
Coexistence of spin-density wave andd-wave superconducting order parameter

Zaira Nazario1 and David I. Santiago1,2

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Gravity Probe B Relativity Mission, Stanford, California 94305, USA

(Received 16 December 2003; revised manuscript received 26 April 2004; published 22 October 2004)

We study the properties of a spin-density-wave antiferromagnetic mean-field ground state withd-wave
superconducting correlations. This ground state always gains energy by Cooper pairing. It would fail to
superconduct at half-filling due to the antiferromagnetic gap although its particle-like excitations would be
Bogolyubov-BCS quasiparticles consisting of coherent mixtures of electrons and holes. More interesting and
relevant to the superconducting cuprates is the case when antiferromagnetic order is turned on weakly on top
of the superconductivity. This would correspond to the onset of antiferromagnetism at a critical doping. In such
a case a small gap proportional to the weak antiferromagnetic gap opens up for nodal quasiparticles, and the
quasiparticle peak would be discernible. We evaluate numerically the absorption by nodal quasiparticles and
the local density of states for several ground states with antiferromagnetic andd-wave superconducting
correlations.
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I. INTRODUCTION

Ever since the discovery of high temperature
superconductivity,1 it was proposed that the superconducting
correlations might already exist in the antiferromagnetic
Mott insulator.2 The origin of the superconducting correla-
tions was ascribed to the large Coulombic interactions in the
undoped materials. The only other large energy scale in the
materials is phononic.3

While the microscopic origin of superconductivity re-
mains a matter of debate,4–7 there is growing experimental
evidence that the quasiparticles are Bogolyubov-BCS quasi-
particles. Bending back of photoemission bands8 fits quanti-
tatively the BCS-Bogolyubov model.9,10 Scanning tunneling
microscopy finds coherent quasiparticles that disperse as a
coherent mixture of particles and holes.11,12The particle and
hole amplitudes in these experiments and in inverse photo-
emission experiments12,13 fit accurately to the theoretical
Bogolyubov-BCS values calculated from the dispersion and
gap measured in the normal and superconducting materials,
respectively.

Regardless of whether the origin of superconducting cor-
relations is exotic Coulombic physics or some more conven-
tional mechanism, it is clear that the cuprates are BCS paired
superconductors. This does not mean that the Coulomb inter-
actions do not matter. Rather, the interesting and contradic-
tory physics for underdoped materials is the result of Cou-
lomb degradation of the superfluid density2,4–6 and order
parameter competition between superconductivity and corre-
lated electron ground states.14,15 The degradation of the su-
perfluid density leads to suppressedTc due to a phase insta-
bility of the superconducting order parameter.2,16–19 There
are several Coulomb stabilized competing ground states such
as orbital antiferromagnetism,15 stripe or charge density
wave ground states,20 and perhaps electronic liquid crystal
phases.21 Regardless of which of these competing ground
states are realized, there is strong experimental evidence for

incommensurate electronic ordering,22 either static or incipi-
ent. The evidence seems more consistent with charge-
density-wave or stripe order.

In the present work we will study the physics of an anti-
ferromagnet with a strongd-wave Cooper pairing interac-
tion. We do not speculate as to the origin of this supercon-
ducting interaction except to point out that in such a model it
competes with the Coulombic antiferromagnetic physics.
Both the superconductor and the antiferromagnet are studied
in the mean field approximation. While one can doubt the
validity of such an approximation at a phase transition point,
it will be qualitatively correct within the ordered phases.

Cooper pairing leading to a BCS ground state is an insta-
bility of a Fermi liquid ground state. In this study we apply
the BCS approximation to a spin density wave(SDW) insu-
lating ground state as it exists in the cuprates at half filling.
The resulting ground statehas Cooper pairing yet it fails to
superconductdue to the SDW insulating gap. Next we will
review some well known facts in order to understand how a
state with Cooper pairs does not superconduct. Before doing
so we emphasize that this only happens as a consequence of
having acompletely filledinsulating band.

