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We find possible superconducting states for tetrahedralsThd symmetry crystals with strong spin-orbit cou-
pling using Landau theory. Additional symmetry breaking within the superconducting state is considered. We
discuss nodes of the gap functions for the different states, secondary superconducting order parameters, and
coupling to the elastic strain. By comparing our results to experiments, we find that superconductivity in
PrOs4Sb12 is best described by the three-dimensional representations of the point groupTh.
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I. INTRODUCTION

The discovery of superconductivity in the heavy fermion
compound PrOs4Sb12 (Refs. 1 and 2) has spawned a flurry of
experimental3–19 and theoretical9,20–24,27activity. PrOs4Sb12
is the first Pr-based heavy fermion superconductor and the
first among the family of rare-earth filled skutterudite com-
pounds. The onset of superconductivity occurs atTc1
=1.85 K; an additional phase transition is observed as
anomalies in the specific heat6 and magnetization12 at Tc2
=1.75 K. Thermal conductivity measurements in a rotating
magnetic field revealed the presence of nodes and a lowering
of the symmetry of the gap function from fourfold(A phase)
to twofold (B phase) at Tc2.

8 Even more intriguing is the
observation of broken time-reversal symmetry in the super-
conducting(SC) state.15 By all indications, PrOs4Sb12 is a
new kind of unconventional superconductor.

A central issue in the study of unconventional supercon-
ductivity is the symmetry of the SC order parameter. The
phenomenological Landau theory approach is particularly
useful when little is known about the mechanism of super-
conductivity at a microscopic level, and is ideal for describ-
ing multiple phase transitions, as is the case of PrOs4Sb12.
The starting point is knowledge of the crystal symmetry
group, according to whose representations order parameters
are classified. The outcome of this approach is detailed
knowledge of all possible phase diagrams and symmetry
properties of the SC state, including nodes of the gap
function.28 Phenomenological theory can also predict the or-
der of the phase transition. While the normal-to-SC phase
transition is expected to be second order since third-order
terms in the Landau potential expansion29 are prohibited be-
cause of gauge symmetry, this is not generally the case for
phase transitions within the SC state.

Several theoretical models of the SC order parameter in
PrOs4Sb12 have been proposed in order to account for the
experimental data. Goryo suggested different combinations
of s- andd-wave gap functions for theA andB phases21 in
order to account for the change in symmetry observed in the
thermal conductivity experiment.8 TheA phase was assumed
to have an anisotropics-wave gap function that has six
minima along thef100g, f010g, andf001g directions. In theB
phase, anss+ idz2−x2d-wave combination was proposed. Dif-
ferentss+gd-wave basis functions were proposed by Makiet

al. for both states.22 An f-wave pairing state with weak spin-
orbit coupling was proposed by Ichiokaet al. to describe a
state with point nodes on all three axes.23 Finally, Miyakeet
al. considered a microscopic model based on quadrupolar
fluctuations and nesting in the Fermi surface, and argued in
favor of spx+ ipyd-wave pairing.24

While the models mentioned above may describe particu-
lar experiments, they can only be considered as empirical.
There are at least two fundamental shortcomings.(i) The
models are in fact based on the assumption that the point
group crystal symmetry isOh. PrOs4Sb12 has lowerTh sym-

metry (space groupIm3̄, Th
5).25,26 (ii ) There is no physical

reason why the system should choose one particular combi-
nation of the basis functions of the irreducible representation
of the symmetry group over the others. Strictly speaking, the
theory allows all basis functions to contribute to the gap
function. Moreover, the coefficients in such combinations de-
pend in general on the external conditions(temperature,
magnetic field, etc.). Only such a general state is thermody-
namically stable and occupies a finite region of the phase
diagram.

In this paper, we use the Landau theory approach to clas-
sify SC phases for tetrahedralsThd crystals, including those
which may be reached by additional symmetry breaking
within the SC state. We use the strong spin-orbit coupling
limit in which the spin rotation symmetry is broken.30,31

The first attempt to accomplish such a classification was
made by Gufan.32 In Sec. II of this paper, we use a different
approach and reproduce most results of Ref. 32 forTh
symmetry.33 In addition, we discuss the basis functions of the
irreducible representations, the gap function nodes, and the
orders of the phase transitions between different SC states. In
Sec. III, we consider secondary SC order parameters which
influence the nodes of the gap functions. In Sec. IV, the
coupling between the SC order parameters and elastic strain
is discussed. Section V is devoted to matching the experi-
mental data with the states found theoretically. Section VI
summarizes the paper.

