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We develop a theoretical framework for multistacked Josephson junctions. The electric field coupling is
newly formulated by a semimiscroscopic treatment for the electric field penetration into the superconducting
layer, and a unified equation containing both the magnetic and the electric field coupling is derived. From the
equation, we obtain analytical frequency dispersions for collective plasma waves as a function of the in-plane
wave number, and we find two unique features in the dispersions, i.e., the electric field coupling hardens the
Josephson plasma with a decrease in the superconducting layer thickness and causes the dispersion curves to
cross at small in-plane wave number regimes. The latter one means that mode conversions between different
plasma waves occur.
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Since the discovery of intrinsic Josephson effects in lay-
ered high-Tc superconductors,1 multistacked Josephson junc-
tions have attracted much interest. Consequently, very rich
features in these systems have been clarified,2 and new ideas
toward device applications have been suggested.3

In multistacked systems, periodical alternation of material
properties strongly affects wave propagations along the
stacked direction. In plasma physics, this kind of issue, i.e.,
the electromagnetic and the electrostatic wave propagation
inside spatially varing media, is a topic of broad interest,4

and the advancement reveals that mode conversions between
the electrostatic and the electromagnetic waves occur. This
idea is also of importance in stacked Josephson junctions due
to the relevance to the electromagnetic wave radiation and
absorption. In this paper, in order to examine the possibility
of mode conversion in stacked Josephson junctions, we make
a unified description for both the electrostatic and the elec-
tromagnetic dynamics and clarify the propagation mode pro-
files.

Several studies on intrinsic Josephson junctions have
clarified two novel types of couplings which relate with the
penetration of the magnetic field5 and the electric field6,7 into
each superconducting layer. Here, we note that there is an
imbalance between the two theoretical developments. Sakai,
Bodin, and Pedersen proposed the magnetic field coupling
between neighbor junctions5 in stacked junctions with any
thickness of the superconducting layer, while the authors in
Refs. 6–8 formulated the electric field coupling only in the
zero thickness limit with a viewpoint that internal field dis-
tribution inside the superoconducting layer is negligible.
However, in reality, the superconducting layer thickness is
comparable to or larger than the electric field penetration
depth in intrinsic Josephson junctions, and the internal field
distribution makes an important contribution in evaluating
the coupling. In this paper, therefore, we seriously consider
the electric field penetration at the superconducting layer in-
terface and construct a unified framework for both of the
couplings9 in the treatment, taking into account the finite

thickness of the superconducting layer. Such a study, to our
knowledge, is the first one. Moreover, we start the theoretical
framework in a semimicroscopic way, i.e., the Schrödinger
equation for the macroscopic superfluid wave function, and
we formulate the electric field coupling through the wave
function’s dynamics. It is the most straightforward and com-
prehensive way.

Up to now, several numerical works10 have been done on
the so-called coupled sine-Gordon equation derived by Sakai
et al.5 and Bulaevskiiet al.11 in order to study Josephson
vortex dynamics and related electromagnetic wave
radiation.12 As a result, rich dynamical phases depending on
the vortex velocity due to resonances with multiple plasma
waves have been revealed,10 and the presence of the in-
phase-like vortex flow suggestingsuperradiancehas been
predicted.13,14 However, in these works, influences from the
electric field coupling have been neglected except for a few
specialized numerical works,15,16 and the energy transfer be-
tween the electrostatic and the electromagnetic components
in excited waves has never been examined, although they are
quite important themes in the laboratory and the space
plasma physics.4 In this paper, we study the unified model
and give a theoretical perspective to the role of the electric
field coupling.

First, let us study the electric field penetration into super-
conducting electrodes in a single Josephson junction. A sche-
matic view for scalar, chemical, and electrochemical poten-
tial distribution is displayed in Fig. 1. The dynamics of the
macroscopic wave function in this system are well described
by
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"
DCi = 0, i = 1,2, s1d

whereCi andci are the macroscopic wave function and the
electrochemical potential ofith superconductors, respec-
tively. ci is decomposed into a sum of the scalar potentialwi
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and the chemical potentialmi as ci =ewi +mi. From Eq.(1),
the time development of the phasegi of Cis;uC0ueigid is
given as

]gi

]t
= −

2ci

"
. s2d

Here, we note that the electrochemical potential can be
treated as a constant value everywhere inside each supercon-
ductor electrode as shown in Fig. 1. The reason is explained
as follows.ci must satisfy

1

e

]ci

]z
= −

m

2e2ns,i

] js,i
z

]t
−

1

c

]Az,i

]t
.

