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From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks
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Stable vortex states are studied in large superconducting thin deksumerical purposes we considered
disks with radiusR=50¢). Configurations containing more than 700 vortices were obtained using two different
approaches: the nonlinear Ginzburg-Land&L) theory and the London approximation. To obtain better
agreement with results from the GL theory we generalized the London theory by including the spatial variation
of the order parameter following Clem’s ansatz. We find that configurations calculated in the London limit are
also stable within the Ginzburg-Landau theory for up~@30 vortices. For large values of the vorticity
(typically, L=100), the vortices are arranged in an Abrikosov lattice in the center of the disk, which is
surrounded by at least two circular shells of vortices. A Voronoi construction is used to identify the defects
present in the ground state vortex configurations. Such defects cluster near the edge of the disk, but for large
L also grain boundaries are found which extend up to the center of the disk.
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l. INTRODUCTION depth A=\?/d, instead of\.15 At distancesr <A the elec-

\ortices appear in several branches of physics, such a{g_omagnetic interaction i_s still Iogarithmic, as in the three-
fluid dynamicst superfluidit? Bose-Einstein (B-E)  dimensional case, but with screening lengtfiHowever the
condensate¥’ and superconductivity? The vortex is usu- Perpendicular magnetic field and the shielding currents decay
ally described by a fieldfor instance, the velocity fie)d asr~> andr=? far away from the vortex core far> A, in-
which diverges as ! as one approaches its cér&hey can stead as eXpr/\) in the bulk casg.Similarly as in the bulk
be treated as quasiparticles, since they can be created or dmse, in a thin film vortices also form an hexagonal Abriko-
stroyed, they interact with each other and with the interfacessov lattice!®
Unlike in fluid dynamics, in superfluidéncluding here su- In mesoscopic superconductors both the geometry and
perconductors and B-E condensateertices are quantized size of the specimen influence the vortex configurations, due
objects. In superconductors, for example, they carry a mago the interaction between vortices and the surface. There-
netic flux which is a multiple of the flux quantur®,  fore, for small enough samplewith sizes comparable ),
=hc/2e and are characterized by a core of at8a-where  the conventional hexagonal lattice predicted by Abrikosov no
the superconductivity is highly depreciated—surrounded byonger exists, and vortex configurations adjust to the sample
superco_nductlng currentscreened at distances of _order_ eometry, yielding some kind of vortex molecule stdfe8?
Here, ¢ is the coherence length. They have been intensively, . eyample, vortices arrange themselves in ringlike struc-
studied, since AbrikosGvpredicted their existence from the o< disks with radi(R) a few times¢.18-30Nevertheless
solution of the Ginzburg-LandalGL) equations in a type-ll . . .

when an overlapping of vortices starts to take place, discrep-

<H< ) . : ) .
superconductor foHe, <H < He, (see also Refs. 9 and 10 ancies between vortices and a picture based on particles

In an infinite, and defect free superconductor, vortices ar~ . . .
range themselves in an hexagopabrikosov) lattice. arise, such as the formation of giant vortex states. Also,

A detailed phenomenological description of the superconY0rt€x-antivortex co.nflgggratlons may become possible for
ducting state can be derived from the Ginzburg-Lan@a)  noncircular geometrie¥: _ _ o
theory!! by means of two parameters: the complex order W|th|_n the Lor]don I|m|t_the vortex interaction potential in
parameter?’, which is related to the superconducting elec-a thin disk of arbitrary radius was calculated by Fetfexlso
tron density, and the vector potentil For Hy <H<H,,, in the London limit, vortex configurations up 10=8 were
each vortex can be viewed as a particle, since intervortegtudied by Buzdin and Bris§hfor A>R (where demagne-
separationsa are such that<a~ \—assuring that vortex tization effects can be neglecdedn the latter limit it is
cores do not overlap—and the major role between vortexpossible to substitute the interaction between the vortices and
vortex interactions is played by the superconducting shieldthe disk border by the interaction between vortices and their
ing currents. In such cases the London limit turns out to be @mages(see also Ref. 36 Within the London limit one is
good approximation of the GL theory, becoming better forable to find analytical expressions for the energy and forces
higher values ol (see for example Refs. 7 and 1231#h  of an arbitrary arrangement of vortices inside the disk, since
this approximation, the superconducting electron density isortices can be treated as particles. They arrange themselves
considered constant throughout the entire superconductaimilarly to what is observed in electrons in artificial atoms,
and the vortex cores are represented by singularities in thehere particles obey specific rules for shell filling and ex-
phase of the order parameter. This allows one to treat vortiribit magic numbers?-*® Vortices considered as particles
ces as particles. were also studied by Monte Carlo and molecular dynamics

In a thin film of thicknesd, the effective magnetic field simulations. In Ref. 39 vortex configurations with up to 2000
shielding length turns out to be the effective penetrationvortices were studied and an hexagonal lattice was found for
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thin disks, although they did not consider the vortex interac- -AppA=j, (2)
tion with the disk edge. Vortex molecules in long cylinders L ' .
with radius much larger thak were studied by Venegas and where the supercurrent density is defined by the following:

Sardella’® Other geometries were investigated in Refs. 41 K2, 1 )
and 42, for example. = 82| S (V* VW - WV,pW* ) = [W[°A
' . . . d 2i
In this paper we will study multivortex states in the range
from few vortices—forming a ringlike structure—to many = 8(2)|V|3(V,p0 - A) = 8(z)| VL. (3

vortices, yielding a triangular lattice in the center of the disk . . - .
and a ringlike structure close to the edges. Within the G Above, the superconducting wave funct|t~1h_:|\If|e"’ satis-
framework several other works have been reported regardinge> '€ Poundary Cond't'ons(;'VZD:A).IH”_O normal o
vortex states in thin diski$1921-3%ut they were limited to the sample surface ami=A,=3Hop¢ (since demagnetiza-
much smaller disk radius. In such small systems the formation effects can be neglectedHere is the unit vector in the
tion of multivortex states with high vorticity is not allowed azimuthal direction. The indices 2D, 3D refer to two- and
and, consequently, it was not possible to study the transitiothree-dimensional operators, respectively. The dimensionless
from a ringlike structure to an Abrikosov lattice, which is the GL energy density is given by

subject of the present paper. _

This paper is organized as follows. The theoretical ap- 9= Yeoret Gem (43
proach is described in Sec. Il. In Sec. Il low vorticity stateswhere
obtained within the GL and the London frameworks are com-
pared. In Secs. IV and V configurations with up to 700 vor- Geore= EJ [— 2]W[2+ |W[*+ 2V |W])2]dV,  (4b)
tices are investigated, respectively, by showing the existence \
of an Abrikosov lattice in the center of the disk and by ex- v
amining the role of topological defects in the lattice in order
to adj_ust the hexagonal lattice to the rgc_iial_symmetry (_:Iose to Gom= 1 J [2W[2112 + 263(H - Ho)2]dV, (40)
the disk edge. Surface superconductivity in Be50¢ disk \%
is briefly analyzed in Sec. VI. Our conclusions are given in

