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We study the evolution of the superconducting state in a perforated disk by varying the size of the hole. The
superconducting properties are investigated by means of transport measurements around the superconducting/
normal phase boundaryTcsHd. A transition from a one-dimensional to a two-dimensional regime is seen when
increasing the magnetic field for disks with small holes. A good agreement is found between the measured
TcsHd line and the calculations performed in the framework of the linearized Ginzburg-Landau theory. The
effect of breaking the axial symmetry of the structure by moving the hole away from the center of the disk is
also studied. An enhanced critical field is found for the asymmetric structures, possibly due to the recovery of
the singly connected state.
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I. INTRODUCTION

The fluxoid quantization constraint in superconducting
loops structures gives rise to the well-known periodic
Little-Parks1 oscillations in theTcsHd phase line. The con-
finement of the superconducting condensate in mesoscopic
structures leads to interesting new phenomena that are
strongly dependent on the geometry and the topology of the
structure.2

While the limiting cases of a superconducting disk3–8 or a
thin loop1,2,9–14 have been broadly studied experimentally
and theoretically, the intermediate case is not. The latter is
also closely related to the problem of a thin film exposed to
a parallel magnetic field.15,16 In this situation, a quasi-one-
dimensional(1D) behavior, characterized by a parabolic de-
pendence of theTcsHd phase line, was predicted by Saint-
James and de Gennes15 as long as the thicknesst [in units of
jsTd] is smaller than approximately two. Above this value,
the two surface superconducting sheaths are separated by a
normal region, and a linearTcsHd dependence is observed,
typical for a two-dimensional(2D) system in a perpendicular
field. At this dimensional crossover pointst=1.84d, vortices
start to nucleate in the sample.17,18

In their pioneering experiment, Little and Parks1 studied
the field-temperatureH-T phase diagram of a thin-wire loop
in an axial magnetic field. A periodic component in the ex-
perimentalTcsHd line was found. In the framework of the
nonlinear Ginzburg-Landau(GL) theory, Berger and
Rubinstein10,11 studied mesoscopic superconducting loops.
They have predicted that, if the thickness of the loop is not
exactly uniform, then there exist situations for which super-
conductivity is suppressed at a certain location, so that the
superconducting loop effectively becomes singly connected
and no supercurrent flows. When this happens, the sample is
in the so-called “singly connected state.” However, Vodola-
zov et al showed that the state where the order parameter
vanishes at one point is still doubly connected since the
phase of the order parameter is not independent on both sides
of the place where the order parameter is zero. They sug-
gested to call this state a one-dimensional vortex state.

The intermediate case of finite width loops was studied
within the London theory by Bardeen.19 He calculated that
the flux is quantized in units ofnF0 (with n,1) in cylinders
of very small diameters and with a wall thickness of the
order of the penetration depth. It was later calculated that the
flux through an areaS=prm

2 is quantized in units ofF0, with
rm=sr i +rod /2 the arithmetic mean of the innersr id and outer
srod radius.20 Arutunyan and Zharkov21 determined in the
London limit an effective radius ofreff=Îr iro such that inside
this ring, the flux was exactly quantized. These two different
valuesrm and reff are nearly identical for the narrow ring.
Baeluset al.22 found that the value ofr i , reff, ro was de-
pendent on the vorticityL and in factreff turns out to be an
oscillating function of the magnetic field.

A self-consistent treatment of the full nonlinear GL equa-
tions for a square loop has been carried out by Fominet
al.23,24The order parameteruCu distribution was found to be
strongly inhomogeneous due to the presence of sharp cor-
ners. The precise shape of theTcsHd curve crucially depends
on the area fraction for whichTcsHdÞ0.

Bruyndoncxet al.25 investigated infinitely thin loops of
finite width using the linearized GL equation. The induced
magnetic field can be neglected in this case. They limited
their investigations to circular symmetric solutions so that
only the giant vortex state was studied. Berger and
Rubinstein26 also considered infinitely thin loops of finite
width using the nonlinear GL theory, neglecting the induced
fields.

Baelus et al.22 analyzed circular flat disks of nonzero
thickness with a circular hole in it. They also investigated the
case where the hole is shifted off the center of the disk. The
superconducting properties were studied also deep in the su-
perconducting state. For small superconducting disks with a
hole in the center, they found only the giant vortex state. The
influence of the radius of the hole on the superconducting
state was considered. For larger holes in perforated super-
conducting disks, a reentrant behavior was seen, where a
transition from the giant vortex state to a state with separated
vortices and back to the giant vortex state was found.

Recently, Pedersenet al.27 investigated experimentally the
magnetization of a mesoscopic loop. The periodicity ob-
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served in the magnetization measurements reveals a sub
flux-quantum shift. This fine structure was interpreted as a
consequence of a giant vortex state nucleating towards either
the inner or the outer side of the loop.

