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We present a model of the dynamic structure factorSsQ ,vd of 4He that reproduces the basic features of the
temperature dependence ofSsQ ,vd as observed in inelastic-neutron scattering measurements. Wave vectorsQ
beyond the roton(Q.2.0 Å−1) are considered. The model is able to reproduce the decrease in the intensity of
the single excitation(phonon-roton) peak in SsQ ,vd with an increase of temperaturesTd in the range 0.6
øTø2.1 K. All vertices and interactions are assumed temperature independent, and only the condensate
fraction n0sTd changes withT. Also, it reproduces a second peak observed at higher energy(v) which repre-
sents the single excitation intensity lying in the two excitation band. The model is based on the formulation of
SsQ ,vd of Gavoret and Nozières. In this formulation, the dynamic susceptibility,x, is separated into a singular
part involving the condensate and a regular part involving states above the condensatex=xS+xR8 . The weight
of the phonon-roton peak inxS is proportional ton0sTd and the phonon-roton peak disappears completely from
x in the normal phase wheren0sTd=0. Using sum rule arguments, the condensate fraction can be estimated
from the data giving values in good agreement with accurate measurements at SVP and with Monte Carlo
calculations.
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I. INTRODUCTION

We explore the temperature dependence of the dynamic
structure factorSsQ ,vd of liquid 4He at wave vectors beyond
the roton. The purpose is to see whether the weight of the
phonon-rotonsp-rd mode inSsQ ,vd scales with the conden-
sate fraction,n0sTd, or not. Equivalently, the aim is to show
that the existence of an observable phonon-rotonsp-rd mode
at higher wave vectors in superfluid4He follows from the
existence of a condensate. This is done by using a rigorous
expression forSsQ ,vd in which the condensaten0sTd ap-
pears explicitly. All parameters in the expression are held
independent ofT exceptn0sTd and the Bose functionnBsvd
=seb"v−1d−1, where b=skTd−1 and k is Boltzmann’s con-
stant.

To set the stage, we show the observed energy dispersion
curve, vQ, of the single p-r excitation in superfluid4He at
low temperature in Fig. 1. This shows the “phonon,”
“maxon,” “roton” and “beyond the roton” regions of the dis-
persion curve. The energy at the “roton” wave vector,QR, is
vQ=D and a well defined single p-r mode exists out to wave
vectorsQ=3.6 Å−1. As Q increases beyondQR, the weight,
zQ, of the p-r mode inSsQ ,vd decreases untilzQ vanishes at
Q=3.6 Å−1. The two p-r band starts at energy 2D and con-
tinues up to twice the maxon energy. There is a repulsion
between the single and pair p-r components1 which prevents
the single p-r energy from exceeding 2D. We will focus on
the single p-r self energyS12 arising from this interaction.

At wave vectors “beyond the roton”(2.5øQø3.6 Å−1;
see Fig. 1), the momentums"Qd and energy transfers"vd in
SsQ ,vd are at their highest value relative to the interactions
in the fluid and yet there is still a p-r mode at low tempera-
ture. In this case, we anticipate the best separation between
the single p-r and the multiexcitation components of
SsQ ,vd. In this region, we anticipate that an expression for
SsQ ,vd separated into a part that containsn0sTd and the

single p-r mode plus a part that describes the multi-excitation
component will be most clearly identifiable. At lowv in the
“phonon” and “roton” regions(see Fig. 1), the single p-r
mode and the “total” density components are largely com-
bined into a single peak. Thus at lower energy it is more
difficult to identify the temperature dependence arising from
n0sTd and separate it from the remaining components of
SsQ ,vd.

At wave vectors “beyond the roton,”SsQ ,vd has three
components at low temperature(see Fig. 2). There is a sharp
peak (at v<1.5 meV in Fig. 2) which is identified as the

FIG. 1. The observed p-r energy dispersion curve(solid
squares), a model p-r dispersion curve,vQ

0 , used in our calculations
(solid line), and the free particle energyeQ="Q2/2m (dotted lines).
2D is twice the roton energy. Four regions of the p-r spectrum are
identified: the phononsQ,0.7 Å−1d, the maxon,sQ,1.1 Å−1d, the
roton sQ,1.9 Å−1d and beyond the rotonsQù2.4 Å−1d regions.
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single p-r mode shown in Fig. 1. There is a broader peak
centered atv<3 meV in Fig. 2. This is interpreted2,3 as the
single p-r response that lies in the two p-r bandsv.2Dd.
Third, SsQ ,vd has a very broad component that extends up
to energies of 7–8 meV. The weight of the first two compo-
nents ofSsQ ,vd decreases strongly with increasing tempera-
ture and these components are not observable as separate
components atT.Tl in the normal phase wheren0sTd=0.
The third component, especially at higherv, is largely inde-
pendent of temperature and the same in superfluid and nor-
mal 4He.

To describeSsQ ,vd we employ an expression derived by
Gavoret and Nozières.4 In this expression, the dynamic sus-
ceptibility xsQd of a Bose fluid containing a condensate is
formally separated into two parts,

xsQd = xSsQd + xR8sQd, s1d

whereQ=Q ,v. xSsQd, the “singular part,” includes all terms
which involve the condensate(p=0 state) and xS~n0sTd.
xR8sQd, the “regular part,” involves the fluid above the con-
densate only(statespÞ0). ThexSsQd at Q.QR has a struc-
ture which reproduces the sharp and broad peaks inSsQ ,vd
(as shown in Fig. 2) well while xR8sQ ,vd is a broad function
of v. The goal is to explore how well the temperature depen-
dence ofSsQ ,vd at severalQ values can be reproduced by
this expression allowing onlyn0sTd and the Bose function
nBsvd to depend onT. For n0sTd we use the result observed5

at SVP,

n0sTd = n0s0dF1 −S T

Tl
DgG , s2d

with n0s0d=7.25% andg=5.50 with a scale adjustment at
P=20 bars. In this way the aim is to reveal how the existence
of the p-r mode depends on the existence of a condensate —
at least at higher wave vectors. Anticipating the results, we
find that theT dependence ofSsQ ,vd can be very well re-
produced allowing onlyn0sTd to vary with T. To reproduce,

in addition, the temperature dependence ofSsQ ,vd at low
v svø1 meVd (below the p-r peaks considered here), we
found it was necessary to include a temperature dependent
half width GQ to the p-r energies. We used the observed
GQsTd.