Sec. VIL. are the core and the kinetic energies, respectively, and the
Il THEORETICAL APPROACH integrations are to be performed over '_the sample volvine
As demagnetization effects can be disregarded, the above
For our numerical calculation we used a thin disk of ra-equation reduces to
dius R=50¢ and thicknessl, in which A=\2/d>R> ¢>d,
surrounded by vacuum and in the presence of a uniform per- G= 1f w[4dv, (5)
\%

\

pendicular magnetic fielt,. In this regime, the demagneti- \

zation effects can be neglected, allowing one to assume

H=~Hy=Hyz Vortex states in mesoscopic thin disks werewhich was actually the expression used to compute the en-
investigated by us using both the Ginzburg-Land&L) ergy of the vortex configurations within the GL theory. From
theory and the London approximation with the Londonnow on the symboWV will be used for the two-dimensional
gaugeV-A=0. Dimensionless variables are used, i.e., thegradient operator.

distance is measured in units of the coherence leggthe The GL calculation was performed by using the approach
vector potential inch/2ef, and the magnetic field in of Ref. 24 for circular disks. In the present caseAas R,
Heo=ch/2e£2=k\2H,. The average energy density is written Egs.(2) and(3) can be disregarded, and we solved only Eq.
in units ofH§/87-r (we shall refer to it as simply the energy of (1). A finite-difference representation for the order parameter
the system Also, the vorticity or the number of vortices in is used on an uniform 2D square grid,y), with typically

the system will be denoted Hy (an analog to the total an- 512X 512 grid points for the area of the superconductor,
gular momentun?®®2* Moreover, whenever the distinction which allows us to have at least five grid points inside a
among different configurations with the sarhewould be length of the order ofé. We also use the link variable
necessary, we use the notation presented in Ref. 20 to denaigproact? and an iteration procedure based on the Gauss-
the vortex configurations, e.g., f=6, (1, 5 means 1 vor-  Seidel technique to fin&. Starting from different randomly
tex in the center with 5 around it, ar{@) represents 6 vor- generated initial conditions and at some specified magnetic
tices with none of them in the center of the disk. field, the steady-state solutions of Edj) yield different vor-

In the framework of the GL theory, the GL equations aretex configurations, either stable or meta-stable states.
solved numerically according to the approach of Schweigert For the London approximation, we follow the approach
and Peetefé and Schweigeret al?* As we are in the limit  outlined in Refs. 20 and 35. In this limit the order parameter
(d<§,\), the Ginzburg-Landau equations can be averageés considered uniform throughout the disk, except for small
over the disk thickness, leading to the following system ofregions with areas of the order &, where it drops to zero.

equations: This approximation is justified wher>1 and the vortex
(= V0 — AW =W(1 - [¥]?) (1) cores do not oyerlap. .Then .the energy of the system is purely
electromagnetic and it is given by the sum of the supercur-
and rent and the magnetic field energies
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The divergence in Eq.11) can be removed by consider-
ing a cutoff, in which fori=j—|p;—p;|=a¢ (in not normal-
ized unity anda is a constant. The final expression for the

Notice that this expression is a particular case of Eqlondon energy can be written as

(4c) which is obtained by puttingW|>=1 everywhere
inside the disk. In the presence bf vortices, situated at
pi{i=1,2,... L}, the London equation can be written as

d
J==w-A), )
K

where

L
v=2[®(p-pi|) - (p- (Rp)?pi|)],

i=1

()

with pi=(x,y;) the position of the vortices)=3dZ ~jd,
and ®(|p-pi)=2x (p-p)/|p-pil>.
(R/pi)?p; appear in Eq(8) in order to fulfill the boundary
conditior?® J(R) - p=0. Instead of writing Eq(7) for the vec-
tor J, one may use the streamline functigtp), related to

the supercurrent by=V X (zg) (g(p) can be regarded as a

local magnetization in the thin filff) At the boundary

d(R, ¢)=const., but, as the value of this constant is arbitrary.

one can imposg(R, ¢)=0. Therefore, Eqs(7) and(8) can
be expressed as

d| < <|P‘ (Rlp))°pj| P') Ho }
= — | LAt AL L N [ R2 — 2 .
9

L i-1
gL — E (eiself+ eishleld+ E 6ij> + core efield, (123)

i=1 j=1

where

= (3)2|n(1 ) (12b)
1 R I

is the interaction energy between fitle vortex and the radial
boundary of the superconductor
M= — 2H(1-r?) (120

represents the interaction between ile vortex and the

The vortex images at ghjelding currents, and

2\2 [ (rr)?=2r;-r;+ 1}
6|J (R) In[ ri2—2ri -r]-+l’j2 (12d)
is the repulsive energy between vorticegnd j. Finally,
€°*=(2/R)2L In(R/a) and"®Y=R?HZ/4 are the energies as-
Sociated with the vortex cores and the external magnetic
field, respectively.

Notice that the above approach allows one to treat the
vortices as particles, which is valid when vortices are well
separated from each othdtypically for*® H<0.2Hy,).
Therefore, simulation techniques appropriate for systems of
classical particles may be performed in order to find, for
example, the ground state of the syst&rf*®In this sense,

Notice that Eq.(7) can also be understood as the limiting the vortex system behavés the London approximation
case of the GL equations if one considdt|=1 and similar to a two-dimensional system composed of equally
Vo=v. Therefore, while vortices are well apart from eachcharged particles interacting through a repulsive logarithmic
other(and also the boundafythere exists a relation between potential placed in a parabolic potential wél!® Neverthe-
the streamline function defined above and the phase of thiess, there is a fundamental difference between these two
order parameter in the GL theory, i.e., one can define a consystems: The vortex system is confined to a disk of raBius
plex function of which the real and imaginary parts are pro-and the influence of the surface on the energy is clear from
portional tog(p) and 6.3* the terms containing vortex images, i.€2" and ¢;. Notice
Since in our caséA =A2/d> £>d), demagnetization ef- also thate**® arises from the cutoff procedure and is there-

fects can be neglect®and one may write Eq6) as fore strongly dependent on the cutoff valag (we adopted
a=1 in the results shown belgwThe actual energy associ-

