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Hofstadter butterflies in a modulated magnetic field: Superconducting wire network
with magnetic decoration
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Hofstadter butterfly spectra of tight-binding electron systems under spacially modulated magnetic fields are
calculated. The dependence of the spectrum on the symmetry and strength of the spatially varying magnetic
field is elucidated. The Little-Parks oscillation of the superconducting network under a spatially modulated
magnetic field produced by decoration with mesoscopic magnetic structure exhibits behavior reproducing the
edge of the corresponding Hofstadter spectra.
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[. INTRODUCTION cases of spatially varying magnetic field. This is the subject
of the present study. More specifically, we have calculated

The exquisite structure of the energy diagram of a tightthe Hofstadter spectrum for a square lattice under spacially
binding electron system on a two-dimensio2D) square varying magnetic fields. We have also conducted experi-
lattice subjected to a uniform perpendicular magnetic fieldments using a superconductor/ferromagi®f) hybrid sys-
was first elucidated by the work of Hofstadtand Wannie? tem consisting of a superconducting wire network and an
The spectrum consists gfsubbands, when the flux(inthe  array of mesoscopic ferromagnets. An early version of our
units of the flux quantump,=h/e) threading through each study using an S/F hybrid system study has been
plaguette is a rational numberq. The spectra of this type, published!®2°An S/F hybrid system of a different type from
known as the Hofstadter butterfly, have since been calculateghe present one was studied by Nozekal 2! The Hofstadter
for a variety of lattice$;® and they have been discussed spectrum for a7 lattice under a modulated magnetic field is
in various contexts of condensed-matter physics includingheoretically studied by O
the quantum Hall effeét’ and the so-called flux phase in the The remainder of this paper is organized as follows. Cal-
t-J model®? culations of the Hofstadter spectra for a square network un-

Observation of the butterfly spectra in real systems is &ler various patterns of a spatially varying magnetic field are
formidable task. For the ordinary crystalline lattices, the represented in the next section. Experiments using a
quired magnetic field exceeds 1000 T, which is beyond thguperconductor/ferromagnet hybrid system are described in
reach of the present technology. It is therefore natural to tursec. 11, and discussed in comparison with the calculated
to the artificial periodic structures, such as lateral superlatspectra. Finally, Sec. IV gives a summary of the present
tices based on semiconductor two-dimensional electron sysvork and some remarks.
tems. Recent work by Albreclat all® on magnetotransport
in an antidot lattice seems to capture a certain characteristic
of the Hofstadter spectrum.

Superconducting networks comprise another category of A. The original Hofstadter problem
systems intimately related to the Hofstadter spectrum. As
demonstrated by Pannetiet al,* the change in the transi-
tion temperature of a superconducting wire network with th
frustration parametew reproduces the fine structure of the
upper edge of the Hofstadter butterfly spectrum. This corre
spondence arises from the fact that the linearized Ginzburg- _ —omine rina
Landau equation for a superconductor near its transition has enm=Wh-1m* Wham+te ‘/’nym-lﬂez ety
the same form as the Schrodinger equation for the electron (1)
system:>13 Thus, with the advantage of macroscopic coher-
ence, superconducting networks provide a convenient experwhere ¢, , represents the wave function at the lattice
mental model of the Hofstadter butterfly, although admittedlysite (n,m), t is the nearest-neighbor transfer-matrix element,
they can only probe the edge of the spectrum. This line ofind a= ¢/ p,=eH&/h is an avarage magnetic flux thread-
study was subsequently extended to networks of various latng a unit square. The parameteris often called a frustra-
tice symmetries, including triangular, honeycomb,tion parameter. The above equation can be reduced by
Kagomé!* 73,15 disordered? quasiperiodiéd’ and fractal®  putting
lattices.