When an electric field is applied to a metal, it conducts
dissipatively. The way this happens is that the center of mass
of the Fermi sea gets displaced upward in the unfilled metal-
lic band.23 Ohmic dissipation occurs because newly filled
electronic states at the top of the Fermi sea get scattered into
newly empty electronic states at the bottom of the Fermi sea
due to the lack of rigidity of the Fermi liquid ground state
(see Fig. 1). When there are Cooper correlations, the electron
liquid gets displaced upward in the band too, but as long as
the displacement in energy within the band is less than the
superconducting gap, Cooper pair correlations make the
electron liquid rigid, thus preventing scattering and dissipa-
tion. For the case of a SDW ground state at half filling with
Cooper pairing correlations there is no superconductivity as
the electron fluidcannotmove upward in the band for the
band is full andthere are no electronic statesto be filled
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unless one excites across the insulating gap and into the con-
duction band(see Fig. 1).

That the SDW insulating ground state withd-wave pair-
ing interactions has Cooper pairing in the ground state can be
seen from Fig. 2. In Fig. 2(a) we plot the spectral function
for the SDW ground state with no superconducting correla-
tions. In Fig. 2(b) we plot the spectral function for the SDW
ground state with superconducting correlations. In the
ground state with both superconductivity and antiferromag-
netism, the separation between the coherence peaks is bigger
as it gets contributions from both the SDW and supercon-
ducting gap. A prediction of this model is that the quasipar-
ticles will be coherent with an electron and a hole component
in agreement with the BCS-Bogolyubov model.

The SDW ground state withd-wave Cooper pairing
(SDW-DSC) will become superconducting when doped. At
the mean-field level, without worrying about self-
consistency, the chemical potential will jump to the appro-
priate band and there will be a low superfluid density super-
conductor. Whether this physics is correct for the cuprates is
controversial. There is experimental evidence for the chemi-
cal potential staying pinned at midgap due to spectral redis-
tribution of states toward midgap states.24 There is also ex-
perimental evidence for chemical potential shifts in the
cuprates, in the same way as in regular semiconductor
materials.25 Independently of whether the SDW-DSC ground
state has chemical potential shifts or not, the physics of an
insulator with Cooper pairing correlations is interesting. For
our study we have the cuprates in mind. For these materials,
some phenomenology of this form seems to apply,2 but it
would be interesting if this physics were to be realized in
nature irrespective of the cuprate problem.

In the present work we will flip the problem around. We
will start with a d-wave superconductor(DSC) and begin
turning on SDW antiferromagnetic order on top of the super-
conductivity. In this limit, the complications mentioned in

the previous paragraph are nonexistent. A slow turning on of
SDW order on top of the superconductivity will show up as
a shift of the antinodal gap and a gapping of the nodal qua-
siparticles. The latter should be a signal much easier to pick
out than the gap shift. The gapping of the nodal quasiparti-
cles is not a unique prediction of antiferromagnetic ordering
on top of the superconductivity, as such a gapping can be
produced by disorder. On the other hand, the coherence of
the gapped “nodal” quasiparticles would be nonexistent for a
disordered gap and is thus a unique signature of antiferro-
magnetic ordering developing on top of the superconductiv-
ity. Therefore, if a quasiparticle peak is discernible, and the
broadening is less than the disorder-induced broadening
(*"2/2mDx2.350 meV for Dx,1 nm, appropriate to the
cuprates), then the gap is a long range ordered gap and not a
disordered gap. Another unique signature of a SDW gap is

FIG. 1. In the upper left side we draw two bands separated by a
gap, with the lower band partially filled appropriate to a metal or
superconductor. In the upper right side we draw the situation en-
countered for the electron fluid under the action of an electric field.
The lower sketch illustrates the situation appropriate to an insulator,
where the lower band is completely filled, making conduction im-
possible regardless of Cooper correlations.

FIG. 2. Spectral function for the SDW ground state without(a)
and with (b) superconducting correlations built in.

FIG. 3. Gapping of the nodal quasiparticles pole as the SDW
order develops.
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that the gap will open exactly at the doping where the anti-
ferromagnetism starts.