2k 5 12 21 ) R ated with vortex cores and with the spatial variation of the
Gi.= vd d*p|J|* = vd dpg(p)z- V X J superconducting electron density/(p)|?) should be evalu-
ated by using the GL theory.
2k? . ) A thin disk with L vortices was simulated by using Eqg.
V2 2“2 9(pi) —Ho f dpg(p) |, (100 (129. To investigatgmeta-stable states close to the equilib-

rium, we employed a procedure similar to the one described

where the integration is performed along the thin film plane,in Ref. 38. FirstL’ vortices were distribute_d randomly inside
z=0. Substituting Eq(9) in this formula, and after some the disk. Then, a Monte CarlMC) technique was used to

algebraic manipulation, the London energy is expressed byMake the system wander in the configurational space and
arrive at a neighborhood of some minimumdyf After typi-

cally 10* MC steps, we perform a molecular dynamit4D)
simulation starting from the final MC configuration. The fi-
nal (metg-stable state is achieved after about MD steps.

In order to find the ground stater states with energies very
close to iy this trial procedure was repeated more than
1000 times, each time starting with a different random dis-

2\2¢, < [ 1ilri=riir? . R2H3
gL:(—)EEIn(”'—JLI = 2Ho> (1-1))+ —=2,
R/ isij= Iri =1}l -1 4

(11)

where we used;=p;/R to simplify the notation.
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tribution of L” vortices at a given magnetic field,. . LOW L STATES: VORTEX MOLECULES
To implement the MD we time integrated the Bardeen-

Stephen equation of motiéh In this section we present the results calculated from the

GL and London theories for low states for a thin disk of
dp; radius R=50¢£. A comparison between ground states in the
m Fi, (13)  GL theory and the London approximation was done in Ref.
20, for the case of a small disk radigise., R=6¢). In that
wherei is the label of theth vortex, 7 is the viscous drag €2S€ it was not possible tq study multivortex configurations
coefficient p~ ®oHe/ p,c2 (Wherep, is the normal state re- for L states abov¢:;4 since the calculated GL re_sults
sistivity). The forces acting on each vortex were obtainedsnowed only giant vortices. Moreover, abdve 26 the disk
from -V,G.(p;.p;), whereg, is given by Eq(129 and -V, was driven to thenormal state In the present case, multivor-

is the gradient with respect to the coordingte This yields teﬁ(_ conflgluréitlons are obtalrlled for rln_uch hlgher?tates._
a force per unit of length This enabled us to compare large multivortex configurations

calculated by both the GL theory and the London approxi-

L mation, and investigate the transition to the Abrikosov lat-

Fi=Fi+ X FL, (149 tice.
k=1 ForL=1toL=9, the lowest energy configurations consist
ki of vortices distributed in regular polygons with 0 or 1 vortex

in the center of the disk. This means that not many meta-

which we express in units dflcé/8ar. Above, the first term  giapje states are close to the ground state, which makes the
describes the vortex interaction with the current induced b3fob of finding low energy configurations easier. In the Lon-

the external field and with the interface don limit, this reduces Eqg128—12d) to a simple form,
o\3 1 H.R2 which depends on only one free paraméte¥,i.e., the ra-
FP= (-) ( 5= 0 ) 0 (14b) dius of the ring which circumscribes the polygpg,g. The

R/ A1~ 2 minimization problem is then straightforward. We also ob-

. . tained the positions of the vortex ring by finding the roots of
and the second, the vortex-vortex interaction,

1 +N1L1_N_1 r’ - cose,

o (2\3 ri-r rRr = -h =0
F:”§:<—>< ! r2—kl . (140 1-r2 22 S 1+rt-2r%cosg,

_ (16)
R/ \|ri=ry? k|rEri -n?

The simple Euler method was used to accomplish the timd/hich follows from35the balance of forces acting on each
integration, but adopting @ value small enough to avoid VOrtex[cf. Eq.(14)].*> HereN is the number of vortices on
large variations of the vortex positions between two consecuN€ fing(or the number of sides of the polygom = pying/ R,

— — 2 H H
tive steps. Moreover, the dynamical matftke Hessian ma- ¢n=27N/N, h=HoR*/2 and the plugminus sign should be
trix of G,), whose elements are given by taken if there is onézerog vortex in the center of the disk.

A comparison between the calculated GL and London

PG, vortex configurations is depicted in Fig. 1. The states3
P (15  [Fig. k@], L=(6) [Fig. Lb)], L=(1,9 [Fig. L0)], and
PaioPp,j L=7 [Fig. 1(d)] were obtained atH,=0.007, Hy=0.01,

In this Ho=0.01, andH,=0.011, respectively. The vortex positions
Héractically coincide for the same configurations in both theo-
ries.

was calculated for the final vortex configuration.
equation, the Greek indexes stand for the components of t

vector p;, while the Italic indexes are the labels for the vor- h b h " ielded b
tices. The computation of the dynamical matrix eigenvalue The agreement between the vortex positions yielded by

allowed us to tell whether the given state was stable or unP0th theoriegatHo<H) is related to the fact that the phase
stable(for a stable state all the dynamical matrix eigenvaluef the foLder para}me;[eﬂ is well described as the imaginary
must be non-negatiyeUnstable states were discarded. part of the complex function

One difficulty in simulating this system is the fact that L )
both G, and the forces acting on the vortices diverge at the 0= In[(g_ (RIZ;) é.)&} ~ i’(RZ— 2, 17
disk edge. To overcome this, during the MD simulation i1 = R 4 ’

whenever a vortex was at a distance less thiom the disk _

edge, it is taken out from the system, i.e., this vortex disapfor sufficiently small magnetic field¥, where {=p€¢=x
pears. Therefore, the final number of vortices may not be the-iy is the representation of the vectprin the complex
same as in the beginning. This does not lead to any seriousplane. But(d/ «*)Re{}} is simply the streamline function
concern, since we collect all the final results from each tria[cf. Eq. (9)] calculated in the London limit. That is greatly
and sort them in ascending order of energy. It also allows usesponsible for the fact that;,q is virtually the same in both
to compare energies of systems containing different numbeheories forHy<H,. Figure 1e) presents the numerically
of vortices for the same external magnetic field and investicalculated phase of the order parameteft) and the theo-
gate which of them correspond to the lower energy, i.e., isetical one obtained from the imaginary part of EQ7)
the ground state. (right) for the state withL=6 atHy,=0.022.
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FIG. 1. Vortex configurations fok =(3) andHy=0.007(a), L=(6) andHy=0.01(b), L=(1,5) andHy=0.01(c), andL=(1,6) andH,
=0.011(d). The black lines are the contour lines [8(r)|?, whereas the white circles indicate the position of the vortices according to the
London approximation. Ige) we show the phase of the order parameter forlthé6) state atH,=0.022 obtained from the GL equations
(on the lefy and from the London approximatiqion the righj.

