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Stable vortex states are studied in large superconducting thin disks(for numerical purposes we considered
disks with radiusR=50j). Configurations containing more than 700 vortices were obtained using two different
approaches: the nonlinear Ginzburg-Landau(GL) theory and the London approximation. To obtain better
agreement with results from the GL theory we generalized the London theory by including the spatial variation
of the order parameter following Clem’s ansatz. We find that configurations calculated in the London limit are
also stable within the Ginzburg-Landau theory for up to,230 vortices. For large values of the vorticity
(typically, L*100), the vortices are arranged in an Abrikosov lattice in the center of the disk, which is
surrounded by at least two circular shells of vortices. A Voronoi construction is used to identify the defects
present in the ground state vortex configurations. Such defects cluster near the edge of the disk, but for large
L also grain boundaries are found which extend up to the center of the disk.
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I. INTRODUCTION

Vortices appear in several branches of physics, such as
fluid dynamics,1 superfluidity,2 Bose-Einstein (B-E)
condensates,3–5 and superconductivity.6,7 The vortex is usu-
ally described by a field(for instance, the velocity field)
which diverges asr−1 as one approaches its core.8 They can
be treated as quasiparticles, since they can be created or de-
stroyed, they interact with each other and with the interfaces.
Unlike in fluid dynamics, in superfluids(including here su-
perconductors and B-E condensates) vortices are quantized
objects. In superconductors, for example, they carry a mag-
netic flux which is a multiple of the flux quantumF0
=hc/2e and are characterized by a core of areaj2—where
the superconductivity is highly depreciated—surrounded by
superconducting currents(screened at distances of orderl).
Here,j is the coherence length. They have been intensively
studied, since Abrikosov6 predicted their existence from the
solution of the Ginzburg-Landau(GL) equations in a type-II
superconductor forHc1,H,Hc2 (see also Refs. 9 and 10).
In an infinite, and defect free superconductor, vortices ar-
range themselves in an hexagonal(Abrikosov) lattice.

A detailed phenomenological description of the supercon-
ducting state can be derived from the Ginzburg-Landau(GL)
theory,11 by means of two parameters: the complex order
parameterC, which is related to the superconducting elec-
tron density, and the vector potentialA. For Hc1øH!Hc2,
each vortex can be viewed as a particle, since intervortex
separationsa are such thatj!a,l—assuring that vortex
cores do not overlap—and the major role between vortex-
vortex interactions is played by the superconducting shield-
ing currents. In such cases the London limit turns out to be a
good approximation of the GL theory, becoming better for
higher values ofk (see for example Refs. 7 and 12–14). In
this approximation, the superconducting electron density is
considered constant throughout the entire superconductor
and the vortex cores are represented by singularities in the
phase of the order parameter. This allows one to treat vorti-
ces as particles.

In a thin film of thicknessd, the effective magnetic field
shielding length turns out to be the effective penetration

depthL=l2/d, instead ofl.15 At distancesr !L the elec-
tromagnetic interaction is still logarithmic, as in the three-
dimensional case, but with screening lengthL [However the
perpendicular magnetic field and the shielding currents decay
as r−3 and r−2 far away from the vortex core forr @L, in-
stead as exps−r /ld in the bulk case.] Similarly as in the bulk
case, in a thin film vortices also form an hexagonal Abriko-
sov lattice.13

In mesoscopic superconductors both the geometry and
size of the specimen influence the vortex configurations, due
to the interaction between vortices and the surface. There-
fore, for small enough samples(with sizes comparable toj),
the conventional hexagonal lattice predicted by Abrikosov no
longer exists, and vortex configurations adjust to the sample
geometry, yielding some kind of vortex molecule states.16–20

For example, vortices arrange themselves in ringlike struc-
tures in disks with radiisRd a few timesj.18–30Nevertheless
when an overlapping of vortices starts to take place, discrep-
ancies between vortices and a picture based on particles
arise, such as the formation of giant vortex states. Also,
vortex-antivortex configurations may become possible for
noncircular geometries.31–33

Within the London limit the vortex interaction potential in
a thin disk of arbitrary radius was calculated by Fetter.34 Also
in the London limit, vortex configurations up toL=8 were
studied by Buzdin and Brison35 for L@R (where demagne-
tization effects can be neglected). In the latter limit it is
possible to substitute the interaction between the vortices and
the disk border by the interaction between vortices and their
images(see also Ref. 36). Within the London limit one is
able to find analytical expressions for the energy and forces
of an arbitrary arrangement of vortices inside the disk, since
vortices can be treated as particles. They arrange themselves
similarly to what is observed in electrons in artificial atoms,
where particles obey specific rules for shell filling and ex-
hibit magic numbers.37,38 Vortices considered as particles
were also studied by Monte Carlo and molecular dynamics
simulations. In Ref. 39 vortex configurations with up to 2000
vortices were studied and an hexagonal lattice was found for
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thin disks, although they did not consider the vortex interac-
tion with the disk edge. Vortex molecules in long cylinders
with radius much larger thanl were studied by Venegas and
Sardella.40 Other geometries were investigated in Refs. 41
and 42, for example.

In this paper we will study multivortex states in the range
from few vortices—forming a ringlike structure—to many
vortices, yielding a triangular lattice in the center of the disk
and a ringlike structure close to the edges. Within the GL
framework several other works have been reported regarding
vortex states in thin disks,18,19,21–30but they were limited to
much smaller disk radius. In such small systems the forma-
tion of multivortex states with high vorticity is not allowed
and, consequently, it was not possible to study the transition
from a ringlike structure to an Abrikosov lattice, which is the
subject of the present paper.

This paper is organized as follows. The theoretical ap-
proach is described in Sec. II. In Sec. III low vorticity states
obtained within the GL and the London frameworks are com-
pared. In Secs. IV and V configurations with up to 700 vor-
tices are investigated, respectively, by showing the existence
of an Abrikosov lattice in the center of the disk and by ex-
amining the role of topological defects in the lattice in order
to adjust the hexagonal lattice to the radial symmetry close to
the disk edge. Surface superconductivity in theR=50j disk
is briefly analyzed in Sec. VI. Our conclusions are given in
Sec. VII.