II. CLASSIFICATION OF SUPERCONDUCTING STATES

A procedure for constructing SC classes and finding the
gap nodes with strong spin-orbit coupling was originally pro-
posed by Volovik and Gor’kov(VG),28 who listed all SC
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states which can be reached from the normal state by a
second-order phase transition forOh, D4h, andD6h crystals.
One begins by classifying possible order parameters accord-
ing to the representations of the crystal point group. In sys-
tems with inversion symmetry, all representations have a
definite parity. Those with even parity must be matched with
singlet pairing of the spin states for the pair wave function to
be antisymmetric; likewise odd parity representations are
matched with triplet spin states. For each parity, the groupTh
has a one-dimensional representationA, a two-dimensional
representationE, which is reducible to two one-dimensional
representations that are complex conjugate, and a three-
dimensional representationT.34

The SC gap function is a 232 matrix in pseudospin space

given by D̂skd= iŝycskd for singlet pairing and byD̂skd
= ifdskdŝgŝy for triplet pairing, whereŝ=sŝx,ŝy,ŝzd are
Pauli matrices,cskd is an even scalar function, anddskd is
an odd pseudovector function. The gap in the quasiparticle
energy spectrum in the singlet SC state is given byDskd
= ucskdu, while in the triplet state the spectrum can be non-
degenerate with two gaps D±skd=fudskdu2± udskd
3d*skdug1/2. The functionscskd and dskd are expressed in
terms of the components of the order parameterhi as

cskd = o
i

hiciskd, dskd = o
i

hidiskd. s1d

Here ciskd and diskd are the basis functions for the even
(spin-singlet case) and odd(spin-triplet case) irreducible rep-
resentations of the point group, respectively.30

The method of finding the SC states implemented by VG
is to construct a Landau energy functional ofhi for each

order parameter that is invariant underG3U3K, whereG
is the point group,U is gauge symmetry, andK is time-
reversal, and analyze its extrema. In order to account for all
possible phase diagrams, a very large number of terms must
be included, and the analysis of such a cumbersome model is
tedious at best.35 In practice, terms are restricted to those
needed to describe the normal to superconducting phase
transition,28,36 while states resulting from additional phase
transitions within the SC state are found by other methods.
The VG approach can be applied toTh crystals. However,
here we use an even simpler approach, based on the fact that
Th is a subgroup ofOh. Beginning with the results for the
symmetry groups of SC classes obtained by VG forOh sym-
metry, we thenreducethem by removing the symmetry ele-
ments that are absent in the normal state ofTh symmetry.

We consider additional symmetry breaking within the SC
state by constructingeffectiveLandau functionals ofeffective
order parameters, which describe the phase transitions be-
tween SC states with a group-subgroup relation. This proce-
dure is straightforward, since the symmetry group of a SC
state is discrete(the continuous gauge symmetry is already
broken). In the following, we consider the two-dimensional
representation in detail, while only the results are given for
the three-dimensional representation.

Our results are summarized in Table I, which lists all pos-
sible SC states for both even and odd parity when only a
single irreducible representation is present. We define the
relations between the components of the order parameters,
the symmetry of the SC state, and the structure of nodes in
the gap function. We make the distinction between acciden-
tal, approximate, and rigorous nodes.Accidentalnodes occur
in empirical models when a particular form of the gap
function is chosen apriori , such as that proposed in Ref. 22.

TABLE I. SC states described by one irreducible representation of the point groupTh. The relative magnitudes and phases of the
components of the order parameter are defined in the first columm. The symmetry groups of the SC states are listed in the second column.
Approximate and rigorous nodes of the gap function for even parity are listed in the third and fourth columns, similarly for odd parity in the
fifth and sixth columns. The square bracketsfhklg are used to indicate a specific crystallographic direction and its opposite, while angle
braketskhkll denote all equivalent directions. The word “same” is used when rigorous nodes coincide with approximate nodes. In the fifth
column,(1) indicates that onlyD−skd has nodes, while(2) indicates that both gaps in the triplet state have nodes.

Approximate Rigorous Approximate Rigorous

State Symmetry nodes nodes nodes nodes

(1) T3K Ag none none Au none none

(1, 0) TsD2d 8 pointsk111l same 8 pointsk111l(1) same

(f1, f2) D23K Eg 8 pointsk111l none Eu none none

(h1, h2) D2 8 pointsk111l none none none

(1, 0, 0) D2sC2d3K 2 linesky=0, kz=0 same 2 points[100](2) same

(1, 1, 1) C33K 6 pointsk001l none none none

(1, «, «2) C3sEd 6 pointsk001l, 2 points[111] 2 points[111] 2 points[111](1) same

suh1u , i uh2u ,0d D2sEd 1 line kz=0, 2 points[001] same none none

suh1u , uh2u ,0d C2sEd3K Tg 1 line kz=0, 2 points[001] same Tu none none

sh1,h2,0d C2sEd 1 line kz=0, 2 points[001] same none none

suh1u , i uh2u , uh3u d C28sEd 6 pointsk001l none none none

suh1u , uh2u , uh3u d K 6 pointsk001l none none none

sh1,h2,h3d E 6 pointsk001l none none none
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Such nodes cannot be stable because even small contribu-
tions of functions with the same symmetry remove them
immediately.37 Accidental nodes are unphysical and so we
disregard them.Approximatenodes are a property of all pos-
sible basis functions which can be constructed for a given
representation. These nodes may be removed when admix-
tures of other representations, which couple to the SC state
as secondary order parameters, are taken into account, thus
leaving onlyrigorousnodes required by the symmetry of the
SC state.28,38 The secondary order parameters are propor-
tional to the third power of the primary order parameter.38

Hence, the experiments that probe the symmetry of the gap
function close toTc may find the approximate nodes, while
only the rigorous nodes remain whenT→0. A more detailed
discussion of the secondary order parameters is given in Sec.
III.