This experiment has lead to a recent growing interest in
the mechanism of flux transition in superconducting
loops.13,28,29Multiple flux jumps and irreversible behavior of
the magnetization were observed in thin mesoscopic rings by
Vodolazovet al.30 At low magnetic field and for rings with
sufficiently large radii, they showed experimentally and theo-
retically, using the time-dependent GL theory, that the vor-
ticity may change by values larger than 1.

The existence of a zero-current line in mesoscopic super-
conducting rings has been found both theoretically10 and
through experimental observation of self-generated weak
links.31 It was suggested in Ref. 32 that a system of asym-
metric loops can be used as noise detector or as source of
high frequency radiation.

Beyond the vortex and the giant vortex configurations, the
ringlike vortex solutions of the GL equations in supercon-
ducting mesoscopic devices were investigated.33–35Those so-
lutions possess a unique winding number in the whole ring,
but the order parameter vanishes on one or more cylindric
surface. For a nanosized Pb bridge, it has been reported that
the vorticity varies along the axis of the bridge.36 Solving
self-consistently the nonlinear GL equations for a mesos-
copic superconducting ring, Zhaoet al.37 obtained solutions
with different vorticity inside and outside the zero-current
line at a certain radius. They, however, did not consider the
phase coupling of the order parameter between the two su-
perconducting parts of the ring separated by the zero-current
line.

The paramagnetic response for a stable configuration of a
mesoscopic ring has been studied in Ref. 38. They found an
oscillation of the order parameter density profile when
changing the vorticity.

Using ultrasensitive susceptibility techniques and scan-
ning Hall probe microscopy Davidović et al.39,40 have stud-
ied arrays of electrically isolated superconducting meso-
scopic rings. When these rings are biased in an external flux
of F0/2, they can be in either of two energetically degener-
ated fluxoid states. The magnetic moments produced by the
supercurrents in these rings are analogous to Ising spins, and

neighboring rings interact antiferromagnetically via their di-
polar magnetic fields. The ring dynamics is dominated by an
energy barrier between the two states which rises rapidly as
the temperature is lowered belowTc.

In this paper we shall study the systematic variation of the
superconducting phase boundaryTcsHd in perforated disks
with different r i / ro ratios, which realize a crossover from the
singly connected disk to the limit of the thin ring. The rest of
the paper is arranged as follows: in Sec. II, we will study the
evolution of the superconducting state for the transition from
a disk geometry to a thin ring. The superconducting proper-
ties of the disks with a hole in the center will be analyzed by
transport measurements carried out around the
superconducting/normal transition line. In Sec. III, the effect
of breaking the axial symmetry of the structure by shifting
the hole off the center of the disk will be discussed. The
onset of dissipation belowTcsHd will be studied in Sec. IV.

II. SUPERCONDUCTING RINGS

A. Sample properties

A SEM micrograph of the different studied samples pre-
pared withe-beam lithography is given in Fig. 1. All the
structures consist of disks with external radii ofro=1 mm.
The radii of the holes(Fig. 1, determined from SEM micro-
graph, werer i =0 mm [Fig. 1(a)], r i =0.1 mm [Fig. 1(b)], r i
=0.3 mm [Fig. 1(c)], r i =0.5 mm [Fig. 1(d)], and r i
=0.7 mm [Fig. 1(e)]). All the samples were evaporated in the
same run, except for the thinnest loop. A different evapora-
tion will only slightly alter the superconducting properties
like the coherence length and the critical temperature. Wedge
shaped contacts with opening angleG=15° are used in order
to minimize the influence of the contacts on the supercon-
ducting properties of the structures.41,42 The coherence
length determined from a macroscopic coevaporated sample
was found to bejs0d=156 nm for the disk and the three
loops with a small opening. The thickness wast=39 nm. For
the sample presented in Fig. 1(e), a coherence length of
js0d=120 nm was determined in the same way as for the
other structures. A thickness oft=54 nm was found from
low angle x-ray diffraction on a coevaporated film and from
AFM for the loop with r i =0.7 mm. TheH-T phase diagram
is constructed by four-point resistance measurements using
an ac transport current of 0.1mA. The phase boundary is
determined from a set of magnetoresistance curves measured
at various temperatures using a certain resistance criterion
Rc.

