroscopy,11 it is well established by now that the minimal
model reproducing the experimentally observed shape of the
Fermi surface in the cuprates is a two-dimensionalt-t8 Hub-
bard model with the in-plane dispersion«k =−2tscoskx

+coskyd+4t8 coskx cosky. As pointed out recently, the
ratio t8 / t is family dependent.14 A reasonable estimate for
Bi-based cuprates we are interested in here ist8 / t=0.3.

The quantum chemistry of the cuprates dictates that
the hopping of electrons between the planes of a bilayer
is described in real space by the Hamiltonian15

H'=−t'SisSdtsdst sais
† bi+d+t,s+h.c.d, where ais and bis

annihilate an electron at the lattice sitei with spin s
in the upper and lower layer, respectively. The indices
d ,t denote nearest neighbor directions on the two-
dimensional square lattice,s±1,0d ands0, ±1d, and the func-
tion ss±1,0d=−ss0,±1d=1 respects thedx2−y2 symmetry of the
Zhang-Rice orbital. Introducing bonding and antibonding
combinationscis

0 =sais+bisd /Î2 andcis
p =sais−bisd /Î2, and

performing the in-plane Fourier transformation one finds that
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the bonding and antibonding energies are«k
0=«k −Vk and

«k
p=«k +Vk, respectively, whereVk =4t'scoskx−coskyd2.

Thus the splitting between the bonding and antibonding
bands atk =sp ,0d is 32t', which should be compared with
the experimental value, 88 meV.11 If we take t,500 meV,
this leads to the estimatet' / t,0.005, a value to be used in
most of our calculations. More generally, within thet-t8
Hubbard model witht8 / t=0.3 andr=0.8, the correct topol-
ogy of the antibonding Fermi surface is obtained for
t' / t,0.0065.

Before starting the full calculation, let us first present a
simple argument for the condensation energy gain due to
bilayer splitting, DEcond=Econdst'd−Econds0d, where
Econdst'd=ESst' ,m4d−ENst' ,m2d and Econds0d=ESs0,m3d
−ENs0,m1d. Note that in general the chemical potentialsmi

of the superconductingsSd and normalsNd states with or
without bilayer coupling are different. For the sake of sim-
plicity, let us for the moment consider a featurelesss-wave
superconductor with an isotropic bilayer splittingt'. Let us
furthermore assume that the system is particle-hole symmet-
ric, i.e. the density of statesNsvd is an even function of the
deviationv from the Fermi level. In that case all chemical
potentials are equal,mi =m, andEcondst'd is given by

−E dvfNsv + t'd + Nsv − t'dg
sÎv2 + D2 − uvud2

2Îv2 + D2
.

Expanding to second order int', we find from here that
DEcond=−N9s0dt'

2 D2/2. This means that for a featureless
density of states, the bilayer coupling does not lead to a gain
of condensation energy andDEcond=0, as pointed out already
by Chakravarty(see Ref. 16 and references therein). How-
ever, for a nontrivial density of states, this is not true any-
more. Remarkably, our weak-coupling result is consistent
with the strong-coupling point of view4 according to which it
is the normal state pseudogap[compatible withN9s0d.0]
which leads to a suppression ofuDENu with respect touDESu.

For band fillings slightly above the Van Hove density(the
latter corresponding to the chemical potential«VH), we have
Ns0d~ lnfL / sm−«VHdg from where it follows thatN9s0d.0
and the bilayer should gain condensation energy. Unfortu-
nately, sinceN8s0dÞ0, the above argument cannot be di-
rectly applied. However, we will see that the complete solu-
tion does lead to a stabilization of the superconducting state
on a bilayer.

Let us proceed now with the full calculation. When writ-
ten in momentum space, the Hubbard model on a bilayer
with L= l 3 l 32 sites, assuming periodic boundary condi-
tions, reads as

H = Hkin +
U

L
o

k1ak2bk3g

8
ck1a↑

† ck2b↑ck3g↓
† ck4d↓, s1d

whereHkin=Skas«k
ackas

† ckas and the indicesa ,b ,g ,d take
on the values 0 andp. The prime in the sum means that
momentak4 andd are determined by momentum conserva-
tion, k1+k2=k3+k4 anda+b=g+d (where we take 2p=0).
Note that the Hamiltonian equation(1) has the same form as

for a simple square lattice, if we identifyskad as a three-
momentum.