A. 1D representationAg,u

The analysis of the one-dimensional representationsAg
and Au is straightforward. Only gauge symmetry is broken
and there are no nodes. The symmetry of the SC state is
T3K. In the lowest order ink, the basis function for the
singlet channelcskd is constant on the Fermi surface and for
the triplet channeldskd,kxx̂+kyŷ+kzẑ. Here and below,
“,” means “transforms like” so that all our results remain
valid for higher-order basis functions.

B. 2D representationEg,u

We choose the basis functions of the two-dimensional
representationsEg andEu in complex form as in Ref. 28,

c1 , kx
2 + «ky

2 + «2kz
2, c2 , kx

2 + «2ky
2 + «kz

2;

d1 , kxx̂ + «kyŷ + «2kzẑ, d2 , kxx̂ + «2kyŷ + «kzẑ, s2d

where «=exps2pi /3d. Following the usual prescription of
the phenomenological theory of phase transitions, we trans-
fer the transformation properties of the basis functions to the
transformation properties ofsh1,h2d.41 The functions(2) do
not change under the twofold rotations which reverse the
sign of two of the three components ofk =skx,ky,kzd and
sx̂ , ŷ , ẑd simultaneously. The threefold rotation around the
[111] axis amounts to the cyclic permutations ofskx,ky,kzd
and sx̂ , ŷ , ẑd. Further,30

Kcskd = c*s− kd = h1
*c1

*skd + h2
*c2

*skd = h2
*c1skd + h1

*c2skd,

s3d

where we use Eqs.(1) and c1
* =c2. A similar result is ob-

tained for the triplet order parameter sinceKdskd=−d*s−kd
=d*skd.30 Therefore, with this complex choice of the basis
functions, the order parameter has the following transforma-
tion properties:39

C2sh1,h2d = sh1,h2d,

C3
111sh1,h2d = s«h1,«

2h2d,

Ksh1,h2d = sh2
* ,h1

*d,

Usudsh1,h2d = eiush1,h2d, s4d

whereC2 stands for any of the twofold rotations inTh, C3
111,

is a 2p /3 rotation about thef111g direction, andUsud is a
gauge transformation.

In Table I, three states are listed for the two-dimensional
representations ofTh. These differ from theOh statess1,0d,
s1,1d, ands1,−1d. As shown below, the extra freedom in the
phase and magnitude of the last two states ofTh arises from
terms in the free energy which are allowed underTh but not
Oh.

The SC states1,0d in Oh corresponds to the group28

OsD2d = hD2,2C4
xK,2C4

yUs2p/3dK,2C4
zUs4p/3dK,

2C2
yzK,2C2

xzUs2p/3dK,2C2
xyUs4p/3dK,

4C3Us4p/3d,4C3
2Us2p/3dj, s5d

whereD2 is the group of twofold rotations about the[100],
[010], and [001] axes. InTh, the remaining symmetry ele-
ments are

TsD2d = hD2,4Us4p/3dC3,4Us2p/3dC3
2j. s6d

Considering the symmetry groups of the statess1,1d and
s1,−1d in Oh, which are D43K and D4sD2d3K,
respectively,28 where

D4sD2d 3 K = hD2,2C4
xUspd,2C2

yzUspdj 3 K, s7d

we notice that they both reduce to the same symmetryD2
3K in Th. Moreover, it follows from Eqs.(4) that this sym-
metry does not fix the relation between the phasesf1 andf2
of the OP componentsh1,2= uh1,2uexpsif1,2d, but the magni-
tudes are equaluh1u = uh2u. Therefore, we denote this state as
sf1,f2d. This may also be verified from the following Lan-
dau model, which describes theEg,u representation ofTh:

F = asuh1u2 + uh2u2d + b1suh1u4 + uh2u4d + 2b2uh1u2uh2u2

+ g1sh1
3h2

*3 + h2
3h1

*3d + g2ish1
3h2

*3 − h2
3h1

*3d, s8d

where a, b1, b2, g1, and g2 are phenomenological param-
eters. One can easily verify that all terms in Eq.(8) are
invariants of transformations(4). The last two terms reduce
to 2g1uh1u3uh2u3coss3fd+2g2uh1u3uh2u3sins3fd, where f
;f1−f2. Thus the equilibrium value off depends on the
(generally temperature-dependent) ratio g1/g2. In contrast, in
Oh symmetry theg2 term is prohibited, hencef is fixed to be
either 0[for s1,1d state] or p [for s1,−1d state].