Early measurements ofSsQ ,vd at wave vectors beyond
the roton sQù2.5 Å−1d are summarized by Cowley and
Woods.6,7 Their data among other properties gives values of
the weights,zQ, in the sharp peak ofSsQ ,vd at wave vectors
“beyond the roton.” They showed that this weight decreases
with increasing Q beyond the roton untilzQ→0 at Q
=3.6 Å−1, the end point of the p-r excitations. AboveQ
=3.6 Å−1, SsQ ,vd is a broad function ofv centered just
below the free atom recoil frequencyvR="Q2/2m. Smithet
al.8 reported similar measurements on4He under pressure.

Fåk and Andersen,9 Fåk et al.2 and Fåk and Bossy3 have
presented a systematic series of measurements of the tem-
perature dependence ofSsQ ,vd for 2.3øQø4.0 Å−1. Their
data shows clearly that asQ increases beyondQù2.3 Å−1

the weight,zQ, in the sharp p-r peak decreases with increas-
ing Q. They showed that this weight is transferred to the
broad peak lying at energies in the two excitation band
sv.2Dd asQ increases. Again atQù3.6 Å−1, zQ=0. Their
data also showed that the weight in both the sharp and broad
peak decreases with increasing temperature and that both
peaks disappear atTùTl. They fitted models to their data
which suggest that the weight in these two peaks is propor-
tional to the condensate fraction,n0sTd, as noted below.
Glydeet al.10 and Pearceet al.11 made high energy resolution
measurements ofSsQ ,vd beyond the roton. ForQ
*2.8 Å−1, these provide accurate and precise values of the
“p-r” energies,vQ, the position of the sharp peak. They show
specifically that the single p-r energy,vQ, never exceeds 2D,
twice the roton energy. ForQù2.8 Å−1, vQ.2D
=1.48 meV at SVP, for example. The data also shows that
the weights in the sharp and broad peaks have the generalQ
and temperature dependence noted above by Fåket al.2 and
Fåk and Bossy3 (see Fig. 2).

There have been many theories and models1,12–20 of
SsQ ,vd at wavevectors beyond the roton. At low wavevec-
tors, up to the roton region, the p-r mode at lowT can be
interpreted as a single density excitation.12 With modern re-
finements accurate values ofvQ can be obtained within this
interpretation.21 Historically, Pitaevskii1 first focused onQ
values beyond the roton. He showed that the p-r energyvQ
could not exceed 2D. As a result, he noted that the p-r dis-
persion curve would bend over atQ<2.5 Å−1 and become
flat at higherQ as shown in Fig. 1. He described the p-r
response by a single particle Green’s function,

GsQ,vd =
1

v2 − svQ
0 d2 − 2vQ

0 S12sQ,vd
, s3d

as we use here in Eq.(26) below. In Eq.(3), vQ
0 is a model

initial single p-r energy of the type calculated by Feynman
and Cohen which does not explicitly include the interaction
between the single p-r and pairs of p-r excitations(see Fig.
1). The self energyS12=n0JxJ in this GsQ ,vd leads to a
repulsion between the single mode and the pair p-r response

FIG. 2. Observed dynamic structure factorSsQ ,vd of liquid 4He
at SVP atQ=2.65 Å−1 vs the energy transfer,v, andT=1.35, 1.60,
1.92, and 2.25 K(from Ref. 10). The solid line is a fit of our model
to the data at the highest temperatureT=2.25 K.
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(x) which begins at energy 2D. As a result of the repulsion,
the p-r energyvQ “bends over” beyond the roton andvQ
ø2D out to the end point. He noted that since the
Im(x0sQ ,vd) goes abruptly from zero to a finite value at
v=2D, Resx0sQ ,vdd will have a logarithmic singularity at
v=2D, as shown later in Fig. 17(a).

All subsequent formulations of response at wave vectors
“beyond the roton” have, as here, used this expression for
GsQ ,vd—with different variations of the model single p-r
energyvQ

0 and the pair dynamic susceptibilityx. In these
formulations, the three-point interactionJ is often written as
g3sQd=În0nJsQd wheren0=N0/N andn=N/V is the number
density. Equation(3) has the same form asG for single
phonons in solids including the coupling to pairs of phonons
(x=G2) via the cubic anharmonic termsJ=V3d. Equation(1)
was also used by Jackson15 at lowerQ values to obtain the
single p-r energy, the sharp peak inGsQ ,vd at v,2D where
Im(S12sQ ,vd)=0, and the second resonance at higher
v sv<4Dd whereIm(S12sQ ,vd)Þ0.

