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Hofstadter butterfly spectra of tight-binding electron systems under spacially modulated magnetic fields are
calculated. The dependence of the spectrum on the symmetry and strength of the spatially varying magnetic
field is elucidated. The Little-Parks oscillation of the superconducting network under a spatially modulated
magnetic field produced by decoration with mesoscopic magnetic structure exhibits behavior reproducing the
edge of the corresponding Hofstadter spectra.
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I. INTRODUCTION

The exquisite structure of the energy diagram of a tight-
binding electron system on a two-dimensional(2D) square
lattice subjected to a uniform perpendicular magnetic field
was first elucidated by the work of Hofstadter1 and Wannier.2

The spectrum consists ofq subbands, when the fluxa (in the
units of the flux quantumf0=h/e) threading through each
plaquette is a rational numberp/q. The spectra of this type,
known as the Hofstadter butterfly, have since been calculated
for a variety of lattices,3–5 and they have been discussed
in various contexts of condensed-matter physics including
the quantum Hall effect6,7 and the so-called flux phase in the
t-J model.8,9

Observation of the butterfly spectra in real systems is a
formidable task. For the ordinary crystalline lattices, the re-
quired magnetic field exceeds 1000 T, which is beyond the
reach of the present technology. It is therefore natural to turn
to the artificial periodic structures, such as lateral superlat-
tices based on semiconductor two-dimensional electron sys-
tems. Recent work by Albrechtet al.10 on magnetotransport
in an antidot lattice seems to capture a certain characteristic
of the Hofstadter spectrum.

Superconducting networks comprise another category of
systems intimately related to the Hofstadter spectrum. As
demonstrated by Pannetieret al.,11 the change in the transi-
tion temperature of a superconducting wire network with the
frustration parametera reproduces the fine structure of the
upper edge of the Hofstadter butterfly spectrum. This corre-
spondence arises from the fact that the linearized Ginzburg-
Landau equation for a superconductor near its transition has
the same form as the Schrödinger equation for the electron
system.12,13 Thus, with the advantage of macroscopic coher-
ence, superconducting networks provide a convenient experi-
mental model of the Hofstadter butterfly, although admittedly
they can only probe the edge of the spectrum. This line of
study was subsequently extended to networks of various lat-
tice symmetries, including triangular, honeycomb,
Kagomé,14 T3,

15 disordered,16 quasiperiodic,17 and fractal18

lattices.
To the best of our knowledge, all of these previous studies

basically employed a uniform external magnetic field. It
would be interesting to extend the study to more general

cases of spatially varying magnetic field. This is the subject
of the present study. More specifically, we have calculated
the Hofstadter spectrum for a square lattice under spacially
varying magnetic fields. We have also conducted experi-
ments using a superconductor/ferromagnet(S/F) hybrid sys-
tem consisting of a superconducting wire network and an
array of mesoscopic ferromagnets. An early version of our
study using an S/F hybrid system study has been
published.19,20An S/F hybrid system of a different type from
the present one was studied by Nozakiet al.21 The Hofstadter
spectrum for aT3 lattice under a modulated magnetic field is
theoretically studied by Oh.22

The remainder of this paper is organized as follows. Cal-
culations of the Hofstadter spectra for a square network un-
der various patterns of a spatially varying magnetic field are
presented in the next section. Experiments using a
superconductor/ferromagnet hybrid system are described in
Sec. III, and discussed in comparison with the calculated
spectra. Finally, Sec. IV gives a summary of the present
work and some remarks.

