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Superconducting states in the tetrahedral compound PrOgb;,
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We find possible superconducting states for tetrahgdigl symmetry crystals with strong spin-orbit cou-
pling using Landau theory. Additional symmetry breaking within the superconducting state is considered. We
discuss nodes of the gap functions for the different states, secondary superconducting order parameters, and
coupling to the elastic strain. By comparing our results to experiments, we find that superconductivity in
PrOsSh;, is best described by the three-dimensional representations of the pointT.oup
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l. INTRODUCTION al. for both stateg? An f-wave pairing state with weak spin-
orbit coupling was proposed by Ichiola al. to describe a
The discovery of superconductivity in the heavy fermionstate with point nodes on all three aXés=inally, Miyake et
compound PrOs$sh,, (Refs. 1 and has spawned a flurry of al. considered a microscopic model based on quadrupolar
experimentat™® and theoreticdl?°-2427 activity. PrOsSb;,  fluctuations and nesting in the Fermi surface, and argued in
is the first Pr-based heavy fermion superconductor and thtavor of (p,+ip,)-wave pairing?*
first among the family of rare-earth filled skutterudite com-  While the models mentioned above may describe particu-
pounds. The onset of superconductivity occurs Taf  lar experiments, they can only be considered as empirical.
=1.85K; an additional phase transition is observed ashere are at least two fundamental shortcomin@s.The
anomalies in the specific héaand magnetizatidd at T,  models are in fact based on the assumption that the point
=1.75 K. Thermal conductivity measurements in a rotatinggroup crystal symmetry i©®,. PrOsShb;, has lowerT;, sym-
magnetic field revealed the presence of nodes and a loweringetry (space grougma, T3).2526 (ji) There is no physical

of the symmetry of the gapsfunctlon from fourfol phase  e4350n why the system should choose one particular combi-
to twofold (B phasg at Te,.” Even more intriguing is the  pation of the basis functions of the irreducible representation
observation of broke?5t|me-reyer§al symmetry in the superys the symmetry group over the others. Strictly speaking, the
conducting(SC) state:> By all indications, PrOgSh, is @ theory allows all basis functions to contribute to the gap
new kind of unconventional superconductor. function. Moreover, the coefficients in such combinations de-
A_c_ent_ral issue in the study of unconventional SUPErcoNneng in general on the external conditioftsmperature,
ductivity is the symmetry of the SC order parameter. Themagnetic field, etg. Only such a general state is thermody-
phenomenological Landau theory approach is particularly,amically stable and occupies a finite region of the phase
useful when little is known about the mechanism of SUpPergiagram.
conductivity at a microscopic level, and is ideal for describ- |, this paper, we use the Landau theory approach to clas-
ing multiple phase transitions, as is the case of B80s.  jfy SC phases for tetrahedrél,,) crystals, including those

The starting point is knowledge of th_e crystal symmetry, picp, may be reached by additional symmetry breaking
group, according to whose representations order paramet thin the SC state. We use the strong spin-orbit coupling

are classified. The outcome of this approach is detaile mit in which the spin rotation symmetry is brok@h3?
knowledge of all possible phase diagrams and symmetry 1 first attempt to accomplish such a classification was

properties of the SC state, including nodes of the gapn,qe by Gufa2 In Sec. Il of this paper, we use a different

function?® Phenomenological theory can also predict the Or'approach and reproduce most results of Ref. 32 TFor

der of the phase transition. While the normal-to-SC phas%ymmetry?3 In addition, we discuss the basis functions of the
transition s expected o b? second order S'nc.e_th'rd'ord%reducible representations, the gap function nodes, and the
terms in the Landau potential 'ex.pansﬁ%are prohibited be- orders of the phase transitions between different SC states. In
cause of gauge symmetry, this is not generally the case fQ§e. i e consider secondary SC order parameters which
phase transitions within the SC state. .influence the nodes of the gap functions. In Sec. 1V, the

Several theoretical models (;)f. the dSC order parameterhuaoup"ng between the SC order parameters and elastic strain
ProsShy, have been proposed in order to account for theg giscyssed. Section V is devoted to matching the experi-

e]>c<perimental data. G?ryo 'suggfestek:j diﬁerenthcomginationﬁqental data with the states found theoretically. Section VI
of s~ andd-wave gap functions for th& andB phases' in summarizes the paper.

order to account for the change in symmetry observed in the
thermal conductivity experimefitThe A phase was assumed
to have an anisotropis-wave gap function that has six
minima along th¢100], [010], and[001] directions. In theB A procedure for constructing SC classes and finding the
phase, ar(s+id,2_,2)-wave combination was proposed. Dif- gap nodes with strong spin-orbit coupling was originally pro-
ferent(s+g)-wave basis functions were proposed by Meki posed by Volovik and Gor’koWVG),?2® who listed all SC