The gap in the quasiparticle spectrum of thesf1,f2d state
in the singlet channel is42

Dskd , ucossf/2dkx
2 + cossf/2 + 2p/3dky

2

+ cossf/2 + 4p/3dkz
2u, s9d

and in the triplet channel,
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D+skd = D−skd , fcossf/2d2kx
2 + cossf/2 + 2p/3d2ky

2

+ cossf/2 + 4p/3d2kz
2g1/2. s10d

We would like to stress that the statedx2−y2 and its equiva-
lents, obtained by permutations ofx, y, andz, arenot stable
in Th. Instead, they are replaced by the more general state
sf1,f2d with the gap function(9).

In Oh, the statess1,0d, s1,1d, ands1,−1d are connected to
the normal state by a second-order phase transition.28 Since
up to fourth-order terms the model(8) coincides with that of
Oh, we conclude that the statess1,0d and sf1,f2d can be
reached from the normal state inTh by a second-order phase
transition.

There is a third state which can be described by theE
representation inTh. Its symmetry group isD2 (time reversal
is broken), which is a common subgroup of bothTsD2d and
D23K. As is seen from Eqs.(4), it has no constraints on
either the magnitudes or phases, therefore we denote this
statesh1,h2d. In principle, the phase transitions to this state
can be described together with normal-to-s1,0d and normal-
to-sf1,f2d within the same model. This would require the
Landau potential to be expanded up to a very high order. The
model (8) would not be sufficient. However, as far as the
order of the phase transitions is concerned, we can use the
following simplified approach.40

The phase transitions1,0d→ sh1,h2d is characterized by
the appearance of nonvanishingh2, which therefore can be
considered as an effective order parameter of the phase tran-
sition. h2 spans a representation of groupTsD2d, which is
defined as follows [see Eqs. (4) and (6)]: C2h2=h2,
Us4p /3dC3h2=«h2, and Us2p /3dC3

2h2=«2h2. The group
TsD2d should be complimented by either inversionI in the
singlet case orIUspd in the triplet case.28 We assume that
this additional symmetry is not broken ins1,0d→ sh1,h2d
transition, i.e.,h1 and h2 have the same parity. Therefore,
there exists no operation in the symmetry group of thes1,0d
state which changes the sign ofh2. The effective Landau
potential is therefore

Fefffs1,0d → sh1,h2dg = ãuh2u2 + g̃1sh2
3 + h2

*3d

+ ig̃2sh2
3 − h2

*3d + b̃uh2u4, s11d

whereã, g̃1, g̃2, andb̃ are real coefficients. The presence of
third-order terms in Eq.(11) indicates that the phase transi-
tion s1,0d→ sh1,h2d cannot be second-order.40,41

On the other hand, a second-order transitionsf1,f2d
→ sh1,h2d is possible(see Fig. 1). This transition is de-
scribed by an effective order parameterd;uh1u−uh2u, which

changes sign under time reversal, hence odd-order terms are
prohibited. The effective Landau potential in this case is

Fefffsf1,f2d → sh1,h2dg = a8d2 + b8d4, s12d

wherea8 andb8 are real coefficients.
There are no other states described by theE representa-

tion alone, because the basis functions(2) are invariant with
respect to all symmetry operations ofD2 group and there are
no other symmetry groups containingD2.

C. 3D representationTg,u

The lowest-order basis functions for theTg representation
of Th are “d-wave” (i.e., second order ink),

c1 , kykz, c2 , kxkz, c3 , kxky, s13d

while for the Tu representation the lowest-order basis func-
tions are “p-wave,” and there are two independent sets of
them,

d1 , akyẑ + bkzŷ,

d2 , akzx̂ + bkxẑ,

d3 , akxŷ + bkyx̂. s14d

Herea andb are arbitrary numbers, in contrast toOh, which
fixes b=−a in the T1u representation andb=a in the T2u
representation. It follows that the order parameter transforms
as

C2
zsh1,h2,h3d = s− h1,− h2,h3d,

C3
111sh1,h2,h3d = sh2,h3,h1d,

Ksh1,h2,h3d = sh1
* ,h2

* ,h3
*d,

Usudsh1,h2,h3d = eiush1,h2,h3d. s15d

To find the SC states of the three-dimensional representa-
tion, we again use theOh states as a starting point. ForOh,
there are four states accessible by a second-order phase tran-
sition from the normal state:s1,0,0d, s1,i ,0d, s1,1,1d, and
s1,« ,«2d, with symmetries

D4sC4d 3 K = hE,C2
x,2C4

x,4UspdC2
'xj 3 K,

D4sEd = hE,UspdC2
x,2Us±p/2dC4

x,C2
xK,

hUspdC2
yK,2Us±p/2dC2

xyKj,

D3sC3d 3 K = hE,2C3,3UspdC2
xyj 3 K,

D3sEd = hE,Us4p/3dC3,Us2p/3dC3
2,C2

yzK, s16d

hUs2p/3dC2
xzK,Us4p/3dC2

xyKj,

respectively.28 HereE is the identity element. Reducing these
groups, we find the following classes forTh:

FIG. 1. Second-order phase transitions among states of theEg

andEu representations ofTh.
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D2sC2d 3 K = hE,C2
x,UspdC2

y,UspdC2
zj 3 K,

D2sEd = hE,UspdC2
z,C2

xK,UspdC2
yKj,

C3 3 K = hE,C3,C3
2j 3 K,

C3sEd = hE,Us4p/3dC3,Us2p/3dC3
2j. s17d

We notice that theD2sEd symmetry actually does not require
uh1u = uh2u. Hence, the states1,i ,0d is not stable inTh. In-
stead, it is replaced by the statesuh1u , i uh2u ,0d. A direct sec-
ond order normal-to-suh1u , i uh2u ,0d transition is possible in
Th. These findings are also evident in the form of the Landau
potential for the 3D order parameter. In order to display the
Th (but not Oh) symmetry, a Landau model forTg and Tu
must include at least sixth-order terms, as in the case ofEg
andEu. These sixth-order terms are composed of five linearly
independent invariants,

uh1u6 + uh2u6 + uh3u6, uh1u2uh2u2uh3u2,

suh1u2 + uh2u2 + uh3u2dsh1
2h2

*2 + h2
2h3

*2 + h3
2h1

*2 + c.c.d,

suh1u4uh2u2 + uh2u4uh3u2 + uh3u4uh1u2d

± suh1u2uh2u4 + uh2u2uh3u4 + uh3u2uh1u4d,

sh1
4h2

*2 + h2
4h3

*2 + h3
4h1

*2d ± sh2
4h1

*2 + h3
4h2

*2 + h1
4h3

*2d + c.c.

s18d

The negative signs in the last two invariants in(18) occur in
Th but not inOh.

Considering all possible subgroups of the groups in Eqs.
(17), we find five more SC states as listed in Table I, where

C2sEd = hE,U1spdC2
zj,

C28sEd = hE,U1spdC2
yKj. s19d

We have examined the transitions within the SC state by
considering effective free energies which describe them,
similar to those described for the 2D order parameter, Eqs.
(11) and(12). The diagram of all second-order phase transi-
tions described by the three-dimensional representations of
Th is given in Fig. 2.

Thus we find that the absence of fourfold rotation sym-
metry in PrOs4Sb12 essentially changes the structure of pos-
sible SC states. The statess1,1d and s1,−1d are not stable,
because the value off in Eq. (9) is not fixed. Similarly, the
states1,i ,0d is absent in the three-dimensional representa-
tions. Additionally, all SC states which may be connected to
the normal state inOh, D4h, or D6h symmetry by a second-
order phase transition areone-parameterin the sense that all
components of the order parameter are proportional to one
quantity, its absolute value.28,36 The situation is different for
the statessf1,f2d and suh1u , i uh2u ,0d in Th, for which two
independent quantities describe the SC state.

III. SECONDARY SC ORDER PARAMETERS

In general, the primary order parameter is accompanied
by secondary order parameters which do not change the sym-
metry of the SC state. The influence of secondary order pa-
rameters on the gap nodes was discussed in Sec. I. Since
secondary order parameters do not change the overall sym-
metry of the superconducting state, they are most easily
found by identifying supergroups of the states listed in the
second column of Table I which correspond to another su-
perconducting state. Table II lists them.

In order to calculate how the secondary order parameters
appear in the ordered phases, we need invariants of the types
h3j andh2j2, whereh is the primary order parameter andj
is the secondary order parameter. From the first type of in-
variant, it is clear thatj and h must have the same parity.
There are three scenarios to consider:(i) The 2D primary
order parameter with 1D secondary OP,(ii ) 3D primary with
1D secondary, and(iii ) 3D primary with 2D secondary. In the
rest of this section, we denote the primary order parameters
as h j = uh j ueif j and the secondary order parameters asj j
= uj j ueiu j.

TABLE II. Secondary SC order parameters. The primary SC
order parameters are listed in the first column and all secondary SC
order parameters are listed in the second column.

Primary Secondary

s1d none

s1,0d none

sf1,f2d s1d
sh1,h2d s1d

s1,0,0d none

s1,1,1d s1d
s1,« ,«2d s1,0d
suh1u , i uh2u ,0d none

suh1u , uh2u ,0d none

sh1,h2,0d none

suh1u , i uh2u , uh3u d s1d, sf1,f2d
suh1u , uh2u , uh3u d s1d, sf1,f2d
sh1,h2,h3d s1d, sh1,h2d

FIG. 2. Second-order phase transitions among states of theTg

andTu representations ofTh.

SUPERCONDUCTING STATES IN THE TETRAHEDRAL… PHYSICAL REVIEW B 70, 144522(2004)

144522-5



A. 2D primary with 1D secondary

The coupling terms of the two order parameters in the
Landau potential are

sh1h2
*2j + h1

2h2
*j*d + sh1

*2h2j + h1
*h2

2j*d,

ifsh1h2
*2j + h1

2h2
*j*d − sh1

*2h2j + h1
*h2

2j*dg,

h1
*h2

*j2 + h1h2j*2, suh1u2 + uh2u2duju2. s20d

In the states1,0d, the first two terms vanish, hencej=0. In
the statesf1,f2d, the first two terms are finite anduj u~uhu3.
Minimization with respect tou yields u= 1

2sf1+f2d. This
relation between the phases of the OP’s ensures that time-
reversal symmetry in preserved. There is no such relation
between the phases when the primary order parameter state
is sh1,h2d. This reflects the fact that time-reversal symmetry
is broken.