To the best of our knowledge, all of these previous studies . m = €lnagkymag (2)
basically employed a uniform external magnetic field. It
would be interesting to extend the study to more generalo the following one-dimensional Harper equation:

II. CALCULATION OF THE HOFSTADTER SPECTRA

The Hofstadter problem in its original form, i.e., the tight-
ebinding electron spectrum on a 2D square lattice with lattice
constanta under a uniform magnetic field, is obtained by
solving the following Schrodinger equation:
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e, =te @, |+t + 2t cogk,a - 2ma) @, (ga,a), namely,(x+qga,y)=¢(x,y) and y(x,y+a)=¢(X,y).
3) Figure 1 shows the tight-binding square lattice with
the choice of gauge appropriate w@=p/q. The energy
When « is a rational numberp/q, p and q being eigenvalues are obtained by diagonalizing the following
mutually prime, the size of the magnetic unit cell becomeamatrix:

2t cogkja - 27a) tel@ 0 e 0 e
te k@ 2t cogk,a—-4ma) e 0 e 0
0 : R :
0o - - . 0 (4)
0 e 0 te™@ 2t codk,a-2(q- 1) ma] telk@
tel@ 0 e 0 te ka 2t cogk,a - 2qma)

The result is the well-known butterfly spectrum, shown inric with respect to transformationg— 1+2, so that calcu-
the topmost panel of Fig. 3. lation over the rang$=0—% suffices. Five panels in Fig. 3
correspond t@=0, g, 1, 2, and3, respectively. The topmost
panel (8=0) is the original Hofstadter butterfly spectrum.
We consider a spatially varying magnetic field which Introduction of nonzerg3 deforms the spectrum in such a
consists of a uniform component and a component varyingvay that, for instance, the spectral weight at the band center
in a checkerboard pattern, as shown in Fig. 2. Here, (van Hove singularity a&=0) for «=0 is smeared, and a
denotes the flux per plaquette of the uniform componenfluasigap develops there with increasjigThe bottommost
of the magnetic field, an@ denotes the flux per plaquette Panel(=3) is identical to the topmost one except that the
which alternates in sign in the checkerboard pattern. Th&pectrum is shifted b% along the horizontala) axis. That
assignment of the Peierls phase factor for this flux patterthis should be so can be readily understood by recalling the
is shown in the figure. For=p/q, the system is invariant following: At ,8:%, two adjacent cells enclose%ﬁnd —%
under translatiori2ga, 0) or (a,a). The relevant Schrodinger flux, respectively. Addition of a uniform ﬂu)a:% to the
equation reads system changes them to 1 and 0, which is equivalent to the
ot m= W1+ e+ e 2D (a=0,8=0) configuration. The same relatigshift by half-

period holds between the spectra fﬁt:g [panel(d)] and

B. Checkerboard magnetic field

+te?m (M Meg?mhy, oy (n-modd), (5)  for B=3 [panel(b)]. At B=3 [panel(c)], the periodicity ina
becomes half the original one. In other words, the states at
glpn’m:t¢n_1lm+t¢n+1,m+te‘ZW‘(”‘mﬂ)“eZ”‘szn,m_l a=integer and ata=half-integer become equivalent for

,8:;11. Again, this can be easily understood by recalling that
the flux configuration of two adjacent cells (s3,+3) at
Spectra obtained by diagonalization of the corresponding8=3%,«=3), which is equivalent td-3, +3), and hence to

2q% 2q matrix are shown in Fig. 3. The spectra are symmet{+3,-1) at (8=%,a=0).
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FIG. 2. Square lattice subjected to a spatially varying magnetic
FIG. 1. Tight-binding square lattice with assignment of thefield in a checkerboard patteri3d) and a uniform field («).
Peierls phase factor to each bond, for a uniform external magnetithe assignment of the Peierls phase factor is indicated by
flux a=p/q. the arrows.
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FIG. 3. Hofstadter spectra for a square lattice subjected to a checkerboarBjieldd a uniform field «). Five panels shows spectra
for different amplitudes of the checkerboard fiefe) 8=0, (b) 8=3, (c) =3, (d) B=3, and(e) B=3, respectively.