II. THEORETICAL APPROACH

For our numerical calculation we used a thin disk of ra-
dius R=50j and thicknessd, in which L=l2/d@R.j@d,
surrounded by vacuum and in the presence of a uniform per-
pendicular magnetic fieldH0. In this regime, the demagneti-
zation effects can be neglected, allowing one to assume
H <H0=H0ẑ. Vortex states in mesoscopic thin disks were
investigated by us using both the Ginzburg-Landau(GL)
theory and the London approximation with the London
gauge¹ ·A=0. Dimensionless variables are used, i.e., the
distance is measured in units of the coherence lengthj, the
vector potential in c" /2ej, and the magnetic field in
Hc2=c" /2ej2=kÎ2Hc. The average energy density is written
in units ofHc

2/8p (we shall refer to it as simply the energy of
the system). Also, the vorticity or the number of vortices in
the system will be denoted byL (an analog to the total an-
gular momentum).20,24 Moreover, whenever the distinction
among different configurations with the sameL would be
necessary, we use the notation presented in Ref. 20 to denote
the vortex configurations, e.g., forL=6, (1, 5) means 1 vor-
tex in the center with 5 around it, and(6) represents 6 vor-
tices with none of them in the center of the disk.

In the framework of the GL theory, the GL equations are
solved numerically according to the approach of Schweigert
and Peeters23 and Schweigertet al.24 As we are in the limit
sd!j ,ld, the Ginzburg-Landau equations can be averaged
over the disk thickness, leading to the following system of
equations:

s− i¹2D − Ad2C = Cs1 − uCu2d s1d

and

− D3DA = j , s2d

where the supercurrent density is defined by the following:

k2

d
j = dszdF 1

2i
sC * ¹2DC − C¹2DC * d − uCu2AG

= dszduCu2s¹2Du − Ad = dszduCu2P. s3d

Above, the superconducting wave functionC= uCueiu satis-
fies the boundary conditionsus−i¹2D−AdCun=0 normal to

the sample surface andA=A0= 1
2H0rf̂ (since demagnetiza-

tion effects can be neglected). Heref̂ is the unit vector in the
azimuthal direction. The indices 2D, 3D refer to two- and
three-dimensional operators, respectively. The dimensionless
GL energy density is given by

G = Gcore+ Gem, s4ad

where

Gcore=
1

V
E
V

f− 2uCu2 + uCu4 + 2s¹2DuCud2gdV, s4bd

Gem=
1

V
E
V

f2uCu2P2 + 2k2sH − H0d2gdV, s4cd

are the core and the kinetic energies, respectively, and the
integrations are to be performed over the sample volumeV.
As demagnetization effects can be disregarded, the above
equation reduces to

G = −
1

V
E
V

uCu4dV, s5d

which was actually the expression used to compute the en-
ergy of the vortex configurations within the GL theory. From
now on the symbol¹ will be used for the two-dimensional
gradient operator.

The GL calculation was performed by using the approach
of Ref. 24 for circular disks. In the present case, asL@R,
Eqs.(2) and(3) can be disregarded, and we solved only Eq.
(1). A finite-difference representation for the order parameter
is used on an uniform 2D square gridsx,yd, with typically
5123512 grid points for the area of the superconductor,
which allows us to have at least five grid points inside a
length of the order ofj. We also use the link variable
approach,43 and an iteration procedure based on the Gauss-
Seidel technique to findC. Starting from different randomly
generated initial conditions and at some specified magnetic
field, the steady-state solutions of Eq.(1) yield different vor-
tex configurations, either stable or meta-stable states.

For the London approximation, we follow the approach
outlined in Refs. 20 and 35. In this limit the order parameter
is considered uniform throughout the disk, except for small
regions with areas of the order ofj2, where it drops to zero.
This approximation is justified whenk@1 and the vortex
cores do not overlap. Then the energy of the system is purely
electromagnetic and it is given by the sum of the supercur-
rent and the magnetic field energies
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GL =
2k2

V
E dVfsH − H0d2 + k2uj u2g. s6d

Notice that this expression is a particular case of Eq.
(4c) which is obtained by puttinguCu2=1 everywhere
inside the disk. In the presence ofL vortices, situated at
ri hi =1,2, . . . ,Lj, the London equation can be written as

J =
d

k2sn − Ad, s7d

where

n = o
i=1

L

fFsur − riud − Fsur − sR/rid2riudg, s8d

with ri =sxi ,yid the position of the vortices,J=e0
ddzj < jd,

and Fsur−riud= ẑ3 sr−rid / ur−riu2. The vortex images at
sR/rid2ri appear in Eq.(8) in order to fulfill the boundary
condition35 JsRd ·r̂=0. Instead of writing Eq.(7) for the vec-
tor J, one may use the streamline function,gsrd, related to
the supercurrent byJ= ¹ 3 sẑgd (gsrd can be regarded as a
local magnetization in the thin film.44) At the boundary
gsR,fd=const., but, as the value of this constant is arbitrary,
one can imposegsR,fd=0. Therefore, Eqs.(7) and (8) can
be expressed as

gsrd =
d

k2Fo
j=1

L

lnS ur − sR/r jd2r ju
ur − r ju

r j

R
D −

H0

4
sR2 − r2dG .

s9d

Notice that Eq.(7) can also be understood as the limiting
case of the GL equations if one considersuCu=1 and
¹u=n. Therefore, while vortices are well apart from each
other(and also the boundary), there exists a relation between
the streamline function defined above and the phase of the
order parameter in the GL theory, i.e., one can define a com-
plex function of which the real and imaginary parts are pro-
portional togsrd andu.34

Since in our casesL=l2/d@j@dd, demagnetization ef-
fects can be neglected20 and one may write Eq.(6) as

GL =
2k4

Vd
E d2ruJu2 =

2k4

Vd
E d2rgsrdẑ · ¹ 3 J

=
2k2

V
F2po

i=1

L

gsrid − H0E d2rgsrdG , s10d

where the integration is performed along the thin film plane,
z=0. Substituting Eq.(9) in this formula, and after some
algebraic manipulation, the London energy is expressed by

GL = S 2

R
D2

o
i=1

L

o
j=1

L

lnS r jur i − r j/r j
2u

ur i − r ju
D − 2H0o

i=1

L

s1 − r i
2d +

R2H0
2

4
,

s11d

where we usedr i =ri /R to simplify the notation.

The divergence in Eq.(11) can be removed by consider-
ing a cutoff, in which fori = j → uri −r ju=aj (in not normal-
ized units) and a is a constant. The final expression for the
London energy can be written as

GL = o
i=1

L Sei
self + ei

shield+ o
j=1

i−1

ei jD + ecore+ efield, s12ad

where

ei
self = S 2

R
D2

lns1 − r i
2d s12bd

is the interaction energy between theith vortex and the radial
boundary of the superconductor

ei
shield= − 2H0s1 − r i

2d s12cd

represents the interaction between theith vortex and the
shielding currents, and

ei j = S 2

R
D2

lnF sr ir jd2 − 2r i · r j + 1

r i
2 − 2r i · r j + r j

2 G s12dd

is the repulsive energy between vorticesi and j . Finally,
ecore=s2/Rd2L lnsR/ad andefield=R2H0

2/4 are the energies as-
sociated with the vortex cores and the external magnetic
field, respectively.