B. Resistance transitions

The superconducting/normal resistance transitions for the
disk and the rings with a different inner to outer radius ratio
x=r i / ro are shown in Fig. 2. The five different samples have
a very similar temperature dependence of the resistance at
different magnetic field as the samples with wedge shaped
contacts with opening angleG=15° presented in Ref. 42.
They are characterized by a slowly decreasing resistance at
high temperatures arising from the nucleation of supercon-
ductivity in the wedge contacts, followed by a sharp drop of

FIG. 1. SEM micrograph of(a) an Al disk with outer radius
ro=1 mm and of a loop with outer radiusro=1 mm and inner radius
(b) r i =0.1 mm, (c) r i =0.3 mm, (d) r i =0.5 mm, and(e) r i =0.7 mm.
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the resistance once superconductivity nucleates in the ring.
Only small differences are seen in the amplitude of the re-
sistance overshoot observed at certain magnetic fields. It is
probably due to small differences in the shape of the contacts
that are responsible for the appearance or not of the resis-
tance anomaly created by a charge imbalance around
superconducting/normal interfaces. The samples withx=0.3,
x=0.5, andx=0.7 show a different behavior at low magnetic
fields. There, the situation is reversed. A sharp transition is
first observed, followed by a broad transition at low resis-
tance. We will show below that the broad transition also
corresponds to the nucleation in the wedges. This effect is
observed in a broader magnetic field range when the ratiox
increases.

A sharper transition at high magnetic fields is seen in the
resistance transition of the thinnest ring. It is difficult to ex-
tract from the measurements if this is caused by the smaller
coherence length or by the geometry of the sample.

C. Tc„H… phase boundaries

The experimental phase boundary of the disk is presented
in Fig. 3(a). The results are compared with theoretical calcu-
lations of the nucleation fieldHc3

* sTd (full line in Fig. 3) by
Bruyndoncxet al.25 A very good agreement between the cal-
culated and the measured curve is seen. Only a slightly lower
coherence lengthfjs0d=130 nmg than the one found for a
reference macroscopic samplefjs0d=156 nmg had to be
used for the experimental data.

The data for the ring withx=0.1 are shown in Fig. 3(b).
The flux F on the field axis denotes the fluxF=m0Hpro

2

through the ring and the hole. TheH-T diagram of the ring
with the smallest hole resembles strongly theTcsHd line of
the disk displayed in Fig. 3(a). The phase boundary has a
linear background superimposed with oscillations. A very
good agreement between the measured and the calculated
curves is found.

FIG. 2. Resistive transitions
RsTd for (a) a disk and for a loop
with inner to outer radius ratio(b)
x=0.1, (c) x=0.3, (d) x=0.5, and
(e) x=0.7 in different magnetic
fields. The dashed and dotted lines
show the resistance criteria used
to determine the TcsHd phase
boundary.
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Figure 3(c) shows theH-T diagram of the ring withx
=0.3. Here, the linear dependence is only seen for vorticity
L.4. At lower magnetic field, a parabolic background sup-
pression ofTc is observed. The crossover from the linear to
the parabolic regime occurs atpro

2/j2sTd<20. This corre-
sponds to a valuero−r i <1.8jsTd, which is in a good agree-
ment with the thicknesst=1.84jsTd for a crossover from a
1D to a 2D regime for a thin film in a parallel magnetic
field.17,18

A good agreement with the position of the cusps in the
theoretical curve has been found. The amplitude of the oscil-
lations in the experimental curve deviates slightly from the
calculated one. AtL=1, between the first and the second
TcsHd cusps, the experimental oscillation is less pronounced.
For higher vorticity, the opposite situation is seen where the
amplitude of the experimental oscillations is larger than in
the theoretical curve.

The penetration of the first vortex in the ring occurs at a
lower magnetic field value than for the ring with the smallest
hole [see Fig. 3(b)], while the transitionsL=1↔2 to L

=5↔6 occur at a higher magnetic field. That the transitions
take place at lower magnetic field value for a ring with thin-
ner lines is expected since the transition betweenL and L
+1 occurs atF /F0=L+1/2 for an infinitely thin loop or
cylinder. At higher magnetic fields, a giant vortex state is
formed25 and the disk with a small hole in the center behaves
similar to the disk without hole. This, however, cannot fully
explain why the change in vorticity is delayed at high mag-
netic fields by introducing a small hole in a disk.

The measuredTcsHd phase boundary of the ring with ratio
x=0.5 is shown in Fig. 3(d). In the temperature range acces-
sible with our experimental setup, only a parabolic back-
ground dependence of the critical temperature on the mag-
netic field has been measured. By comparing the
experimental results with the calculations, a similar behavior
as for the ring withx=0.3 is seen. The position of the cusps
in the experimental curve matches with the calculated tran-
sitions. However, no good agreement is found for the ampli-
tude of the oscillations. For the vorticitiesL=1 and 2, the
amplitude is lower in the experimental curve, while for
L.3, the amplitude is larger. At lowL, the transition be-

FIG. 3. ExperimentalTcsHd
phase boundary of(a) a disk and
for a loop with inner to outer ra-
dius ratio(b) x=0.1,(c) x=0.3,(d)
x=0.5, and(e) x=0.7. The open
squares[and the open circles in
(e)] represent the measured data.
The experimental TcsHd phase
boundaries of the different struc-
tures are compared in(f).
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tween states with different vorticities occurs at a lower mag-
netic field than for the disk, while the transitionsL=3↔4,
L=4↔5, andL=5↔6 take place at a higher magnetic field,
similar to what was observed for the ring withx=0.3.

