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In this paper we investigate the generation of entanglement between two persistent current qubits. The qubits
are coupled inductively to each other and to a common bias field, which is used to control the qubit behavior
and is represented schematically by a linear oscillator mode. We consider the use of classical and quantum
representations for the qubit control fields and how fluctuations in the control fields tend to suppress entangle-
ment. In particular, we demonstrate how fluctuations in the bias fields affect the entanglement generated
between persistent current qubits and may limit the ability to design practical systems.
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I. INTRODUCTION

In this paper, we investigate the use of inductive coupling
to generate entanglement between two persistent current qu-
bits. We are particularly interested in the representation of
the magnetic bias fields that are used to control the behavior
of the qubits, and the requirements placed on these fields by
the need to generate significant levels of entanglement.
Given the recent experimental results indicating coherent
quantum behavior in superconducting persistent current and
other Josephson devices,1–3 the extension of these systems to
arrays of coupled qubits for quantum information processing
is important and timely. Indeed, experiments have already
been reported using coupled persistent current qubits.4 We
demonstrate that the requirements placed on the bias fields
could present significant obstacles to the use of persistant
current qubits in quantum information processing.

We consider two models for the bias field: one classical
and one quantum mechanical. In each model, the field is
represented by a lossy linear oscillator, whose resonant fre-
quency and coupling to the qubits can be varied. When the
natural frequency of the field mode is significantly lower
than the qubit frequencies, the conventional approach is to
treat the bias as a classical variable1–4 and to use the expec-
tation value of the screening current in the classical equa-
tions of motion when the bias dynamics are important.5,6

However, where the bias field has fluctuations at frequencies
that are comparable with the qubit fluctuations, the classical
model is no longer valid and the quantum mechanical model
predicts some interesting dynamical behavior. In addition,
we derive a set of constraints for the accuracy of the bias
fields which must be obeyed for a significant amount of en-
tanglement to be produced. These constraints may limit the
entanglement that can be produced in a practical system. In
particular, we derive restrictions on the coupling between the
qubits and the bias fields and the operating frequencies of
multiple persistent current qubits.

II. COUPLED PERSISTENT CURRENT QUBITS

The persistent current qubits studied in this paper have
been proposed by Orlandoet al.1 A schematic circuit dia-

gram is given in Fig. 1, with inductive coupling between the
two qubits and the common control field. The qubit induc-
tance is negligible when compared with the effective induc-
tance generated by the series Josephson junctions in the loop.
This means that the behavior of an isolated qubit will tend to
be dominated by the series Josephson junctions rather than
the geometrical inductance of the ring,Lqu.10 pH. This al-
lows the circuit to be simplified to a two-state model, corre-
sponding to current states differing by approximately 600 nA
(Ref. 1). The two-state Hamiltonian for a single qubit, with
two control fieldsFx1 andFx2, is given by1

ĤqusFx1,Fx2d = S FsFx1,Fx2d − BsFx1,Fx2d
− BsFx1,Fx2d − FsFx1,Fx2d

D , s1d

where the basis states,hu0l , u1lj, are the persistent current
states with approximately ±300 nA,Fx1 is the primary bias
field for the main ring circuit andFx2 is a secondary bias
field that is used to modulate the critical current of the effec-
tive Josephson junction formed by the two parallel junctions

FIG. 1. A schematic diagram of the coupled qubit system.
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in the smaller secondary ring. The matrix elements are given
by

FsFx1,Fx2d = r1SFx1

F0
D + r2SFx2

F0
D , s2d

BsFx1,Fx2d =

t1 + s1SFx1

F0
D

1 − hÎEJ

EC
SFx2

F0
D , s3d

andF0=h/2e=2310−15 Wb. The circuit constants are taken
from1 r1=2pEJ

Î1–1/4b2=2r2, s1=0, t1=0.001EJ, h=3.5,
b=0.8, EJ;200 GHz,EC=EJ/80.