II. CALCULATION OF THE HOFSTADTER SPECTRA

A. The original Hofstadter problem

The Hofstadter problem in its original form, i.e., the tight-
binding electron spectrum on a 2D square lattice with lattice
constanta under a uniform magnetic fieldH, is obtained by
solving the following Schrödinger equation:

«cn,m = tcn−1,m + tcn+1,m + te−2pinacn,m−1 + te2pinacn,m+1,

s1d

where cn,m represents the wave function at the lattice
site sn,md, t is the nearest-neighbor transfer-matrix element,
and a;f /f0=eHa2/h is an avarage magnetic flux thread-
ing a unit square. The parametera is often called a frustra-
tion parameter. The above equation can be reduced by
putting

cn,m = eikxnaeikymawn s2d

to the following one-dimensional Harper equation:
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«wn = te−ikxawn−1 + teikxawn+1 + 2t cosskya − 2pnadwn.

s3d

When a is a rational numberp/q, p and q being
mutually prime, the size of the magnetic unit cell becomes

sqa,ad, namely,csx+qa,yd=csx,yd andcsx,y+ad=csx,yd.
Figure 1 shows the tight-binding square lattice with
the choice of gauge appropriate toa=p/q. The energy
eigenvalues are obtained by diagonalizing the following
matrix:

1
2t cosskya − 2pad teikxa 0 ¯ 0 e−ikxa

te−ikxa 2t cosskya − 4pad teikxa 0 ¯ 0

0 � � � A
A 0 � � � 0

0 ¯ 0 te−ikxa 2t cosfkya − 2sq − 1dpag teikxa

teikxa 0 ¯ 0 te−ikxa 2t cosskya − 2qpad
2 . s4d

The result is the well-known butterfly spectrum, shown in
the topmost panel of Fig. 3.

B. Checkerboard magnetic field

We consider a spatially varying magnetic field which
consists of a uniform component and a component varying
in a checkerboard pattern, as shown in Fig. 2. Here,a
denotes the flux per plaquette of the uniform component
of the magnetic field, andb denotes the flux per plaquette
which alternates in sign in the checkerboard pattern. The
assignment of the Peierls phase factor for this flux pattern
is shown in the figure. Fora=p/q, the system is invariant
under translations2qa,0d or sa,ad. The relevant Schrödinger
equation reads

«cn,m = tcn−1,m + tcn+1,m + te−2pifsn−m+1dagcn,m−1

+ te2pisn−mdae2pibcn,m+1 sn − m oddd, s5d

«cn,m = tcn−1,m + tcn+1,m + te−2pisn−m+1dae2pibcn,m−1

+ te2pisn−mdacn,m+1 sn − m evend.

Spectra obtained by diagonalization of the corresponding
2q32q matrix are shown in Fig. 3. The spectra are symmet-

ric with respect to transformations,b→1±b, so that calcu-
lation over the rangeb=0–1

2 suffices. Five panels in Fig. 3
correspond tob=0, 1

8, 1
4, 3

8, and 1
2, respectively. The topmost

panel sb=0d is the original Hofstadter butterfly spectrum.
Introduction of nonzerob deforms the spectrum in such a
way that, for instance, the spectral weight at the band center
(van Hove singularity ate=0) for a=0 is smeared, and a
quasigap develops there with increasingb. The bottommost
panel sb= 1

2
d is identical to the topmost one except that the

spectrum is shifted by12 along the horizontalsad axis. That
this should be so can be readily understood by recalling the
following: At b= 1

2, two adjacent cells enclose +1
2 and −1

2
flux, respectively. Addition of a uniform fluxa= 1

2 to the
system changes them to 1 and 0, which is equivalent to the
sa=0,b=0d configuration. The same relation(shift by half-
period) holds between the spectra forb= 3

8 [panel (d)] and
for b= 1

8 [panel(b)]. At b= 1
4 [panel(c)], the periodicity ina

becomes half the original one. In other words, the states at
a=integer and ata=half-integer become equivalent for
b= 1

4. Again, this can be easily understood by recalling that
the flux configuration of two adjacent cells iss+3

4 , + 1
4

d at
sb= 1

4 ,a= 1
2

d, which is equivalent tos−1
4 , + 1

4
d, and hence to

s+1
4 ,−1

4
d at sb= 1

4 ,a=0d.

FIG. 1. Tight-binding square lattice with assignment of the
Peierls phase factor to each bond, for a uniform external magnetic
flux a=p/q.