Notice that the above approach allows one to treat the
vortices as particles, which is valid when vortices are well
separated from each other(typically for45 Hø0.2Hc2).
Therefore, simulation techniques appropriate for systems of
classical particles may be performed in order to find, for
example, the ground state of the system.37,38,46In this sense,
the vortex system behaves(in the London approximation)
similar to a two-dimensional system composed of equally
charged particles interacting through a repulsive logarithmic
potential placed in a parabolic potential well.47,48 Neverthe-
less, there is a fundamental difference between these two
systems: The vortex system is confined to a disk of radiusR
and the influence of the surface on the energy is clear from
the terms containing vortex images, i.e.,ei

self andei j . Notice
also thatecore arises from the cutoff procedure and is there-
fore strongly dependent on the cutoff valueaj (we adopted
a=1 in the results shown below). The actual energy associ-
ated with vortex cores and with the spatial variation of the
superconducting electron densitysucsrdu2d should be evalu-
ated by using the GL theory.

A thin disk with L vortices was simulated by using Eq.
(12a). To investigate(meta)-stable states close to the equilib-
rium, we employed a procedure similar to the one described
in Ref. 38. FirstL8 vortices were distributed randomly inside
the disk. Then, a Monte Carlo(MC) technique was used to
make the system wander in the configurational space and
arrive at a neighborhood of some minimum ofGL. After typi-
cally 104 MC steps, we perform a molecular dynamics(MD)
simulation starting from the final MC configuration. The fi-
nal (meta)-stable state is achieved after about 106 MD steps.
In order to find the ground state(or states with energies very
close to it) this trial procedure was repeated more than
1000 times, each time starting with a different random dis-

FROM VORTEX MOLECULES TO THE ABRIKOSOV… PHYSICAL REVIEW B 70, 144523(2004)

144523-3



tribution of L8 vortices at a given magnetic fieldH0.
To implement the MD we time integrated the Bardeen-

Stephen equation of motion49

h
dri

dt
= F i , s13d

where i is the label of theith vortex,h is the viscous drag
coefficienth,F0Hc2/rnc

2 (wherern is the normal state re-
sistivity). The forces acting on each vortex were obtained
from −¹kGLsri ,r jd, whereGL is given by Eq.(12a) and −¹k

is the gradient with respect to the coordinaterk. This yields
a force per unit of length

F i = F i
s + o

k=1

kÞi

L

F i,k
int, s14ad

which we express in units ofHc
2j /8p. Above, the first term

describes the vortex interaction with the current induced by
the external field and with the interface

F i
s = S 2

R
D3S 1

1 − r i
2 −

H0R
2

2
Dr i , s14bd

and the second, the vortex-vortex interaction,

F i,k
int = S 2

R
D3S r i − rk

ur i − rku2
− rk

2 rk
2r i − rk

urk
2r i − rku2

D . s14cd

The simple Euler method was used to accomplish the time
integration, but adopting adt value small enough to avoid
large variations of the vortex positions between two consecu-
tive steps. Moreover, the dynamical matrix(the Hessian ma-
trix of GL), whose elements are given by

]2GL

]ra,i]rb,j
, s15d

was calculated for the final vortex configuration. In this
equation, the Greek indexes stand for the components of the
vectorri, while the Italic indexes are the labels for the vor-
tices. The computation of the dynamical matrix eigenvalues
allowed us to tell whether the given state was stable or un-
stable(for a stable state all the dynamical matrix eigenvalues
must be non-negative). Unstable states were discarded.

One difficulty in simulating this system is the fact that
both GL and the forces acting on the vortices diverge at the
disk edge. To overcome this, during the MD simulation
whenever a vortex was at a distance less thanj from the disk
edge, it is taken out from the system, i.e., this vortex disap-
pears. Therefore, the final number of vortices may not be the
same as in the beginning. This does not lead to any serious
concern, since we collect all the final results from each trial
and sort them in ascending order of energy. It also allows us
to compare energies of systems containing different number
of vortices for the same external magnetic field and investi-
gate which of them correspond to the lower energy, i.e., is
the ground state.

III. LOW L STATES: VORTEX MOLECULES

In this section we present the results calculated from the
GL and London theories for lowL states for a thin disk of
radius R=50j. A comparison between ground states in the
GL theory and the London approximation was done in Ref.
20, for the case of a small disk radius(i.e., R=6j). In that
case, it was not possible to study multivortex configurations
for L states aboveL=14 since the calculated GL results
showed only giant vortices. Moreover, aboveL=26 the disk
was driven to thenormal state. In the present case, multivor-
tex configurations are obtained for much higherL states.
This enabled us to compare large multivortex configurations
calculated by both the GL theory and the London approxi-
mation, and investigate the transition to the Abrikosov lat-
tice.

For L=1 to L=9, the lowest energy configurations consist
of vortices distributed in regular polygons with 0 or 1 vortex
in the center of the disk. This means that not many meta-
stable states are close to the ground state, which makes the
job of finding low energy configurations easier. In the Lon-
don limit, this reduces Eqs.(12a)–(12d) to a simple form,
which depends on only one free parameter,20,35 i.e., the ra-
dius of the ring which circumscribes the polygonrring. The
minimization problem is then straightforward. We also ob-
tained the positions of the vortex ring by finding the roots of

1

1 − r2 − h +
N ± 1

2r2 − o
n=1

N−1
r2 − cosfn

1 + r4 − 2r2 cosfn
= 0, s16d

which follows from the balance of forces acting on each
vortex [cf. Eq. (14)].35 HereN is the number of vortices on
the ring (or the number of sides of the polygon), r =rring/R,
fn=2pn/N, h=H0R

2/2 and the plus(minus) sign should be
taken if there is one(zero) vortex in the center of the disk.

A comparison between the calculated GL and London
vortex configurations is depicted in Fig. 1. The statesL=3
[Fig. 1(a)], L=s6d [Fig. 1(b)], L=s1,5d [Fig. 1(c)], and
L=7 [Fig. 1(d)] were obtained atH0=0.007, H0=0.01,
H0=0.01, andH0=0.011, respectively. The vortex positions
practically coincide for the same configurations in both theo-
ries.