Ruvalds and Zawadowski13 and Zawadowskiet al.14 ex-
amined the pair p-r responsesxd which is observed in light
scattering from liquid4He. xsQ ,vd was expressed in terms
of independent pair propagation,x80, within a random phase
approximation(RPA), an equation of the form(A27). x80 is
represented by various independent pair models, usually the
first term of Eq.(28) with n1=n2=0 and A=1 or analytic
models. The interaction between theG and pair p-r response
via S12 was investigated in detail. They showed that singu-
larities in the pairx0 could be removed by adding a very
small imaginary part tovQ which we follow here. Zawad-
owski et al. presented an explicit formulation of both
xsQ ,vd and GsQ ,vd emphasizing the interaction between
them viaS12. They emphasized that the hybridization of the
single p-r mode with a two-roton “mode” viaS12 would lead
to the observed bending over of the single p-r mode begin-
ning at Q=2.2 Å−1 and a mixed character of the mode for
Qù2.5 Å−1. They also noted thatIsQd (g4sQd) could be
negative. An attractive interaction arising from a negativeg4
leads to two-roton bound states when the two interacting
excitations are rotons.

Bedell et al.16 evaluatedg4 extensively and found thatg4
was chiefly negative atQ values of interest. They reformu-
lated many properties using their improved values ofg4. Ex-
plicitly, calculations of IsQd=g4sQd using a T-matrix and
beginning from a pair potential in liquid4He find thatIsQd
oscillates in sign withQ at higher Q sQù2 Å−1d. These
oscillations inIsQd at even higherQ valuess5−10 Å−1d are
observed in neutron scattering data.22

Glyde23 evaluated the totalx in Eq. (1) as a function of
temperature using a model based on the dielectric
formulation.22,24 This included bothG and the regular den-
sity, xR8. At T.Tl, the totalx reduces toxR8 and xR8 can be
determined from data in the normal phase, concepts we use
here. As here, the sharp p-r peak inG has a weight propor-
tional to n0sTd and Pearceet al.11 show that this model re-
produces the observed temperature dependence well.

Juge and Griffin18 explored the temperature dependence
of the single p-rGsQ ,vd and pair p-rx2 interacting viaS12

without evaluatingSsQ ,vd explicitly. Fåk and Bossy3 con-

sidered a simplified version of the Gavoret-Nozières expres-
sion Eq. (1) to model the temperature dependence of
SsQ ,vd. They particularly used axR8 that was determined by
fitting to data in the normal phase. Juge and Griffin18 and Fåk
and Bossy3 began with a model p-r dispersion curve of the
Feynman-Cohen(FC) form to describevQ

0 beforeS12 is in-
troduced which we adopt here(see Fig. 1). Szwabinski and
Weyrauch20 have derived and evaluated the Gavoret and
Nozières expression consistently atT=0 K. Recent work is
discussed more fully in Sec. V.

In Sec. II we introduce the model and derive the basic
expressions used in our analysis. In Sec. III we present our
results and compare our model with experiment. In Sec. IV
we analyze some of the important expressions in our model.
In Sec. V we discuss the model, connect to previous work
and list our conclusions.

II. THE MODEL

We consider a fluid ofN Bosons in a volumeV that has a
condensate fractionn0=N0/N in the zero momentum(p=0)
state. We begin with the exact expression for the dynamic
susceptibility, xsQd, of this Bose fluid in the form,xsQd
=xSsQd+xR8sQd, or

xsQd = LasQdGabsQdbLsQd + xR8sQd, s4d

whereQ=Q ,v. In Eqs.(1) and(4), xsQd has been separated
into a singular partxSsQd which involves the condensate and
a regular partxR8sQ ,vd which involves statesspÞ0d above
the condensate only. This separation was made originally by

FIG. 3. Basic components of the model ofSsQ ,vd: (a) single
particle Boson Green’s function;(b) vertex appearing in Eq.(6); (c)
three-point interaction;(d) four-point interaction; and(e) pair
propagation(particle-hole) function.
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Gavoret and Nozières4 at T=0 K and is reproduced here for
finite T in the Appendix. In normal4He, where there is no
condensate,xSsQd=0. In Eq.(4), GabsQd is the single Boson
Green’s function[see Fig. 3(a)] defined by

Gabsp,td = − kTtap
astdap

†bs0dl, s5d

which has four components(a=1,2; b=1,2) with ap
a

=apsa=1d and ap
a=a−p

† sa=2d. In Eq. (5), t is an imaginary
time andTt is the time ordering operator. The vertex[see
Fig. 3(b)] is

bLsQd = În0F1 +E dp̄Jbgdsp,Qdxg1d28 sp,QdG , s6d

where Jbgdsp,Qd is the three-point interaction, defined in
Fig. 3(c) fJbgdsp,Qd= Ibbgds0,p;Qdg, p=p ,vp. xg1d28 sp,Qd is
the dynamic susceptibility(DS) for a specific momentump
spÞ0d and indicesg1d2 given by

xg1d28 sp,Qd = xg1d280 sp,Qd

+E dp̄8xgadb80 sp,QdIabcdsp,p8,Qdxc1d28 sp8,Qd.

s7d

In Eq. (7), Iabcd is the usual four-point Boson-Boson interac-
tion [Fig. 3(d)] andx80 is the zeroth-order, independent bo-
son DS,

xabcd80 sp,Qd = Gabs− pdGcdsp + Qd, s8d

[see Fig. 3(e)] where againGabsp ,vd is the full four com-
ponent Green’s function. Equation(7) is depicted in Fig. 4
and

E dp̄;
1

V
SpS−

1

b"
DSn s9d

is a sum over momentump and frequenciesivn. The four
terms inxSsQd are represented diagrammatically in Fig. 5.

ThexR8sQd is given by the usual expression for the DS for
a normal Bose fluid,

xR8sQd =
V

N
FxR8

0sQd

+E dp̄E dp̄8x2a1b80 sp,QdIabcdsp,p8,Qdxc1d28 sp8,QdG ,

s10d

where

xR8
0sQd =E dp̄fx211280 sp,Qd + x221180 sp,Qdg s11d

is the zeroth order(independent Boson) DS.
The equations(1) to (11) define the fullxsQd (see the

Appendix). Our goal is to test how well the temperature de-
pendence of the dynamic structure factor,

SsQ,vd = −
fnBsvd + 1g

p
Im„xsQ,vd…, s12d

can be reproduced by allowing only the Bose functions
nBsvd and the condensate fractionn0sTd to depend on tem-
perature. In a second model, we will allow the p-r energies
vQ

0 + iGQ to have a temperature dependent half widthGQsTd.