Although the energy level separation, and hence the dy-
namics of a single persistent current qubit, is dominated by
the Josephson energy of the junctions in the circuit, the in-
ductance is important when determining the coupling be-
tween the qubit and the external fields and between the qu-
bits themselves. For the system shown in Fig. 1, this gives

1Fqu1

Fosc

Fqu2

2 = 1Lqu M1 M2

M1 Losc M1

M2 M1 Lqu
21Iqu1

Iosc

Iqu2

2 = M ·1Iqu1

Iosc

Iqu2

2 , s4d

whereM1 is the mutual inductance between the qubits and
the bias coil andM2 is the mutual inductance between the
two qubits,Fosc is the magnetic flux in the shared bias field
(which is treated as a linear oscillator and characterized by a
capacitanceCosc and an inductanceLosc). In the absence of
dissipation, the effective Hamiltonian for the combined sys-
tem can be written in the form5

H =
Qosc

2

2Cosc
+

Fosc
2

2Losc
− FoscI in

+ Ĥqu1,qu2
sm1Fosc,Fx21;m1Fosc,Fx22d, s5d

where I in is an external current used to fix the static bias
point (the oscillator fluctuates about this point), and the cou-
pling coefficients are given by K1

2=M1
2/LquLosc,

m1=M1/Losc, andK2
2=M2

2/Lqu
2 =m2

2. Each qubit has two bias/
control fields,Fx11 and Fx21 for qubit 1 andFx12 and Fx22
for qubit 2. The primary control fields for the qubits,Fx11
andFx12, are common so we putFx11=Fx21=m1Fosc.

To derive the Hamiltonian for the two qubits, we examine
the energy of the inductive circuit components. The Hamil-
tonian terms corresponding to the inductive energies will
have the form

Hinduc=
1

2
sFqu1

FoscFqu2
d ·M −1 ·1Fqu1

Fosc

Fqu2

2
=

1

2
sIqu1

IoscIqu2
d ·M T ·1Iqu1

Iosc

Iqu2

2 . s6d

Expanding the second of these expressions, the cross-
coupling terms between the two qubits has the form

DHqu1,qu2
=m2LquÎqu1

Îqu2
. The other terms corresponding to a

shift in the effective self inductance of the qubits and cross-
coupling between the qubits and the oscillator are subsumed
into theF andB terms. The two qubit Hamiltonian then has
the form

Ĥqu1,qu2
sFx11,Fx21;Fx12,Fx22d =1

F1 + F2 + D12 − B2 − B1 0

− B2 F1 − F2 − D12 0 − B1

− B1 0 − F1 + F2 − D12 − B2

0 − B1 − B2 − F1 − F2 + D12

2 , s7d

in the current basishu0102l , u0112l , u1102l , u1112lj (which is
used as the computational basis for the purposes of this pa-
per), and where F1=FsFx11,Fx21d, B1=BsFx11,Fx21d,
F2=FsFx12,Fx22d, B2=BsFx12,Fx22d. The D term comes
from the qubit-qubit coupling term given in Eq.(6), with

D12=K2LquĪ qu
2 , where Īqu.300 nA is the magnitude of the

screening current in the qubit logic(persistent current) states.
We assume that both qubits are identical and we consider

the dynamics of a(common) primary control field Fosc,
keeping the secondary fieldsFx21 and Fx22 fixed. Both the
primary and secondary fields are nominally set to zero so
that the energy eigenstates of the individual qubits are
symmetric/anti-symmetric superpositions of the qubit current

states. Initializing the qubits in a current state will produce
coherent oscillations at frequencies around 400 MHz. Al-
though the fields are nominally zero, they all include a fixed
error and the primary field includes the dynamics of the bias
circuit. (We use a common primary bias for computational
simplicity and because the decoherence rate will be lower
where any noise due to the flux bias is the same for each
qubit.)

For simplicity, we assume that the couplings are weak,
typically K1=0.002 andK2=0.01. This means that first order
coupling terms will be sufficient for most purposes. Allowing
stronger couplings between the qubits and the bias fields
could introduce a range of problems: difficulties initializing
the qubits in a given state since the flux and current states are
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no longer identical[due cross-couplings in Eq.(1)], and the
quantum fluctuations in the bias coil can affect the ability to
generate entanglement(see below).