The agreement between the vortex positions yielded by
both theories(at H0!Hc2) is related to the fact that the phase
of the order parameteru is well described as the imaginary
part of the complex function

V = o
j=1

L

lnFS z − sR/z jd2z j

z − z j
Dr j

R
G −

H0

4
sR2 − r2d, s17d

for sufficiently small magnetic fields,34 where z=reif=x
+ iy is the representation of the vectorr in the complex
z-plane. Butsd/k2dRehVj is simply the streamline function
[cf. Eq. (9)] calculated in the London limit. That is greatly
responsible for the fact thatrring is virtually the same in both
theories forH0!Hc2. Figure 1(e) presents the numerically
calculated phase of the order parameter(left) and the theo-
retical one obtained from the imaginary part of Eq.(17)
(right) for the state withL=6 at H0=0.022.
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The dependence ofrring upon H0 is shown in Fig. 2(b)
obtained within the GL(squares) and the London limit(solid
line) for the L=1, (2), (3), (4), (5), (6), (1, 6), (1, 7) states.
Both theories predict the same values ofrring and, thus, the
same stable configurations, as a function ofH0. Figure 2(b)
also shows the radial position over which a given regular
polygon configuration is not stable(dashed lines) as function
of H0 (obtained in the London limit). The magnetic field in
which the stable and unstablerring lines start to depart from
each other(open circles) mark the onset of stability for each
configuration. The unstablerring lines merge to

RÎ1 −
2

H0R
2 . s18d

This is simply the position after which the attractive force
acting on each vortex by its own image becomes larger than
the force produced by the shielding currents(which pulls the
vortices inside), as can be easily demonstrated from Eqs.
(14a) and (14b) for one vortex. It is also important to take
into account the vortex interaction with the disk edge for
sufficiently low fields. This can be noticed from the differ-

FIG. 1. Vortex configurations forL=s3d andH0=0.007(a), L=s6d andH0=0.01 (b), L=s1,5d andH0=0.01 (c), andL=s1,6d andH0

=0.011(d). The black lines are the contour lines ofuCsrdu2, whereas the white circles indicate the position of the vortices according to the
London approximation. In(e) we show the phase of the order parameter for theL=s6d state atH0=0.022 obtained from the GL equations
(on the left) and from the London approximation(on the right).
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ence between the stablerring and the dotted lines in Fig. 2(b),
which depicts the position at which the respective regular
polygon configuration would sit if there were no vortex im-
ages[from Eq. (16) in the absence of vortex images,rring
would be given byÎsN±1d /H0, where the1 (2) sign
should be considered for one(zero) vortex in the center].

The free energies within the GL(thick lines) theory and
the usual London limit(dashed line) are depicted in Fig. 2(a)
for L=0→8 as a function of the applied magnetic fieldH0.
The energy calculated within the London limit(with a=1)
starts to depart from the GL results as soon asL=1. This is
mainly due to the fact that the usual London theory neglects
the spatial variation ofuC2u. When the magnetic field in-
creases, the ground state changes by the addition of one vor-
tex, i.e, L=0→1→2, . . . ,→8 (for the London limit these

transitions are marked by the filled circles). For disks with a
small radius the GL theory predicts thatL=2→6 states do
not have a vortex in the center of the disk.20,24Such a central
vortex appears in theL=7→9 states. In contrast, for the
present large disk casesR=50jd, the GL theory and the Lon-
don approximation yield five vortices arranged in a regular
pentagon with one in the center of the disk forL=6. The
state with six vortices in a regular hexagon has a slightly
higher energy[the difference in energy is depicted in the
inset of Fig. 2(a)].

In an effort to remedy the differences in the energy be-
tween the GL and the usual London results we considered
the contribution of the vortex cores energies to the London
energy. As long as vortices are well separated andH0!1 (
uCu2<1 far from the vortex cores), Eq. (4c) can be approxi-
mately given by the London energy. In this limit the depre-
ciation of uCu2 around the vortex cores can be approximated
by the superposition of some function which varies from 0 to
1 within ur−riu,j. Such extensions of the London theory
were previously considered45,50 for infinite superconducting
systems, e.g., by usinguCu2= ur−riu2/ sur−riu2+2j2d close to
the core of the vortex atri. We used this expression in Eq.
(4b) in the limit that vortices are far apart, i.e., for lowL
values, where we can make use of the superposition prin-
ciple. First, Eq.(4b) can be written as

Gcore= − 1 +
1

pR2 E fs1 − uCu2d2 + 2s¹ uCud2gd2r. s19d

Close to the cores, 1−uCu2=2/sur−riu2+2d and
¹uCu=2/sur−riu2+2d3/2 (remembering thatj=1 in our
units). Since these expressions rapidly approach zero, we ap-
proximated the integration over the disk area in Eq(19) by
the sum of integrations around of the vortex cores. This
yields

Gcore< − 1 +L
3

R2 . s20d

We added the above value ofGcore to the London energyGL,
assuming that the vortex core have a radiusÎ2j, which
yields a=Î2 in ecore. The resulting improved London ener-
gies are presented in Fig. 2(a) by thin lines for theL=1, (2),
(3), (4), (5), (1, 5), (1, 6), and (1, 7) states. The agreement
between this improved London theory with the GL results is
very good. Such extension of the London limit yields the
region over which each configuration is the ground state with
much more confidence than the usual London limit.

In the above approximation forGcore the depreciation of
the order parameter near the disk edge was neglected. In
order to have an estimate of the behavior ofuCu2 close to
r=R, we may consider the first GL equation written as

− ¹2C + Cs1 − uCu2 − P2d = 0, s21d

with boundary conditionsu]ucu /]rur=R=0 and ur̂ ·Pur=R=0.
Notice that P= ¹u−A=n−A automatically satisfies its
boundary condition ifn is considered within the London
limit [cf. Eq. (8)]. For a giant vortex state,uCu2 is radially
symmetric, andn=f̂L /r. For a regular polygon vortex con-
figuration and after averagingn along the angular direction,