FIG. 2. Square lattice subjected to a spatially varying magnetic
field in a checkerboard patternsbd and a uniform field sad.
The assignment of the Peierls phase factor is indicated by
the arrows.
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C. Stripe magnetic field

We next consider the case of a stripe pattern of field
modulation, as shown in Fig. 4. Here,b8 denotes the flux per
plaquette, which alternates in sign for every other column.
The assignment of the Peierls phase factor for this flux
pattern is shown in the figure. The magnetic unit cell for
a=p/q is s2qa,ad, i.e., the system is invariant under trans-
lation by s2qa,0d or s0,ad. The relevant Schrödinger equa-
tion reads

«cn,m = tcn−1,m + tcn+1,m + te−2pinae2pib8cn,m−1

+ te2pinae2pib8cn,m+1 sn oddd, s6d

«cn,m = tcn−1,m + tcn+1,m + te−2pinacn,m−1

+ te2pinacn,m+1 sn evend.

The spectra obtained by diagonalization of the corre-
sponding 2q32q matrix are shown in Fig. 5. Only the spec-
tra for b8= 1

8 and 1
4 are shown, since the spectra forb8=0

andb8= 1
2 are identical to those forb=0 andb= 1

2 in Fig. 3,
and the spectrum forb8= 3

8 is none other than that
for b8= 1

8 shifted by 1
2 along the horizontalsad axis. We

can immediately note the differences between the spectra
for a stripe field and those for a checkerboard field. Introduc-
tion of nonzerob8 (stripe field) causes lifting of degeneracy

FIG. 3. Hofstadter spectra for a square lattice subjected to a checkerboard fieldsbd and a uniform fieldsad. Five panels shows spectra
for different amplitudes of the checkerboard field:(a) b=0, (b) b= 1

8, (c) b= 1
4, (d) b= 3

8, and(e) b= 1
2, respectively.
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at e=0 for a= 1
2, while the splitting occurs at integera

for the checkerboard field, as seen earlier. It is evident
that the spectra for stripe fields are considerably “darker”
(more bands and fewer gaps) as compared with those
for checkerboard fields. This is in line with a general
trend that the Hofstadter spectrum becomes “darker”
as one introduces rectangular anisotropy in the square
lattice.9

D. Comparison with a honeycomb lattice

Although it is a kind of excursion to a side road,
it is interesting to compare the spectra for the checkerboard

field shown in Fig. 3 with that for a honeycomb lattice
under a uniform magnetic field. Let us consider a square
lattice shown in Fig. 6(a), in which the transfer integral
for every other vertical bondt8 (dotted lines) can take a
different value from that for the rest of the bondst (solid
lines).

The relevant Schrödinger equation reads

«cn,m = tcn−1,m + tcn+1,m + te−2pinacn,m−1 + t8e2pinacn,m+1.

s7d

Setting t8= t reduces the system to a simple square lattice.
On the other hand, settingt8=0 [Fig. 6(b)] makes it topologi-
cally equivalent to a honeycomb lattice[Fig. 6(c)].
Therefore, by changing the parametert8 from t to 0, the
system evolves continuously from a square to a honeycomb
lattice.

Figure 7 shows calculated spectra for(a) t8=0.5t and (b)
t8=0 (honeycomb lattice). It is seen that they exhibit a re-
semblance in overall shape with the spectra forb= 1

8 and 1
4

for the checkerboard field[panels(b) and(c) of Fig. 3]. The
resemblance actually runs over the whole range of the two
models, i.e., between the checkerboard field[Eq. (6)] with b
changing from 0 to1

2 and the square-to-honeycomb evolu-
tion [Eq. (7)] with t8 changing fromt through 0 to −t. The
spectra at both ends are indeed identical:sb=0d⇔ st8= td and
sb=1/2d⇔ st8=−td.