C. Stripe magnetic field enm=th1m+ t¢n+1,m+te_2wina¢n,m—1
We next consider the case of a stripe pattern of field mina
modulation, as shown in Fig. 4. Her@', denotes the flux per e Ynmes (0 €VEN).
plaguette, which alternates in sign for every other column. The spectra obtained by diagonalization of the corre-
The assignment of the Peierls phase factor for this fluxssponding 2 X 2q matrix are shown in Fig. 5. Only the spec-
pattern is shown in the figure. The magnetic unit cell fortra for B':é and;ll are shown, since the spectra f8=0
a=pl/qis (29a,a), i.e., the system is invariant under trans- and,B’:% are identical to those fg8=0 and,B:% in Fig. 3,

lation by (2ga,0) or (0,a). The relevant Schrédinger equa- 5ng the spectrum fOYB’=g is none other than that

tion reads for 8'=% shifted by 3 along the horizontala) axis. We
—th .+t +te-2minag2mip’ can immediately note the differences between the spectra
#¥nm=1n L %”‘m Y- for a stripe field and those for a checkerboard field. Introduc-
+te?mneg?mh y, 1 (n odd), (6)  tion of nonzeroB’ (stripe field causes lifting of degeneracy
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FIG. 4. Square lattice subjected to a spatially varying magneticl
field in a stripe pattergB’) and a uniform field «). The assignment

of the Peierls phase factor is indicated by the arrows.

at e=0 for a:%, while the splitting occurs at integet

for the checkerboard field, as seen earlier. It is evident
that the spectra for stripe fields are considerably “darker”
(more bands and fewer ggpss compared with those
for checkerboard fields. This is in line with a general
trend that the Hofstadter spectrum becomes “darker”

(d)

a+f

oa-p

as one introduces rectangular anisotropy in the square FIG. 6. (a) A square lattice with different transfer integrals

lattice?

D. Comparison with a honeycomb lattice

t" and t. When t'=0 [panel (b)], it is topologically equivalent
to a honeycomb latticgpanel(c)]. Panel(d) shows unit “brick” of
this lattice and the one for a square lattice under checkerboard field

Although it is a kind of excursion to a side road, (Fig. 2.
it is interesting to compare the spectra for the checkerboard

(@)}

-1 [ .
-2z [

-2 [E

-q L

FIG. 5. Hofstadter spectra for different values®f the strength
of the stripe pattern fielda) 8’ =5 and(b) B’ =3. The spectra for
B'=0 andB’z% are identical with Figs. @) and 3e), respectively.
The spectrum fopB’ :g is the same as the one fﬁr‘:é exceptitis
shifted by along the horizontale) axis.

field shown in Fig. 3 with that for a honeycomb lattice
under a uniform magnetic field. Let us consider a square
lattice shown in Fig. @), in which the transfer integral
for every other vertical bond’ (dotted line$ can take a
different value from that for the rest of the bondsgsolid
lines).

The relevant Schrodinger equation reads

8‘pn,m = tlpn—l,m + t‘ﬁn+l,m + te_Z-Iﬂnalpn,m—l + t’ezmnalpn,mﬂ-
(7)

Settingt’ =t reduces the system to a simple square lattice.
On the other hand, setting=0 [Fig. 6b)] makes it topologi-
cally equivalent to a honeycomb lattic§Fig. 6c)].
Therefore, by changing the parametérfrom t to 0, the
system evolves continuously from a square to a honeycomb
lattice.

Figure 7 shows calculated spectra fay t'=0.5% and(b)
t’=0 (honeycomb lattice It is seen that they exhibit a re-
semblance in overall shape with the spectra/fgré and%1
for the checkerboard fielfpanels(b) and(c) of Fig. 3]. The
resemblance actually runs over the whole range of the two
models, i.e., between the checkerboard f[&d. (6)] with 8
changing from 0 to% and the square-to-honeycomb evolu-
tion [EqQ. (7)] with t’ changing fromt through 0 to . The
spectra at both ends are indeed identi¢ak 0) = (t'=t) and
(B=1/2) = (t'=-1).