FIG. 2. (a) The GL(thick lines) and the improved London(thin
lines) free energies as a function of the applied fieldH0 for low L
states. TheL=s1,5d state has slightly lower energy than the
L=s6d state, as seen in the inset, where the lines and the squares
show the difference between theL=s6d andL=s1,5d energies in the
London limit and in the GL theory, respectively. The usual London
energy (where we added −1) is also depicted(dashed lines) for
comparison. The solid circles show the points at which the usual
London energy predicts a transition fromL to L+1. (b) The GL
(open squares) and London(solid lines) radial position of the vor-
tices in the ringsrringd as function of the magnetic field for the
L=1, (2), (3), (4), (5), (6), (1, 6), (1, 7) states. The arrow indicates
the direction of increasingL. For each configuration(in the London
limit ) the vortex position at which the vortex ring is unstable
(dashed lines) and the onset field from which stability occurs(open
circles) are depicted. The radial positions of the vortex ring when
the boundary induced “vortex images” are neglected are shown by
the dotted lines for comparison.
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one findsn=f̂LQsr−rringd /r, whereQsxd is the Heaviside
step function. Therefore, one may approximate the supercon-
ducting electron density byuCappu2<1−sL /r−rH0/2d2 in-
side a ring with internal radiusR1 taken somewhat larger
than rring and external radius smaller thanR−j (since the
term ¹2C in the first GL equation becomes more important
within distances ofj close to the disk edge). uCappu2 is mini-
mal at r=R and consequently we can use its value at the
boundary in order to estimate when the depreciation ofuCu2
close to the edge becomes important(notice that the actual
uCu2 is higher close to the disk edge than our approximate
result, since there is a correction of order¹2C /C, with
¹2C.0, in this region). We found that a 5% depreciation in
uCappsRdu2 (which would meanuCsRdu2.0.95), requires that
H0<0.009 forL=0, H0<0.0098 forL=1, H0<0.0106 for
L=2, H0<0.0114 for L=3, H0<0.0122 for L=4,
H0<0.013 for L=5, H0<0.0138 forL=6, H0=0.0146 for
L=7, andH0=0.0154 forL=8, which are magnetic field val-
ues well above the respective regions where each of these
states are the ground state. Also the order parameter depre-
ciation close to the disk edge results in a less rapid increment
of the energy of eachL state compared with the energy found
within the London limit. But forH0!Hc2, such a difference
only becomes pronounced at fields well above the magnetic
field region over which the respectiveL state is the ground
state. Nevertheless, the depreciation of the order parameter
close to the edges is important if one wishes to understand
the entry and exit of vortices in a finite system.

IV. HIGH L STATES: ABRIKOSOV LATTICE

For large values of the vorticity an Abrikosov lattice ap-
pears in the interior of the disk. In this section we will con-
sider H0.0.03 and investigate from which value ofL the
Abrikosov lattice starts to occupy a substantial area in the
center of the disk.

One difficulty which arises when studying the highL
states is due to the fact that the energy difference between
two differentL states and the energy difference between dis-
tinct configurations with the sameL can be comparable and
very small. This is illustrated in Fig. 3, where the energy of
the meta-stable states obtained in the London limit at
H0=0.1 and atH0=0.2 are shown. For instance, the differ-
ence between the two lowest energyL=110 andL=112
states is less than 10−4. At H0=0.1 sH0=0.2d we found that a
vortex configuration withL=111 sL=234d has the lowest
London energy. Of course it is always possible that configu-
rations with lower London energies have not been reached
by our simulations(due to the fact that we have a finite
number of trials, i.e., we made typically 1000 trials). Never-
theless, the small difference in the energies give us confi-
dence that some of these configurations are at least very
close to the true ground state within the London limit. More-
over, at such highL values, it is expected that the energy
yielded by the London approximation differs considerably
from the more realistic results obtained from the GL theory.

In order to circumvent the limitations of the London limit
in the calculation of the energy, meta-stable states are also
investigated within the GL theory. In this case, the correct

contribution to the energy from the spatial dependence of
uCsrdu2 is taken into account. Again, the question concerning
whether the calculated configurations are the true ground
states can be addressed, since it is possible that the numerical
solution of Eqs.(1) and (2) becomes trapped in some local
minimum. Nonetheless, thermal fluctuations are always
present in experiments, making some excited states close to
the ground state available for the system. In addition, there is
the already mentioned fact that the difference between ener-
gies in these highL states is very small. Therefore, the
achievement of the ground state is not crucial for the present
study.

Although the London limit fails to give the precise value
of the vortex system energy at highL, we expect that the
vortex positions obtained within such an approach are in
good accordance with the GL results(cf. Sec. II and Ref. 20),
at least at fields up toH0,0.2.45,51Therefore the stability of
the “London” configurations within the framework of the GL
theory was investigated by solving Eq.(1) starting from the
given London configuration(usually the ones with lowest
energy). By using this procedure, we found that theL
,110 andL,230 configurations, as obtained within the
London theory, are also stable within the GL formalism. The
calculated GL energies of such configurations are very close
to other GL configurations with the same vorticity, the rela-
tive difference lying typically between 10−4−10−5. Such val-
ues are usually 5 to 10 times smaller than the relative energy
difference between theL andL+1 lowest energy states.

Some of the stable configurations atH0=0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.10, and 0.20 are depicted in Fig. 4, for
L=44, 56, 64, 79, 88, 104, 109, and 229, respectively. From
the Delaunay triangulation performed for the core positions,
it can be seen that a triangular vortex configuration in the
center of the disk starts to appear asL increases. First, for
L=64 andL=79, an hexagonal vortex arrangement starts ap-
pearing in the center of the disk. Such an arrangement begins
occupying a larger area with increasing vorticity. For
L*100 the Abrikosov lattice is already present in a consid-
erable region inside the disk.

FIG. 3. Energies of the meta-stable states(L=109→115 and
L=226→237) obtained from simulations within the London limit
at H0=0.1 (left) andH0=0.2 (right). The energy difference between
two different L states is comparable to the energy difference
between distinct configurations at the sameL state.
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For the highL states there is a competition between the
ringlike structure imposed by the disk geometry, and the hex-
agonal lattice favored by the vortex-vortex interaction. As a
result, rings are generally formed close to the disk edge
while an Abrikosov lattice is present in the center of the disk.
In order to study the configurations obtained within the GL
theory, we computed the positions of the vortex cores from
the calculateduCsrdu2.