B. 3D primary and 1D secondary

The coupling terms are

sh1h2
*h3

* + h1
*h2h3

* + h1
*h2

*h3dj + c.c.,

sh1
*2 + h2

*2 + h3
*2dj2 + c.c.,

suh1u2 + uh2u2 + uh3u2duju2. s21d

It follows that if any of the components of the 3D order
parameter is zero, then the potential has a minimum atj=0.
This is also the case for the states1,« ,«2d. In the states in
which f1=f2=f3 [i.e., s1,1,1d and suh1u , uh2u , uh3ud], one
obtains u=f1. However, in the statesuh1u , i uh2u , uh3ud we
find u=f1±p /2.

C. 3D primary and 2D secondary

The coupling terms are

sh1
*h2h3 + «h1h2

*h3 + «2h1h2h3
*dj1

*

+ sh1h2
*h3

* + «h1
*h2h3

* + «2h1
*h2

*h3dj2 + c.c.,

ifsh1
*h2h3 + «h1h2

*h3 + «2h1h2h3
*dj1

*

− sh1h2
*h3

* + «h1
*h2h3

* + «2h1
*h2

*h3dj2 − c.c.g,

sh1
*2 + h2

*2 + h3
*2dj1

*j2
* + c.c.,

suh1u2 + «uh2u2 + «2uh3u2dj1j2
* + c.c.,

suh1u2 + uh2u2 + uh3u2dsuj1u2 + uj2u2d. s22d

For this type of mixing, we only consider thes1,« ,«2d state
of the primary order parameter, since in the other states
whereEg,u is present as a secondary order parameter,Ag,u is
also present, and it surely removes all nodes. The first two
invariants in thes1,« ,«2d state reduce to 6uh1u3uj2ucossu2

−f1d and 6uh1u3uj2usinsu2−f1d, respectively. Thus, the state

s0,1d, which is equivalent tos1,0d, appears as a secondary
effect. Note thatu2−f1 is not fixed, which is expected since
the state breaks time-reversal symmetry.

IV. STRAINS AND ELASTIC MODULI

Unconventional SC states normally break spatial symme-
try in addition to gauge. If the crystallographic class changes,
one can expect the development of new components of the
strain tensor and certain anomalies in the elastic moduli
which can be measured by ultrasound propagation.43,44 Such
a measurement has not yet been reported for PrOs4Sb12.
Thus, here we consider all representations for the normal-to-
A phase transition.

The elastic energy forTh is the same as forOh,

Fel =
C11

0

2
se1

2 + e2
2 + e3

2d + C12
0 se1e2 + e2e3 + e1e3d

+
C44

0

2
se4

2 + e5
2 + e6

2d, s23d

wheree1,. . .,6 are the components of the strain. Generally, if
the strain is a secondary order parameter, it couples to the
primary order parameter ash2e, which leads to a develop-
ment of the secondary order parameter ase,h2.

The development of the strains following each normal-
to-SC transition and discontinuities of the elastic moduli are
shown in Table III.

A. 1D order parameter

There is no difference betweenOh andTh in this case. The
coupling of the strain to the SC order parameter is described
by the following term in the Landau potential:

Fhe = ruhu2se1 + e2 + e3d. s24d

The dilatational straine1+e2+e3 appears as a secondary or-
der parameter, and the only elastic constant which is discon-
tinuous isC11.

B. 2D order parameter

The coupling terms are

Fhe = r1suh1u2 + uh2u2dse1 + e2 + e3d + r2fh1h2
*se1 + «e2

+ «2e3d + c.c.g + ir3fh1h2
*se1 + «e2 + «2e3d − c.c.g.

s25d

The third term is absent inOh. The free energy of the OP is
given by Eq. (8), which describes the second-order phase
transitions between the normal state and the superconducting
statess1,0d and sf1,f2d.

Deviatoric strainse2−e3 and 2e1−e2−e3 appear in the
transition tosf1,f2d. Therefore, it is necessary to average
the elastic moduli in all three directions to take into account
domains.

C. 3D order parameter

The coupling terms are
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TABLE III. Strains and discontinuities in the elastic moduli following normal-to-SC phase transitions inTh crystals. The SC states are
listed in the first column. Strains which appear as secondary order parameters and discontinuities of the elastic moduli are listed in the second
and third columns, respectively, as functions of the primary order parameter and the phenomenological constants. The fourth-order coeffi-
cientsbi in the Landau potential for the 2D order parameter are defined in Eq.(8). For the 1D and 3D order parameter, they correspond to
the following terms:30 buhu4 andb1suh1u2+ uh2u2+ uh3u2d2+b2uh1

2+h2
2+h3

2u2+b3suh1u2uh2u2+ uh2u2uh3u2+ uh1u2uh3u2d, respectively. The domain
average values for the elastic moduliCij are calculated asC11

av=sC11+C22+C33d /3, C12
av=sC12+C23+C13d /3. The superscript 0 denotes the

values in the normal state.