In retrospect, this resemblance is something one should
have anticipated, because in both cases the structural unit
is a rectangle consisting of two adjacent unit squares, as
shown in Fig. 6(d). Both Fig. 2 and Fig. 6(a) are then
constructed by bricklaying these unit rectangles in the

FIG. 4. Square lattice subjected to a spatially varying magnetic
field in a stripe patternsb8d and a uniform fieldsad. The assignment
of the Peierls phase factor is indicated by the arrows.

FIG. 5. Hofstadter spectra for different values ofb8, the strength
of the stripe pattern field.(a) b8= 1

8 and (b) b8= 1
4. The spectra for

b8=0 andb8= 1
2 are identical with Figs. 3(a) and 3(e), respectively.

The spectrum forb8= 3
8 is the same as the one forb8= 1

8 except it is
shifted by 1

2 along the horizontalsad axis.

FIG. 6. (a) A square lattice with different transfer integrals
t8 and t. When t8=0 [panel (b)], it is topologically equivalent
to a honeycomb lattice[panel(c)]. Panel(d) shows unit “brick” of
this lattice and the one for a square lattice under checkerboard field
(Fig. 2).
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pattern shown in Fig. 6(b). It is also interesting to note
that the spectra shown in Fig. 3 resemble those obtained for
a lattice fermion model in the context of two-dimensional
d-wave superconductivity.23

E. Relation to superconducting networks

The transition temperature of a superconducting wire net-
work under a uniform magnetic fieldH is related with the
eigenvalue«max corresponding to the upper edge of the en-
ergy spectrum for the tight-binding model by the following
relation:11–13

DTcsHd
Tc0

=
j2s0d

a2 arccos2S«max

z
D . s8d

Here,z is the number of nearest-neighbor nodes. Typically,
the relative change in the transition temperature is small
suDTcu!Tc0d, andDTc is linearly related with«max.

Figure 8 shows the evolution of the lower edge
of the Hofstadter spectra as a function of the amplitude(a) b
of the checkerboard field and(b) b8 of the stripe field.
(Since the upper and the lower edge are identical, we
show the latter for the sake of ease of visual comparison
with the experimental data to be shown later.) The curve
on the front-left face(b or b8=0) represents the lower
edge of the original Hofstadter butterfly spectrum. In Fig. 9,
the same set of data are presented as a gray-scale plot.
A notable difference between the checkerboard and stripe

field case is manifest upon comparison of the curves on the
front-right face sa=integerd. The curve in Fig. 8(a) has a
cusp atb= 1

2, while that in Fig. 8(b) is rounded atb8= 1
2.

Correspondingly, the latter rises more steeply near the origin
than the former. These features are to be compared with the
experimental results in the next section. An interesting fea-
ture of the energy landscape shown in Fig. 8(a) is that the
energy ata= 1

4 and 3
4 is constants=−2Î2d irrespective of the

value of b, which can be seen more clearly in the contour
plot of Fig. 9(a).

FIG. 7. Spectra for the model defined in Fig. 6. The panels(a)
and(b) are fort8=0.5t and 0(honeycomb lattice), respectively. The
spectra fort8= t andt8=−t are the same as the panels(a) and(e) of
Fig. 3, respectively. FIG. 8. Stereo plot of the minimum energy as a function ofa

andb (or b8). Namely, these figures show evolution of the bottom
edge of the Hofstadter spectrum with the amplitude of the spatially
varying magnetic field of(a) the checkerboard pattern and(b) the
stripe pattern.

FIG. 9. Contour plot of the same set of data as Fig. 8.
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III. EXPERIMENT WITH SUPERCONDUCTING
WIRE NETWORKS

A. Experimental method

The samples used in the present study were fabricated on
silicon substrates by the following steps.

(i) Electrode pads were first formed by electron beam li-
thography and gold evaporation.

(ii ) The network pattern(square lattice) was defined by
electron beam lithography and the niobium wire network
was formed by ion-beam sputtering deposition and the liftoff
process.

(iii ) A protecting layer of germanium was deposited on
top of the wire network, so as to prevent oxidation of nio-
bium and to keep it from direct contact with the ferromag-
netic material to be deposited next.