First we investigate the ringlike structure near the disk
edge by computing the number of vortices,N, and the aver-
age density of vorticeskssrdl=Nsrd /2prDr, as a function

of r. These quantities can suggest where ringlike structures
are formed, sinceNsrd [as well askssrdl] should present
sharp peaks where ringlike patterns exist. For this purpose
we divided the disk radius into radial strips of length
Dr=1.25j and counted the number of vortices in each of
these pieces.Nsrd and kssrdl are shown in Fig. 5 for
L=109, L=229, L=473, andL=717 at H0=0.1, H0=0.2,
H0=0.4, andH0=0.6, respectively. TheL=109 andL=229
were obtained by solving the GL equations starting with the
L=110 andL=230 less energetic configurations calculated
within the London limit. We also plotted the respective con-

FIG. 4. Superconducting electron density forL=44, 56, 64, 79, 88, 104, 109, and 229 obtained atH0=0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
0.10, and 0.20, respectively. The white lines depict the Delaunay triangulation for the vortex core positions.
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figurations inside each figure. To help the visualization, rings
were drawn for the two outermost shells and a Delaunay
triangulation was made for the vortices in the interior of
these rings. Clearly, bothNsrd and kssrdl have one sharp
peak near the disk edge, an indication of a ringlike structure.
This can be observed in the vortex configurations since the
outermost vortices are almost perfectly aligned in a ring. For
theL=109 state, bothNsrd andkssrdl have additional peaks
in the interior of the disk. As the vortex configuration also
indicates, this could be interpreted as a second(deformed)
outer ring with a somewhat deformed hexagonal lattice in the
center. ForL=229, it is clear that vortices are distributed in
ringlike structures for the two outermost rings with an inner
Abrikosov lattice. Similar features are present in the other
L,110 andL,230 vortex states, i.e., sharp peaks near the
disk edge are also present inNsrd andkssrdl, indicating two
outermost ringlike vortex distribution with an Abrikosov lat-
tice in the center(again this Abrikosov lattice is much better
defined forL,230). It is also worth mentioning that the two
outer peaks present atL,110 and L,230 are situated
around the same values ofr for configurations calculated
within both the GL and the London theories. For example,
for L=109 the peaks are atr<35 andr<43, with an empty
region aroundr<39 and another forr.45. Moreover the
regions comprised by the peaks inkssrdl at r<35 and
r<43 contain 28 and 33 vortices, respectively. In the case

L=229 one sharp peak occurs aroundr<46. The radial re-
gion close to this peak contains 48 vortices, with no vortices
for r.47. The radial region around the peak atr<40 has 44
vortices, with the region between these two maxima, around
r<43, also vortex free. A more complete description of the
number of vortices in the two outer rings is presented in
Table I. Taking the number of vortices in the first and second
outermost rings for the configurations given in this table, as
well as other configurations not shown here with the same
vorticity, we find that the number of vortices in these shells
are around, respectively, 33-34 and 28±1 forL,110 (50±2
and 45±1 forL,230).

In Fig. 5 the statesL=473, at H0=0.4 andL=717, at
H0=0.6, are also depicted. As expected, the peaks become
broader deep inside the disk, suggesting that the ringlike
structure smears out as one approaches the center of the disk.
In addition, as the value ofL increases the average density
becomes more uniform, but preserving at least two sharp
peaks near the edge. ForL=473 andL=717 the most exter-
nal ring is situated atr<47 and contains 70 and 92 vortices,
respectively. Notice that the two outer rings have a very dif-
ferent number of vortices which is quite distinct from the
situation of classical charges confined by a parabolic
potential37 where for large number of charges the outer rings
contain the same number of particles, The present situation is
between a hard wall52 and a parabolic confinement case.

FIG. 5. Number of vorticesNsrd (circles) and the average vortex densitykssrdl (solid line) for L=109,L=229,L=473, andL=717 at,
respectively,H0=0.1,H0=0.2,H0=0.4, andH0=0.6. The respective configurations are depicted in the insets. The well-defined peaks close
to R=50j are indicative of a ringlike structure close to the edge. This is also indicated by the configurations in the insets, where we plotted
rings for the two outermost shells and the Delaunay triangulation for the inner vortices.
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We calculated the density-density correlation function,53

for the vortices enclosed by the two outermost rings in order
to help characterize whether a Abrikosov lattice is formed
away from the disk edge. This function is proportional to

o
i=1

o
jÞi

ssridssr − r jd, s22d

where s is the local density of vortices and the sums run
over the positions of vortices which do not belong to the two
outermost rings. Numerically we computed this function by
making a histogram for all pairwise separations falling
within an area,j2 (typically) around r. This quantity is
depicted at the right side of Fig. 6. The density-density cor-
relation function indicates an hexagonal pattern for all these
high L states. Such pattern is well defined forL=109 at
H0=0.1 and becomes very well defined forL=229 at H0
=0.2. Other configurations withL,110 have also an hex-
agonal pattern as the one forL=109 (but not as sharp). The
density-density correlation function computed for various
configurations withL,230 also resembles the one depicted
here forL=229. ForL=473 andL=717 the hexagonal pat-
tern is also observed, but not as sharp as the one for
L=229. Particularly for theL=717 configuration, the
density-density correlation function suggests that each vortex
(inside the two outermost rings) still has coordination num-
ber equal to six, although the hexagonal structure consider-
ing the farther neighbors is not well defined. Therefore these
two configurations may still have local, but not orientational
order beyond some few neighbors. We shall come back to
this point later in Sec. V, when discussing the defects in the
vortex lattice.

From the density-density correlation function it is also
worth it to compute the typical intervortex distanceav for the
vortices forming the Abrikosov lattice. We thus obtained

av<8.4 for L=109 at H0=0.1, av<5.8 for L=229 at
H0=0.2, av<4.1 for L=473 at H0=0.4, andav<3.4 for
L=717 atH0=0.6.

In order to better describe how close the system is to an
Abrikosov lattice we computed the probability distribution
psud to find two adjacent nearest neighbors of a given vortex
making an angleu. This probability was calculated for three
different cases:(i) for all vortices, except the ones at the
outermost ring;(ii ) for the vortices not in the two outer rings,
and (iii ) for those vortices atrø25. These probabilities are
shown on the left of Figs. 6. We found thatpsud [for all the
casessid→ siii d] is maximum close to 60°, which is charac-
teristic of an hexagonal lattice. The width of the distribution
rapidly decreases asL increases from,110 to,230, but
increases asL is further incremented. To be more precise,
psud for the L,110 (not only the L=109 state which is
shown) state obtained within the London limit has a maxi-
mum at 57°. The probability distributions for casessid
→ siii d are not sharp, presenting a width of about 12° at half
of the distribution maximum. Other states withL,110 and
comparable energy also show similar behavior. Such features
can be understood as the result of the contribution to thepsud
distribution from vortices in the border of the Abrikosov lat-
tice region. Since not so many vortices are present in this
region forL,110, vortices in its border will contribute more
strongly to thepsud distribution than for higherL states.
Such vortices have to adjust themselves to the ringlike struc-
ture more than the inner vortices and, so, it is likely that a
few of them may have nearest neighbors within angles less
than 60° or, even, coordination number different to six. For
L.200,psud is sharply peaked atu=60°, in conformity with
the density-density correlation function, signaling an Abriko-
sov lattice in the interior of the disk.