Since the method of Ref. 13 does not depend on the di-
mensionality, we can directly translate its results to the
present case. In particular, the model, Eq.(1), supports su-
perconductivity, if a nontrivial order parameterDk

a can be
found which solves the gap equation

Dk
a = −

1

L
o
pb

Vkp
abDp

b tanhsEp
b/2Td

2Ep
b . s2d

In Eq. (2) we introduced the quasiparticle enegyEp
a=fsjp

ad2

+ uDp
au2g1/2, where jp

a=«p
a−m. The effective interaction is

given byVkp
ab=U+U2xa+bsk +p ,«p

a−«k
bd, where

xgsq,vd =
1

L
Reo

Ka

fK
a − fK+q

a+g

«K+q
a+g − «K

a − v − i0
s3d

can be effectively calculated making use of the Fast Fourier
Transform algorithm.17 Note that the interaction matrix is
real and symmetric,Vkp

ab=Vpk
ba.

It is worth pointing out that, since we are constructing a
theory for the weak coupling limit of Eq.(1), we have as-
sumed that Cooper pairing occurs only between states related
by time reversal symmetry. In particular, this means that no
pairing is allowed between bonding and antibonding states.
A gap equation of the same form as Eq.(2) has been derived
previously by O’Donovan and Carbotte,18 but these authors
used a phenomenologicalVkp

ab based on the spin fluctuation
exchange mechanism.

In Fig. 1 we plot the superconducting transition tempera-
ture Tc (obtained numerically following Ref. 13) as a func-
tion of t'. In order to reduce the finite size effects, in Fig. 1
we also plot the fit toTcst'd=Tcs0d+vst' / td2. This expres-
sion is obtained by noting thatTcst'd should be an even
analytic function oft'. We findv.0 and therefore we con-
clude thatTc is an increasing function oft', in qualitative
agreement with experiment.

In Fig. 1 we also plot the zero temperature condensation
energy per lattice site,Econd=−L−1SkasEk

a− ujk
aud2/2Ek

a. It is
worth pointing out that in the presence of a finitet' the
superconducting state gains more energy with respect to the
normal state, in agreement with the result forTcst'd. Note
that the contribution of the antibonding band toEcond is
larger than that of the bonding band and that its relative
weight grows witht'. This raises the question whether the
gaps in the two bands are equal or not. In Fig. 2 we plot the
density of states,

Nsvd = L−1o
ka

fsuk
ad2dsv − Ek

ad + svk
ad2dsv + Ek

adg,

wheresuk
ad2, svk

ad2=s1±jk
a /Ek

ad are the usual coherence fac-
tors. Figure 2 shows that the gaps in the bonding and anti-
bonding bands are of a very similar magnitude. This means
that the difference of the contributions of the two bands to
Econd is caused dominantly by the different normal state den-
sities of states(see the inset in Fig. 1), in accord with the fact
that the antibonding Fermi surface is closer to the saddle
point atsp ,0d. The fact thatEcond

p /Econd
0 grows faster witht'

J. MRÁZ AND R. HLUBINA PHYSICAL REVIEW B 70, 144529(2004)

144529-2



than Nps0d /N0s0d can be explained as follows. The
condensation energy can be written as a Fermi surface
average Econd

a <−s16p2"d−1rdksDk
ad2/vk

a, whereas the
density of statesNas0d~ rdk/vk

a. Therefore for equal and
isotropic bonding and antibonding gaps we should have
Econd

p /Econd
0 =Nps0d /N0s0d. Now let us notice two facts:(i)

the Fermi velocityvk
a is small in the antinodal region, and(ii )

vk
a is more strongly modulated in the antibonding band than

in the bonding band. From these facts it follows that regions
with large values ofD have a larger relative weight in the
antibonding than in the bonding band, in agreement with the
inset in Fig. 1.

The small difference between the gaps in the bonding and
antibonding bands demonstrated by Fig. 2 is in qualitative
agreement with recent ARPES experiments. In view of the
large increasedTc/Tc, this weak dependence on the band
indexa is a surprising feature, which can however be under-
stood within the following simple model. Consider two fea-
turelesss-wave superconductors on a bilayer. AtT=0, the
gap equation can be written as

Da =
1

2o
b

gabDb ln
V

Db

, s4d

where D0,p are the gaps in the bonding and antibonding
bands and the coupling constantsgab are estimated as

g00 = N0s0dV0 = s1 + e + d1dg,

g0p = Nps0dVp = s1 − e + d2dg,

gp0 = N0s0dVp = s1 + e + d2dg,

gpp = Nps0dV0 = s1 − e + d1dg,

whereV00=Vpp=V0 andV0p=Vp0=Vp are the intraband and
interband interactions, respectively. Now we assume that in
the absence of bilayer splitting the coupling constant reads as
g=Ns0dV and that in the presence of a finitet' the deviation
of the interactionsV0 andVp from V is Ost'