A. Approximations

To reducexsQd in Eq. (4) to a computationally tractable
form, we make the following approximations. We assume
that the four-point and three-point interactions are indepen-
dent of the indices, ofp and of energyv,

Iabgdsp,p8,Qd → IsQd,

Jabgsp,Qd → JsQd. s13d

The IsQd andJsQd will be taken as temperature independent
constants at eachQ. Given approximation(13),

xsQd = LsQdGsQdLsQd + xR8sQd, s14d

where

GsQd ; o
ab

GabsQd, s15d

LsQd = În0f1 + JsQdxL8 sQdg, s16d

xL8 sQd = xL8
0sQd + xL8

0sQdIsQdxL8 sQd, s17d

and

FIG. 4. Diagrammatic repre-
sentation of Eq.(7).

FIG. 5. Diagrammatic representation ofLGL.
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xL8
0sQd =E dp̄o

ab

xa1b280 sp,Qd. s18d

Equation(17) for xL8 sQd is not quite an exact reduction of
Eq. (7) given approximation(13). Some truncation of indices
in the interaction term is also required to arrive at Eq.(17).

In most previous work, the interactionsg3sQd
=În0nJsQd and g4sQd= IsQd have been used. We prefer to
useJsQd sincen0sTd then appears explicitly in the expres-
sions andJsQd can be held independent of temperature in
models.

B. Green’s function, Gab„Q…

To evaluateGab, we write the self energyS as a sum of
two parts,S=SFC+S12. TheSFC includes all of the interac-
tions of the single quasiparticle(single p-r) with the fluid
except the interaction of the single p-r mode with pairs of p-r
excitations, described byS12. We are using the fact that
GabsQd and xsQd share common poles22,24 to identify the
mode described byG with the p-r mode. The first part ofS
is denotedSFC since Feynman and Cohen(FC)12 in their
original calculation included all processes(in principle) ex-
ceptS12. The FC energy,vQ

0 , is phonon like at lowQ, has a
minimum at wave vectors in the roton region,QR, and goes
to a free particle energyvQ

0 →eQ="Q2/2m at high Q. Ex-
plicitly, we write

Gab
−1 = sgab

0 d−1 − Sab
FC − Sab

12 ; gab
−1 − Sab

12 , s19d

where gab
0 is the free Bose Green’s function andgab

−1

=sgab
0 d−1−Sab

FC is the FC Green’s function, which has the FC
energy noted above.

As the FC energy,vQ
0 , we use the observed energy forQ

values up to the roton wave vector,QR following Juge and
Griffin18 and Fåk and Bossy.3 For Q.QR, we allowvQ

0 to go
smoothly to"Q2/2m at highQ. We requirevQ

0 at Q=QR to
be the observedvQ so that the roton energy,D, is “correct”
and the two p-r excitation band which starts at twice the
roton energy, 2D will begin at the “correct” energy.

The S12 is most important atQ values wherevQ
0 is close

to 2D (i.e., at the maxon andQ.QR). S12 provides a repul-
sion between the sharp part of the single p-r response(the
single p-r peak atQ.QR) and the two p-r response. This
repulsion leads to the flattening of the observed single p-r
energy atQù2.5 Å−1 and keeps this energy below 2D. The
model FC energy we use, the observed p-r energy and 2D are
depicted in Fig. 1.

We assume that the FC Green’s functionsgabsQ , ivnd take
the Bogoliubov form

g11sQ,ivnd = S uQ
2

ivn − vQ
0 −

vQ
2

ivn + vQ
0 D ,

g12sQ,ivnd = − uQvQS 1

ivn − vQ
0 −

1

ivn + vQ
0 D ,

=g21sQ,ivnd, s20d

andg22sQ , ivnd=g11sQ ,−ivnd. With this structure,

gsQd ; o
ab

gabsQd = suQ − vQd2S 1

ivn − vQ
0 −

1

ivn + vQ
0 D ,

s21d

and for the BogoliubovuQ andvQ, suQ−vQd2=eQ/vQ
0 where

againeQ="Q2/2m.
We takeuQ

2 =zQ, the observed weight of the single p-r
peak inSsQ ,vd. In g11sQ , ivnd, the first term proportional to
uQ

2 describes the creation of a quasiparticle(qp) with wave
vectorQ above the condensate.[In SsQ ,vd this process cor-
responds to the neutron exciting a qp out of the condensate
sp=0d to a stateQ above the condensate.] The second term
in g11sQ , ivnd, proportional tovQ

2 , corresponds to annihila-
tion of a qp with wave vectorQ (above the condensate) with
the qp going into the condensate. Since only 7–8% of the
fluid is in the condensate,5 we expect thatuQ

2 !vQ
2 svQ

2

,13.7uQ
2 d. We foundvQ

2 =10.6uQ
2 provided a good fit to data

at T=0 K. These values ofuQ
2 and vQ

2 were also consistent
with the relationsuQ−vQd2=eQ/vQ

0 .