III. BIAS FIELDS AND DYNAMICS

We consider two models: one where the control field is a
noisy classical field and one where it is represented by a
quantum oscillator. The classical oscillator model5,6 is ex-
pected to be valid as long as(i) the typical frequency of the
oscillator is significantly lower than that of qubits,(ii ) the
(possibly entangled) two-qubit state and the oscillator state
are separable, and(iii ) as long as the quantum fluctuations of
an equivalent quantum oscillator(approximately given by
the width of the energy eigenstates in a magnetic flux basis)
are small compared to the other fluctuations that couple to
the qubits. The quantum model uses a standard harmonic
oscillator basis for the control field, and couples via an os-
cillator flux operator(formed from the raising and lowering
operators,â† and â) in the F andB functions.

The classical approximation is based on the Born-
Oppenheimer approximation that is often used in nuclear and
molecular physics. This removes the dynamics of a “fast”
degree of freedom by replacing the quantum mechanical op-
erators with their expectation values; thereby averaging or
integrating out the effect of their dynamics on the the other
“slow” degrees of freedom. The details of the approximation
and the restrictions on its use are more fully described in Ref.
6. In this case, the qubit behavior is assumed to be fast com-
pared to the evolution of the classical oscillator, and the ex-
pectation value of the energy is included in the(now classi-
cal) Hamiltonian given in Eq.(5). The classical equation of
motion is then derived in the conventional way using the
variational derivative with respect to the oscillator magnetic
flux Fosc, and the energy expectation value becomes the ex-
pectation value of the combined qubit screening current. Us-
ing this approximation, and adding a parallel resistanceRosc,
the equation of motion is given by5,6

Cosc
d2Fosc

dt2
+

1

Rosc

dFosc

dt
+

Fosc

Losc
= I in + m1kÎqu1

sm1Fosc,Fx21d

+ Îqu2
sm1Fosc,Fx22d, s8d

where the qubit screening currents are calculated from the
expectation value of the qubit screening current operators

Îqu1
and Îqu2

over the instantaneous wavefunction(i.e., a pure
state) of the two-qubit state(calculated using the time-
dependent Schrödinger equation). The time-dependent
Schrödinger equation is used for the qubit evolution in this
case because, for simplicity, we assume that the dominant
source of decohence is the oscillator and any intrinsic dissi-
pation due to emission from the qubits in the cavity is com-
paratively small. However, the effect of this emssion process
on the behavior of a classical oscillator has been examined
elsewhere.7 The dissipative term acts as a source of classical
fluctuations due to Johnson noise in the resistor at finite tem-
perature, taken to beT=10 mK which is in line with experi-
mental systems.(The noise need not be thermal, but it is a

useful generic model for experimental noise because elec-
tronic noise is often characterized in terms of an effective
noise “temperature”.)

IV. QUANTUM EVOLUTION AND QUANTUM JUMPS

In the quantum model, the reduced density operator for
the qubits is estimated using a quantum trajectory model: an
unraveling of the Markovian Master equation that produces
individual “trajectories,” which can then be averaged over an
ensemble to produce an estimate of the density operator.8–10

(A recent comprehensive review of this subject is given in
Ref. 11.) Each unraveling is equivalent to the Master equa-
tion when averaged over an ensemble, but corresponds to a
different measurement interaction at the individual system
level.10 For simplicity, we choose the “quantum jumps”
model8 and thermal environment(Lindblad) operators for the
oscillator described in Ref. 12,

L̂1 = fsn̄ + 1dvoscQoscg1/2â, L̂2 = fn̄voscQoscg1/2â†, s9d

where n̄=fexps"vosc/kTd−1g−1 is the thermal oscillator oc-
cupancy,vosc=1/ÎCoscLosc is the resonant frequency of the
bias feld and the quality factor is given byQosc
=voscRoscCosc (in this paper we useQosc=200 for both the
classical and quantum models). These environmental opera-
tors represent emission and absorption of photons from the
environment by the oscillator mode, which is assumed to be
the dominant source of dissipation in this paper.