The dependence gf;i,q Upon Hy is shown in Fig. 2o) 2
obtained within the Gl(squaregand the London limitsolid Ry/1- R (18)
line) for the L=1, (2), (3), (4), (5), (6), (1, 6), (1, 7) states. 0
Both theories predict the same valuespgfy and, thus, the
same stable configurations, as a functiorHgf Figure 2b)  This is simply the position after which the attractive force
also shows the radial position over which a given regulamacting on each vortex by its own image becomes larger than
polygon configuration is not stab{dashed linesas function  the force produced by the shielding curre@sich pulls the
of Hy (obtained in the London limjt The magnetic field in  vortices insidg as can be easily demonstrated from Egs.
which the stable and unstabtg,q lines start to depart from (143 and (14b) for one vortex. It is also important to take
each otheropen circles mark the onset of stability for each into account the vortex interaction with the disk edge for
configuration. The unstableg;,q lines merge to sufficiently low fields. This can be noticed from the differ-
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0.96 ————1——1— - transitions are marked by the filled circjefor disks with a
| k=508 L=8 small radius the GL theory predicts that2— 6 states do
097 L L=7C e not have a vortex in the center of the dik*Such a central
’ L=6 '/"‘ vortex appears in th&=7—9 states. In contrast, for the
L=5~ ~ present large disk cag®=50¢), the GL theory and the Lon-

o 098 L=dy ol don approximation yield five vortices arranged in a regular
L L=3 4 9 pentagon with one in the center of the disk lor6. The
-0.99 | T=2, - =) state with six vortices in a regular hexagon has a slightly

_L - g Tg higher energy[the difference in energy is depicted in the
L=0 - - inset of Fig. 2a)].
-1.00 5 In an effort to remedy the differences in the energy be-

\ tween the GL and the usual London results we considered

@ 108, the contribution of the vortex cores energies to the London
—— energy. As long as vortices are well separated ldpek1 (
|W[2~1 far from the vortex cor@sEq. (4c) can be approxi-
mately given by the London energy. In this limit the depre-
ciation of [¥|2 around the vortex cores can be approximated
by the superposition of some function which varies from 0 to
1 within |p—p;| ~ & Such extensions of the London theory
were previously consider&d° for infinite superconducting
systems, e.g., by usin@|?>=|p-pi[?/ (|p—pi|?+2¢?) close to
the core of the vortex gb;. We used this expression in Eqg.
(4b) in the limit that vortices are far apart, i.e., for low

' ' : : : values, where we can make use of the superposition prin-
o 0 5 10 _— 15 20 25 ciple. First, Eq.(4b) can be written as

0

1
FIG. 2. (8 The GL(thick lines and the improved Londo(thin Geore=~1 +ﬁ f [(1-[¥)?+2(V[¥))*]d. (19)
lines) free energies as a function of the applied fielgl for low L
states. TheL=(1,5 state has slightly lower energy than the Close to the cores, 1¥[°=2/(|p-p;|*+2) and
L=(6) state, as seen in the inset, where the lines and the squarﬂxm:2/(|p—pi|2+2)3’2 (remembering thaté=1 in our
show the difference between thG(ﬁ) andL:(l,5) energies in the units). Since these expressions rap|d|y approach zero, we ap-
London limit and in the GL theory, respectively. The usual Londonproximated the integration over the disk area in &6) by

energy (where we added -lis also depicteddashed linesfor  the sum of integrations around of the vortex cores. This
comparison. The solid circles show the points at which the usuai/ields

London energy predicts a transition fromto L+1. (b) The GL
(open squargsand London(solid lineg radial position of the vor-
tices in the ring(ping) as function of the magnetic field for the
L=1,(2), (3), (4, (5), (6), (1, 6), (1, 7) states. The arrow indicates
the direction of increasiny. For each configuratiofin the London ~ We added the above value Gf,. to the Londoq_energ@,_,
limit) the vortex position at which the vortex ring is unstable assuming that the vortex core have a radi&, which
(dashed lingsand the onset field from which stability occyapen  yields a=v2 in €°® The resulting improved London ener-
circles are depicted. The radial positions of the vortex ring whengies are presented in Fig(a by thin lines for theL=1, (2),

the boundary induced “vortex images” are neglected are shown bg3), (4), (5), (1, 5), (1, 6), and(1, 7) states. The agreement
the dotted lines for comparison. between this improved London theory with the GL results is

very good. Such extension of the London limit yields the

ence between the stalpg,, and the dotted lines in Fig(B), ; . , o .
which depicts the position at which the respective regularreglon over which each configuration is the ground state with

polygon configuration would sit if there were no vortex im- much more confidence than the usual London limit.

ages[from Eq. (16) in_the absence of vortex imagesing In the above approximation quCore the depreciation of
would be given by\(N+1)/H, where the+ (—) sign the order parameter near the disk edge was neglected. In

i i 2
should be considered for orieerg vortex in the centdr order to have an estimate of the behavior|¥f” close to

The free energies within the Githick lineg theory and P=R, we may consider the first GL equation written as
the usual London limitdashed lingare depicted in Fig. (@) - V2 + (1 -|P[2-T13) =0, (22)
for L=0—8 as a function of the applied magnetic fiefid. R
The energy calculated within the London lingiwith a=1) ~ With boundary conditions d|¢1/dp| ,-r=0 and p-I1| -g=0.
starts to depart from the GL results as soorLad. Thisis  Notice that [I=V#-A=v-A automatically satisfies its
mainly due to the fact that the usual London theory neglect§oundary condition ifv is considered within the London
the spatial variation of¥2. When the magnetic field in- limit [cf. Eq. (8)]. For a giant vortex statW|* is radially
creases, the ground state changes by the addition of one va@ymmetric, andv=¢L/p. For a regular polygon vortex con-
tex, i.e,L=0—1—2,...,—8 (for the London limit these figuration and after averaging along the angular direction,