There are experimental suggestions of antiferromagnetism
competing with superconductivity in the deep underdoped
regime in the cuprates. For example, measurements show the
nodal quasiparticle peaks surviving right up to the doping
where antiferromagnetism starts. The spectral weight of such
peaks diminishes with decreasing doping, consistent with
spectral weight being robbed from the superconducting long
range order by a competing long range order such as
antiferromagnetism.26 If one looks in the antiferromagneti-
cally ordered dopings, there are experimental suggestions of
a competing order parameter that conducts efficiently. Most
strikingly, there are measurements of metallic conduction
even below the Neel ordering temperature.27

The gapping of the nodal quasiparticles pole as the SDW
order develops on top of the superconductivity is shown in
Fig. 3 for different values of the SDW gap. The reason we
only have a quasiparticle sharp pole is that we have not mod-
eled the realistic electronic self energies relevant to the
cuprates as they are irrelevant to the point of principle we are
making. Their only effect will be to broaden the quasiparticle
peaks and add an incoherent background with the phenom-
enological features. In Fig. 4 we plot the shift of the anti-
nodal gap as the SDW gap turns on. In Fig. 5 we plot the gap
shift versus the SDW gap. In Fig. 6 we plot the spectral
density of states in ad-wave superconductor as the SDW gap
is turned on. The superconductor with no SDW gap does not

have a true gap because of itsd-wave symmetry. This is seen
in the familiar V-shaped collapse at zero energy. As the SDW
gap is turned on, we see the V-shape flatten and expand as a
signature of the opening of the antiferromagnetic gap.

II. HUBBARD MODEL WITH d-WAVE ATTRACTIVE
INTERACTIONS

For the cuprate problem, the two large effects are the
antiferromagnetic, or Coulombic, physics, and the strong su-
perconductivity. Hence we will start from a phenomenologi-
cal Hamiltonian which is a Hubbard model with ad-wave
electronic interaction. This interaction will give rise to
d-wave superconductivity when we make the mean-field
BCS approximation. The Hamiltonian is

H = o
kW,s

sekW − mdc
kW,s

†
ckW,s +

U

N o
kW1,kW2,qW

c
kW1,↑
†

ckW1+qW,↑ckW2+qW,↓
†

ckW2,↓

+ o
kW1,kW2

VskW1,kW2dc
kW1,↑
†

c
−kW1,↓
†

c−kW2,↓ckW2,↑, s1d

where c
kW,s

†
,ckW,s are the electronic creation and destruction

operators with momentumkW and spins, ekW is the kinetic
energy,m the chemical potential, andU is the Hubbard re-
pulsion. We are working in a spatial lattice withN sites. The
last term is an electronic interaction chosen in the reduced
BCS form,9 which will be used to stabilize superconductiv-
ity. In order to haved-wave superconductivity we choose

VskW1,kW2d=V0scosk1x−cosk1ydscosk2x−cosk2yd. This phe-
nomenological Hamiltonian can have a mean-field SDW
ground state and a mean-field DSC ground state. It can be
used to study the turning on of DSC correlations on top of an
SDW ground state, or the turning on of SDW order on top of
the superconductivity.

We will analyze this Hamiltonian by imposing a SDW
mean-field condition, which is stabilized by the Hubbard
term. This will be followed by a DSC mean-field condition,
which is stabilized by the reduced BCSd-wave interaction.
While the use of two mean-field conditions is not common, it
has important precedents. It was used by P. W. Anderson28 in
his study of the role of plasmons in restoring gauge invari-

FIG. 4. Shift of the antinodal gap as the SDW order
develops.

FIG. 5. Shift in the antinodal gap as a function of the SDW
gap.

FIG. 6. Spectral density of states for ad-wave superconductor
as the SDW gap increases.
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ance to the BCS ground state. In this work he invented the
Anderson-Higgs mechanism.29 He solved for the properties
of the electron system imposing a mean-field condition on
the electron density, as in the study of electron correlations
by Sawadaet al.30 and a BCS electron pairing mean-field
condition.9

The Hubbard interaction stabilizes the mean-field order

sSN; o
kW

kc
kW+QW ,s

†
ckW,sl, s2d

whereS is a measure of the magnetic moment per site con-

tributing to the antiferromagnetism andQW =sp ,pd is the
commensurate ordering wave vector andS is the average
magnetic moment per site. Other ordering wave vectors are
possible for spin and/or charge, i.e., stripe, order parameters
but we do not consider them in our study. When we impose
this condition on the Hamiltonian and neglect fluctuation
terms, the Hamiltonian becomes

H = o
kW,s

sekW − mdc
kW,s

†
ckW,s + UNS2 − USo

kW,s

sc
kW+QW ,s

†
ckW,s

+ o
kW1,kW2

VskW1,kW2dc
kW1,↑
†

c
−kW1,↓
†

c−kW2,↓ckW2,↑. s3d

We see that by ordering antiferromagnetically we gain varia-
tional energy −UNS2 if self-consistency can be achieved. We
next impose the mean-fieldd-wave Cooper pairing