II. CLASSIFICATION OF SUPERCONDUCTING STATES
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TABLE |. SC states described by one irreducible representation of the point gipuphe relative magnitudes and phases of the
components of the order parameter are defined in the first columm. The symmetry groups of the SC states are listed in the second column.
Approximate and rigorous nodes of the gap function for even parity are listed in the third and fourth columns, similarly for odd parity in the
fifth and sixth columns. The square brackgt&l] are used to indicate a specific crystallographic direction and its opposite, while angle
brakets(hkl) denote all equivalent directions. The word “same” is used when rigorous nodes coincide with approximate nodes. In the fifth
column, (1) indicates that onhA_(k) has nodes, whil€2) indicates that both gaps in the triplet state have nodes.

Approximate Rigorous Approximate Rigorous
State Symmetry nodes nodes nodes nodes
(N TXK Aq none none A, none none
1,0 T(D») 8 points(111) same 8 pointg111)(1) same
(p1, P) D, X K Eq 8 points(111) none E, none none
(71, 72) D, 8 points(111) none none none
1,0,0 D,(Cy) X K 2 linesk,=0, k,=0 same 2 point§100](2) same
1,19 C3X K 6 points(001) none none none
1, &, €9 Cs(E) 6 points{001), 2 points[11]] 2 points[11]] 2 points[111](1) same
(|71l 41| 72],0) D,(E) 1 line k,=0, 2 points[001] same none none
(|71l +]72],0) Cy(E) XK Tq 1 line k,=0, 2 points[001] same Ty none none
(71, 12,0) C,(E) 1 line k,=0, 2 points[00]] same none none
(el ilm2l |ma))  CyE) 6 points(001) none none none
(ABEARE)) K 6 points(001) none none none
(71,72, 13) E 6 points(001) none none none

states which can be reached from the normal state by arder parameter that is invariant undaix U X IC, whereG
second-order phase transition 0f, D, andDg, crystals. is the point groupU is gauge symmetry, andl is time-

One begins by classifying possible order parameters accordeversal, and analyze its extrema. In order to account for all
ing to the representations of the crystal point group. In syspossible phase diagrams, a very large number of terms must
tems with inversion symmetry, all representations have #€ included, and the analysis of such a cumbersome model is
definite parity. Those with even parity must be matched withtedious at best In practice, terms are restricted to those
singlet pairing of the spin states for the pair wave function toheeded '[2% 3(gesc_r|be the normal to superconducting phase
be antisymmetric; likewise odd parity representations ardransition?~*> while states resulting from additional phase

matched with triplet spin states. For each parity, the gfgup transitions within the SC state are found by other methods.
has a one-dimensional representatigna two-dimensional 1he VG approach can be applied T crystals. However,

representatiorie, which is reducible to two one-dimensional here we use an even simpler approach, based on the fact that

. . T, is a subgroup of,. Beginning with the results for the
representations that are complex conjugate, and a three! : )
dimensional representation® gymmetry groups of SC classes obtained by VGOqrsym

S . . metry, we therreducethem by removing the symmetry ele-
The SCAgap function is a:22 matrix in pseudospmAspace ments that are absent in the normal statdpsymmetry.
given by A(k)=iayy(k) for singlet pairing and byA(k) We consider additional symmetry breaking within the SC
=i[d(k)a]ay for triplet pairing, wherea=(ay,0y,0,) are  state by constructingffectiveLandau functionals oéffective
Pauli matricesy/(k) is an even scalar function, amtik) is  order parameters, which describe the phase transitions be-
an odd pseudovector function. The gap in the quasiparticiéveen SC states with a group-subgroup relation. This proce-
energy spectrum in the singlet SC state is givenAtk)  dure is straightforward, since the symmetry group of a SC
=|¢(K)|, while in the triplet state the spectrum can be non-State is discretéthe continuous gauge symmetry is already
degenerate  with two  gaps A,(k)=[|d(k)[£|d(k) broken. In t_he followm_g, we consider the two—dlmen3|onal
x d"(k)[J¥2 The functionsy(k) and d(_k) are expressed in representation in detail, while only the results are given for

the three-dimensional representation.
terms of the components of the order parameteas . . S
b P o Our results are summarized in Table I, which lists all pos-

- " - . sible SC states for both even and odd parity when only a

w(k)_Ei m(k), - dlk) E, (k). @ single irreducible representation is present. We define the

relations between the components of the order parameters,

Here ¢ (k) and di(k) are the basis functions for the even the symmetry of the SC state, and the structure of nodes in

(spin-singlet caseand odd(spin-triplet casgirreducible rep-  the gap function. We make the distinction between acciden-

resentations of the point group, respectiv@ly. tal, approximate, and rigorous nodégcidentalnodes occur