3
Geore~—1+ LEZ- (20
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one find3v=<}SL®(p—prmg)/p, where®(x) is the Heaviside 131.0
step function. Therefore, one may approximate the supercon- =
ducting electron density byW,,J?~1~(L/p-pHo/2)? in- =
side a ring with internal radiu®; taken somewhat larger =SZ=st
than p,,q and external radius smaller tha-¢ (since the 130.5
term V2W in the first GL equation becomes more important
within distances of close to the disk edge|¥,,J? is mini- 2
mal at p=R and consequently we can use its value at the
boundary in order to estimate when the depreciatioff

close to the edge becomes importambtice that the actual

|W|2 is higher close to the disk edge than our approximate
result, since there is a correction of ordeéf¥ /¥, with 7Y N M
V2¥ >0, in this region. We found that a 5% depreciation in 110 112 114 226 228 230 232 234 236

|¥ pd R)I? (which would mearf¥(R)[?>0.95), requires that L

Ho~0.009 forL=0, Hy~0.0098 forL=1, Hy~0.0106 for FIG. 3. Energies of the meta-stable states 109— 115 and

L=2, Hy=0.0114 for L=3, Hy=~0.0122 for L=4, | =226-237) obtained from simulations within the London limit
Ho~=0.013 forL=5, Hy=0.0138 forL=6, Hy=0.0146 for  atH,=0.1(left) andHy=0.2(right). The energy difference between
L=7, andH,=0.0154 forL=8, which are magnetic field val- two different L states is comparable to the energy difference
ues well above the respective regions where each of thesetween distinct configurations at the samstate.

states are the ground state. Also the order parameter depre-

ciation close to the disk edge results in a less rapid incremergontribution to the energy from the spatial dependence of
of the energy of each state compared with the energy found |¥(r)|? is taken into account. Again, the question concerning
within the London limit. But forHy<H,, such a difference whether the calculated configurations are the true ground
only becomes pronounced at fields well above the magnetistates can be addressed, since it is possible that the numerical
field region over which the respectitestate is the ground solution of Eqs(1) and(2) becomes trapped in some local
state. Nevertheless, the depreciation of the order parametsrinimum. Nonetheless, thermal fluctuations are always
close to the edges is important if one wishes to understangresent in experiments, making some excited states close to

1114

L miimiiy

{112

501

1110

130.01

4108

the entry and exit of vortices in a finite system. the ground state available for the system. In addition, there is
the already mentioned fact that the difference between ener-
IV. HIGH L STATES: ABRIKOSOV LATTICE gies in these highL states is very small. Therefore, the

achievement of the ground state is not crucial for the present

For large values of the vorticity an Abrikosov lattice ap- study.
pears in the interior of the disk. In this section we will con-  Although the London limit fails to give the precise value
sider Hy>0.03 and investigate from which value bfthe of the vortex system energy at hidh we expect that the
Abrikosov lattice starts to occupy a substantial area in theortex positions obtained within such an approach are in
center of the disk. good accordance with the GL results. Sec. Il and Ref. 20)

One difficulty which arises when studying the high  at least at fields up tbl,~0.245°1 Therefore the stability of
states is due to the fact that the energy difference betweethe “London” configurations within the framework of the GL
two differentL states and the energy difference between diStheory was investigated by solving E@.) starting from the
tinct configurations with the sarrle can be comparable and given London configuratiorfusually the ones with lowest
very small. This is illustrated in Fig. 3, where the energy ofenergy. By using this procedure, we found that the
the meta-stable states obtained in the London limit at-110 andL~ 230 configurations, as obtained within the
Hp=0.1 and atH,=0.2 are shown. For instance, the differ- London theory, are also stable within the GL formalism. The
ence between the two lowest energy110 andL=112  calculated GL energies of such configurations are very close
states is less than 10 At Hy;=0.1(H,=0.2 we found thata to other GL configurations with the same vorticity, the rela-
vortex configuration withL=111 (L=234) has the lowest tive difference lying typically between 1f-10°. Such val-
London energy. Of course it is always possible that configuues are usually 5 to 10 times smaller than the relative energy
rations with lower London energies have not been reachedifference between the andL+1 lowest energy states.
by our simulations(due to the fact that we have a finite  Some of the stable configurationsk=0.04, 0.05, 0.06,
number of trials, i.e., we made typically 1000 trialslever- ~ 0.07, 0.08, 0.09, 0.10, and 0.20 are depicted in Fig. 4, for
theless, the small difference in the energies give us confiL=44, 56, 64, 79, 88, 104, 109, and 229, respectively. From
dence that some of these configurations are at least veithe Delaunay triangulation performed for the core positions,
close to the true ground state within the London limit. More-it can be seen that a triangular vortex configuration in the
over, at such high values, it is expected that the energy center of the disk starts to appear lasncreases. First, for
yielded by the London approximation differs considerablyL =64 andL=79, an hexagonal vortex arrangement starts ap-
from the more realistic results obtained from the GL theory.pearing in the center of the disk. Such an arrangement begins

In order to circumvent the limitations of the London limit occupying a larger area with increasing vorticity. For
in the calculation of the energy, meta-stable states are aldo= 100 the Abrikosov lattice is already present in a consid-
investigated within the GL theory. In this case, the correcterable region inside the disk.
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(@) (h)

FIG. 4. Superconducting electron density for44, 56, 64, 79, 88, 104, 109, and 229 obtaineH gt 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
0.10, and 0.20, respectively. The white lines depict the Delaunay triangulation for the vortex core positions.

For the highL states there is a competition between theof p. These quantities can suggest where ringlike structures
ringlike structure imposed by the disk geometry, and the hexare formed, sincéN(p) [as well as{a(p))] should present
agonal lattice favored by the vortex-vortex interaction. As asharp peaks where ringlike patterns exist. For this purpose
result, rings are generally formed close to the disk edgeve divided the disk radius into radial strips of length
while an Abrikosov lattice is present in the center of the disk.Ap=1.25% and counted the number of vortices in each of
In order to study the configurations obtained within the GLthese piecesN(p) and (o(p)) are shown in Fig. 5 for
theory, we computed the positions of the vortex cores fromL.=109, L=229, L=473, andL=717 atHy=0.1, Hy=0.2,
the calculatedW (r)|2. Hy=0.4, andH,=0.6, respectively. Th& =109 andL=229