The first term on the right-hand side is negligibly small on
both the time and the current scales of the Josephson effect.
Thus, spatially constantci is automatically assured under a
gauge condition]Az/]t=0. On the other hand, the chemical
and the scalar potential can vary at the interface region and
the electric field consequently penetrates into the supercon-
ducting electrode. Let us formulate how the electric field
penetrates with variations ofw andm. The phase difference
between two arbitrary points(z1 andz2) in the two supercon-
ductors written asf2,1;g2−g1−s2p /f0dez1

z2Azdz (Ref. 17)
follows the equation

]f2,1

]t
=

2

"1dm1sz1d − dm2sz2d + eE
z1

z2

Ezdz2 =
2e

"
V, s3d

where we definedm2szd;m2szd−m2s`d and dm1szd;m1szd
−m1s−`d and, for simplicity, assume the same material elec-
trode, i.e.,m1s−`d=m2s`d. The charge density induced by
the chemical potential shiftdmi is given as

riszd = 2eN0dmiszd, s4d

whereN0 is the density of states at Fermi energy. By com-
bining Eqs.(3) and(4), the Josephson relation is found to be
the following one:

]f2,1

]t
=

2

"1r1sz1d/2eN0 − r2sz2d/2eN0 + eE
z1

z2

Ezdz2 . s5d

This is an exact Josephson relation which holds for any Jo-
sephson junction systems. In addition, we note that the rela-
tion is more general, e.g., it is applicable for the relation
between the voltage and the time variation of the supercon-
ducting phase induced by the flux motion. Now, the charge
densityri that emerged in the relation(5) is connected toEz
by the Poisson equation as

]

]z
Ez =

4p

ei
ri , s6d

where ei is the medium dielectric constant of theith
superconducting electrode. On the other hand, a combination
of the expressions(2) and (4) gives the charge density
as

ri = −
ei

4ple,i
2 Swi +

f0

2pc

]gi

]t
D , s7d

where le,if;sei /8pe2N0,id1/2g is the Debye screening
length.7,8. The above expression(7) without ei wasa priori
given in Ref. 6, but it is found to be a direct consequence of
Eq. (1) with expression(4) in the present case. By taking the
gradientszd on Eq. (6) with Eq. (7), we have the following
equation:

]2Ez,i

]z2 =
1

le,i
2Ez,i . s8d

Here, exactly speaking, −s1/le,i
2 dsm/2e2ns,ids] js,i

z /]td should
be added to the right-hand side of Eq.(8), but this term can
be neglected because the electrochemical potential is as-
sumed to be constant inside the superconducting electrode.
One finds that Eq.(8) is mathematically equivalent with the
London equation describing the screening effect for the mag-
netic field,

]2By,i

]z2 =
1

lL,i
2By,i , s9d

where lL is the magnetic London penetration depth. Thus,
this equivalency enables us to make a unified formalism by
recycling the manner employed in the magnetic field
coupling.5

Next, let us turn to the multistacked Josephson
junction systems. The phase difference between theith
and si +1dth superconductors, fi,i−1=gi −gi−1

−s2p /f0dezi−1

zi Azdz si =1, . . . ,Nd, satisfies the following rela-
tions including the space and the time derivatives by using
lL,i andle,i:

f0

2p

]fi,i−1

]x
=

4plL,i
2

c
j i −

4plL,i−1
2

c
j i−1 + E

zi−1

zi

Bydz, s10d

FIG. 1. A schematic figure for a distribution of the electrochemi-
cal potentialci si =1,2d, the chemical potentialmi, and the scalar
potentialwi under a gaugedAz/dt=0 in the single Josephson junc-
tion system, in which the energy differenceeV exists between two
superconducting electrodes.
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where j i is the in-plane current. On the other hand, Eqs.(8)
and(9) can give the in-plane parallel current and the charge
density at the surface in theith superconducting film with
thicknessti.

5 Here, we show onlyri
D andri

U, i.e., the charge
density in the upside and the downside surface of theith
superconducting layer as follows:

ri
D =

− ei

4ple,i

Ei,i−1 coshsti/le,id − Ei+1,i

sinhsti/le,id
, s12d

ri
U =

ei

4ple,i

Ei+1,i coshsti/le,id − Ei,i−1

sinhsti/le,id
, s13d

where Ei,i−1 is the electric field inside the insulating layer
between thesi −1dth andith superconducting layers andti is
the superconducting layer thickness. Here, it is found that
expanding sinhsti /le,id and coshsti /le,id by ti /le,i in the
above equations(12) and (13) simplifies them into the fol-
lowing equation:

4p

ei
tiri = Ei,i−1 − Ei+1,i , s14d

whereri is assumed to be homogeneous inside the supercon-
ducting layer. Starting with the above simplified Poisson
equation (14), we can reach the electric field coupling
formalism in the zero thickness limit.6–8 However, we note
that the above expansion is valid only forti !le,i but ti is
comparable tole,i or ti is rather larger even in intrinsic
Josephson junctions. Furthermore, we find that the formalism
in the zero thickness limit does not distinguish between
the upside and the downside surface in a superconducting
layer at all. Such a treatment is an oversimplification,
especially for cases withti .le. From these expressions
(12) and(13), the time and the space derivatives of the phase
differencefi,i−1 between the upper surface of thesi −1dth
superconducting layer and the lower surface of theith one
are written as

f0

2p

]fi,i−1

]x
= Di,i−1

L Bi,i−1 + si
LBi+1,i + si−1

L Bi−1,i−2, s15d

f0

2pc

]fi,i−1

]t
= Di,i−1

C Ei,i−1 + si
CEi+1,i + si−1

C Ei−1,i−2, s16d

where

Di,i−1
L = Di,i−1 + lL,i cothS ti

lL,i
D + lL,i−1 cothS ti−1

lL,i−1
D ,

s17d

Di,i−1
C = Di,i−1 + le,i cothS ti

le,i
D + le,i−1 cothS ti−1

le,i−1
D ,

s18d

si
L = −

lL,i

sinhsti/lL,id
, si

C = −
le,i

sinhsti/le,id
, s19d

where Di,i−1 is the thickness of the insulating layer, and
the superscriptsL and C stand for the relevance to the
magnetic and the electric field coupling, respectively. Here,
we would like to note that Eq.(16) coincides with the ex-
pression by Koyama and Tachiki[Eq. (10) in Ref. 6] with the
approximation as sinhsti /le,id, ti /le,i if ei is dropped in
expression(7).

By combining these above equations with the following
Maxwell equation:

]Bi,i−1
y

]x
=

ei,i−1

c

]Ei,i−1
y

]t
+

4p

c
j i,i−1
z , s20d

whereei,i−1 is the dielectric constant of the insulating layer
between theith andsi −1dth superconducting layers, we have

an equation for an array of the phase differencef̂, f̂t

;s¯fi,i−1¯ d as

f0

2p

]2

]x2f̂ = LS ef0

2pc2C−1 ]2

]t2
f̂ +

2f0ŝ

c2 C−1 ]

]t
f̂ +

4p

c
ĵc sin f̂D ,

s21d

whereŝ and ĵ c are arrays giving the site-dependent quasipar-
ticle conductivity and critical current density, and the matri-
cesL andC are, respectively, described as

L =1
D1,0

L s1
L 0

s1
L D2,1

L s2
L

¯ ¯

¯ ¯

DN−1,N−2
L sN−1

L

0 sN−1
L DN,N−1

L

2
and

C =1
D1,0

C s1
C 0

s1
C D2,1

C s2
C

¯ ¯

¯ ¯

DN−1,N−2
C sN−1

C

0 sN−1
C DN,N−1

C

2 .

In the following, we focus on a case in which all of the
superconducting and the insulating layers are equivalent, i.e.,
si

L, si
C, Di,i−1

L , andDi,i−1
C are replaced by site-independent con-

stants. The case is realized in the intrinsic Josephson junc-
tions. Then, we have a covenient form for further calcula-
tions as

C
f0

2p

]2

]x2f̂ = L
ef0

2pc2

]2

]t2
f̂ + L

2f0s

c2

]

]t
f̂ + LC

4p jc
c

sin f̂,

s22d

where we use a relationLC =CL which holds only under the
above special condition.
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Let us demonstrate how Eq.(22) contains the electric and
magnetic field coupling models suggested previously. First,
we examine a case in whichf̂ is spatially independent in the
in-plane direction, i.e.,f̂sx8 ,t8d=f̂st8d. Then, the equation is
reduced to the following one:

e

c2

]2

]t2
f̂ +

4ps

c2

]

]t
f̂ +

C

Dlc
2 sin f̂ = 0, s23d

where lc;Îcf0/8p2Djc. This equation is equivalent
with the electric field coupling model6–8 in the
equation form. However, we claim that the present
model, Eq. (23), is more general since it is applicable
for stacked junction systems with any superconducting
layer thickness. Second, we drop the electric field coupling,
i.e., C is replaced by the unit matrixI . Then, we have
the coupled sine-Gordon equation obtained by Sakaiet al.
as follows:5

]2

]x2f̂ − L
e

c2

]2

]t2
f̂ − L

4ps

c2

]

]t
f̂ −

L

Dlc
2 sin f̂ = 0. s24d

Now, let us study collective plasma modes based on
Eq. (22). In this paper, we concentrate on the plasma
modes under the zero field. The excitation modes under
the presence of Josephson vortices will be discussed else-
where. We find that the dispersion relations of the plasma
excitation modes in anN junction stacked system are ana-
lytically given as

v = vpÎFDC

D
+ 2

sC

D
cosS ,p

N + 1
DG11 +

Dkx
2lc

2

DL + 2sL cosS ,p

N + 1
D2s, = 1 , Nd, s25d

where kx is the in-plane wave vector,vps;c/Îelcd is the
Josephson plasma frequency, and, stands for the,th eigen-
mode whose eigenvector is as follows:

Ai,i−1
, =Î 1

N + 1
sinS i,p

N + 1
D . s26d

In the relation(25), the presence of the electric field coupling
gives the frequency splitting inkx=0 by the mode difference
along the stacked direction, while if it is not present,
then sDC/Dd+2ssC/Ddcosf,p / sN+1dg→1 and all
dispersions converge intovp in kx=0. These features are

presented in Figs. 2(a) and 2(b), which shows the dispersion
curves fvskxdg in a five junction stacked system whose
parameters correspond to Bi2Sr2CaCu2O8 for two cases of
both couplings(the real five lines) and the magnetic field
coupling only(the dotted five lines). This frequency splitting
at kx=0 in the case of both couplings[see Fig. 2(b)] clearly
suggests that the longitudinal plasma mode is dispersive due
to the electric field coupling. Also, we notice that the inclu-
sion of the electric field coupling shifts up all dispersions to
the high-frequency side, as seen in Fig. 2(a). The hardening
reflects that the electric field penetration into the supercon-
ducting layer effectively increases the insulator thicknessD
[see also Eqs.(18) and (25)]. In fact, the plasma excitation
mode frequency is rewritten as

FIG. 2. (Color online) (a) The frequency vs the in-plane wave
numberskxd of the collective plasma modes in the unified model
(22) (both C andL) and in the magnetic field coupling only(only
L). The mode profiles along the stacked direction are schematically
sketched in the insets. The used parametersD, le, lc, and t are
assumed to be 13 Å, 1 Å, 125mm, and 2 Å, respectively. These
values follow an intrinsic Josephson junction, i.e., Bi2Sr2CaCu2O8.
(b) The enlarged picture for the frequency vskx in the smallerkx

region. Only the case considering both couplings is presented, and
the mode crossing region is displayed.
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v = v̄pÎF1 + 2
sC

DC cosS ,p

N + 1
DG11 +

Dkx
2lc

2

DL + 2sL cosS ,p

N + 1
D2s, = 1 , Nd, s27d

where v̄ps;vp
ÎDC/Dd=Î8p2cDCjcef0. This clearly indi-

cates that the Josepshon plasma frequency itself is renormal-
ized by ÎDC/D compared to the conventional expression,
and means that the plasma frequency is dependent on how
the electric field penetrates into the superconducting layer.
We note that the effect is not included in the thin limit
theory6–8 because the thin limit theory does not care about
how the electric field penetrates and therefore the plasma
frequency is always given byvp=s;c/Îelcd. Thus, the
present theory is found to be essentially different from the
thin limit theory. In addition, we find that the splitting atkx
=0 and the hardening become remarkable ast is comparable
to le or decreases belowle, i.e., the case of intrinsic Joseph-
son junctions.

Now, let us focus on two points in the dispersion rela-
tions, i.e.,kx→0 andkx→`. First, whenkx→0, we find that
the frequency of the out-of-phase modes,=Nd is larger than
that of the in-phase modes,=1d in contrast to no mode
difference without the electric field coupling. On the other
hand, atkx→` the magnetic field coupling surpasses the
electric field one, and it raises up the frequency of the in-
phase-like mode contrary tokx=0. Thus, the frequency order
dependent on the mode profile is found to invert at smallkx.
This causes the dispersion lines to cross at finitekx as seen in
Fig. 2(b), while the dispersion in the largekx region, i.e.,
mode frequencies excited under the high field, is very similar

to that without the electric field coupling. In real systems, the
former crossings result in the mode conversion between dif-
ferent plasma modes and induce energy flows from electro-
static oscillations to electromagnetic waves. This nature en-
ables us to excite the longitudinal plasma by the irradiation
of the electromagnetic wave and to radiate the electromag-
netic wave from the longitudinal plasma oscillation. In fact,
such mode conversion processes occur in experimental situ-
ations as the microwave absorption and the radiation of the
electromagnetic wave.

In conclusion, we formulated the electric field penetration
into the superconducting layer based on the semimicroscopic
method and derived the unified equation applicable for any
stacked Josephson junctions. Furthermore, we gave the ana-
lytic form of the frequency dispersions of the collective
plasma waves as a function of the in-plane wave number and
found that the Josephson plasma hardens as the supercon-
ducting layer thickness decreases and the dispersion curves
cross with increasing the in-plane wave number. The present
model covers a rich variety of electromagnetic dynamics in
stacked Josephson junctions.
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