(iv) An array of mesoscopic ferromagnets(cobalt or
nickel) was placed on top by electron beam lithography, ion-
beam sputter deposition, and liftoff.

The crucial point in the fabrication was to achieve
good positional and angular registration between the
superconducting network and the overlaid ferromagnet
array.

Two samples(A and B) were intensively studied. These
samples represent the checkerboard field case(sampleA)
and the stripe field case(sample B), respectively. The
superconductor part of the sample consisted of a square
network of 1003100 unit cells, made of niobium wire
150 nm wide and 40 nm thick. The lattice period was
500 nm for sampleA and 750 nm for sampleB. For sample
A, 1503200 nm2 rectangular dots of 80-nm-thick cobalt
were placed on top of the center of every other bond wires
in the y direction, as shown in Fig. 10(a). For sample B,
250-nm-wide strips of 60-nm-thick nickel were placed
on top of every other lines in they direction as shown in
Fig. 10(b).

Measurements of the superconducting properties were
conducted by use of a cross-coil superconducting magnet
system, consisting of a 6 T Helmholtz coil and a 1 T
solenoid. The horizontal field was used to fix the magnetiza-
tion of the ferromagnetic array and thereby control
the strength of the spatially varying field(parameterb or b8).
The vertical field supplied the uniform field(parametera)
for the network. The four-terminal resistance of the network
was measured by a standard ac lock-in technique. Cryogenic
control was achieved by a variable temperature insert Dewar

FIG. 10. Structure of the samples.(a) SampleA for the check-
erboard field.(b) SampleB for the stripe field. The external field
parallel to the network plane controls the magnetization of the fer-
romagnetic array. The amplitude of the spatially modulated mag-
netic field can be changed by the azimuthal anglew of the parallel
field.

FIG. 11. Magnetoresistance traces at different temperatures for
sampleA. These data were taken atw=0, i.e.,b=0.

FIG. 12. Evolution of the Little-Parks oscillation for sampleA
with the value ofb (checkerboard field). The traces are vertically
offset for clarity.
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and a feedback circuit for heater power. Use of a sample
holder with rotating stage enabled us to precisely align the
orientation of the network sample with respect to the mag-
netic field.

The plane of the wire network was adjusted so as to make
it parallel to the horizontal magnetic field. The horizontal
magnetic field was typically set at 1 T, which was strong
enough to fully saturate the magnetization of the ferromag-
net. The value ofb for the checkerboard field(or b8
for stripe field) was varied by changing the azimuthal
anglew of the horizontal field. As is clear from the configu-
ration shown in Fig. 10, whenw=0 the total flux due
to the stray field from the mesoscopic magnets adds up
to zero for each plaquette(provided that the lithographical
symmetry is perfect), so this corresponds tob=0. As
the horizontal field is rotated fromw=0, the flux piercing
each plaquette grows in magnitude, and the sign alternates
between adjacent cells. The value ofb could thus be
controlled in a contiunuous manner(roughly proportional
to w for small w). A typical set of measurements consisted
of sweeping the vertical magnetic field for different settings
of w.

B. Results and discussion

Figure 11 shows a series of magnetoresistance traces
for sampleA under w=0 at different temperatures below
Tc. Little-Parks oscillations with period 7.7 mT, which
agrees well with the unit-cell area,0.25mm2, are clearly
seen with additional dips at half-integers. The small shift

of zero magnetic field is due to residual misalignment
between the horizontal magnetic field and the film plane.
The fine structures at rational values ofa other than
1
2 (and weaker features at1

3 and 2
3) were not clearly observed

in this sample. This is probably attributable to lithographical
imperfection, especially nonperfect registry between
the superconducting wire network and the mesoscopic
magnet array, which tends to smear the higher-order
structures.