The method of finding the SC states implemented by VGn empirical models when a particular form of the gap
is to construct a Landau energy functional gf for each  function is chosen ariori, such as that proposed in Ref. 22.
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Such nodes cannot be stable because even small contribu-
tions of functions with the same symmetry remove them
immediately?” Accidental nodes are unphysical and so we
disregard themApproximatenodes are a property of all pos-

sible basis functions which can be constructed for a giver\1N

K (1, m2) = (172, 10,

(4)

representation. These nodes may be removed when admix-hereCz stands for any of the twofold rotations y, Céll’
tures of other representations, which couple to the SC statg 2 2r/3 rotation about th¢111] direction, andU(6) is a

U(0) (11, m2) = €% 1, 1),

as secondary order parameters, are taken into account, thf}

leaving onlyrigorous nodes required by the symmetry of the
SC state®® The secondary order parameters are propor
tional to the third power of the primary order paraméter.

auge transformation.

In Table I, three states are listed for the two-dimensional
representations of,. These differ from theD,, states(1,0),
(1,1), and(1,-1). As shown below, the extra freedom in the

Hence, the experiments that probe the symmetry of the gaBh@s€ and magnitude of the last two state$;parises from

function close toT, may find the approximate nodes, while
only the rigorous nodes remain wh&n- 0. A more detailed

discussion of the secondary order parameters is given in Sec.

A. 1D representation Ag

The analysis of the one-dimensional representatigns
and A, is straightforward. Only gauge symmetry is broken
and there are no nodes. The symmetry of the SC state
TXK. In the lowest order irk, the basis function for the
singlet channel/(k) is constant on the Fermi surface and for
the triplet channeld(k)~kx>?+ky§/+k22. Here and below,
“~" means “transforms like” so that all our results remain
valid for higher-order basis functions.

B. 2D representationEgy

We choose the basis functions of the two-dimensional

representationgy andE, in complex form as in Ref. 28,
Y1~ G+ elG+ G, iy~ K+ %K+ ek
dy ~ kX +eky + e%k,2, dy~kX+ szkyf/ +ek,z, (2

where e=exp(2#i/3). Following the usual prescription of

erms in the free energy which are allowed undigibut not

h.
The SC staté1,0) in Oy, corresponds to the grotip

O(D,) ={D,,2C,K,2C{U(27/3)K,2C3U (4= /3)K,
2CYKC, 2C5U(2mI3) K, 2CPU(4ml3) K,

AC,U(47/3),4C3U(27/3)}, (5)

whereD, is the group of twofold rotations about tfi200Q],
ﬁlO], and [001] axes. InT,, the remaining symmetry ele-
ments are

T(Dy) = {DZ,4U(47T/3)C3,4U(2’7T/3)C§}. (6)

Considering the symmetry groups of the statesl) and
(1,-2) in O which are D;XK and Dy, XK,
respectively?® where
D4(D,) X K ={D,,2CU(m),2C5U(m} X K,  (7)
we notice that they both reduce to the same symmbBly
X K in T,,. Moreover, it follows from Eqs(4) that this sym-
metry does not fix the relation between the phaggand ¢,
of the OP components; ,=|7; »|exp(i ¢y ,), but the magni-
tudes are equaly, | =|7,|. Therefore, we denote this state as
(¢, d»). This may also be verified from the following Lan-

the phenomenological theory of phase transitions, we transtau model, which describes tiig,, representation of,:
fer the transformation properties of the basis functions to the

transformation properties dfy;, 7,).** The functions(2) do

not change under the twofold rotations which reverse the

sign of two of the three components kf=(k,,k,,k,) and
(X,¥,2) simultaneously. The threefold rotation around the
[111] axis amounts to the cyclic permutations (&g, k,,k,)
and(X,y,2). Further3®

Kyk) = o (= k) = (k) + (k) = 7y (K) + mya(K),
(3)

where we use Eqgl) and 1//121//2. A similar result is ob-
tained for the triplet order parameter sinkel(k)=-d"(-k)
=d"(k).2° Therefore, with this complex choice of the basis

functions, the order parameter has the following transforma

tion properties®

Colm, m2) = (91, 12),

Céll(ﬂly 1) = (& 7]1,827]2),

F=al|nf® + 7% + Bul|mal* + 72 *) + 2Ba| 7 7l
+ (i, + B3m) + v (i, = i), 8)
where «, B1, B2, v1, and vy, are phenomenological param-

eters. One can easily verify that all terms in E§) are
invariants of transformationg}). The last two terms reduce
to 21| | 7./°cos3¢) + 27, | m[?| 72 sin(3¢), where ¢

= ¢1— ¢,. Thus the equilibrium value of depends on the
(generally temperature-dependenattio v,/ v,. In contrast, in
Oy, symmetry they, term is prohibited, hencé is fixed to be
either O[for (1,1) statg or 7 [for (1,-1) statg.