2 d, whereas the
deviation ofN0,ps0d from Ns0d also contains linear terms in
t' (of opposite sign for the bonding and antibonding bands).
From here the last equations forgab follow immediately,
with e=Ost'd anddi =Ost'

2 d.
A straightforward calculation shows that under such con-

ditions the maximal eigenvalue of the matrixgab /2 changes
from g to g+dg with dg/g=sd1+d2d /2 and therefore from
the scalingTc~exps−1/gd we find that the relative change of
Tc is dTc/Tc<dg/g2. Moreover, from Eq.(4) it follows that
the bonding and antibonding gaps change with respect to the
gap of isolated layers,D, but they remain equal to each other,
D0=Dp=s1+dg/g2dD. The renormalization ofTc (or, equiva-
lently, of the gap) can be large even for small relative
changesdg/g, sinceg!1 at weak coupling. In fact, from the
fits in Fig. 1 we findg<0.157 for t'=0 andg<0.177 for
t' / t=0.005, implying dTc/Tc<0.8, in an order-of-
magnitude agreement with the main panel in Fig. 1.19

Before proceeding it is worth pointing out that, within the
present weak-coupling theory, the magnitude of the relative
increasedTc/Tc due to finite interlayer coupling depends on
the interaction strengthU, the effect being most pronounced
at weak coupling, since bothdg and g scale withU2. The
present weak coupling theory cannot be directly compared
with experiments, since forU=4t the single layer transition
temperature is onlyTc<7 K. As an order-of- magnitude es-
timate, in Ref. 13 we have applied our theory outside its
well-controlled range of applicability and we found that for
U=6t the gap is<9310−2t, slightly larger than the experi-

FIG. 1. (a) Superconducting transition temperatureTc and (b)
condensation energy per lattice site as functions oft' / t. The data is
calculated forr=0.8, t8 / t=0.3, andU / t=4 on special lattices(Ref.
13) with L=5123512. The error bars are estimated from the dif-
ference with respect to the 2563256 data. The dotted line in(a) is
a fit to Tcst'd=Tcs0d+vst' / td2. The inset in(a) shows the maximal
eigenvaluelsTd and its fit tog lnsV /Td for t' / t=0 and 0.005. In
the inset in(b) we plot the relative contributions of the bonding and
antibonding bands to the condensation energy and to the normal
density of states.

FIG. 2. Density of states per lattice site(in units of t−1) at
T=0. The bonding and antibonding contributions att' / t=0.005 are
denoted 0 andp, respectively. The curves are calculated for
r=0.8, t8 / t=0.3, and U / t=4, linearly interpolating theL=512
3512 data toL=819238192. The delta functions were given a
finite width g / t=1310−4.
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mental value. From the scaling sdTc/TcdU=6t

<sdTc/TcdU=4t /1.52 and from the data in Fig. 1 we thus ob-
tain the estimatesdTc/TcdU=6t<0.16. This estimate compares
well with the experimental data for the Tl2Ba2Can−1CunO2n+4
and HgBa2Can−1CunO2n+2+d families (for a compilation, see
Ref. 20), whereTcsn=1d=90 K, Tcsn=2d=110 K, dTc/Tc=0.22
andTcsn=1d=95 K, Tcsn=2d=114 K, dTc/Tc=0.2, respectively.

At t'=0.005t the total density of states of a bilayer in-
creases with respect to itst'=0 value by dNs0d /Ns0d
<0.07, which is of the same order of magnitude as
dg/g<0.13.19 Moreover, Fig. 3 shows explicitly that(in the
most important static limit) the intraband and interband in-
teractions change only little with respect tot'=0. The largest
change occurs in the even channel in the vicinity of theG
point, again due to an increase of the density of states. Sum-
marizing the above evidence, we conclude that the coupling
constant increase is driven by the increased density of states
of the bilayer. This is in agreement with our qualitative ar-
gument that condensation energy is gained forN9s0d.0. Let
us also emphasize that the increase ofTc under interlayer
coupling is a nonuniversal feature of Eq.(4) and of the mi-
croscopic model Eq.(1), which are therefore different from
the case discussed previously by O’Donovan and Carbotte.18

In order to gain further insight into the nature of the pair-
ing state, let us finally consider the pairing functions:21