DkW2
; scosk2x − cosk2ydV0o

kW1

scosk1x − cosk1ydkckW1,↑
†

c
−kW1,↓
† l

; D0scosk2x − cosk2yd ; V0xscosk2x − cosk2yd, s4d

where x is a measure of the electrons contributing to the
superconductivity and hence proportional to the superfluid
density. Then the Hamiltonian becomes

H = o
kW,s

sekW − mdc
kW,s

†
ckW,s + UNS2 − USo

kW,s

sc
kW+QW ,s

†
ckW,s −

D0
2

V0

+ o
kW

DkWsckW,↑
†

c
−kW,↓
†

+ c−kW,↓ckW,↑d. s5d

We see that if the phenomenologicald-wave interaction is
attractive, i.e.,V0,0, we gain variational energyD0

2/V0 by
Cooper pairingregardlessof whether we have ordered anti-
ferromagnetically or not. Of course, if we are at half filling,
the material will be insulatingirrespectiveof the presence of
Cooper pairs, as we would have to excite quasiparticles
across the SDW insulating gap in order for conduction to
take place.

III. BOGOLYUBOV DIAGONALIZATION OF THE
MEAN-FIELD HAMILTONIAN

We now diagonalize the Hamiltonian by the Bogolyubov
method.10 We will do this in two steps. First we diagonalize
the SDW part. In order to do this more conveniently, we will
split the momentum sums into sums over the reduced mag-
netic zone. The Hamiltonian is then

H = o
kW,s

8hsekW
+

− mdsc
kW,s

†
ckW,s + c

kW+QW ,s

†
ckW+QW ,sd + e

kW
−sc

kW,s

†
ckW,s

− c
kW+QW ,s

†
ckW+QW ,sd − 2sUSc

kW+QW ,s

†
ckW,sj + UNS2 −

D0
2

V0

+ o
kW

8DkWsckW,↑
†

c
−kW,↓
†

+ c−kW,↓ckW,↑ − c
kW+QW ,↑
†

c
−kW−QW ,↓
†

− c−kW−QW ,↓ckW+QW ,↑d, s6d

where the prime on the summation sign means that the sum
is restricted to the wave vectors in the magnetic zone.e

kW
+

;sekW +ekW+QW d /2 and e
kW
−;sekW −ekW+QW d /2. The last term in the

superconducting nteraction is negative becauseDkW+QW =−DkW.
In order to diagonalize the magnetic part we define the
Bogolyubov operators

bkW,s = akWckW,s − sbkWckW+QW ,s, s7d

bkW+QW ,s = akWckW+QW ,s + sbkWckW,s. s8d

If we choose

a
kW
2

=
1

2
S1 +

e
kW
−

EkW
D b

kW
2

=
1

2
S1 −

e
kW
−

EkW
D , s9d

E
kW
2

= se
kW
−d2 + U2S2 s10d

the Hamiltonian becomes

H = o
kW,s

8hsekW
† − mdsb

kW,s
†bkW,s + b

kW+QW ,s
†bkW+QW ,sd + EkWsbkW,s

†
bkW,s

− b
kW+QW ,s

†
bkW+QW ,sdj + UNS2 −

D0
2

V0
+ o

kW
8DkWsbkW,↑

†
b

−kW,↓
†

+ b−kW,↓bkW,↑ − b
kW+QW ,↑
†

b
−kW−QW ,↓
†

− b−kW−QW ,↓bkW+QW ,↑d. s11d

Our last step to diagonalize the full Hamiltonian is the
Bogolyubov diagonalization of the leftover superconducting
part by defining the canonical operators

BkW,s = u
kW
+
bkW,s + sv

kW
+
b

kW,s̄

†
, s12d

BkW+QW ,s = u
kW
−
bkW+QW ,s − sv

kW
−
b

kW+QW ,s̄

†
. s13d

If we choose

su
kW
±d2 =

1

2S1 +
e

kW
+

− m ± EkW

E
kW
± D , s14d

sv
kW
±d2 =

1

2S1 −
e

kW
+

− m ± EkW

E
kW
± D , s15d

sE
kW
±d2 = se

kW
+

− m ± EkWd2 + D
kW
2
, s16d
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the Hamiltonian then becomes