First we investigate the ringlike structure near the diskwere obtained by solving the GL equations starting with the
edge by computing the number of vorticég,and the aver- L=110 andL=230 less energetic configurations calculated
age density of vorticesa(p))=N(p)/2mpAp, as a function within the London limit. We also plotted the respective con-
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FIG. 5. Number of vortice®(p) (circles and the average vortex densiiy(p)) (solid line) for L=109,L=229,L=473, andL=717 at,
respectivelyHy=0.1,Hy=0.2,Hy=0.4, andHy=0.6. The respective configurations are depicted in the insets. The well-defined peaks close
to R=50¢ are indicative of a ringlike structure close to the edge. This is also indicated by the configurations in the insets, where we plotted
rings for the two outermost shells and the Delaunay triangulation for the inner vortices.

figurations inside each figure. To help the visualization, ringd.=229 one sharp peak occurs aroyyd 46. The radial re-

were drawn for the two outermost shells and a Delaunayion close to this peak contains 48 vortices, with no vortices
triangulation was made for the vortices in the interior offor p>47. The radial region around the peakpat 40 has 44

these rings. Clearly, bothi(p) and(o(p)) have one sharp vortices, with the region between these two maxima, around
peak near the disk edge, an indication of a ringlike structurep~43, also vortex free. A more complete description of the
This can be observed in the vortex configurations since th@umber of vortices in the two outer rings is presented in
outermost vortices are almost perfectly aligned in a ring. Forraple 1. Taking the number of vortices in the first and second
the L =109 state, botiN(p) and(a(p)) have additional peaks outermost rings for the configurations given in this table, as
in the interior of the disk. As the vortex configuration alsowell as other configurations not shown here with the same
indicates, this could be interpreted as a secaformed  vorticity, we find that the number of vortices in these shells

outer ring with a somewhat deformed hexagonal lattice in thexre around, respectively, 33-34 and 28+ 1 lfor 110 (50+2
center. ForL=229, it is clear that vortices are distributed in and 45+1 forl. ~ 230).

ringlike structures for the two outermost rings with an inner  |n Fig. 5 the stated =473, atHy,=0.4 andL=717, at
Abrikosov lattice. Similar features are present in the otheM,=0.6, are also depicted. As expected, the peaks become
L~110 andL ~230 vortex states, i.e., sharp peaks near thesroader deep inside the disk, suggesting that the ringlike
disk edge are also presenthtip) and(o(p)), indicating two  structure smears out as one approaches the center of the disk.
outermost ringlike vortex distribution with an Abrikosov lat- In addition, as the value df increases the average density
tice in the centefagain this Abrikosov lattice is much better becomes more uniform, but preserving at least two sharp
defined forL ~230). It is also worth mentioning that the two peaks near the edge. For473 andL=717 the most exter-
outer peaks present dt~110 andL~230 are situated nal ring is situated gb~47 and contains 70 and 92 vortices,
around the same values pf for configurations calculated respectively. Notice that the two outer rings have a very dif-
within both the GL and the London theories. For example ferent number of vortices which is quite distinct from the
for L=109 the peaks are pt=35 andp~43, with an empty  situation of classical charges confined by a parabolic
region aroundp=39 and another fop>45. Moreover the potentiat’” where for large number of charges the outer rings
regions comprised by the peaks {o(p)) at p=35 and contain the same number of particles, The present situation is
p=~43 contain 28 and 33 vortices, respectively. In the caséetween a hard w&fl and a parabolic confinement case.
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TABLE I. Number of vortices(N) and approximate radial position of the two outer shéllg), and the
bond-angular order factdgg for configurations with lower energy. Her@) means all vortices, except the
ones belonging to the outermost shéil) vortices not at the two outer rings, afid) vortices atp<25.

1st. shell 2nd. shell Ge

L Ho N (P N (P () (i) (iii)

109 0.1 33 43 28 35 0.76 0.85 0.87
110 0.1 33 43 28 35 0.64 0.71 0.75
111 0.1 33 43 29 36 0.69 0.79 0.84
112 0.1 33 43 29 36 0.68 0.80 0.88
113 0.1 34 43 28 36 0.70 0.80 0.84
229 0.2 48 46 44 40 0.80 0.89 0.97
230 0.2 48 46 44 40 0.78 0.84 0.94
231 0.2 50 46 44 40 0.83 0.92 0.99
232 0.2 49 46 44 40 0.82 0.91 0.97
233 0.2 49 46 45 41 0.80 0.87 0.96
234 0.2 50 46 45 41 0.81 0.87 0.95
235 0.2 49 46 44 41 0.82 0.90 0.97
473 0.4 70 47 66 43 0.79 0.83 0.92
717 0.6 92 47 80 44 0.77 0.79 0.86

We calculated the density-density correlation funcfidn, a,~8.4 for L=109 at Hy,=0.1, a,~5.8 for L=229 at
for the vortices enclosed by the two outermost rings in ordetHy=0.2, a,~4.1 for L=473 atH,=0.4, anda,~3.4 for
to help characterize whether a Abrikosov lattice is formedL=717 atHy=0.6.

away from the disk edge. This function is proportional to In order to better describe how close the system is to an
Abrikosov lattice we computed the probability distribution

E 2 a(p)alp-p)). (22) p() to find two adjacent nearest neighbors of a given vortex
i=1 j#i making an angle. This probability was calculated for three

) , i different cases(i) for all vortices, except the ones at the
where o is the local density of vortices and the sums runqtermost ring(ii) for the vortices not in the two outer rings,
over the positions of vortices which do not belong to the twoanq i) for those vortices ap<25. These probabilities are
outermost rings. Numerically we computed this function byshown on the left of Figs. 6. We found thaté) [for all the
making a histogram for all pairwise separations fallingcases(i)— (iii)] is maximum close to 60°, which is charac-
within an area~¢ (typically) around p. This quantity is teristic of an hexagonal lattice. The width of the distribution
depicted at the right side of Flg 6. The density—density COTTapid|y decreases ds increases from~110 to~ 230, but
relation function indicates an hexagonal pattern for all thesgncreases as is further incremented. To be more precise,
high L states. Such pattern is well defined for109 at p(#) for the L~110 (not only theL=109 state which is
Hp=0.1 and becomes very well defined for229 atH,  shown) state obtained within the London limit has a maxi-
=0.2. Other configurations with~110 have also an hex- mum at 57°. The probability distributions for casés
agonal pattern as the one fbr 109 (but not as shappThe  —(iii) are not sharp, presenting a width of about 12° at half
density-density correlation function computed for variousof the distribution maximum. Other states with-110 and
configurations withL ~230 also resembles the one depictedcomparable energy also show similar behavior. Such features
here forL=229. ForL=473 andL=717 the hexagonal pat- can be understood as the result of the contribution tgtiae
tern is also observed, but not as sharp as the one fatistribution from vortices in the border of the Abrikosov lat-
L=229. Particularly for theL=717 configuration, the tice region. Since not so many vortices are present in this
density-density correlation function suggests that each vortesegion forL ~ 110, vortices in its border will contribute more
(inside the two outermost ringstill has coordination num- strongly to thep(6) distribution than for highelL states.
ber equal to six, although the hexagonal structure consideSuch vortices have to adjust themselves to the ringlike struc-
ing the farther neighbors is not well defined. Therefore theséure more than the inner vortices and, so, it is likely that a
two configurations may still have local, but not orientationalfew of them may have nearest neighbors within angles less
order beyond some few neighbors. We shall come back tthan 60° or, even, coordination number different to six. For
this point later in Sec. V, when discussing the defects in the. > 200, p(6) is sharply peaked a=60°, in conformity with