Then the temperature was fixed at a point where the
sample resistance was about 0.01Rn, and a series of magne-
toresistance traces were taken by sweeping the vertical field
for different settings ofw. Figure 12 shows the traces thus
obtained. Here, successive traces correspond to increments
of w by 1 degree, and they are vertically offset for clarity.
The horizontal axis is converted toa, with a proper correc-
tion for the above-mentioned zero-field shift.

The trace markedA corresponds tob=0. With increments
of w, the dips at half-integers deepen and those at integers
become shallow, until they become equal for the trace
B. Here, the period of oscillation becomes half the original
one. This corresponds tob= 1

4. With a further increase

FIG. 13. Evolution of the Little-Parks oscillation for sampleB
with the value ofb8 (stripe field). The traces are vertically offset for
clarity.

FIG. 14. Comparison ofDTc with the edge of the Hofstadter
spectra for(a) checkerboard and(b) stripe field. The symbols rep-
resent −DTc obtained from the resistance change as a function ofb
or b8. The curves represent the bottom edge of the corresponding
Hofstadter spectra scaled to fit with the experimental data. The solid
symbols and the solid curve correspond toa=0. The open symbols
and the dashed curve correspond toa= 1

2.
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of w, the dips at half-integer and integera’s change over
in depth. The traceC, which corresponds tob= 1

2, is shifted
by a half-period from the original one(trace A). The
evolution with b thus goes on and completes one cycle at
the traceE.

Figure 13 shows a similar set of traces for sampleB,
representing the stripe field case.24 Although the overall evo-
lution of the trace withb8 is similar to Fig. 12, there are two
distinct features to be noted. First, comparing the tracesB in
the two figures, the relative amplitude of oscillation at the
point of half-periodicity for sampleB sb8= 1

4
d is much

smaller than the corresponding one for sampleA sb= 1
4

d. Sec-
ondly, although difficult to see directly from Figs. 12 and 13,
there is a substantial difference in the way the depth of inte-
ger dips(and that of the half-integer dips) evolves withb or
b8, between the two cases. This is more clearly seen in Fig.
14, which shows the shift in the transition temperature with
b (or b8) for the two cases. The values ofDTc were obtained
from the experimentally measured changes in resistance by
converting them with use of the resistive transition curve
RsTd. The amplitudeDTc is consistent with Eq.(8) with
js0d,30 nm. The difference inDTc by a factor of 2 between
samplesA (checkerboard) andB (stripe) is chiefly due to the
difference in the unit-cell areaa2. The curves in the figure
represent the shape of the bottom edge of the corresponding
Hofstadter spectra, seen on the front-right facet of the stereo
plot in Fig. 8. The solid symbols and the solid curve corre-
spond toa=0. The open symbols and the dashed curve cor-
respond toa= 1

2. The agreement between the experimental
data and the calculated curves indicates that the present sys-
tem of a superconducting network with magnetic decoration
captures some of the characteristic features of the Hofstadter
spectra under the spatially modulated magnetic field dis-
cussed in this paper.

IV. CONCLUSION

We have calculated the Hofstadter butterfly spectra for a
2D tight-binding square lattice subjected to a spatially modu-
lated magnetic field. The corresponding experimental situa-
tions are realized by fabricating a superconducting wire net-
work decorated with a mesoscopic ferromagnet array. The
evolution of Little-Parks oscillation with the amplitude of the
modulated magnetic field in these samples exhibits charac-
teristic features of the two different types of modulation, that
is, checkerboard and stripe pattern. These results establish
the consistency of the calculated Hofstadter spectra with the
change inTc, although there is a fundamental limitation that
only the edge of the spectrum can be probed by the super-
conducting system.

Control of flux distribution in the superconducting net-
work by mesoscopic magnetic decoration may prove to be a
useful technique in the development of devices using super-
conducting flux quanta. It should be of much interest to ex-
plore the vortex dynamics in these artificial potential land-
scapes. More generally, the mesoscopic ferromagnet/
superconductor hybrid system may provide a wider arena for
the exploration of vortex physics and possible device appli-
cations.
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