H = o
kW,s

8fEkW
+
B

kW,s

†
BkW,s + E

kW
−
B

kW+QW ,s

†
BkW+QW ,sg + UNS2 −

D0
2

V0

+ constants. s17d

We see that we have two separate superconducting bands
with dispersionsE

kW
+

andE
kW
−
. This happens because the SDW

ordering has split the noninteracting band, i.e., the system
with U=0. Of course, if the SDW gap were to collapse, the
two bands would merge into one superconducting band. If
we look at it from the opposite perspective, we see that when
we turn on the SDW order, there will be an insulating gap.
We have shown in Fig. 1 how this gap opens up at the node
as calculated in the later section on Green’s functions.

IV. SELF-CONSISTENT DETERMINATION OF THE
SUPERFLUID DENSITY

The Bogolyubov transformations can of course be in-
verted to yield the electron creation and destruction operators
in term of the Bogolyubov eigenoperatorssBkWd of the system.
From this we can evaluate the self-consistency or “gap” Eqs.
(2) and (4). We obtain

2N

U
= o

kW
S e

kW
+

− m + EkW

E
kW
+
EkW

−
e

kW
+

− m − EkW

E
kW
−
EkW

D s18d

from the antiferromagnetic self-consistency condition(2)
and

−
2

V0
= o

kW
scoskx − coskyd2S 1

E
kW
+ +

1

E
kW
−D s19d

from the superconducting self-consistency or gap Eq.(4).
The negative sign on the left is consistent withV0,0 as is
necessary to stabilize DSC. We see that these are two
coupled equations for the superconducting number of elec-
trons x, a measure of the superfluid density, and the spin
moment magnitudeS in the antiferromagnet. Their solution
will contain information about how the two orders compete
and how they rob spectral weight from each other as one
dopes the material, i.e., as one changes the chemical poten-
tial.

In Fig. 7 we plot the self-consistent numerical determina-
tion of x versus chemical potentialm. Figure 8 shows the
spin momentS versusm, and Fig. 9 is a graph ofx versusS.
These three figures were plotted for interactions leading to
zero doping antiferromagnetic gap of 0.6 in units of the hop-
ping strength and zero doping superconducting gap of 0.3 in
the same units. These values were chosen because they were
the same values we used for illustrations in the previous
graphs.

From the figures of superfluid density versus chemical
potential and spin moment versus chemical potential, we see
that the superfluid density grows as the material is doped
away from half filling. At the same time, the spin moment
decreases asm increases. We remind the reader that this is
the exact behavior seen in the cuprates. Despite the pairing
interaction at half filling, the material is an insulating anti-
ferromagnet due to the SDW gap. As one dopes it, the DSC
starts stealing spectral weight from the SDW as evidenced
by the figures in this section. In this way we see that near
half filling the DSC can be very tenuous becoming more
robust away from half filling. This is strikingly similar to the
gossamer superconductivity ideas of Laughlin and
collaborators.5,6

FIG. 7. Electrons contributing to the “superfluid density” as a
function of the chemical potential.

FIG. 8. Spin moment per site as a function of the chemical
potential.

FIG. 9. Electrons contributing to the “superfluid density” as a
function of the spin moment per site.
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V. GREEN’S FUNCTION FOR THE SDW-DSC
HAMILTONIAN

In the present section we will write down the expressions
for the Green’s functions for a system with SDW order and
d-wave Cooper pairing in each of the SDW bands. The ex-
pression for the retarded Green’s function or the propagator
is31

GsxW,xW8,td = − io
n,s

hustde−iEnt/"kc0ucxW,sucnlkcnucxW8,s
† uc0l

+ us− tdeiEnt/"kc0ucxW8,s
† ucnlkcnucxW,suc0lj, s20d

ustd = −
1

2pi
E

−`

` dv

v + ih
e−ivt h = 0+, s21d

where

cxW,s =
1

ÎN
o

kW
ckW,se−ikW·xW . s22d

n labels the eigenstates of the system with energiesEn and
the ground state energyE0 has been chosen to be 0.