The gap in the quasiparticle spectrum of tlgg, ¢,) state
the singlet channel 18

n

A(k) ~ |[cod ¢/2)K; + cog /2 + 2m/3)K;
+cog ¢l2 + 4ml3)KY, 9)

and in the triplet channel,
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Normal state changes sign under time reversal, hence odd-order terms are
“a prohibited. The effective Landau potential in this case is
(1,0) ‘(94)2) Ferl(h1, b2) — ()] = 0’ &+ B &, (12
(m, ) wherea’ and B8’ are real coefficients.

There are no other states described by Eheepresenta-
FIG. 1. Second-order phase transitions among states dfghe tion alone, because the basis functig®sare invariant with

and E, representations of, respect to all symmetry operations@$ group and there are
no other symmetry groups containiii.
A4(k) = A_(k) ~ [cop/2)%K; + cod /2 + 277/3)2k§ C. 3D representation Ty,
+cog p/2 + 4mI3)AC]H2, (10) The lowest-order basis functions for tfig representation

We would like to stress that the stad_> and its equiva- of Ty are “d-wave” (i.e., second order ik),

lents, obtained by permutations xfy, andz, arenot stable 1~ ks~ Ky Y~ kK, (13
in T,.. Instead, they are replaced by the more general state , )
(b1, b,) with the gap functior(9). while for the T, representation the lowest-order basis func-

In O,, the state$1,0), (1, 1), and(1,-1) are connected to tions are p-wave,” and there are two independent sets of

the normal state by a second-order phase transiti@ince them,

up to fourth-order terms the mod@) coincides with that of d; ~ ak2 +bky,
Oy, we conclude that the staté,0) and (¢, ®,) can be
reached from the normal state Th by a second-order phase 5 5
transition. Y P dz ~ aleX + bk,
There is a third state which can be described by Ehe . .
representation i}, Its symmetry group i®, (time reversal d3 ~ aky +bkX. (14

is broken), which is a common subgroup of bofiD,) and  Herea andb are arbitrary numbers, in contrast@y, which
DX K. As is seen from Eqs4), it has no constraints on fixes b=-a in the Ty, representation anth=a in the Ty,

either the magnitudes or phases, therefore we denote thigpresentation. It follows that the order parameter transforms
state(#,, 77,). In principle, the phase transitions to this stategg

can be described together with normalfig-0) and normal-

to-(¢b1, ,) within the same model. This would require the C3(71, 12, m3) = (= 1,~ 72, m3)
Landau potential to be expanded up to a very high order. The

model (8) would not be sufficient. However, as far as the C 01, 720 13) = (112, 713, ).
order of the phase transitions is concerned, we can use the

following simplified approach® K0, 12, 3) = (01, 0 113)

The phase transitiofil,0)— (7, 7,) is characterized by
the appearance of nonvanishing, which therefore can be — 8
considered as an effective order parameter of the phase tran- V(O Cnw, 72 7m5) = €11, 72, 75): (15)
sition. 7, spans a representation of grodifD,), which is To find the SC states of the three-dimensional representa-
defined as follows[see Egs.(4) and (6)]: C,m,=17,  tion, we again use th®, states as a starting point. FG,
U(4m/3)Cymo=e7,, and U(2w/3)C37,=¢7n,. The group there are four states accessible by a second-order phase tran-
T(D,) should be complimented by either inversibiin the  sition from the normal statg1,0,0, (1,i,0), (1,1,1, and
singlet case otU(m) in the triplet cas@® We assume that (1,£,&%), with symmetries
this additional symmetry is not broken 1,0 — (7, 7,) _ X X Lx
transition, i.e.,; and 7, have the same parity. Therefore, D(Cy) X K ={E,C5,2C,, 4U(m G} X K.,
there exists no operation in the symmetry group of(thg)) . .
state which changes the sign @f. The effective Landau D4(E) ={E,U(m)C3, 2U (£ 7/2)C;, C5K,
potential is therefore
~ ~ « U(m)CYK, 2U (£ 7/2)CYK},

Ferl (1,00 — (7,71 = & 7o + a3 + m2Y) ’ ?

+i%a(n3 = 1) + Blml*, (11) D3(Cy) X K ={E, 2C;,3U(m)C3} X K.,

where, 71, 7,, and are real coefficients. The presence of D4(E) = {E,U(47/3)C5,U(27/3)C3,CYK, (16)
third-order terms in Eq(11) indicates that the phase transi-

tion (1,0)— (7, 7,) cannot be second-ord&*

On the other hand, a second-order transiti@h , ¢»)
—(71,7,) is possible(see Fig. 1 This transition is de- respectively® HereE is the identity element. Reducing these
scribed by an effective order paramet&s | 7,|—| 7., which  groups, we find the following classes foy;