The H-T diagram of the ring with the thinnest linesx
=0.7d is shown in Fig. 3(e). Two experimental curves are
presented, one forRc=0.5Rn (open squares) and the second
for Rc=0.8Rn (open circles). It can be seen that at a higher
resistance criterion the parabolic dependence switches to a
linear regime at high magnetic field. For the curve calculated
with the low resistance criterion, a quasiparabolic back-
ground suppression ofTcsHd is observed over the whole
measured range. The amplitude of theTcsHd oscillations is
larger than in the samples with smallerx and the transition
between states with different vorticities is almost periodic in
field. A good agreement between the theoretical curve and
the experimental curve withRc=0.5 Rn is seen at high mag-
netic fields. At lower magnetic fields, a good agreement is
found when using a higher resistance criterion.

The phase boundaries of the four different loops are com-
pared with the critical temperature of the disk in Fig. 3(f). All
the curves overlap with each other forL=0. It is interesting
to note that an opening in the disk does not affect the phase
boundary as long as no vortex is trapped inside the supercon-
ductor. Only the magnetic field range over which the state
with L=0 exists at the phase boundary is lowered by intro-
ducing a hole in the disk. TheTcsHd line of the disk with the
smallest hole in the middle does not deviate substantially
from the phase boundary of the disk without any opening.
Only small changes in the position of the cusps are observed
at low vorticity. For larger holes, the crossover from 2D to
1D regime is clearly seen. The samples with the thinnest
lines do not show the 2D regime in the studied temperature
interval and only the parabolic dependence is seen.

In order to reveal the origin of this different behavior at
low and high magnetic field, a contour plot of the resistance
RsH ,Td is presented in Fig. 4. Two different parts are clearly
distinguished. Below 10 mT, the low resistance is linear,
while the high resistance exhibits a parabolic background

superimposed with oscillations. Above 10 mT, the opposite
situation occurs, where the low resistance has a parabolic
decay with small oscillations while the high resistance de-
creases monotonously. The parabolic part coincides with the
nucleation of superconductivity in the loop shown as a full
line. The linear part arises from the nucleation in the wedge
contacts.

By fitting the theoretical critical temperature of a wedge
with opening angleG=15° to the linear part of the contour
plot (dashed line), a coherence lengthjs0d=140 nm is ob-
tained. This differs from the coherence lengthjs0d
=110 nm that was used to find a good agreement between
the experiment and the theoretical curve of a loop. A possible
origin of this discrepancy could be a width of the loop that
has been evaluated to be smaller than the real size. An esti-
mate of the thickness that would satisfy the coherence length
used for the calculation of the wedge contacts can be ob-
tained from the analysis of the nucleation field of a thin wire
of a film in a parallel magnetic field. From the calculation of
the nucleation field of a thin film in a parallel field,43 a value
for the width of the loop of 0.38mm is obtained instead of
0.3 mm found from SEM measurements. This difference is
too large to be explained only by an error in the character-
ization of the sample. The opening angle of the contacts can
be determined with a high accuracy so that a divergence
arising from a wrong determination ofG could be excluded.
It means that either the nucleation of superconductivity is
delayed in the wedges due to the presence of the loop or that
the nucleation in the loop is enhanced by the contacts. It is
also possible that the coherence length in the loop is slightly
different from that in the wedge. The sample geometry can
indeed affect the superconducting parametersl and j in a
structure of mesoscopic size similar to the case of a thin film
where the effective penetration depth increases asl8=l2/t,
taking into account the demagnetization effects. The renor-
malization of l and j should therefore be calculated in a
self-consistent way from the sample geometry.

The shape of the resistive curves in Fig. 2(e) can be easily
understood from Fig. 4. It was clearly seen that in low mag-
netic fields the nucleation first occurs in the ring and is then
followed by the nucleation in the contacts. Due to the differ-
ent field dependence of theTcsHd of the ring and the con-
tacts, the opposite occurs in higher magnetic fields. Two dif-
ferent shapes are therefore distinguished in the resistive
curves depending on the part where superconductivity starts
to nucleate. The same happens in the rings withx=0.3 and
x=0.5 sinceTc also has a parabolic field dependence for low
fields so that the broad transition at low resistance seen in
Figs. 2(c) and 2(d) is due to the nucleation of superconduc-
tivity in the wedge that takes place after the nucleation in the
ring at low magnetic fields. The normal parts of the sample
can however partially become superconducting by the prox-
imity effect with the neighboring superconducting part.