From the time Fourier transform of the Green’s function
above we obtain the local retarded propagator in the energy
representation

GsxW,xW,Ed =
1

pNo
kW
H su

kW
+d2

E − E
kW
+

+ ih
+

su
kW
−d2

E − E
kW
−

+ ih

−
sv

kW
+d2

E + E
kW
+

− ih
−

sv
kW
−d2

E + E
kW
− − ih

J . s23d

The local spectral density function follows from31

AsxW,Ed = −
1

p
Im GsxW,xW,Ed. s24d

All of our density of states are calculated from these expres-
sions in a 100031000 momentum lattice with an energy
resolution of 0.01. We choose the hopping energy scale to be
1, so all energies are measured in hopping units. When we
have superconductivity we choose the gap to be 0.3. The
antiferromagnetic gap is chosen anywhere between 0 and
0.6, usually with jumps of 0.1. We have nearest neighbor
hopping only. These values need not be realistic; they are
just chosen to illustrate the effect.

Similarly, if we Fourier transform the Green’s function
(20) in both time and space, we obtain the retarded propaga-
tor in the wave-vector energy representation.

GskW,Ed =
1

pH su
kW
+d2

E − E
kW
+

+ ih
+

su
kW
−d2

E − E
kW
−

+ ih
−

sv
kW
+d2

E + E
kW
+

− ih

−
sv

kW
−d2

E + E
kW
−

− ih
J . s25d

From this formula we calculate the absorption strength ver-
sus energy for the nodal quasiparticles. We do this by simply

fixing kW to be at the node and plotting the spectral density31

AskW,Ed = −
1

p
Im GskW,Ed s26d

versus energy. Energy units, values and uncertainties are
chosen as described for the local density of states.

VI. CONCLUSIONS

Since early in the high temperature superconductivity
game the coexistence of antiferromagnetism and the putative
resonating valence bond(RVB) superconducting state has
been the object of theoretical consideration.33,34 As men-
tioned in the Introduction, there is growing but not strictly
direct evidence that the low energy quasiparticles in the su-
perconducting cuprates are coherent BCS-Bogolyubov qua-
siparticles. This suggests a BCS Cooper pair ground state. In
the present work, as opposed to earlier work, we have con-
centrated on the coexistence and competition of BCS and
SDW order.

We studied a mean-field Hamiltonian with two mean-field
order parameters. The Hamiltonian contains a spin-density-
wave antiferromagnetic mean field stabilized by a Hubbard
interaction and ad-wave Cooper pairing mean field stabi-
lized by a phenomenologicald-wave interaction. The two
order parameters can coexist and the SDW ground stateal-
waysgains energy by Cooper pairing when thed-wave inter-
action is attractive and nonzero. The SDW ground state with
Cooper pairingfails to superconduct at half-filling due to the
antiferromagnetic gap. Its particle-like excitations are
Bogolyubov-BCS quasiparticles consisting of coherent mix-
tures of electrons and holes.

Of greater interest and relevance to the superconducting
cuprates is the case when antiferromagnetic order is turned
on weakly on top of the superconductivity. This would cor-
respond to the onset of antiferromagnetism at a critical dop-
ing. In such a case a small gap proportional to the weak
antiferromagnetic gap opens up for nodal quasiparticles, and
the quasiparticle peak would be discernible. While the gap-
ping of the nodal quasiparticle could be caused by a large
enough disorder, such a disorder would broaden the quasi-
particle peak so much as to make it invisible. A unique sig-
nature of antiferromagnetic gapping of the nodal quasiparti-
cles is that it will turn on always at the doping when
antiferromagnetism starts while disorder gapping will turn on
at different sample dependent dopings. Such an effect has
recently been observed in photoemission studies of the high
temperature superconducting cuprates.32

We solved the superconducting and antiferromagnetic gap
equations self-consistently and found the number of super-
conducting electronsx and the spin magnetic moment per
site S. The superfluid densityx increases with doping steal-
ing spectral weight from the antiferromagnetism, which
leads to a corresponding decrease in spin momentS. This is
the same behavior observed in the cuprate superconductors.

Finally, we wrote down the exact expressions for the
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Green’s function for the system with coexisting SDW and
DSC order parameters. These are evaluated numerically in a
100031000 momentum lattice with 0.01 energy resolution
in units of the lattice hopping. From the imaginary parts of
the Green’s functions we obtained the absorption by nodal
quasiparticles and the local density of states.
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