U(2m/3)CE4C, U(4mi3)CYKY,
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Normal state TABLE II. Secondary SC order parameters. The primary SC
T order parameters are listed in the first column and all secondary SC
Qa,o 0) a1 1) Q,e 52) order parameters are listed in the second column.
b Y .
(Iml; |2l, 0) (ml, tiral, 0) Primary Secondary
& T (1) none
(ml, I, ImsD (i, 2, 0) (I, i, |ms))
* (1,0 none
('h, h, '73) (¢1.2) @)
(71, 12) (1)
FIG. 2. Second-order phase transitions among states of the
and T, representations of;,. (1,0,0 none
(1,1, 1)
2
D,(C,) X K ={E,C},U(m)CY U(mCE X K, (1,2,6%) (1,0
(Iml il 72| ,0) none
(lml.72],0) none
= v4 X Yy
DZ(E) {EiU(W)C 1 2/C,U(7T)C2’C}, (7]1’7]2’0) none
(Il il 72l 1ms]) (1), (¢1, )
Cy X K ={E,C;5,C3} X K,
ARG (sl o)) (D). (b1,
72, 1), (1,
C4(E) ={E,U(47/3)Cs, U(2m/3)CZ}. a7 (mmm @), (r1.m2)
We notice that th®,(E) symmetry actually does not require ] ]
|| =|m,]. Hence, the statél,i,0) is not stable inTj, In- Thus we find that the absence of fourfold rotation sym-

stead, it is replaced by the stafey | ,i| 7,],0). A direct sec- metry in PrOgSh;, essentially changes the structure of pos-
ond order normal-tdlz, | i 7,| ,0) transition is possible in SiPlé SC states. The statek, 1) and(1,-1) are not stable,
T,. These findings are also evident in the form of the Landalpecaufe_ tge _vaIL;)e o n E?{ (9)h|s n%t. f'XEd'. Slmlllarly, the
potential for the 3D order parameter. In order to display the>t@t€ (L., 0) is absent in the three-dimensional representa-
Ty (but not Oy) symmetry, a Landau model fof, and T, tions. Addltlonally_, all SC states which may be connected to
must include at least sixth-order terms, as in the casi,of the normal state iy, Dyp, OF Dgn Symmetry by a second-
andE,. These sixth-order terms are composed of five linearly?’d€r phase transition acne-parametem the sense that all

independent invariants components of the order parameter are proportional to one
’ quantity, its absolute valli@:36 The situation is different for
|71l®+ [ 2]® + [ 3l% |71 7720 sl the stateg ¢, #,) and (|7],i[7,[,0) in Ty, for which two

independent quantities describe the SC state.

(mul+ |92+ | 9afP) (e + mhms” + mimy” + c.c),

(| 7]1|4| 772|2 + |7]2|4| 7’3|2 + |7]3|4| 771|2) I1l. SECONDARY SC ORDER PARAMETERS

+ (|l 72l * + |72 mal* + | w3l A ™), In general, the primary order parameter is accompanied
by secondary order parameters which do not change the sym-
metry of the SC state. The influence of secondary order pa-
rameters on the gap nodes was discussed in Sec. |. Since
(18) secondary order parameters do not change the overall sym-

The negative signs in the last two invariants8) occur in ~ Metry of the superconducting state, they are most easily

T, but not inO,,. found by identifying supergroups of the states listed in the
Considering all possible subgroups of the groups in Eqs_second column of Table | which correspond to another su-

(17), we find five more SC states as listed in Table I, wherd®@rconducting state. Table Il lists them.
In order to calculate how the secondary order parameters

4 *2 4 *2 4 *2 4 *2 4 *2 4 *2
(mmo"+ moms”™ + mamy ) £ (mom, ™+ m3m,~ + 7ym5°) + C.C.

Cy(E) ={E,U4(m)C3}, appear in the ordered phases, we need invariants of the types
7€ and 7°&2, where 7 is the primary order parameter agd
CY(E) ={E,U,(m)CYK}. (19) is the secondary order parameter. From the first type of in-

variant, it is clear that and » must have the same parity.
We have examined the transitions within the SC state byrhere are three scenarios to considgy:The 2D primary
considering effective free energies which describe themorder parameter with 1D secondary @iP 3D primary with
similar to those described for the 2D order parameter, EqsLD secondary, andii) 3D primary with 2D secondary. In the
(11) and(12). The diagram of all second-order phase transi-rest of this section, we denote the primary order parameters
tions described by the three-dimensional representations @fs nj;|77]|e'¢i and the secondary order parameterséas
Ty is given in Fig. 2. =& €.
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A. 2D primary with 1D secondary (0,2, which is equivalent tq1,0), appears as a secondary
The coupling terms of the two order parameters in theeffect. Note tha'ﬂz_— ¢4 is not fixed, which is expected since
Landau potential are the state breaks time-reversal symmetry.
(s é+ mimed) + (2 b+ mumsE), IV. STRAINS AND ELASTIC MODULI

Unconventional SC states normally break spatial symme-
try in addition to gauge. If the crystallographic class changes,
v v ) - one can expect the development of new components of the
mmEs+ mmaé 2 (|l + [ mo*) €% (20) strain tensor and certain anomalies in the elastic moduli

In the state(1,0), the first two terms vanish, henée0. In  Which can be measured by ultrasound propagatidfiSuch

the state(¢,, &), the first two terms are finite arlg|«|[*. a measurement ha_s not yet been reported for 3ips

Minimization with respect tof yields 921(¢1+¢2) This Thus, here we consider all representations for the normal-to-
5 .