D. Resistance criterion

Since the contacts have a different field dependence than
the studied structures, the choice of a constant resistance
criterion for the determination of theTcsHd phase boundary

FIG. 4. Contour plot of the resistanceRsH ,Td of a loop with
x=0.7. The full line represents the calculated phase boundary of a
loop with r i =0.7 mm and ro=1 mm, using a coherence length of
110 nm. The dashed line is the theoretical critical temperature of a
wedge with opening angleG=15° with j=140 nm.
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seems not to be obvious anymore. In order to study the best
resistance criterion that should be used, the experimental re-
sistanceRsH ,Td was determined at the temperatureTsHd
corresponding to the theoretically calculated phase boundary
TcsHd. The results are given in Fig. 5 for the loops withx
=0.3,x=0.5, andx=0.7. The curve corresponding to the re-
sistance of the ring with the thinnest holesx=0.1d is not

shown. These curves show the expected behavior with an
approximately constant resistance equal to the resistance cri-
terion used for the determination ofTcsHd presented in Fig.
3(b). For other rings a similarRsH ,Td dependence was ob-
tained. At low magnetic field, the resistance is high, and it
drops to a low value above a certain magnetic field. The field
where this transition occurs increases with increasingx and
corresponds approximately to the position where the phase
boundary of the contacts crosses the phase boundary of the
loop. For the ratiox=0.3, a normal regime is found at high
magnetic field with an almost constant resistance with a
value approximately equal to the resistance criterion used for
the determination of the phase boundary. It occurs when the
linear regime is recovered. This is not seen in the two other
samples since there, the linear regime is not attained. At low
magnetic field, superconductivity nucleates first in the ring.
This is the upper part in the resistance curves. At this point,
a high resistance criterion should be taken. For higher mag-
netic fields, the resistance starts to drop once the contacts
become superconducting. In order to determine theH-T dia-
gram of the ring in that region, a low resistance transition
should be taken. This is exactly what is seen in Fig. 5. The
exact shape of the curves shown in the figures strongly de-
pends on the coherence length used for the calculation of the
theoretical TcsHd line, but the general behavior will not
strongly change while using a slightly different value of
jsTd.

The origin of the discrepancy in the amplitude of oscilla-
tions in theTcsHd phase boundary is most probably due to
the fact that a constant criterion works well to determine the
phase boundary when the critical temperature of the contacts
has a similar field dependence than the studied sample ge-
ometry. When this is not the case, the determination of the
phase boundary is strongly hindered.

It is also interesting to note that oscillations are present in
the curves, with a maximum at the transition between differ-
ent vorticities which becomes a minimum at high magnetic
fields. This crossover also corresponds approximately to the
field where theTcsHd curves of the loops and of the contacts
cross each other. A minimum in the resistance curves of Fig.
5 is observed when the difference in critical temperature of
the loop and of the wedge contacts is minimal and a maxi-
mum when the difference is maximal. This also reflects the
observed difference in amplitude of the oscillations in the
experimental and theoretical phase boundaries.

Meyers38 calculated that the order parameter evolves from
stronger at the inner part to stronger at the outer part when
the vorticity is increased. This could affect our measurements
since our applied transport current would flow along the in-
ner edge at fields slightly lower than the field where the
transition of vorticity happens and then flow along the outer
edge for slightly higher fields. Since our contacts are situated
on the outer edge, a higher resistance could be expected
when the transport current is flowing along the inner edge.
We, however, do not see an increase(decrease) of the resis-
tance just before(after) the cusp.

III. NONSYMMETRIC GEOMETRIES

In this section the nucleation of superconductivity is stud-
ied for disks with a hole. The aim of this study is to analyze

FIG. 5. ResistanceRsH ,Td of a loop with (a) x=0.3, (b) x
=0.5, and(c) x=0.7 measured at a temperatureTsHd=TcsHd follow-
ing the theoretical phase boundaryTcsHd shown in Fig. 3(c), and
3(d), and 3(e), respectively. The dotted lines represent the position
of the cusps in the theoreticalH-T diagram.
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the effect of displacing the hole from the middle of the disk
on the phase boundary.

A SEM micrograph of the studied structures is presented
in Fig. 6. The three samples are the disks with outer radius
ro=1 mm and contain a circular opening with radiusr i
=0.3 mm. The hole is in the center of the disk[Fig. 6(a)] or
is displaced from the center of the disk over a distancea
=0.3 mm [Fig. 6(b)] and a=0.6 mm [Fig. 6(c)]. The two
asymmetric samples were coevaporated in the same run as
the circular symmetric ring with ratiox=0.3 discussed in
Sec. II. They have the same thicknesst=39 nm. The coher-
ence length ofjs0d=156 nm was determined from a refer-
ence macroscopic film. Wedge shaped current and voltage
contacts with an opening angleG=15° were used.