vortex lattice. the density-density correlation function, signaling an Abriko-
From the density-density correlation function it is also sov lattice in the interior of the disk.
worth it to compute the typical intervortex distarggfor the For completeness we also calculate the bond-angular or-

vortices forming the Abrikosov lattice. We thus obtained der factors5°
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FIG. 6. The density-density correlation functigmght) and the
probability p(6) to find two adjacent nearest neighbors of a given
vortex within an angled (left) for L=109 atHy=0.1, L=229 at
Hp=0.2,L=473 atHy=0.4, andL=717 atHy=0.6. The dashed,
solid, and thin solid lines represepté) calculated for vorticesi)
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the average over the vortices in cagps (i), or (iii). It is
clear from Eq(23) thatGg=1 for an ideal Abrikosov lattice.

In Table | Gg4 is depicted for some of the configurations we
obtained(typically the configurations with lowest eneigy
The values found foGg are larger than 0.9 at the regigiii )

for L~ 230, which indicates a configuration very close to an
hexagonal lattice. The.~110 states obtained &i;=0.1
have lowerGg, which corroborates our previous analysis
suggesting that an Abrikosov lattice is formed but not yet
occupying a large area inside the disk. Again,lfer473 and
L=717 Gg is not as large as the one calculated_at 230,

but is still close or larger than 0.9 in regidiii), which
indicates that a local orientational hexagonal order is present.
In fact for such largé. valuesGg no longer increases and the
peak inp(6) is slightly broadened due to the appearance of
grain boundaries in the Abrikosov lattice as will be shown in
the next section.

V. HIGH L STATES: DEFECTS IN THE VORTEX LATTICE

As a result of the competition between the geometry in-
duced ringlike structure near the disk border and the hexago-
nal structure in the center, topological defects in the lattice
appear in between these two regigadeature also observed
in confined classical systef¥$9. In order to study the dis-
tribution of these defects in the disk, we applied the Voronoi
construction. In an infinite system both the GL theory and the
London approach predict a coordination number equal to six
and the Voronoi construction would yield hexagonal unit
cells for each vortex. In the disk the situation is different,
vortices near the edge have to adjust themselves to the
boundary. Therefore, topological defects in the vortex lattice
will be present. We shall use the teriwedge disclination
for vortices which have a closed unit cell in the Voronoi
construction with coordination number different from six.
This difference is called the topological charge of the discli-
nation. Notice that some vortices at the outermost shell have
open unit cells in the Voronoi construction. For such vortices
the expected number of nearest neighbors should be four. So
in order to define the topological defects also for these vor-
tices, the topological charge there is defined as the number of
first neighbors minus 4. By such convention it can be shown
13 from Euler’s theorer®f that the net topological charge in a
disk equals —-6. In addition, dislocatiofa bounded pair of
one + and one— disclinationg may also appear, whose net
topological charge is null, in order to adjust the vortex sys-
tem to a configuration with lower energy.

Figure 7 shows the Voronoi construction for the109
(Hp=0.1), L=111 (Hy=0.1), L=234 (Hy=0.2), L=229 (H,

not in the outermost ringjji) not in the two outer rings, andii) at ~ =0-2, L=473 (Ho=0.4), and L=717 (Hy=0.6). In all of
p=25, respectively.

Nnp

G‘6: N_ 2 eXF(iNnban) )
nb n=1

(23

them it is quite clear that an Abrikosov vortex lattice is
formed inside the disk, as indicated in previous section, but
with the formation of topological defects in the configura-
) tions. The net topological charge for all configurations ob-
tained(including the ones not shown heris always -6, in
accordance with the Euler theoréfnHowever the total ab-

whereN,,=6 is the number of nearest neighbors of a givensolute charge can be much larger than 6. Negatively charged
vortex, 6, is the angle between two segments joining thedisclinations(vortices with coordination numbet6) are al-
given vortex with two adjacent nearest neighbors, ahés  ways present. Vortices with coordination numbe8 (posi-
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FIG. 7. Voronoi construction for the following configuratiois=109 andL=111 atHy=0.1,L=229 andL=234 atH;=0.2,L=473 at
Hp=0.4, andL=717 atH,=0.6. The dashed line represents the disk edge.

tive topological chargeappear accompanied by negative to- lower L states, for instancé ~230. Such feature is also
pological charges, leading to the formation of dislocationsobserved in simulations performed by Reefman and Bfom
The defects in the vortex configurations are more suitable toconsidering 2000 vortice@lthough they considered vortices
sit in the disk edge or in the region delimiting the Abrikosov in the London limit without interaction with the disk edge
lattice and the ringlike structure. Nevertheless, lagn-  and in classical systems of charged particles interacting with
creases, dislocations proliferate and form grain boundaries iaach other via the Coulomb potential and confined to a para-
the region where the hexagonal lattice appears. This is alsoolic potentiat*®

the reason why the=473 and_=717 states have small€; Koulakov and Shklovskif described the presence of dis-
values and less sharper peaks inpfi@) distribution than the locations in configurations of classical charged particles con-
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FIG. 8. Number of defectssolid pointg versus the energy for some of the configurations obtained from the London approach. The
straight horizontal line is the absolute value of the net topological charge.