. , . A phase transition.
relation between the phases of the OP’s ensures that time- The elastic energy foF, is the same as foBy,

reversal symmetry in preserved. There is no such relation

i[(mump2é+ ol — (2 mpé + )],

between the phases when the primary order parameter state c‘lJl by 0
is (771, 7,). This reflects the fact that time-reversal symmetry Fei= - (el +e5+€)) + Cl,(e10,+ 85 + €18))
is broken.
C24 2 2 2
) +—_ (e +es+e€p), (23
B. 3D primary and 1D secondary 2
The coupling terms are wheree,  sare the components of the strain. Generally, if
e s e the strain is a secondary order parameter, it couples to the
(M mom3+ Moz + Mpma)é+ C.C., primary order parameter ag?e, which leads to a develop-
ment of the secondary order parameteeas»,?.
(7712+ n;2+ 77;2)§2+ c.c., The development of the strains following each normal-
to-SC transition and discontinuities of the elastic moduli are
(172 + 2l + [ m3l?) | €2, (21)  shown in Table 1it.

It follows that if any of the components of the 3D order
parameter is zero, then the potential has a minimug=&x. _ _ o
This is also the case for the statk,e,s?). In the states in There is no difference betwe€), andT}, in this case. The
which ¢1=¢,=3 [i.e., (1,1,2 and (|71],| 7] .|73])], one coupling of the strain to the SC order parameter is described
obtains 8= ¢;. However, in the statd|n,|,i|7,|,|ns) we by the following term in the Landau potential:

find 6= ¢1i ml2. Fﬂe: p| 77|2(el+ez+E3)- (24)

A. 1D order parameter

The dilatational straire;+e,+e; appears as a secondary or-
der parameter, and the only elastic constant which is discon-
The coupling terms are tinuous isCy;.

C. 3D primary and 2D secondary

* * 2 * *
+ +
(7]17]2773 EMMM3TE 771772773)§1 B. 2D order parameter

+ (7717727]3 + EMM273 + 827]1”2’73)52 +c.c., The Coup“ng terms are
i[(9,72m5 + e 3 + €2 M) €, Fe=pa(] ml?+ |7l (e + e+ &) + plmmye; + s€,
= (s + e+ €21 oM E5 — C.C1, +£%€3) + C.c] +ipal mmy(e; + e, + £%65) — c.Cl.

(25

The third term is absent i@,. The free energy of the OP is
given by Eq.(8), which describes the second-order phase

*2 *2 *2 * *
(m"+ "+ p37) 616, + C.C.,

2 2 2 2 *
([ml* + &l mal* + &% ma) 616, + c.c., transitions between the normal state and the superconducting
) ) ) ) , states(1,0) and (¢, ¢»).
(I72]? + [722 + | ) (| €] + | &) - (22 Deviatoric strainse,—e; and 2,-e,—e; appear in the
3 3

transition to(¢4, ¢,). Therefore, it is necessary to average
g1e elastic moduli in all three directions to take into account
omains.

For this type of mixing, we only consider tl{&,s,?) state

of the primary order parameter, since in the other state
whereE,, is present as a secondary order paramégy,is
also present, and it surely removes all nodes. The first two
invariants in the(1,e,e?) state reduce to |6y,|%| &|cog 6,

- ¢,) and 8 7,3 &|sin(6,— ¢,), respectively. Thus, the state  The coupling terms are

C. 3D order parameter
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TABLE lll. Strains and discontinuities in the elastic moduli following normal-to-SC phase transitiofigdrystals. The SC states are
listed in the first column. Strains which appear as secondary order parameters and discontinuities of the elastic moduli are listed in the second
and third columns, respectively, as functions of the primary order parameter and the phenomenological constants. The fourth-order coeffi-
cientsB; in the Landau potential for the 2D order parameter are defined ii8tqgr-or the 1D and 3D order parameter, they correspond to
the following terms®® gl 5|* and By(|m1[?+[ 7>+ | nal?)?+ Ba| 7+ 75+ 732+ Bal| mal?| 12l>+| mal?| maf?+[ 71l?| 75, respectively. The domain
average values for the elastic modGlj are calculated a€%7=(Cy;+Cp+Cs9)/3, C5=(Cyo+Cy3+Cy3)/3. The superscript O denotes the

values in the normal state.