In retrospect, this resemblance is something one should
have anticipated, because in both cases the structural unit
is a rectangle consisting of two adjacent unit squares, as
shown in Fig. §d). Both Fig. 2 and Fig. @ are then
constructed by bricklaying these unit rectangles in the
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FIG. 7. Spectra for the model defined in Fig. 6. The paals
and(b) are fort’=0.% and O(honeycomb latticg respectively. The
spectra foit’ =t andt’ =-t are the same as the pan&s and(e) of

Fig. 3, respectively. FIG. 8. Stereo plot of the minimum energy as a functionof
and g (or B’). Namely, these figures show evolution of the bottom

pattern shown in Fig. ®). It is also interesting to note edge of the Hofstadter spectrum with the amplitude of the spatially

that the spectra shown in Fig. 3 resemble those obtained fotarying magnetic field ofa) the checkerboard pattern afqo) the

a lattice fermion model in the context of two-dimensional stripe pattern.

d-wave superconductivit§?

field case is manifest upon comparison of the curves on the

E. Relation to superconducting networks front-right face (ae=intege). The curve in Fig. &) has a
1

_ l . . . . p-1

The transition temperature of a superconducting wire netCUSP atB=5, while that in Fig. 80) is rounded a{g'=3.
work under a uniform magnetic field is related with the Correspondingly, the latter rises more steeply near the origin
eigenvalues, ., corresponding to the upper edge of the en_than the former. These features are to be compared with the

ergy spectrum for the tight-binding model by the following experimental results in the next sectiqn. An interesting fea-
relationil-13 ture of the energy landscape shown in Figa)8s that the
energy ata=%1 and;z‘1 is constan{=-242) irrespective of the
value of B8, which can be seen more clearly in the contour

AT(H) _ €(0) Emax
=== arcco§<7)- plot of Fig. 9a).

TcO (8)

Here,z is the number of nearest-neighbor nodes. Typically,
the relative change in the transition temperature is smal(@), (E)
(JAT <Ty), andAT, is linearly related withe .

Figure 8 shows the evolution of the lower edge

of the Hofstadter spectra as a function of the amplit(&le3 B B [ =
of the checkerboard field anth) B’ of the stripe field. 05 05 20
(Since the upper and the lower edge are identical, we .:-342
show the latter for the sake of ease of visual comparison i o
with the experimental data to be shown latérhe curve l:_g_s
on the front-left face(B or B’'=0) represents the lower 0 0 4.0

L. . 0 0.5 1 0 : 1
edge of the original Hofstadter butterfly spectrum. In Fig. 9, - g5

the same set of data are presented as a gray-scale plot.
A notable difference between the checkerboard and stripe  FIG. 9. Contour plot of the same set of data as Fig. 8.
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FIG. 10. Structure of the sample®) SampleA for the check-
erboard field.(b) SampleB for the stripe field. The external field

Resistance (arb. units)

parallel to the network plane controls the magnetization of the fer- 8
romagnetic array. The amplitude of the spatially modulated mag- 7
netic field can be changed by the azimuthal anglef the parallel | ’\/\/\/\/\/\/\/\/\ 6
field. ’IB \/V\W 5
RIAVAVAVAVAVAVAVAVA\
lll. EXPERIMENT WITH SUPERCONDUCTING "\/\/\/\/\/\/\/\/\ J
WIRE NETWORKS 1! "\/\/\/\/\/\/\/\/\_21
A. Experimental method $ Aqu
The samples used in the present study were fabricated o \./ ) X - .
silicon substrates by the following steps. 0 2 1 o 1 )
(i) Electrode pads were first formed by electron beam li- o
thography and gold evaporation.
(i) The network patterrisquare lattice was defined by FIG. 12. Evolution of the Little-Parks oscillation for sampie

electron beam lithography and the niobium wire networkwith the value of3 (checkerboard field The traces are vertically
was formed by ion-beam sputtering deposition and the liftoffoffset for clarity.
process. _ _

(i ) A protecting layer of germanium was deposited on _(Iv) An array of mesoscopic ferromagnesobalt or
top of the wire network, so as to prevent oxidation of nio-Nicke)) was placed on top by electron beam lithography, ion-

bium and to keep it from direct contact with the ferromag-Peam sputter deposition, and liftoff. _
netic material to be deposited next. The crucial point in the fabrication was to achieve

good positional and angular registration between the
superconducting network and the overlaid ferromagnet
array.