fined by a parabolic potential as due to two main reasonswhich is directly related to the number of dislocations in the
The inhomogeneity in the density of particles and the preseonfigurations—is depicted as points connected by lines.
ence of disclinations. The lattéwhich is always present in One can notice that the total number of defects is not a
an hexagonal arrangement confined to a désluses a large  monotonic function of the London energy of the configura-
deformation in the particle configurations. Dislocations thustion. Instead, it highly fluctuates. For example, a configura-
appear in order to reduce such deformations, eventually ddion free of dislocationgin which only six disclinations oc-
creasing the energy of the system. Such effect, also callecur) almost always has a higher energy than, e.g., one with a
screening, was previously described by Halperin andotal number of 16 topological charges. This happens, for
Nelsor?* when studying the melting driven by dislocations in example, forL=111 atH,=0.1 where such a configuration
two dimensional systems, and is linked to the lack of transwith only six disclinations (and no dislocations has
lational long-range order in two-dimensional solid systemsj, =0.130 206 6, which is 0.5% higher than the energy of the
(although orientational order is still presght These dislo- lowest energy statej, =0.129 583 84the Voronoi contruc-
cations are arranged close to or at the disk edge. The forméion of the latter configuration is tHe=111 state depicted in
reason induces dislocations in the interior of the disk. In RefFig. 7). This indicates that the presence, as well as the dis-
56, it was found that there exists a threshold number of partribution, of dislocations in the vortex configurations plays
ticles (which in their case is approximately 70@elow  an important role in lowering the energy of such configura-
which dislocations are due mainly from screening and, abovéons.
which, such defects appear due to the inhomogeneity of the
particle density. At least qualitative similarities exist between VI. SURFACE SUPERCONDUCTIVITY
such a system of charged particles and our vortex configura-
tions. Therefore, it is reasonable to speculate that the same When the external magnetic field approacligs=1 (or
mechanisms which drive the appearance of dislocations isl=H, in not normalized unitsthe vorticity L becomes
also present here. Just like in the system of charged particlerge. Inside a thin layer close to the disk edge the supercon-
dislocations are mostly distributed close to and at the disklucting electron density¥’|? is larger than in the interior of
edge forL =230 and start proliferating in the Abrikosov lat- the disk®® Such a behavior may be understood as a result of
tice for largeL. the superposition of the superconducting electron density de-
Finally, in order to further investigate the relation betweenpreciation close to each vortex inside the disk, which is less
defects in the vortex configurations and the energy of thestrong for vortices at the surface. This already takes place for
system, we computed the total number of defg¢the num-  Hy=0.6 with L=717, but is highly pronounced &t,=1.0.
ber of the+ and — topological chargesin each stable con- At Hy=0.6, a multivortex stat§as was shown in previous
figuration obtained within the London framework. The re-figures and also in Fig.(8)] is enclosed by this supercon-
sults are shown in Figs. 8 fok=110, 111, and 112 at ducting sheath. Within this sheatfif|>~0.75, opposed to a
Ho=0.1 (left) and L=230, 232, and 234 atl,=0.2 (right). ~ maximum of|W|?2~0.5 between two adjacent vortices. Nev-
The absolute value of the net topological charge is depicteértheless, according to the criterion adopted to characterize
as a solid horizontal line and is always equal to six as rethe existence of a giant vortex st&f®|?>< 10 in the region
quired by the Euler theorem. The total number of defects—between vortices®® a giant vortex state appears at
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FIG. 10. Contour plots of Idg’|2 at the cente(left) and close to
the edge of the disk foH=1.

(@)
different. This is the reason for the failure of the London
limit to yield the correct ground state configuration. For low
values of the vorticity we improved the London approxima-
tion by including the spatial variation df¥|? close to the
vortex cores, which resulted in energies which were very
close to those of the GL approach.

Multivortex states were obtained for fields up tdy
~Hg, above which a giant vortex state appears. We inves-
tigated how the configuration of this multivortex state
changes as function of the magnetic field. At low magnetic
fields (Hy<0.1Hy) we find vortex configurations having
ringlike distribution, as expected from symmetry consider-
ations. However as the number of vortices increases, the
vortex-vortex repulsion starts playing a larger role and we
observed the appearance of an hexagonal lattice. The ringlike

b) structure is replaced by an Abrikosov lattice in the center of
the disk as soon as the field is close toH)l when
FIG. 9. Superconducting electron density fay H=0.6 and(b) L~ 100, but is preserved near the edges. For fields larger
H=1.02. White to black runs from low to high values |f|2. than 0.H,, this Abrikosov lattice becomes even more pro-
nounced compared to the ringlike structure.
Ho=1.02. In this state |[W2<10% except at '!'he_ topolo_gical defects in thg vortex configurations and
R-2¢< p<R where 0.2<|W|2<0.45[cf. Fig. Ab)]. At Ho their d|str|l?ut|on were a]so ;tudled. W(_e obse_rved two types
=1 the maximum value of¥[2 is ~10°2 in the region be- of defepts.(wedge _dlscl|nat|ons and dls_locanons. The net
tween two adjacent vortex cores, whil#|2=0.55 at the topological charge is always -6, as required for an hexagonal

disk edge. Such a configuration is not yet a giant vortex statetructure conf_ined toa ci_rcular geometry. Simila_lr to class_ical
although the multivortex state in this case is extremely ‘.di_ﬁamcles confined in radially symmetric potentials, we find

lute.” PossiblyH=1 is close to the field in which a giant that these topological defects appear mostly close to the edge

vortex state decays into a multivortex statevloreover, at ftr) .II‘(S 230|’ f[? ord\(/avr to tta%utst ;Ee ringlike strufc(tjgr(la to t_the
this magnetic field the depreciation oF|? close to the vor- rikosov fattice. Yve atlribute the presence of disiocations

tex cores is different whether a vortex sits in the outermost” that region due_to the_ screening of d'SCImat.'OnS' IAS
fing or in the interior of the disk. This feature is depicted in increases further dislocations start to be spread in the center
Fig. 10, where a contour plot of the logarithm of the super—Of the disk and form grain boundaries.

conducting electron density is shown in the center of the disk dSur;;ace sbulgerc_cl)_EQuctw:‘ty was observg;d ?t.;ﬁelt()js around
(at lefty and close to the edg@t right. and above 0M8.,. This surface superconductivity becomes

more pronounced as the vorticity increases, which resulted in
a larger overlap between the vortices. We also noticed that
the transition from a multivortex to a giant vortex state takes
place at magnetic fields slightly abo¥t.,. Just below the

We investigated the magnetic field dependence of vorteXormation of the giant vortex state, the superconducting elec-
states in thin disks with large radius. The nonlinear GL equatron density presents markedly distinct spatial dependence
tions, as well the London approximation were used to obtairtlose to the disk edge—where the vortex structure starts to
stable vortex configurations. Although both methods lead, focoalesce—compared to what is observed in the center of the
small fields, to similar vortex configurations, the energies arealisk.

VII. CONCLUSIONS
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