The quantum jump evolution is calculated by numerically
integrating the full state(describing the qubits and the oscil-
lator) over discrete time intervals(of size dt) and applying
three different evolution operators. In each time interval,
there is a small(but finite) probability that the bias oscillator
will emit or absorb a quantum of energy from the environ-
ment. The probabilities for emission and absorption during
the time step are found from

P1sdtd = kL̂1
†L̂1ldt = fsn̄ + 1dvoscQoscgkâ†âldt, s10d

P2sdtd = kL̂2
†L̂2ldt = fn̄voscQoscgkââ†ldt. s11d

The jumps are generated stochastically and when a jump
occurs a projection operator is applied to the instantaneous
state of the system. If an emission occurs, an operator

V̂1sdtd=ÎdtL̂1 is applied, lowering the state of the oscillator,

and if absorption occurs an operatorV̂2sdtd=ÎdtL̂2 is ap-
plied, raising the oscillator state. The state is then renormal-
ized. In the absence of a quantum jump, the evolution of the
system is found from the nonunitary evolution operator,

V̂0sdtd = 1 −
idt

"
Ĥ −

dt

2
sL̂1

†L̂1 + L̂2
†L̂2d. s12d

The nonunitary term is added to ensure that the evolution of
the density operator for the coupled system agrees with that
predicted by the Markovian Master equation, when the(pure
state) density operators generated from an ensemble of indi-
vidual “trajectories” are averaged to produce an estimate for
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the mixed state density matrix for the whole systemrtotal:
two qubits and a bias oscillator. The reduced density operator
for the two qubitsr1+2 is then found by performing a partial
trace over the oscillator states.(The validity of the quantum
jumps approach can be checked by selecting a different un-
raveling for the Master equation, and in this paper the results
have been verified by comparing the behavior obtained from
the quantum jumps unraveling to equivalent results obtained
from the quantum state diffusion unraveling.9 Quantum state
diffusion produces a continuous stochastic evolution of the
quantum state, and can be shown to correspond to a unit-
efficiency heterodyne detection measurement process10).

V. RESULTS

In each model, quantum and classical, the initial condi-
tions set for the oscillator are a thermalized state: a thermal
quantum state for the quantum oscillator and an initial con-
dition generated from the classical equation of motion, which
has been allowed to come into equilibrium with the thermal
noise by numerically integrating its behavior prior to initial-
ization using a different realization of the noise for each
qubit trajectory calculation. The qubits are initialized in a
product of pure current states. The initial states of the qubits
are chosen to be either in-phasesu0102ld or anti-phase
su0112ld. That is, the coherent oscillations induced by initial-
izing each qubit in a current state are initially in-phase with
each other or in anti-phase. Each individual quantum trajec-
tory is calculated using the same initial conditions for the
qubit states with different static bias errors for the control
fields. The static bias errors are fixed for each trajectory and
represent the accuracy with which the fields might be set in
an experiment. The size of these static bias errors is found to
be crucial to the generation of usable entangement between
the qubits. The entanglement is characterized in terms of the
concurrence, which is widely used in quantum information
processing for bipartite systems.13 The concurrence for the
two-qubit mixed state density matrixr1+2 is defined as

Csr1+2d = maxh0,Îl1 − Îl2 − Îl3 − Îl4j,

where Îl1, . . . ,Îl4 are the eigenvalues of the matrix
r1+2ssy ^ sydr1+2

* ssy ^ syd in nondecreasing order andsy

is a Pauli spin matrix.14 Although the concurrence is
used here, other measures of entanglement can be calculated
from this: e.g., the entanglement of formationEF can be
calculated from

EFsr1+2d = hS1

2
f1 +Î1 − Csr1+2d2gD ,

where

hsxd = − x log2x − s1 − xdlog2s1 − xd,

at least for this two-qubit system. Themixednessof the re-
sultant two-qubit state is given by the von Neumann entropy
of the reduced density operator:14 Ssr1+2d=Trsr1+2log4r1+2d.
The logarithm is taken to base 4 because the qubit states
exist in a four-dimensional Hilbert space, giving a mixedness
parameter that varies between zero and one.