C. Self energy,S12

With the “FC” Green’s functionsgab determined by Eqs.
(20) with “FC” energyvQ

0 anduQ andvQ set, we turn to the
remaining single p-r self energy,S12. This arises from inter-
action of the single p-r with pairs ofp-r’s and is1

Sab
12 sQd = n0E dp̄Jaabsp,Qdxabcd80 sp,QdPcdbsp,Qd, s22d

where Psp,Qd is defined in the appendix. We approximate
this to

Sab
12 sQd = n0E dp̄Jaabsp,Qdxabcd80 Jcdbsp,Qd. s23d

The approximation of(22) to (23) may also be viewed as
approximatingxabcd8 sp,Qd by xabcd80 sp,Qd in Eq. (23). As in
(13), we approximateJabgsp,Qd→JsQd. S12 is then inde-
pendent of indicesa andb and we obtain

S12sQd = n0JsQdxS8
0sQdJsQd, s24d

where

xS8
0sQd =E dp̄Gs− pdGsp + Qd s25d

andGspd=oab Gabspd as in Eq.(15).

FIG. 6. Diagrammatic representation of Eq.(22) for self energy
S12.
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We use thisS12 to evaluateGsQd in Eqs.(15) and(19) as
GsQd−1=gsQd−1−S12 where from Eq. (21) gsQd
=2eQ/ fsivnd2−svQ

0 d2g giving

GsQd =
2eQ

sivnd2 − svQ
0 d2 − 2eQS12sQ,ivnd

s26d

and ivn→v+ ih.

D. Zeroth order x80
„Q,v+ ih…

In the expressions above, we have three types of zeroth
order DS’s with different dependences on the indices. In all
of these, we approximate the fullGspd by the “FC” gspd.
Collecting, the three are

xL8
0sQd =E dp̄o

a

ga1s− pdo
b

gb2sp + Qd svertexd,

xS8
0sQd =E dp̄gs− pdgsp + Qd sself energyd,

xabcd80 sQd =E dp̄gabsp + Qdgcds− pd sxabcd8 d. s27d

Carrying out the frequency sums indicated in Eq.(9), thex80

all have the same basic structure,

x80sQ,vd =
1

Vo
p
Fsn1 + n2 + 1dS A

v + ih − v1 − v2

−
B

v + ih + v1 + v2
D + sn1 − n2d

3S C

v + ih + v1 − v2
−

D

v + ih − v1 + v2
DG ,

s28d

wherev1=vp
0, v2=vp+Q

0 , n1=nBsvpd, n2=nBsvp+Q
0 d andA, B,

C, D are constants that depend onup, up+Q, vp, andvp+Q. For
example inxS8

0sQ ,vd, A=B=C=D=sep/vp
0dsep+Q/vp+Q

0 d. In
xR8

0sQ ,vd, we find

A = vp
2up+Q

2 + H, B = up
2vp+Q

2 + H,

C = up
2up+Q

2 + H, D = vp
2vp+Q

2 + H, s29d

whereH=upup+Qvpvp+Q. For xL8
0sQd they are

A = VpUp+Q, B = UpVp+Q,

C = UpUp+Q, D = VpVp+Q, s30d

where Up=up
2−upvp, Vp=vp

2−upvp, Up+Q=up+Q
2 −up+Qvp+Q,

andVp+Q=vp+Q
2 −up+Qvp+Q. A key point is that to explore the

temperature dependence, we have retained all four terms of
x80, particularly the second two which include Bose func-
tions and difference processes. In all previous treatments
only the first term was retained with Bose functions ne-
glected. Anticipating results, we found that including all four

terms made little difference up to temperaturesT=3.0 K in
the v range of interest here.

The basic procedure is to determine the parameters(vQ,
uQ, vQ, J, I) in xS=LGL, by fitting to data at lowT. These
parameters are held constant, independent ofT. Specifically,
the FC energiesvQ

0 were selected as shown in Fig. 1. To
moderate the singularities inG and x80, we added a small
imaginary part tovQ

0 svQ
0 + ihd with h=5 meV. This is very

approximately 1/10th of the instrumental energy resolution
s50 meVd of the IRIS instrument at the presentQ values.

The three-point interactionJsQd was determined so that
the position of the sharp single peak in the single particle
GsQ ,vd given by Eqs.(24) and (26) reproduced the ob-
served p-r energy. That is,JsQd was determined so thatS12

had the correct magnitude to reproduce the observed p-r en-
ergy. The four-point interactionIsQd was chosen by optimiz-
ing the fit of xSsQ ,vd to SsQ ,vd observed at lowT.

E. Regular response

While the sharp peak atv<1.5 meV and the broader
peak atv<3 meV in Fig. 2 are attributed toxS, the very
broad component that extends up to 8 meV in Fig. 2 is in-
terpreted as arising fromxR8. The regular component,xR8, is
given by Eqs.(8), (10), and(11). The very broad component
is largely independent of temperature and exists in normal
liquid 4He. In normal4He there are no well defined p-r ex-
citations forQù0.8 Å−1. ThexR8

0 in xR8 is therefore not well
represented by a two p-r function. It is probably better de-
scribed by a nearly independent particle-hole response func-
tion, with particle energies given approximately by the
dashed line in Fig. 1, except at lowv and lowT. If xR8 is to
describe the very broad component,xR8

0 is not the same as
the p-r susceptibilities in Eq.(27) that appear inxS.

Rather than evaluatingxRsQ ,vd we have determined it by
fitting to the data in the normal phase using two models:

MODEL A: DHO function. In this case the whole of
xR8sQ ,vd was represented by a damped harmonic oscillator
(DHO) function and the parameters were obtained by fitting
to data for normal4He. The DHO was held independent ofT.
In this case all T-dependence ofxsQ ,vd comes from
xSsQ ,vd.