Transition: Strains which appear Elastic moduli
Normal to as secondary order parameters in the SC state
1 ~3p|7l? P’
e tete=—F7 C11=Cyy=C33=Ci;——
1+€ C21+2C(1)2 R Y
C11—Cqy, Cy4 continuous
(1,0 ~3py| 72 o _ Pt
e te+e=—( o C11=Cpp=Cy33=Ci 1 — =
1T e C21+2C(1’2 117 C22=0a3=0; 28,
C11—Cy,, Cy4 continuous
’ —6p Vi 2 2 2+ 2+ 2
(¢1,2) e te,+es= 1 1(|) i\]l_:cgl_ P17 P27 P3
Cj,+2C), 2B+ B
26,6,y 6| 71[*(p, cos ¢p—p3 sin ) cav- 0 _4p§—p§—p§
' -, 22 228, + )
~ 23| 71/2(p, sin ¢+ p3 cOS @) C44 cONtinuous
- 0 _~0
Cii=Cpp
1,0, -3 2 3p2+24p%+8p3
( 0 e +eptes= 0P1|7l1(|) ?\FCgl— p1+24p5+8p35
C11+2Cy, 6(B1+B2)
1 2 392120242
Zel_ez_e3=—§p2| 7701‘ i\\zlzcgz_ P1 2p2 P3
C)-C3, 6(B1+B2)
_4ps|m/? C,44 continuous
€78= 0 _~0
C1i=Cp»
(1,1, ~9p4| 1/? 0 3p%
e te+ez= C11=C»p=Ca3=Cij= ("
C+2CY, WTTRT T 2(3B,+36,+ By)
_ 2p4|lm? Cy1-C;y, continuous
€456~ 0
C
44
Chm 28
T 3381+ 3B+ By)
(1,2,6?) ~9pa| 1 o __ 3
e te+ez= C11=C5y=C35=C{,—
CP1+2CY, WSS (3614 B)
pal m/? C,1—C4, continuous
€4,5,6 0
C44

2

Ps
Cy=Co\———2—
M 6(36,+By)
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TABLE lll.  (Continued)

Transition: Strains which appear Elastic moduli
Normal to as secondary order parameters in the SC state
(ml.ill,0 =3py(7,+ 75) w0 3P5(4By=B3) +4(3p5+p3) (6B1+2B,+ Bs)
e tete=—pg Cii=Ciy- -
C11+2C; 6(48,—B3)(4B1+ B3)
e +e,- 20, =6p2(| 71+ [ 72/) + 6p3(| >~ 72]) J—— 3p3(4B2~Ba) ~ 2(3p5+p3) (61 +2B,+ Ba)
1T 2T £83= = -
CH-CY, e 6(48,—B3)(4B1+ B3)
=6po(| 7112~ | 721%) = 2p3(| 1l 2+ | 72]?) C,4 continuous
€~ 6= 0 _~0
Ci11=Ci2
Foe=pa(lml®+ |72 + | paf*)(er + €, + €3) formed at very low temperatures, perhaps consistent with
rigorous nodes rather than approximate nodes. FinaBR
+ Pl 3(| 7al* = [ ) (€2~ €3) + (21> = |l = | mal?) indi i
P2l o\ 772 E A I 40 2 73 (Ref. 5 indicates that thé phase is fully gapped.
X (261~ €~ )]+ p3l (| ml* = | ma*) (21 - €, - &) Only a couple of experiments have specifically dealt with

the symmetry of the gap functici® In the thermal conduc-

= P =72 = |72 (e - €)1 + pal (73 + Mom3)€s  tivity experiment, point nodes were found in tf@10] direc-
(hm + e+ (777, + ] (26) Fion in theB phase and in b_oth t_I”[dOO] and[01Q] directions

7371 F 1371)€5 + (72T 171772) €l in the A phase However, in this measurement, there is no
The third term appears i, but notOy,. Shear straing, s  Clear explanation for why the twofold symmetry is actually
but not deviatoric strains, are present when all three compaebserved as such, rather than averaged out into domains. The
nents of the OP have the same magnitude. Deviatoric strairgenetration depth has a power-law temperature dependence
appear when any of the magnitudes differ. corresponding to point nodes along all three principal crys-
tallographic axe® No studies of the nodal structure along
the[111] direction have been reported so far. An extremely
important finding is due to anoth@SR measurement, which