Transition: Strains which appear Elastic moduli

Normal to as secondary order parameters in the SC state

s1d
e1+e2+e3=

−3r uhu2

C11
0 +2C12

0 C11=C22=C33=C11
0 −

r2

2b

C11−C12, C44 continuous

s1,0d
e1+e2+e3=

−3r1uhu2

C11
0 +2C12

0 C11=C22=C33=C11
0 −

r1
2

2b1

C11−C12, C44 continuous

sf1,f2d
e1+e2+e3=

−6r1uh1u2

C11
0 +2C12

0 C11
av=C11

0 −
2r1

2+r2
2+r3

2

2b1+b2

2e1−e2−e3=
−6uh1u2sr2 cosf−r3 sin fd

C11
0 −C12

0
C12

av=C12
0 −

4r1
2−r2

2−r3
2

2s2b1+b2d

e2−e3=
2Î3uh1u2sr2 sin f+r3 cosfd

C11
0 −C12

0

C44 continuous

s1,0,0d
e1+e2+e3=

−3r1uh1u2

C11
0 +2C12

0 C11
av=C11

0 −
3r1

2+24r2
2+8r3

2

6sb1+b2d

2e1−e2−e3=
−12r2uh1u2

C11
0 −C12

0 C12
av=C12

0 −
3r1

2−12r2
2−4r3

2

6sb1+b2d

e2−e3=
4r3uh1u2

C11
0 −C12

0

C44 continuous

s1,1,1d
e1+e2+e3=

−9r1uh1u2

C11
0 +2C12

0 C11=C22=C33=C11
0 −

3r1
2

2s3b1+3b2+b3d

e4,5,6=−
2r4uh1u2

C44
0

C11−C12 continuous

C44=C44
0 −

2r4
2

3s3b1+3b2+b3d

s1,« ,«2d
e1+e2+e3=

−9r1uh1u2

C11
0 +2C12

0 C11=C22=C33=C11
0 −

3r1
2

2s3b1+b3d

e4,5,6=
r4uh1u2

C44
0

C11−C12 continuous

C44=C44
0 −

r4
2

6s3b1+b3d
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Fhe = r1suh1u2 + uh2u2 + uh3u2dse1 + e2 + e3d

+ r2f3suh2u2 − uh3u2dse2 − e3d + s2uh1u2 − uh2u2 − uh3u2d

3s2e1 − e2 − e3dg + r3fsuh2u2 − uh3u2ds2e1 − e2 − e3d

− s2uh1u2 − uh2u2 − uh3u2dse2 − e3dg + r4fsh2
*h3 + h2h3

*de4

+ sh3
*h1 + h3h1

*de5 + sh1
*h2 + h1h2

*de6g. s26d

The third term appears inTh but notOh. Shear strainse4,5,6,
but not deviatoric strains, are present when all three compo-
nents of the OP have the same magnitude. Deviatoric strains
appear when any of the magnitudes differ.

V. DISCUSSION

Experimentally, the symmetry of the SC states and the
nature of the phase transition between them in PrOs4Sb12 are
far from resolved. Anomalies atTc2 have been observed in
many experiments.4,6–8,12,13,15,18,19Specific-heat measure-
ments by Vollmeret al.6 found a jump atTc2, indicative of a
second-order phase transition. On the other hand, Aokiet
al.4,15 found a kink, resulting in a steeper temperature depen-
dence belowTc2, which seems to correspond to a first-order
phase transition. The most dramatic observation is the
change in symmetry at theA-B phase transition seen in ther-
mal conductivity measurements.8 The double transition was
also observed in magnetization measurements as a peak ef-
fect in MsHd.12,13 One of these measurements found strong
anisotropies,12 possibly indicative of a change in symmetry;
the other did not.13 Finally, recent penetration depth mea-
surements have been interpreted not as a phase transition, but
rather as a crossover due to two-band superconductivity.19

The temperature range in which theA phase exists is very
narrow, thus with two exceptions8,13 the reported experi-
ments probe the properties of the gap in theB phase. Experi-
ments consistently rule out the existence of line nodes in the
B phase.2,3,5,8,16However, the presence of point nodes in the
B phase is clearly indicated by a power-law temperature de-
pendence of the specific heat,2 the thermal conductivity
measurement,8 and the penetration depth.18 Nuclear quadru-
polar resonance experiments3 can be interpreted as either
fully gapped or nodes. Tunneling spectroscopy16 finds no
nodes at all in theB phase, but this measurement was per-

formed at very low temperatures, perhaps consistent with
rigorous nodes rather than approximate nodes. Finally,mSR
(Ref. 5) indicates that theB phase is fully gapped.