MODEL B: In this modelxR8sQ ,vd in Eq. (10) was writ-
ten as

xR8sQ,vd = Qsvc − vdAsTdxR8
0sQ,vd + Qsv − vcd 3 DHO,

s31d

where Qsvd is a step function. For low energies,xR8 was
represented by the zeroth order, two p-r DS, Eq.(11). For
energiesv.vc, the interacting part ofxR8sQ ,vd is expected
to dominate and was represented by an empirical DHO fitted
to the data as in Model A. The energyvc and constantAsTd
were adjusted to match the absolute value and slope of the
two functions atvc. vc is usually close to the maximum of
the imaginary part ofxR8

0sQ ,vd. In xR8
0sQ ,vd and in the

other zeroth order susceptibilities, we used energiesvQ
0

→vQ
0 + iGQsTd which had a half widthGQsTd given by ob-

served values as a function of temperature. It is the use of
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xR8
0sQ ,vd and incorporating theGQsTd in xR8

0sQ ,vd that re-
produces the observed temperature dependence ofSsQ ,vd at
low v.

III. RESULTS

In this section we compare our model for the DS,
xsQ ,vd, with data at wave vectorsQù2.5 Å−1 “beyond the
roton.” The aim is to identify the role of the condensate in
xsQ ,vd. xsQ ,vd is separated into a singular partxSsQ ,vd
which is proportional ton0sTd and a regular partxR8sQ ,vd as
shown in Eq.(4). ThexR8sQ ,vd is determined by a fit to data
in the normal phasesT.Tld wheren0sTd and xSsQ ,vd are
zero. The singular componentLGL which is proportional to
n0sTd is zero forT.Tl wheren0=0. The parameters inxS

=LGL are determined by fitting the totalx to data at the
lowest temperature available(usuallyT=0.6 K). All param-
eters are held independent ofT except the condensate frac-
tion n0sTd and the Bose functionnBsvd (model A). In a sec-
ond model(model B) the p-r energies are assigned a half
width GQsTd which has the observed temperature depen-
dence.

The calculatedSsQ ,vd has a “very” sharp single particle
peak at lowT which can be approximated by a Dirac delta
function. However, the observed p-r mode at low tempera-
ture measured using the IRIS instrument is “broadened” by
the instrumental energy resolution of IRIS which is 50meV.
In order to incorporate this instrumental energy resolution
into our calculations ofSsQ ,vd, we convoluted the calcu-
latedSsQ ,vd containing the “sharp” low energy single par-
ticle peak with a resolution function that represents the in-
strumental broadening of IRIS. Following standard
procedures, this resolution function was obtained by fitting a
suitable function to the observed single particle peak atT
=0.6 K.

In Fig. 7, data by Pearceet al.11 at p=20 bar pressure
whereTl=1.92 K are shown as crosses. The modelSsQ ,vd
arising from xR8sQ ,vd alone, which is fitted to the data at
T=2.1 K, is shown as the thick solid line. This thick solid
line is reproduced in all frames as well as atT=2.1 K to
illustrate the difference betweenSsQ ,vd above and below
Tl. The thin solid line shows the full modelx=LGL+xR8 at
three temperaturesT,Tl. At T=0.6 K, the thin solid line
clearly reproduces the sharp, single excitation peak well. It
also reproduces the broader peak observed at higherv sv
<3 meVd. The model intensity(thin solid line) in the
broader peak is somewhat less than the observed intensity.
As T is increased, the intensity in the sharp peak and broad
peak decreases. AtT=2.1 K there is clearly no intensity in
either peak. The temperature dependence in the model fol-
lows from the decrease inn0sTd with increasingT. This
clearly reproduces the basic observedT dependence of
SsQ ,vd. Figure 8 shows the same comparison with data at
Q=3.0 Å−1. Thus the basic structure of Eq.(4) and the
simple parametrization of its temperature dependence ex-
plains the chief features of the data.

The model given by the thin solid line in Figs. 7 and 8
shows three discrepancies with experiment. First, the inten-

sity in the sharp peak is too low atT=1.7 K. Second, the
peak position of the model sharp peak(thin solid line) moves
to higher v as temperature is increased(especially atT
=1.7 K) a finding also noted by Fåk and Bossy.3 In contrast
the observed peak position is largely independent ofT.
Third, at low T, the observed intensity is very small at low
vø1.2 meV. The observed intensity at lowv grows asT
increases and is substantial atT=2.1 K. This increase of ob-
served intensity at lowv with increasingT is not reproduced
by the model. It is not reproduced essentially because the
xR8sQ ,vd was held independent ofT.

To address the issue of the temperature dependence of
SsQ ,vd at low v, we representedxR8sQ ,vd by Eq. (31). In
Eq. (31), xR8sQ ,vd at low v is given byxR8

0sQ ,vd, the inde-

FIG. 7. SsQ ,vd of liquid 4He at p=20 bar forQ=2.7 Å−1. The
thin solid line is the calculatedSsQ ,vd at temperaturesT=0.6, 1.29
and 1.7 K. The thick solid line is a DHO fitted to data atT
=2.1 K. The crosses are data from Ref. 11.
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pendent two p-r part ofxR8sQ ,vd in Eq. (7). To reproduce the
observedT dependence ofSsQ ,vd at low v, we included a
half width GQsTd in the p-r energiesvQ

0 →vQ
0 + iGQ at all Q

in all the zeroth order DS’s given by Eqs.(27) and(28). We
used the observed values ofGQsTd. The higherv component
is ascribed to the interacting term ofxR8sQ ,vd in Eq. (7) and
is represented again by a temperature independent DHO
which was again determined by a fit to data in the normal
phase.

The thin solid line in Fig. 9 shows the temperature depen-
dence ofSsQ ,vd with the observedGQsTd included. Clearly,
at T=0.6 K there is zero intensity in the model forv
ø1.2 meV as is observed. AsT increases, the intensity in the
model increases forvø1.2 meV largely as observed. ThisT
dependence comes from theGQsTd in the p-r’s atlower Q
values inxR8

0sQ ,vd. TheT dependence arising from the Bose
functions in thex80sQ ,vd was negligible. IncludingGQsTd

also broadens the single p-r peak somewhat, especially at
T=1.7 K. Figure 10 shows the same model atQ=3.0 Å−1.
Thus the temperature dependence ofSsQ ,vd at low v arises
from the widths in the p-r excitations. It does not arise from
including the “thermal” terms[proportional to nBsvd] in
x80sQ ,vd of Eq. (28) nor from the Bose factor in Eq.(12).