Experimentally, the symmetry of the SC states and thehowed that time-reversal symmetry is broken in e
nature of the phase transition between them in P80 are phase'®
far from resolved. Anomalies &k, have been observed in In determining which of the states listed in Table | best
many experiment8-81213.15.18.19 gpacific-heat measure- describes PrQSb;,, we make the following assumptions)
ments by Volimeret al® found a jump afl,, indicative of a  the B phase breaks time-reversal symmetey) there are
second-order phase transition. On the other hand, A&oki Point nodes in theB phase located in th¢100] and/or
al.*15found a kink, resulting in a steeper temperature depenequivalent directions, and there are no line nodes inBhe
dence belowT,,, which seems to correspond to a first-orderPhase{iii) the A-B phase transition is second ordgv;) both
phase transition. The most dramatic observation is th@hases are described by the same order parameter. The first
change in symmetry at th&-B phase transition seen in ther- tWo assumptions are based on fairly conservative interpreta-
mal conductivity measuremerftsThe double transition was tions of the experimental data available to date. We use the
also observed in magnetization measurements as a peak st two assumptions to narrow the choices of possible states.
fect in M(H)_12v13 One of these measurements found StrongThEil’ Va||d|ty is Subject to further experimental StUdy.
anisotropied2 possibly indicative of a change in symmetry; ~ We exclude théA andE representations because(oj. In
the other did not® Finally, recent penetration depth mea- the Ty and T, representations, the first four states listed in
surements have been interpreted not as a phase transition, J@ble | are connected to the normal state by a second-order
rather as a crossover due to two-band superconducthity. Phase transitiortsee Fig. 2, but among them only1,0,0

The temperature range in which thephase exists is very and(|7u|,i[7.[,0) may be followed by another second-order
narrow, thus with two exceptioh&® the reported experi- Phase transition involving the same order parameter. There-
ments probe the properties of the gap in Bhphase. Experi- fore, these are the only two possibilities for thephase. If
ments consistently rule out the existence of line nodes in théhe A phase is(|7,],i|7.|,0), then theB phase is either
B phase*®581However, the presence of point nodes in the(71, 72,0) or (|7],i] 72|.|7s). The former is excluded be-
B phase is clearly indicated by a power-law temperature decause it has line nodes in the singlet channel and no nodes at
pendence of the specific héathe thermal conductivity all in the triplet channel. The latter possibility must be singlet
measuremeritand the penetration depthNuclear quadru- because it has no nodes at all in the triplet channel. If&xhe
polar resonance experimehtsan be interpreted as either phase ig1,0,0, then theB phase is th€| 7, ,i| 7|, 0) state.
fully gapped or nodes. Tunneling spectroscBpfinds no  Because there are no line nodes in Bhphase, the pairing is
nodes at all in theB phase, but this measurement was per-therefore triplet. Strictly speakind|#,|,i|7,|,0) has no

V. DISCUSSION
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nodes at all undef,, symmetry. However, nodes appear in appearance of an order parameter that belongs to a different
the correspondingdy, state (1,i,0).28 Such nodes may be representation than that of thk phase. This possibility is
pronounced dips i}, if the Fermi surface has the approxi- Somewhat unsatisfactory in situations when the phase transi-
mate O, symmetry, as found in Ref. 9. Therefore, the two tions occur very close together, as in PySls, because it
most likely possibilities for the sequence of SC phase transuggests a rather fine tuning of the phenomenological param-

sitions in PrOsShy, are eters. Second-order phase transitions between any states
which are related as group-subgroups are allowed, provided
normal— (|74, 72/,0) — (| 7),i] 72|, | 73]) third-order terms of the effective order parameter are absent

in the free energy. The order parameter of Bxphase may

in the singlet channel and be a superconducting order parameter that belongs to a

normal— (1,0,0 — (|7],i| 74,0 different representation than that of tAephase, or it could
even be something completely different, such as a structural
in the triplet channel. order parameter or a state with broken translational

We note that both scenarios proposed here are actuallsymmetry.
inconsistent with the four-node-to-two-node change in the
gap found in Ref. 8. In order to describe that experiment, one V1. SUMMARY
tempting possibility would be to associate thegphase with To summarize, we find group theoretically the SC states
the state(1,1,1) in the singlet channel, while thB state  which can be realized in crystals wiffy, symmetry. Addi-
with (1,0,0 or (|| ,i| ,|,0) (with approximateO, sym-  tional symmetry breaking within the SC state is considered.
metry as discussed abogvie the triplet channel. Then, how- Heavy fermion superconductivity in Prg8b,, is best de-
ever, theA-B transition could only be first-order. We also scribed by the three-dimensional representations of the point
note that other experiments have not reproduced the resulggoup T,,. Considering experimental results, we propose the
of Ref. 8 for theB phase: the penetration depth measuretwo most likely scenarios for the SC phase-transition se-
ments found six point nodes in the gipand theA-B tran-  quence found in PrQSh;,, one in the singlet and another in
sition line lies in a higher magnetic field. the triplet channel.

If future experiments fail to be consistently described
within the framework described in this paper, then it is likely ACKNOWLEDGMENTS
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