Two sampleqA and B) were intensively studied. These
samples represent the checkerboard field gasenpleA)
and the stripe field casésample B), respectively. The
superconductor part of the sample consisted of a square
network of 100< 100 unit cells, made of niobium wire
150 nm wide and 40 nm thick. The lattice period was
500 nm for samplé\ and 750 nm for samplB. For sample
A, 150X 200 nnt rectangular dots of 80-nm-thick cobalt
were placed on top of the center of every other bond wires
in the y direction, as shown in Fig. 18). For sample B,
250-nm-wide strips of 60-nm-thick nickel were placed
on top of every other lines in thg direction as shown in

Resistance Q)

o
-

T=6042K

6.030K ] )
® 6.019K ] Fig. 1Qb).
4 6.009K . Measurements of the superconducting properties were
g;gggﬁ 7 conducted by use of a cross-coil superconducting magnet
2 5975K - system, consisting of a 6 T Helmholtz coil and a 1T
ggggﬁ solenoid. The horizontal field was used to fix the magnetiza-
001 |- | ’ - tion of the ferromagnetic array and thereby control
002 001 0.00 0.01 0.02 the strength of the spatially varying fiel[garameteg or 8').
B (M The vertical field supplied the uniform fielgharametera)

for the network. The four-terminal resistance of the network
FIG. 11. Magnetoresistance traces at different temperatures favas measured by a standard ac lock-in technique. Cryogenic
sampleA. These data were taken @at0, i.e., 3=0. control was achieved by a variable temperature insert Dewar
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FIG. 13. Evolution of the Little-Parks oscillation for samie
with the value ofg’ (stripe field. The traces are vertically offset for
clarity.

and a feedback circuit for heater power. Use of a sample _ _

holder with rotating stage enabled us to precisely align the F!G- 14. Comparison oAAT, with the edge of the Hofstadter
orientation of the network sample with respect to the magSPectra for@ checkerboard an(b) stripe field. The symbols rep-
netic field resent AT, obtained from the resistance change as a functigf of

r B'. The curves represent the bottom edge of the corresponding

. The plane of the ere network Wa.s anUSted S0 as .to mak%ofstadter spectra scaled to fit with the experimental data. The solid
I parall_el t.o the horlzo_ntal magnetic field. The horizontal symbols and the solid curve correspond#e0. The open symbols
magnetic field was typically set at 1 T, which was stronganol the dashed curve correspondae '

o3,

enough to fully saturate the magnetization of the ferromag-
net. The value ofB for the checkerboard fieldor B’ of zero magnetic field is due to residual misalignment
for stripe field was varied by changing the azimuthal between the horizontal magnetic field and the film plane.
angle¢ of the horizontal field. As is clear from the configu- The fine structures at rational values of other than
ration shown in Fig. 10, whenp=0 the total flux due %(and weaker features étand%)were not clearly observed
to the stray field from the mesoscopic magnets adds upm this sample. This is probably attributable to lithographical
to zero for each plaquett@rovided that the lithographical imperfection, especially nonperfect registry between
symmetry is perfegt so this corresponds t@=0. As the superconducting wire network and the mesoscopic
the horizontal field is rotated fronp=0, the flux piercing magnet array, which tends to smear the higher-order
each plaquette grows in magnitude, and the sign alternatesructures.
between adjacent cells. The value @f could thus be Then the temperature was fixed at a point where the
controlled in a contiunuous manngroughly proportional sample resistance was about (RQland a series of magne-
to ¢ for small ¢). A typical set of measurements consistedtoresistance traces were taken by sweeping the vertical field
of sweeping the vertical magnetic field for different settingsfor different settings ofp. Figure 12 shows the traces thus
of ¢. obtained. Here, successive traces correspond to increments
of ¢ by 1 degree, and they are vertically offset for clarity.
The horizontal axis is converted g with a proper correc-
tion for the above-mentioned zero-field shift.