The resistive transitions of the rings witha=0.3 mm and
a=0.6 mm are shown in Fig. 7. The transitions at 2 mT for
a=0.3 mm and at 1 and 2 mT fora=0.6 mm exhibit a sharp
drop by decreasing the temperature followed by a slowly
decaying resistance in the lowest part of the curves. This is
similar to the curves of the symmetric ring shown in Fig.
2(c), but less pronounced. It was seen in Sec. II that the sharp
decrease ofR is due to the nucleation of superconductivity
that occurs first in the ring at these magnetic fields. For
higher fields, the curves show transitions that are similar to
the RsTd curves of the disk. The sharp part atm0H*3 mT
also corresponds to the nucleation of superconductivity in
the ring. At higher magnetic fields, the nucleation starts first
in the wedges and is then followed by the ring.

The H-T diagram of the disk with an off-centered hole
displaced bya=0.3 mm off the center is shown in Fig. 8(a).
Small oscillations are seen in the phase line. A behavior in
between the parabolic and the linear field dependence is ob-
served. At higher magnetic field, the oscillations are almost
not distinguishable anymore. The phase boundary of the disk
with the hole displaced bya=0.6 mm from the center is
given in Fig. 8(b). In the temperature range accessible in our
experimental setup, only a linear regime was observed. Also
very weak oscillations were distinguished.

The twoTcsHd lines are compared with the phase bound-
ary of the circular symmetric ring, with the same inner and
outer radii, shown in Fig. 8(c). The three curves have ap-
proximately the same behavior at low magnetic field, except
that the oscillations are less pronounced for the nonsymmet-
ric rings. It was seen in Sec. II that an opening does not
affect the phase boundary forL=0. There, the symmetry was
kept. When the circular symmetry is broken, the phase
boundary is strongly affected as can be seen in the inset of
Fig. 8(c) even when no vortices are trapped in the sample. At

high magnetic fields, the curves separate. Increasing the
asymmetry enhances superconductivity. Baeluset al.22 calcu-
lated the free energy, the magnetization and the Cooper-pair
density of nonsymmetric rings with finite width. They found
that the density of the superconducting condensate was the
highest in the narrowest region of the superconductor when
LÞ0. They argued that the trapped flux tries to restore the
broken symmetry. That superconductivity is stronger in the
smallest part of the sample is probably due to the fact that
the critical field is enhanced in thin lines. With the configu-
ration of the contacts that was used(see Fig. 6), a supercon-
ducting “bridge” can be formed across which the external
current applied for transport measurements can pass. The
critical field of this area will probably be higher than in the
one with the largest area of superconducting material. The
measured phase boundary is therefore most likely only the
phase boundary of the bridge and not of the full sample.
Given that no supercurrent can circulate around the opening,
a singly connected state is then recovered.10,11Since a super-
conducting path will always be found across the bridge, a
lower resistance criterion forTcsHd will not determine the
nucleation in the whole sample. The phase boundary of the
complete structure could only be probed with contacts turned
by 90°.

It is worth emphasizing that the phase boundary of the
structure witha=0.6 mm exhibits a linear field dependence,

FIG. 6. SEM micrograph of an Al loop with outer radiusro

=1 mm and inner radiusr i =0.3 mm with the hole(a) in the center,
(b) moved over a distancea=0.3 mm, and(c) overa=0.6 mm from
the center.

FIG. 7. Resistive transitionsRsTd in different magnetic fields for
a ring with outer radiusro=1 mm and with a hole radiusr i

=0.3 mm. The hole is moved(a) by 0.3mm and (b) by 0.6mm
from the center. The dashed line shows the resistance criterion used
to determine theTcsHd phase boundary.
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typical for a 2D behavior. The thinnest part of the sample
where the nucleation firstly occurs can be seen as a curved
line of varying width. When the asymmetry is less pro-
nouncedsa=0.3 mmd, a curve in between the parabolic and
the linear regime is observed. This indicates that the super-
conducting path resembles a thin line but cannot be fully
considered as such.