In Fig. 11 we compare the modelSsQ ,vd which uses Eq.
(31) for xR8sQ ,vd and p-r excitations with the observed half
widths GQsTd with data at saturated vapor pressure(SVP).
The same basic temperature dependence as seen in Figs. 9
and 10 is obtained. The chief discrepancy is that no single
p-r peak is obtained in the model atT=1.92 K whereas a
small peak is observed.

FIG. 8. The same as in Fig. 7 butQ=3.0 Å−1.

FIG. 9. The same as Fig. 7 except that p-r energiesvQ
0 having a

half width GQsTd fitted to the observedGQsTd are used throughout
andxR8sQ ,vd is given byMODEL B.
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In Fig. 12, the model withGQsTd=0 is compared with
data taken by Fåk and Bossy3 for 4He at SVP. In this com-
parison, the chief discrepancy is that the model p-r peak
moves to higherv asT increases which is not observed.

We now show that the position and magnitude of the p-r
peak at higher temperature(e.g., atT=1.7 K) can be made to
agree with experiment by increasing the magnitude of the
three-point interactionJsQd. The upper frame of Fig. 13 re-
produces the model results atT=1.7 K found in Fig. 9 when
JsQd is held constant independent ofT. The middle frame
shows the same model whenJsQd is increased by a factor of
1.4 andGQsTd=0. In this event, both the p-r peak position
and the intensities in the sharp and broad peaks are restored
to the observed value. This suggests that either theJsQd does
increase withT or should use a temperature dependentvQ

0 as
discussed below. The lower frame shows the model with
JsQd increased by a factor of 2 withGQsTd included. In this
case the p-r peak position is again approximately correct, but

the combined width fromGQsTd and the self energyS12 is
too large. We do not believe thatJsQd necessarily depends
on temperature. Rather, we illustrate that minor adjustments
of the model parameters with temperature can bring the
model into agreement with experiment. Particularly, we note
below that the roton energy,DsTd, does decrease significantly
with T. If this decrease were included in the model(i.e., 2D
decreases withT), we do expect this to prevent the model p-r
energies from increasing withT at Q values investigated
here. A more detailed analysis of the model appears in the
following section.

IV. ANALYSIS

In this section we examine the different components of
the singular part ofSsQ ,vd, particularly the vertex function

FIG. 10. The same as Fig. 9 butQ=3.0 Å−1.

FIG. 11. The same as Fig. 9 for liquid4He at saturated
vapor pressure(SVP) and wave vectorQ=2.65 Å−1. At SVP,
Tl=2.17 K. Data from Glydeet al. (Ref. 10).
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LsQd. Second, we investigate the importance of the Bose
functions in the zeroth order DS’s, Eqs.(27) and (28), and
their role in determining theT-dependence ofSsQ ,vd. Third,
we show how the condensate fraction can be estimated from
the data using sum rule arguments.

A. Importance of the vertex L

In this section we investigate the importance of the vertex
function LsQd and the four-point interaction contained in
xL8 sQd on the structure of SSsQ ,vd=−hfnBsvd
+1g /pjImfLsQdGsQdLsQdg. To set the stage, we show in
Fig. 14 the singularSSsQ ,vd at Q=3.0 Å−1 and T=0.6 K

with LsQd set to one. Figure 14 shows the basic features of
SSsQ ,vd, a sharp single excitation p-r peak plus a broader
resonance in the two p-r excitation band centered atv
<4 meV. While we expect the sharp peak to come from the
single particle Green’s function,GsQ ,vd, Fig. 14 demon-
strates that the broader resonance also comes fromGsQ ,vd,
from a second resonance inG where the two-excitation den-
sity of states is not zero as noted by Fåk and Bossy.3 The two
excitation density of states entersGsQ ,vd via the self energy
S12 as shown in Eqs.(24)–(26). These two contributions to
SsQ ,vd were found in the early calculations ofGsQ ,vd by
Jackson15 and LsQd=1 has been used in all recent calcula-
tions to date except that of Pistolesi19 and Szwabinski and
Weyrauch.20

FIG. 12. The same as Fig. 7 compared with data of Fåk and
Bossy(Ref. 3).

FIG. 13. Dependence ofSsQ ,vd (solid line) at Q=2.7 Å−1,
T=1.7 K, and 20 bar pressure on the magnitude of the three-point
interaction,JsQd, compared with experimental data(crosses). Top
frame:SsQ ,vd as in Fig. 9 withJsQd determined at 0.6 K and held
constant withT. Middle frame:SsQ ,vd calculated withvQ

0 having
zero width andJsQd increased by a factor of 1.4 in the real part of
the self energy only. Bottom frame:SsQ ,vd calculated withvQ

0

having the observed width andJsQd increased by a factor of 2
“everywhere.”
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In Fig. 15 we showSSsQ ,vd calculated withLsQdÞ1 for
three different values of the four-point interaction,IsQd=0,
100 and 200 KÅ3. Figure 16 shows the corresponding values

of the real and imaginary parts ofLsQ ,vd. To discuss
SSsQ ,vd and LsQd, we note thatLsQd in Eq. (16) can be
written in the form