Figure 11 shows a series of magnetoresistance traces The trace marked corresponds t@=0. With increments
for sampleA under ¢=0 at different temperatures below of ¢, the dips at half-integers deepen and those at integers
T.. Little-Parks oscillations with period 7.7 mT, which become shallow, until they become equal for the trace
agrees well with the unit-cell area0.25 um?, are clearly B. Here, the period of oscillation becomes half the original
seen with additional dips at half-integers. The small shiftone. This corresponds thz;ll. With a further increase

B. Results and discussion
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of ¢, the dips at half-integer and integefs change over IV. CONCLUSION

. . 1 . .
gWydzptr? éllzirﬁgé:jcerf;r’ Ovr\;]hliﬁ ecoc::zgsirr:glnisngr_aééli\)s h';[ﬁg We ha\(e (_:alculated the _Hofstagiter butterfly spectra for a
evolution with 8 thus goes on and completes oné cycle a2D t|ght—b|nd|pg square lattice SUbJECt.ed to aspaually quu—
the traceE tI<_':1'[ed magnetic field. The_ correspondlng experlr_nentql situa-
Figure '13 shows a similar set of traces for sample tions are realized t_Jy fabricating a §uperc0nduct|ng wire net-
representing the stripe field ca&gAlthough the overall evo- work c_iecoratgd with a me.sosgoplc.ferromagn(.at array. The
lution of the trace with3’ is similaf to Fig. 12, there are two evolution of L|ttle—P_ark§ osg|llat|on with the ampht_ude of the
distinct features to be noted. First com;.)arir}g the traoas modulated magnetic field in these samples exhibits charac-
i o ' o teristic features of the two different types of modulation, that
the two figures, the relative amplitude of oscillation at theis checkerboard and stripe pattern. These results establish
oint of half-periodicity for sampleB (8'=3) is much ' : pe P ' :
P P y for P ? 1 the consistency of the calculated Hofstadter spectra with the
smaller than the corresponding one for sam#plg=7). Sec- change inT,, although there is a fundamental limitation that

ondly, although difficult to see directly from Figs. 12 and 13, ;v the edae of the spectrum can be probed by the super-
there is a substantial difference in the way the depth of imeéor?lducting gystem. P P y P

ger dips(and that of the half-integer dipgvolves withBor  conirol of flux distribution in the superconducting net-

B', between the two cases. This is more clearly seen in Figy o by mesoscopic magnetic decoration may prove to be a
14, which shows the shift in the transition temperatu_re Wlthusefu| technique in the development of devices using super-
B (or p’) for the two cases. The values 8 were obtained  ¢onqycting flux quanta. It should be of much interest to ex-
from the experimentally measured changes in resistance Qyjore the vortex dynamics in these artificial potential land-

converting them with use of the resistive transition CUV€gcapes. More generally, the mesoscopic ferromagnet/
R(T). The amplitudeAT, is consistent with Eq(8) with  g,nerconductor hybrid system may provide a wider arena for

£(0)~30 nm. The difference iA T by a factor of 2 between e exploration of vortex physics and possible device appli-
samplesA (checkerboargandB (stripe) is chiefly due to the  ations.

difference in the unit-cell area®. The curves in the figure
represent the shape of the bottom edge of the corresponding
Hofstadter spectra, seen on the front-right facet of the stereo
plot in Fig. 8. The solid symbols and the solid curve corre- We thank Professor D. Yoshioka, Professor H. Aoki, Pro-
spond toa=0. The open symbols and the dashed curve corfessor H. Fukuyama, Professor S. Maekawa, Professor F.
respond th:%. The agreement between the experimentalNori, and Dr. M. Koshino for helpful conversations. This
data and the calculated curves indicates that the present sywork has been supported by a Grant-in-Aid for COE Re-
tem of a superconducting network with magnetic decoratiorsearch “Quantum Dot and Its ApplicatiogNo. 12CE2004
captures some of the characteristic features of the Hofstadtend by a Grant-in-Aid for Scientific ResearctNo.
spectra under the spatially modulated magnetic field dis1330402%, from the Ministry of Education, Culture, Sports,

ACKNOWLEDGMENTS

cussed in this paper. Science and TechnologMEXT), Japan.