Only a couple of experiments have specifically dealt with
the symmetry of the gap function.8,18 In the thermal conduc-
tivity experiment, point nodes were found in the[010] direc-
tion in theB phase and in both the[100] and[010] directions
in the A phase.8 However, in this measurement, there is no
clear explanation for why the twofold symmetry is actually
observed as such, rather than averaged out into domains. The
penetration depth has a power-law temperature dependence
corresponding to point nodes along all three principal crys-
tallographic axes.18 No studies of the nodal structure along
the f111g direction have been reported so far. An extremely
important finding is due to anothermSR measurement, which
showed that time-reversal symmetry is broken in theB
phase.15

In determining which of the states listed in Table I best
describes PrOs4Sb12, we make the following assumptions:(i)
the B phase breaks time-reversal symmetry;(ii ) there are
point nodes in theB phase located in the[100] and/or
equivalent directions, and there are no line nodes in theB
phase;(iii ) theA-B phase transition is second order;(iv) both
phases are described by the same order parameter. The first
two assumptions are based on fairly conservative interpreta-
tions of the experimental data available to date. We use the
last two assumptions to narrow the choices of possible states.
Their validity is subject to further experimental study.

We exclude theA andE representations because of(ii ). In
the Tg and Tu representations, the first four states listed in
Table I are connected to the normal state by a second-order
phase transition(see Fig. 2), but among them onlys1,0,0d
andsuh1u , i uh2u ,0d may be followed by another second-order
phase transition involving the same order parameter. There-
fore, these are the only two possibilities for theA phase. If
the A phase issuh1u , i uh2u ,0d, then theB phase is either
sh1,h2,0d or suh1u , i uh2u , uh3d. The former is excluded be-
cause it has line nodes in the singlet channel and no nodes at
all in the triplet channel. The latter possibility must be singlet
because it has no nodes at all in the triplet channel. If theA
phase iss1,0,0d, then theB phase is thesuh1u , i uh2u ,0d state.
Because there are no line nodes in theB phase, the pairing is
therefore triplet. Strictly speaking,suh1u , i uh2u ,0d has no

TABLE III. (Continued.)

Transition: Strains which appear Elastic moduli

Normal to as secondary order parameters in the SC state

suh1u , i uh2u ,0d
e1+e2+e3=

−3r1sh1
2+h2

2d

C11
0 +2C12

0 C11
av=C11

0 −
3r1

2s4b2−b3d+4s3r2
2+r3

2ds6b1+2b2+b3d

6s4b2−b3ds4b1+b3d

e1+e2−2e3=
−6r2suh1u2+ uh2u2d+6r3suh1u2− uh2u2d

C11
0 −C12

0 C12
av=C12

0 −
3r1

2s4b2−b3d−2s3r2
2+r3

2ds6b1+2b2+b3d

6s4b2−b3ds4b1+b3d

e1−e2=
−6r2suh1u2− uh2u2d−2r3suh1u2+ uh2u2d

C11
0 −C12

0

C44 continuous
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nodes at all underTh symmetry. However, nodes appear in
the correspondingOh state s1,i ,0d.28 Such nodes may be
pronounced dips inTh if the Fermi surface has the approxi-
mateOh symmetry, as found in Ref. 9. Therefore, the two
most likely possibilities for the sequence of SC phase tran-
sitions in PrOs4Sb12 are

normal→ suh1u,i uh2u,0d → suh1u,i uh2u,uh3ud

in the singlet channel and

normal→ s1,0,0d → suh1u,i uh2u,0d

in the triplet channel.
We note that both scenarios proposed here are actually

inconsistent with the four-node-to-two-node change in the
gap found in Ref. 8. In order to describe that experiment, one
tempting possibility would be to associate theA phase with
the states1,1,1d in the singlet channel, while theB state
with s1,0,0d or suh1u , i uh2u ,0d (with approximateOh sym-
metry as discussed above) in the triplet channel. Then, how-
ever, theA-B transition could only be first-order. We also
note that other experiments have not reproduced the results
of Ref. 8 for theB phase: the penetration depth measure-
ments found six point nodes in the gap,18 and theA-B tran-
sition line lies in a higher magnetic field.12

If future experiments fail to be consistently described
within the framework described in this paper, then it is likely
that the assumption that the order parameters of both transi-
tions belong to the same representation will merit closer ex-
amination. It is possible that theB phase may be due to the

appearance of an order parameter that belongs to a different
representation than that of theA phase. This possibility is
somewhat unsatisfactory in situations when the phase transi-
tions occur very close together, as in PrOs4Sb12, because it
suggests a rather fine tuning of the phenomenological param-
eters. Second-order phase transitions between any states
which are related as group-subgroups are allowed, provided
third-order terms of the effective order parameter are absent
in the free energy. The order parameter of theB phase may
be a superconducting order parameter that belongs to a
different representation than that of theA phase, or it could
even be something completely different, such as a structural
order parameter or a state with broken translational
symmetry.

VI. SUMMARY

To summarize, we find group theoretically the SC states
which can be realized in crystals withTh symmetry. Addi-
tional symmetry breaking within the SC state is considered.
Heavy fermion superconductivity in PrOs4Sb12 is best de-
scribed by the three-dimensional representations of the point
group Th. Considering experimental results, we propose the
two most likely scenarios for the SC phase-transition se-
quence found in PrOs4Sb12, one in the singlet and another in
the triplet channel.
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