Fij
ab = o

s

skci−s
a cjs

b l = dab

2

Lo
k

Dk
a

Ek
a cosk ·Ri j , s5d

where i, j are lattice sites of a single plane connected by
the vector Ri j , and a, b distinguish the bonding and
antibonding bands. Going back to the representation in
terms of the upper and lower layers, let us define
Fij

aa=oskai−sajsl, Fij
ab=oskai−sbjsl, and similarly alsoFij

ba

and Fij
bb. If we define in-plane and interplane pairing func-

tions Fij
i and Fij

', respectively, then from Eq.(5) it follows
that Fij

i =Fij
aa=Fij

bb=sFij
00+Fij

ppd /2 and Fij
'=Fij

ab=Fij
ba=sFij

00

−Fij
ppd /2. Figure 4 shows the normalized in-plane and inter-

plane pairing functions,Fi j
i,'=Fij

i,' /Îo juFij
i,'u2. Let us dis-

cuss first the in-plane pairing function. Its tails are located
close to the nodal directions and this is qualitatively consis-

tent with a model calculation for ad-wave superconductor
with a circular Fermi surface with radiuskF, Fermi velocity
vF, density of statesNs0d, BCS cut-offv0, and a gap func-
tion Dw=D cos 2w. In fact, the model calculation predicts
that at intermediate distanceskF

−1! r !vF /D the pairing
function reads as

Fsr,wd <Î 8

p
Ns0dDw

cosSkFr −
p

4
D

ÎkFr
ln3 jw

maxS vF

2v0
,rD4 ,

wherejw=vF / uDwu is an angle-resolved coherence length.
Note also the large peaks ofFij

i at the four nearest neigh-
bor sites. This is a generic result close to half filling, valid
also for a single plane. Both our numerical data and the
model calculation for ad-wave superconductor show that the
total weight of the pairing functiono juFij u2=2Ns0dD is dis-
tributed in a radius,vF /D. It is remarkable, however, that
<0.18 of this weight is localized at the four nearest neighbor
sites, which is definitely an unexpected result at weak cou-
pling.

The out-of-plane pairing functionFij
' exhibits the same

overall shape asFij
i , but all features are smeared with respect

to the in-plane pairing function. In particular, the four sharp
nearest-neighbor peaks are replaced by a checkerboard pat-
tern of Fij

' at small distances. These features can be qualita-
tively explained within perturbation theory with respect to
t'. In fact, consider first-order corrections to the wavefunc-
tion. One of the electrons forming an in-plane Cooper pair
can hop into the neighboring plane of the bilayer. Since the
interlayer hopping is nonlocal(hopping occurs between sites
with in-plane coordinatesi andi +d+t), the delocalized form
of Fij

' follows. Moreover, sincei and i +d+t belong to the
same sublattice, the checkerboard pattern of the inter-plane
pairing function follows from the four nearest neighbor
peaks of the in-plane pairing function.

Let us estimate the region of applicability of perturbation
theory in t'. Assuming that the inter-plane coupling is
16t' cos2 2w and neglecting the difference betweenDk

0 and
Dk

p, the ratio of the total weights of the inter-plane and in-
plane pairing functions can be estimated within the model

FIG. 3. Even sg=0d and odd sg=pd static susceptibilities
xgsq ,0d along the symmetry lines of the Brillouin zone. The param-
eters are the same as in Fig. 2. The odd component att' / t=0.005 is
very close to the single layer susceptibility(not shown for clarity).

FIG. 4. Absolute values of the normalized pairing functionsuFi j
i u

(left panel) and uFi j
'u (right panel, magnified by a factor 5) as func-

tions of the vectori − j . The parameters are the same as in Fig. 2.
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calculation for ad-wave superconductor aso juFij
'u2/o juFij

i u2
= 1

3s8t' /Dd2. This shows that perturbation theory is quantita-
tively accurate fort'!D. Let us note in passing that in the
opposite limitt'@ t, only the bonding band is occupied and
Fij

pp=0. Therefore our weak coupling formalism predicts
Fij

'=Fij
i in that case. The data presented in Fig. 4 correspond

to the crossover regiont',D and that is why we obtain
o juFij

i u2=0.00634 ando juFij
'u2=0.00462.

Before concluding let us recall that the increased density
of states of the bilayer is due to the vicinity of the antibond-
ing band to the Van Hove density. However, single layer
systems close to the Van Hove density are expected to sup-
port magnetic instabilities.22 This opens the question about
the competition between superconductivity and magnetism
on a bilayer which will not be addressed here.

In conclusion, we have studied the pairing transition
within the Hubbard model on a bilayer. For parameters rel-
evant to overdoped cuprates, we have found a substantial
increase of the mean field transition temperatureTc, when
compared with the single layer model. Within our weak cou-
pling formalism, this increase is due to the enhanced total
density of states in the presence of bilayer splitting.
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