For completeness we also calculate the bond-angular or-
der factor,54,55

TABLE I. Number of vorticessNd and approximate radial position of the two outer shellsskrld, and the
bond-angular order factorG6 for configurations with lower energy. Here,(i) means all vortices, except the
ones belonging to the outermost shell,(ii ) vortices not at the two outer rings, and(iii ) vortices atrø25.

L H0

1st. shell 2nd. shell G6

N krl N krl (i) (ii ) (iii )

109 0.1 33 43 28 35 0.76 0.85 0.87

110 0.1 33 43 28 35 0.64 0.71 0.75

111 0.1 33 43 29 36 0.69 0.79 0.84

112 0.1 33 43 29 36 0.68 0.80 0.88

113 0.1 34 43 28 36 0.70 0.80 0.84

229 0.2 48 46 44 40 0.80 0.89 0.97

230 0.2 48 46 44 40 0.78 0.84 0.94

231 0.2 50 46 44 40 0.83 0.92 0.99

232 0.2 49 46 44 40 0.82 0.91 0.97

233 0.2 49 46 45 41 0.80 0.87 0.96

234 0.2 50 46 45 41 0.81 0.87 0.95

235 0.2 49 46 44 41 0.82 0.90 0.97

473 0.4 70 47 66 43 0.79 0.83 0.92

717 0.6 92 47 80 44 0.77 0.79 0.86
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G6 =K 1

Nnb
o
n=1

Nnb

expsiNnbundL , s23d

whereNnb=6 is the number of nearest neighbors of a given
vortex, un is the angle between two segments joining the
given vortex with two adjacent nearest neighbors, andk l is

the average over the vortices in cases(i), (ii ), or (iii ). It is
clear from Eq.(23) thatG6=1 for an ideal Abrikosov lattice.
In Table I G6 is depicted for some of the configurations we
obtained(typically the configurations with lowest energy).
The values found forG6 are larger than 0.9 at the region(iii )
for L,230, which indicates a configuration very close to an
hexagonal lattice. TheL,110 states obtained atH0=0.1
have lowerG6, which corroborates our previous analysis
suggesting that an Abrikosov lattice is formed but not yet
occupying a large area inside the disk. Again, forL=473 and
L=717 G6 is not as large as the one calculated atL,230,
but is still close or larger than 0.9 in region(iii ), which
indicates that a local orientational hexagonal order is present.
In fact for such largeL valuesG6 no longer increases and the
peak inpsud is slightly broadened due to the appearance of
grain boundaries in the Abrikosov lattice as will be shown in
the next section.

V. HIGH L STATES: DEFECTS IN THE VORTEX LATTICE

As a result of the competition between the geometry in-
duced ringlike structure near the disk border and the hexago-
nal structure in the center, topological defects in the lattice
appear in between these two regions(a feature also observed
in confined classical systems46,56). In order to study the dis-
tribution of these defects in the disk, we applied the Voronoi
construction. In an infinite system both the GL theory and the
London approach predict a coordination number equal to six
and the Voronoi construction would yield hexagonal unit
cells for each vortex. In the disk the situation is different,
vortices near the edge have to adjust themselves to the
boundary. Therefore, topological defects in the vortex lattice
will be present. We shall use the term(wedge) disclination
for vortices which have a closed unit cell in the Voronoi
construction with coordination number different from six.
This difference is called the topological charge of the discli-
nation. Notice that some vortices at the outermost shell have
open unit cells in the Voronoi construction. For such vortices
the expected number of nearest neighbors should be four. So
in order to define the topological defects also for these vor-
tices, the topological charge there is defined as the number of
first neighbors minus 4. By such convention it can be shown
from Euler’s theorem56 that the net topological charge in a
disk equals −6. In addition, dislocations(a bounded pair of
one1 and one2 disclinations) may also appear, whose net
topological charge is null, in order to adjust the vortex sys-
tem to a configuration with lower energy.

Figure 7 shows the Voronoi construction for theL=109
sH0=0.1d, L=111 sH0=0.1d, L=234 sH0=0.2d, L=229 sH0

=0.2d, L=473 sH0=0.4d, and L=717 sH0=0.6d. In all of
them it is quite clear that an Abrikosov vortex lattice is
formed inside the disk, as indicated in previous section, but
with the formation of topological defects in the configura-
tions. The net topological charge for all configurations ob-
tained(including the ones not shown here) is always −6, in
accordance with the Euler theorem.56 However the total ab-
solute charge can be much larger than 6. Negatively charged
disclinations(vortices with coordination number,6) are al-
ways present. Vortices with coordination number.6 (posi-

FIG. 6. The density-density correlation function(right) and the
probability psud to find two adjacent nearest neighbors of a given
vortex within an angleu (left) for L=109 at H0=0.1, L=229 at
H0=0.2, L=473 at H0=0.4, andL=717 at H0=0.6. The dashed,
solid, and thin solid lines representpsud calculated for vortices(i)
not in the outermost ring,(ii ) not in the two outer rings, and(iii ) at
rø25, respectively.
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tive topological charge) appear accompanied by negative to-
pological charges, leading to the formation of dislocations.
The defects in the vortex configurations are more suitable to
sit in the disk edge or in the region delimiting the Abrikosov
lattice and the ringlike structure. Nevertheless, asL in-
creases, dislocations proliferate and form grain boundaries in
the region where the hexagonal lattice appears. This is also
the reason why theL=473 andL=717 states have smallerG6
values and less sharper peaks in thepsud distribution than the

lower L states, for instanceL,230. Such feature is also
observed in simulations performed by Reefman and Brom39

considering 2000 vortices(although they considered vortices
in the London limit without interaction with the disk edge)
and in classical systems of charged particles interacting with
each other via the Coulomb potential and confined to a para-
bolic potential.46

Koulakov and Shklovskii56 described the presence of dis-
locations in configurations of classical charged particles con-

FIG. 7. Voronoi construction for the following configurations:L=109 andL=111 atH0=0.1,L=229 andL=234 atH0=0.2,L=473 at
H0=0.4, andL=717 atH0=0.6. The dashed line represents the disk edge.
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fined by a parabolic potential as due to two main reasons:
The inhomogeneity in the density of particles and the pres-
ence of disclinations. The latter(which is always present in
an hexagonal arrangement confined to a disk) causes a large
deformation in the particle configurations. Dislocations thus
appear in order to reduce such deformations, eventually de-
creasing the energy of the system. Such effect, also called
screening, was previously described by Halperin and
Nelson54 when studying the melting driven by dislocations in
two dimensional systems, and is linked to the lack of trans-
lational long-range order in two-dimensional solid systems
(although orientational order is still present).57 These dislo-
cations are arranged close to or at the disk edge. The former
reason induces dislocations in the interior of the disk. In Ref.
56, it was found that there exists a threshold number of par-
ticles (which in their case is approximately 700) below
which dislocations are due mainly from screening and, above
which, such defects appear due to the inhomogeneity of the
particle density. At least qualitative similarities exist between
such a system of charged particles and our vortex configura-
tions. Therefore, it is reasonable to speculate that the same
mechanisms which drive the appearance of dislocations is
also present here. Just like in the system of charged particles,
dislocations are mostly distributed close to and at the disk
edge forL&230 and start proliferating in the Abrikosov lat-
tice for largeL.