Figure 2 shows the concurrence of the two-qubit mixed
states for bias errors ofDFx=10−5F0 (1s, Gaussian) for both
models for an oscillator frequency of 100 MHz. We see that
the concurrence oscillates and decays gradually in time,
mainly due to dephasing between the two qubits originating
from the static error in the bias fields, and approaches a
maximially entangled mixed state in each oscillation. By
varying the size of the errors, we find that the concurrence is
quite sensitive to errors in the static fields, bias errors larger
than about 5310−5F0 do not lead to any useful entangle-
ment in the qubits—the concurrence is less than 0.3 at all
times and decays very rapidly.(Other calculations away from
the minimum splitting point of the qubits, where the fre-
quency differences between energy eigenstates are higher,
indicate that the requirements on the bias fields are even
more demanding. Where the qubit frequencies are around
1–2 GHz, a useful entanglement is only generated if the bias
errors are less than aboutDFx,10−6F0).

By increasing the couplings between the two qubits, the
rate at which the two qubits become entangled can be in-

FIG. 2. (Color online) (a) Concurrence versus the number of
oscillator cycless100 MHzd for both the classical(blue) and quan-
tum (green) field models,(b) Concurrence versus von Neumann
entropy for the mixed state(blue) corresponding to the quantum
model shown in(a), with two types of maximally entangled mixed
states[Rank 3(green) and Werner states(red) (Ref. 14)].
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creased. However, this could lead to problems when initial-
izing the qubit states since the qubit current and flux are
mixed by the inductive coupling. Care is required to ensure
that the initialization process projects the states onto the cor-
rect basis.(Slight differences in the initial states will affect
the entanglement in the mixed state, but this is not explicitly
considered here.) Increasing the coupling between the oscil-
lator and the qubits is likely to lead to additional problems.
Although the classical oscillator model contains noise due to
thermal fluctuations and dissipation from the finite quality
factor of the oscillator, a quantum oscillator also includes
quantum fluctuations. The differences in Fig. 2(a) for the
quantum and classical oscillator models are due to the com-
paratively low Q value used and the quantum fluctuations
coupling across to the qubits. Increasing the oscillatorQ
and/or reducing the oscillator frequency improves the agree-
ment between classical and quantum models. The coupling
between the bias and the qubits is sufficiently small for the
entanglement between the oscillator and qubits to be negli-
gible.

This raises an interesting point: what happens when the
quantum fluctuations in the oscillator coupling across to the
qubits are comparable with the static bias errors? The size of
the quantum fluctuations in the oscillator can be estimated
from the flux width of the harmonic oscillator states. Using
the width of the oscillator states and the coupling coefficient,
the approximate size of the fluctuations that couple to the
qubits will be

m1DFosc. K1
Î2"voscLqu , 1.23 10−6F0 s13d

for K1=0.002 and an oscillator frequency of 100 MHz. The
size of the quantum fluctuations that couple across varies
linearly with K1 and as the square root of the frequency. This
means that the field frequencies must be very low if strong
field-qubit couplings are to be used. Keeping the frequency
constant and increasing the oscillator-qubit coupling we find
that as soon as the quantum fluctuations become comparable

with the constraints on the bias errors, entanglement is effec-
tively lost (,10−5F0 for the cases considered here and
,10−6F0 for qubits biased away from the minimum splitting
point). Even in the absence of the static bias errors, the quan-
tum noise will affect the generation of entangement between
the two qubits. Figure 3 shows the effect of increasing the
size of the quantum noise by increasing the coupling to the
bias field. For a 100 MHz oscillator and a coupling ofK1
=0.01, giving fluctuationsm1DFosc.6310−6F0, the en-
tanglement between the two qubits is lost very quickly. That
this is due to quantum fluctuations, rather than the change in
coupling strength alone, can be verified by simultaneously
changing the oscillator frequency and the coupling strength
keeping the size of the quantum noise given by Eq.(13)
fixed.