The transition fromL=0→1 is strongly delayed when
increasing the asymmetry. The first vortex enters the sample
at F=1.3F0 for the symmetric sample and atF=1.4F0 and
F=2.9F0 for a=0.3 and 0.6mm, respectively. Baeluset al.22

indeed found a delay of the penetration of the first vortex by

increasing the displacement of the hole from the center but
not with a factor larger than 2 as seen for the sample with
a=0.6 mm. The next transitionsL=1→2d is not clearly re-
solved. We could however see that the transition occurs first
for the sample witha=0.3 mm atF<3.4F0, followed by the
symmetric ring at F0, and then only atF=4.7F0 for the
strongly asymmetric sample, i.e., the sample with the largest
off the center shift of the hole. The theoretical investigations,
however, showed a decreasing field for the entry of the sec-
ond vortex by increasing the asymmetry. The calculations
were not performed at the phase boundary but deep in the
superconducting state. Also a slightly smaller hole than in
our experiments and different material parameters were used.
This could be a reason for the discrepancy for the sample
with a=0.6 mm. Deep in the superconducting state, the com-
plete structure will be in the superconducting state, while at
the measured phase boundary, only the region around the
hole is superconducting so that a smaller effective area
should be taken, to explain the strong increase of the mag-
netic field value where the transitions betweenL↔L+1 take
place in the sample with the hole displaced over the largest
distance from the center.

Baeluset al.22 found that atL=1 the vortex was trapped
in the hole and that atL=2 and 3, the hole captures oneF0
vortex. A second vortex(2F0 vortex for L=3) is placed
across the axis of displacement of the hole but at the opposite
position. In our experiment, we believe that the sample area
where the second vortex was found in the calculation is not
yet in the superconducting state. In this case, no vortex can
sit there and the hole can also not trap any vortex since no
superconducting path around the hole exists. The vortices
must then be placed at a position between the contacts and
the hole. This configuration is similar to the case of a infinite
wedge where confined circulating supercurrents were pre-
dicted in the vicinity of the corner.44

IV. DISSIPATION BELOW Tc„H…

In order to analyze the onset of dissipation belowTcsHd,
the resistance has been measured at a certain fixed tempera-
ture below the phase boundary. Assuming that the resistance
criterion sRc=2/3Rnd used for the determination of the phase
diagram of the disk presented in Fig. 3(a) is correct, the
experimental phase boundary was shifted along the tempera-
ture axis with a valueDT and the resistance has been mea-
sured following the translated phase boundary, i.e., at a tem-
perature equal toTsHd=TcsHd−DT. These curves were
obtained from the same set ofRsHd curves as for the deter-
mination of the phase boundary. The result for the disk is
shown in Fig. 9(a). The curve with zero shift gives the resis-
tance criterion of 2/3Rn as expected. For temperatures below
the phase boundary, two different parts are directly distin-
guished. For low fields, an almost zero resistance is mea-
sured, even for the smallest shift of the phase boundary. At
higher fields, a resistive region is found. The region where no
resistance is observed corresponds to the magnetic field
value where the vorticity is zero in the disksm0H,1.3 mTd.
Once that the first vortex enters the sample a resistive behav-
ior is noticed. The reason for the observation of a finite re-

FIG. 8. ExperimentalTcsHd phase boundary of a loop with outer
radiusro=1 mm and with a hole radiusr i =0.3 mm determined for a
resistance criterion of 1/2Rn. The hole is moved(a) by 0.3mm and
(b) by 0.6mm from the center. The open squares represent the data
normalized by the coherence lengthjs0d=135 nm.(c) Comparison
between the different phase boundaries. The hole is in the center
(open squares) or moved by 0.3mm (open circles) and 0.6mm
(open triangles) from the center. The inset shows a magnification of
the low magnetic field region.
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sistance can be found in the presence of the external current
used to measure the phase boundary. Just below the critical
temperature of the disk, the value of the order parameter is
very low so that a low current will easily destroy locally
superconductivity. When going deeper in the superconduct-
ing state, a larger area can sustain the applied current up to a
certain temperature where a superconducting path over the
sample is found and a zero resistance is measured. This,
however, cannot fully explain the magnetic field dependence
shown in Fig. 9(a). Another possible dissipation mechanism,
also related to the applied current, could be the motion of the

vortices. A current IW will generate a Lorentz force

FW L~ IW3FW 0 on the vortices. The electric fields generated by
the vortex motion can cause dissipation of energy that is
characterized by the observation of a finite resistance in
transport measurements. The dissipation can also be caused
by the nucleation of phase slips centers in the sample. It was
found in Ref. 40 that the change of vorticity in a supercon-
ducting loop transit through a phase slip state associated with
a smaller energy barrier for the transition fromL to L±1.