*Electronic address: iye@issp.u-tokyo.ac.jp 123, Alexander, Phys. Rev. B7, 1541(1983.

1D.R. Hofstadter, Phys. Rev. B4, 2239(1976. 13R. Rammal, T.C. Lubensky, and G. Toulouse, Phys. Re27B

2G.H. Wannier, Phys. Status Solidi B8, 757 (1978. 2820(1983.

3F.H. Claro and G.H. Wannier, Phys. Rev. B, 6068(1979. 14M.J. Higgins, Y. Xiao, S. Bhattacharya, P.M. Chaikin, S. Sethura-

4Y. Hatsugai and M. Kohmoto, Phys. Rev. £, 8282(1990. man, R. Bojko, and D. Spencer, Phys. Rev6B R894(2000.

5Ch. Kreft and R. Seiler, J. Math. Phy87, 5207(1996. 15C.C. Abilio, P. Butaud, Th. Fournier, B. Pannetier, J. Vidal, S.

6D.J. Thouless, M. Kohmoto, M.P. Nightingale, and M. den Nijs, Tedesco, and B. Dalzotto, Phys. Rev. L&8, 5102(1999.
Phys. Rev. Lett.49, 405(1982. 16M.A. ltzler, A.M. Behrooz, C.W. Wilks, R. Bojko, and P.M.

7A.H. MacDonald, Phys. Rev. 28, 6713(1983. Chaikin, Phys. Rev. B42, 8319(1990.

8P. Lederer, D. Poilblanc, and T.M. Rice, Phys. Rev. L&, 17M.A. Itzler, R. Bojko, and P.M. Chaikin, Phys. Rev. &7, 14 165
1519(1989. (1993.

9. Hasegawa, Y. Hatsugai, M. Kohmoto, and G. Montambaux,®B. Doucot, W. Wang, J. Chaussy, B. Pannetier, R. Rammal, A.
Phys. Rev. B41, 9174(1990. Vareille, and D. Henry, Phys. Rev. Leth7, 1235(1986.

10C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V. Umansky, 1°S. Ito, M. Ando, S. Katsumoto, and Y. lye, J. Phys. Soc. B8).
and H. Schweizer, Phys. Rev. Le®6, 147 (2000). 3158(1999.

1B, Pannetier, J. Chaussy, R. Rammal, and J.C. Villegier, Phys°M. Ando, S. Ito, S. Katsumoto, and Y. lye, J. Phys. Soc. J%#8).
Rev. Lett. 53, 1845(1985); see also B. Pennetier, Quantum 3462(1999.

Coherence in Mesoscopic Systemdited by B. Kramer, NATO  21Y. Nozaki, Y. Otani, K. Runge, H. Miyajima, B. Pannetier, J.P.
Advanced Study Institute Series Vol. 2%Rlenum Press, New Nozieres, and G. Fillion, J. Appl. Phyg§9, 8571(1996.
York, 1991), p. 457. 22G.-Y. Oh, Phys. Rev. B62, 4567(2000).

144524-8



HOFSTADTER BUTTERFLIES IN A MODULATED.. PHYSICAL REVIEW B 70, 144524(2004)

23y, Morita and Y. Hatsugai, Phys. Rev. Le®6, 151 (2001). the ferromagnet array and the superconducting network was
2AThe reason why the range effor Fig. 13 is wider than for Fig. about five times larger for sampk than sampleA. These two
12 is simply due to the difference in the magnetic decoration. factors made the value af required for the same amplitude of
First, the ferromagnetic material for sampBwas nickel in magnetic field modulation much larger for samyethan for

contrast to cobalt for samplk. Secondly, the distance between sampleA.

144524-9