The quantum fluctuations effectively limit the operating
frequency of persistent current qubits as quantum processing
devices, because the operating frequency must be lower than
the frequency at which the bias fields may be manipulated,
which is determined by the frequency and the quality factor
of the bias circuit. Increasing the operating frequency of the
device, and keeping the fluctuations below the required level,
would mean reducing the coupling between the qubits and
the applied field, which might make it difficult to address
individual elements of an array of qubits.

In spite of the possible difficulties in biasing and address-
ing individual qubits within an array, there are some aspects
of the behavior of this tripartite system that are worth inves-

FIG. 3. (Color online) Concurrence versus the number of oscil-
lator cycless100 MHzd for a quantum field model with different
coupling strengths in the absence of static bias errors:K1=0.002
(blue), K1=0.005(green), K1=0.01 (red).

FIG. 4. (Color online) (a) Concurrence versus the number of
oscillator cycless380 MHzd using the quantum model for qubits
initialized in theu0112l state(blue) and theu0102l state(green); (b)
concurrence versus von Neumann entropy for qubits initialized in
the u0102l state (blue), with two types of maximally entangled
mixed states[Rank 3(green) and Werner states(red)14]; (c) as (b)
for the u0112l state.
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tigating further. In particular, in situations where the frequen-
cies of the oscillator and the qubits are not widely separated,
it is possible to generate interesting evolution whereby the
currents flowing in the qubits excite oscillations in the bias
field, which modifies the behavior of the qubits. Figure 4
shows examples for a quantum oscillator with a natural fre-
quency of 380 MHz, for both the in-phase and anti-phase
initial states(all other parameters are identical to Fig. 2). For
the u0102l initial state, the screening currents flowing in the
qubits add in-phase. The net current coupled to the oscillator
acts as a sinusoidal drive which excites oscillations in the
bias field. In theu0112l initial state the net current coupling to
the oscillator is close to zero initially and the concurrence
oscillations are far more regular. There are significant differ-
ences in the concurrence and the von Neumann entanglement
between the two cases. In particular, the entanglement per-
sists for longer for theu0112l initial state and the von Neu-
mann entropy exhibits some large scale oscillations, as
shown by the “loops” in Figs. 4(b) and 4(c) . These oscilla-
tions in entropy correspond to points where the oscillations
in the bias field are at their largest. The oscillations in the
field shift the bias point of both of the qubits, which accen-
tuates the natural dephasing between the qubits. As the rela-
tive phase of the qubit oscillations changes, the net current
coupling to the oscillator changes, and—as they approach the
anti-phase state—the net current coupling to the oscillator
falls and the oscillations in the field reduce, thereby stabiliz-
ing the relative phase of the coherent oscillations. Although
these phase slips occur for the anti-phase initial state, they

are more evident for the in-phase initial state and are respon-
sible for the rapid decay of entanglement in this case and are
the dominant source of decoherence.

VI. CONCLUSIONS

In this paper, we have discussed a coupled system con-
sisting of two persistent current qubits and a linear oscillator,
representing one of the qubit control fields. We have exam-
ined the generation of entanglement between the two qubits
in the presence of a dynamical bias field, and have shown
that classical models are approximately valid for low fre-
quency fields with high quality factors. We have used the
models to set constraints on the accuracy of the applied con-
trol fields. The static bias errors must be less than about
5310−5F0 for the parameters used in this paper. We have
also considered cases where the underlying quantum fluctua-
tions in the applied field are significant, and have used this to
derive a constraint that relates the coupling between the bias
field and the qubits and the frequencies present in the bias
fields. If these constraints are not met, the useful entangle-
ment between the two qubits is effectively lost. This could
affect the use of these devices in a practical quantum pro-
cessing system, placing severe demands on the accuracy of
the static control fields and limiting the operating frequencies
of these devices. However, we have found that, where the
frequencies of the applied fields and the qubits are compa-
rable, some interesting dynamical behavior can be produced
by the back reaction of the qubits on the applied field.
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