Pronounced oscillations are present in the resistance
curves of the disk. While in magnetoresistance curves at a
constant temperature, the appearance of oscillations is di-
rectly related to the presence of cusps in theTcsHd line. Here
no oscillations should be expected since the resistance is
measured at a fixed temperature interval below the phase
boundary. The position of the peaks in Fig. 9(a) corresponds
to the magnetic fields where cusps are observed in the phase
boundary[dotted lines in Figs. 3(a) and 9(a)]. The existence

of the oscillations suggests that the dissipation mechanism
strongly depends on the stability of the vortices. The large
amplitude of the oscillation shows that it is easy to move the
vortices only when the magnetic field is close to the value
where the vorticity changes:L→L+1. At these field values,
a constant fluctuation between the states with vorticityL and
L+1 will probably occur. Vortices will then enter from one
side and will leave the sample at the other side in the direc-
tion imposed by the Lorentz force. At high vorticity a large
dissipation is observed indicating that the motion of vortices
is more pronounced when more vortices are present in the
sample.

The resistance of the rings measured at a temperature
TsHd=TcsHd−DT below the experimental phase boundary is
shown in Fig. 9 for the rings witha=0, 0.3, and 0.6mm,
respectively. The dissipation in the circular symmetric ring
resembles that of the disk. Peaks are seen at the magnetic
field value where the transition between two states with dif-
ferent vorticity takes place. The resistance at a fixed tempera-
ture interval below the critical temperature seems to be
smaller than for the disk without opening. The hole in the
center of the disk will most probably act as an artificial pin-
ning center, preventing the vortices to move. The dissipation
in the asymmetric samples starts to grow as soon as one
vortex enters the sample, as in the symmetric sample. How-
ever, for larger magnetic fields, the two asymmetric samples
have a very different behavior. The oscillations seen in the
curves of the symmetric sample are almost completely sup-
pressed. Moreover, the resistance is not continuously grow-
ing but seems to saturate above a certain magnetic field. For

FIG. 9. Resistance of(a) the
disk and of the ring with outer ra-
dius ro=1 mm and with a hole ra-
dius r i =0.3 mm. The hole is(b) in
the center and moved(c) by
0.3 mm and (d) by 0.6mm from
the center. The resistance is mea-
sured at a temperatureTsHd
=TcsHd−DT corresponding to a
shift of DT=0, 5, 10, and 20 mK
below the experimental phase
boundaries.
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DT=20 mK, the resistance even decreases with increasing
magnetic fields for the sample witha=0.3 mm. The dissipa-
tion is much lower than for the symmetric sample. All these
observations indicate the presence of a quite different mecha-
nism of the vortex motion in the two asymmetric samples
compared to the symmetric structures. Unfortunately, all the
measurements were performed using an ac current. By com-
paring the dissipation measured with dc current in two direc-
tions, it could be possible to detect if a preferential trajectory
for the vortex motion exists. Since the samples are not sym-
metric around the line between the two current contacts, the
Bean-Livingston barrier should also be asymmetric. It is then
natural to expect a vortex motion that is dependent on the
sign of the applied current, so-called “vortex diode” effect.45

V. CONCLUSIONS

We have studied the nucleation of superconductivity in
doubly connected superconductors in the form of thin super-
conducting disks with a circular opening. The effect of the
size and of the position of the hole on the superconducting
properties of the structures has been investigated. A parabolic
background ofTc with periodic oscillations is found for the
thinnest loops. For disks with smaller holes, a transition from
a 1D regime to a 2D regime is seen when increasing the
magnetic field. For high magnetic field, the loops recover the
behavior of the disk without opening. A giant vortex state is
then formed and the opening in the middle of the disk does
not play an important role anymore.

The experimental results of the rings of different wire
width were compared with theoretical calculations in the
framework of the linearized GL equation. Good agreement
between our experimental results and the calculation of
TcsHd were found. Small deviations in the amplitude of the
oscillations were observed. Moreover, for the thinnest loop
that was studied, two different resistance criteria had to be

used for low and high magnetic fields. These deviations were
explained by the fact that the theoretical linear phase bound-
ary of the contacts is crossing the parabolicTcsHd line of the
thin loops. At low magnetic fields, the nucleation occurs first
in the loop while at higher magnetic fields superconductivity
develops first in the wedge shaped current and voltage con-
tacts. As a consequence, a resistance criterion, dependent on
the magnetic field, should be used for the determination of
TcsHd.

Breaking the symmetry by moving the hole away from
the center increases the critical field. The displaced hole
forms a small region where superconductivity is enhanced. A
superconducting path for the applied current is likely to be
formed before superconductivity nucleates in the whole
sample. The supercurrent cannot flow around the hole so that
the singly connected state is recovered for a loop. The dissi-
pation mechanism due to vortex motion is strongly altered in
this case.

It has been observed that the phase boundary is not af-
fected by the presence and by the dimensions of a hole as
long as no vortex is trapped inside the sample. This, how-
ever, is only valid when the circular symmetry of the struc-
ture is kept. Once that the symmetry is broken by shifting the
hole from the center, the phase boundary atL=0 deviates
from theTcsHd line of a disk.
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