Finally, in order to further investigate the relation between
defects in the vortex configurations and the energy of the
system, we computed the total number of defects(the num-
ber of the1 and2 topological charges) in each stable con-
figuration obtained within the London framework. The re-
sults are shown in Figs. 8 forL=110, 111, and 112 at
H0=0.1 (left) and L=230, 232, and 234 atH0=0.2 (right).
The absolute value of the net topological charge is depicted
as a solid horizontal line and is always equal to six as re-
quired by the Euler theorem. The total number of defects—

which is directly related to the number of dislocations in the
configurations—is depicted as points connected by lines.
One can notice that the total number of defects is not a
monotonic function of the London energy of the configura-
tion. Instead, it highly fluctuates. For example, a configura-
tion free of dislocations(in which only six disclinations oc-
cur) almost always has a higher energy than, e.g., one with a
total number of 16 topological charges. This happens, for
example, forL=111 atH0=0.1 where such a configuration
with only six disclinations (and no dislocations) has
GL=0.130 206 6, which is 0.5% higher than the energy of the
lowest energy state,GL=0.129 583 84(the Voronoi contruc-
tion of the latter configuration is theL=111 state depicted in
Fig. 7). This indicates that the presence, as well as the dis-
tribution, of dislocations in the vortex configurations plays
an important role in lowering the energy of such configura-
tions.

VI. SURFACE SUPERCONDUCTIVITY

When the external magnetic field approachesH0=1 (or
H0=Hc2 in not normalized units) the vorticity L becomes
large. Inside a thin layer close to the disk edge the supercon-
ducting electron densityuCu2 is larger than in the interior of
the disk.58 Such a behavior may be understood as a result of
the superposition of the superconducting electron density de-
preciation close to each vortex inside the disk, which is less
strong for vortices at the surface. This already takes place for
H0=0.6 with L=717, but is highly pronounced atH0ù1.0.
At H0=0.6, a multivortex state[as was shown in previous
figures and also in Fig. 9(a)] is enclosed by this supercon-
ducting sheath. Within this sheathuCu2<0.75, opposed to a
maximum ofuCu2<0.5 between two adjacent vortices. Nev-
ertheless, according to the criterion adopted to characterize
the existence of a giant vortex state(uCu2ø10−4 in the region
between vortices),20 a giant vortex state appears at

FIG. 8. Number of defects(solid points) versus the energy for some of the configurations obtained from the London approach. The
straight horizontal line is the absolute value of the net topological charge.
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H0=1.02. In this state uCu2,10−4, except at
R−2j,r,R where 0.2ø uCu2ø0.45 [cf. Fig. 9(b)]. At H0
=1 the maximum value ofuCu2 is ,10−2 in the region be-
tween two adjacent vortex cores, whileuCu2<0.55 at the
disk edge. Such a configuration is not yet a giant vortex state,
although the multivortex state in this case is extremely “di-
lute.” PossiblyH=1 is close to the field in which a giant
vortex state decays into a multivortex state.59 Moreover, at
this magnetic field the depreciation ofuCu2 close to the vor-
tex cores is different whether a vortex sits in the outermost
ring or in the interior of the disk. This feature is depicted in
Fig. 10, where a contour plot of the logarithm of the super-
conducting electron density is shown in the center of the disk
(at left) and close to the edge(at right).

VII. CONCLUSIONS

We investigated the magnetic field dependence of vortex
states in thin disks with large radius. The nonlinear GL equa-
tions, as well the London approximation were used to obtain
stable vortex configurations. Although both methods lead, for
small fields, to similar vortex configurations, the energies are

different. This is the reason for the failure of the London
limit to yield the correct ground state configuration. For low
values of the vorticity we improved the London approxima-
tion by including the spatial variation ofuCu2 close to the
vortex cores, which resulted in energies which were very
close to those of the GL approach.

Multivortex states were obtained for fields up toH0
<Hc2, above which a giant vortex state appears. We inves-
tigated how the configuration of this multivortex state
changes as function of the magnetic field. At low magnetic
fields sH0!0.1Hc2d we find vortex configurations having
ringlike distribution, as expected from symmetry consider-
ations. However as the number of vortices increases, the
vortex-vortex repulsion starts playing a larger role and we
observed the appearance of an hexagonal lattice. The ringlike
structure is replaced by an Abrikosov lattice in the center of
the disk as soon as the field is close to 0.1Hc2, when
L,100, but is preserved near the edges. For fields larger
than 0.1Hc2 this Abrikosov lattice becomes even more pro-
nounced compared to the ringlike structure.

The topological defects in the vortex configurations and
their distribution were also studied. We observed two types
of defects:(wedge) disclinations and dislocations. The net
topological charge is always −6, as required for an hexagonal
structure confined to a circular geometry. Similar to classical
particles confined in radially symmetric potentials, we find
that these topological defects appear mostly close to the edge
for L&230, in order to adjust the ringlike structure to the
Abrikosov lattice. We attribute the presence of dislocations
in that region due to the screening of disclinations. AsL
increases further dislocations start to be spread in the center
of the disk and form grain boundaries.

Surface superconductivity was observed at fields around
and above 0.6Hc2. This surface superconductivity becomes
more pronounced as the vorticity increases, which resulted in
a larger overlap between the vortices. We also noticed that
the transition from a multivortex to a giant vortex state takes
place at magnetic fields slightly aboveHc2. Just below the
formation of the giant vortex state, the superconducting elec-
tron density presents markedly distinct spatial dependence
close to the disk edge—where the vortex structure starts to
coalesce—compared to what is observed in the center of the
disk.

FIG. 9. Superconducting electron density for(a) H=0.6 and(b)
H=1.02. White to black runs from low to high values ofuCu2.

FIG. 10. Contour plots of loguCu2 at the center(left) and close to
the edge of the disk forH=1.
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