LsQd = În0f1 + JsQdxL8 sQdg, s32d

where

xL8 sQd =
xL8

0sQd
1 − IsQdxL8

0sQd
. s33d

The three-point interactionJsQd in Eq. (32) was held fixed at
the value required inS12 to get the energy of the single p-r
mode correct inGsQ ,vd, as discussed in Sec. III. When
IsQd=0, xL8 sQd reduces to the zeroth order DS,xL8

0sQd. The
real part of x80sQ ,vd has nearly singular behavior atv
<2D. (Recall that we added a small imaginary parth
=5 meV to the vQ

0 in x80.) In this case,ResLsQ ,vdd be-
comes very large at energiesv near the single p-r energy at
Q values beyond the roton(see the upper frame of Fig. 16).
Effectively, theJsQdx80sQd is much larger than the unit term
in LsQd. As a result, the magnitude of the single p-r excita-
tion peak in SSsQ ,vd becomes very large(see the upper
frame of Fig. 15). For IsQd=0, the weight in the single p-r
peak is a factor of 100 greater than that in the “bare”
GsQ ,vd for the parameters used here(compare Fig. 14 and
the upper frame of Fig. 15). As IsQd is increased, the singu-
larity is moderated, the magnitude ofxL8 sQd is decreased and
the weight of the single excitation peak inSSsQ ,vd is de-
creased(see Fig. 15). For IsQd=200 KÅ3, the value used for

FIG. 14. SSsQ ,vd calculated with vertex function set to one
fLsQd=1g such thatSSsQ ,vd=−hfnBsvd+1g /pjIm(GsQ ,vd) at T
=0.6 K andQ=3.0 Å−1.

FIG. 15. SSsQ ,vd=hfnBsvd+1g /pjIm(xSsQ ,vd) vs v for Q
=3.0 Å−1, T=0.6 K and three values of the four-point interaction
IsQd in units of KÅ3. SSsQ ,vd is in the same units as Fig. 14.

FIG. 16. Real and imaginary parts of the vertex functionLsQd
for Q=3.0 Å−1, T=0.6 K for three values of the four-point interac-
tion IsQd=0, 100, and 200 in units of KÅ3. The vertexLsQd is
unitless. The values ofL for IsQd5100 and 200 KÅ3 have been
rescaled for clarity. The horizontal line atResLd=1 serves as a
guide to the eye as doesImsLd=0.
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the results in Sec. III, the weight in the single p-r peak is
comparable to that in Fig. 15.

These results show that a finite value ofIsQd is required
in xL8 sQd to get agreement with experiment. Use of the bare
xL8

0sQ ,vd in LsQd which has singular behavior would not
give good results. To assess the magnitude ofIsQd, we note
that the Landau parameterF0

s (see Glyde,22 pp. 247–250),
which describesIsQd in dimensionless units in liquid3He at
Q→0, is 52.2 at 20 bar pressure. DividingF0

s by the density
of states which is 0.014sKÅ 3d−1 gives 3730 KÅ3. But this
value decreases by a factor of 10 asQ increases bringing it in
line with values ofIsQd used here. Pistolesi19 obtains a value
of −4.7 meV Å3 for g4 which is equivalent to −55 KÅ3, Be-
dell et al.16 quote a value of g4=−4310−39 erg cm3

s=−30 KÅ3d (at a pressure of 24.2 bar and roton pair mo-
mentum 2.7 Å−1), and Szwabinski and Weyrauch20 use g4
=190 KÅ3 in their calculations. Essentially, our value of
IsQd=200 KÅ3 is in excellent agreement with that used by
Szwabinski and Weyrauch. Thus a value ofIsQd
<200 KÅ3 is a physically reasonable value. A positiveIsQd
value indicates that the interactions between the rotons are
repulsive at thisQ value.

From an operational point of view, the magnitude ofIsQd
adjusts the weight in the single excitation peak relative to
that in the broad resonance atv<4meV in the two-
excitation band. Approximately, for largeIsQd, xL8 sQd<
−1/IsQd. Typical values of JsQd used here areJsQd
=700 KÅ3. While this is larger than the four-point vertex
IsQd, it is comparable to other interactions found in quantum
liquids. Szwabinski and Weyrauch20 quote a value ofg3
=0.3 K nm3/2 which when converted to units of KÅ3 and
divided by the square roots of both the density of liquid4He,

n=0.022 Å−3, and the condensate fraction,În0, yields JsQd
=g3/În0n=240 KÅ3. Juge and Griffin18 quote a value of
g3=1.9310−39 erg cm3 Å−3/2 for a wave vectorQ=2.8 Å−1

and T=1.2 K, corresponding toJsQd=350 KÅ3. Our value
of JsQd is of the same order of magnitude as theirs but it is
determined explicitly from the self energy.

B. Importance of the Bose functionsnB„v… in the dynamic
susceptibilities

The zeroth order DS’s used in the present calculations
given by Eqs.(27) and(28) have four terms. The first term is
the only term that survives atT=0 K for positive energies,
v.0. All previous calculations in liquid4He have retained
only the first term. In calculations ofSsQ ,vd in anharmonic
solids, all four terms are usually included. We kept all four
terms to test whether the thermal terms proportional to the
Bose functions could play a role in the temperature depen-
dence ofSsQ ,vd. Particlularly,SsQ ,vd increases in intensity
at low v with increasing temperature which could arise from
the thermal terms inx80sQ ,vd.

Figures 17(a) and 17(b) show the real and imaginary parts
of xS8

0sQ ,vd calculated using temperature independent p-r
energies that have zero width. For temperatures betweenT
=0.6 K andT=2.1 K, xS8

0sQ ,vd is essentially independent
of T. Thus the finite temperature terms ofxS8

0sQ ,vd make an
insignificant contribution, except at very low energies,
v,kT, and can be neglected.

Figures 18(a) and 18(b) show xS8
0sQ ,vd using p-r ener-

gies, vQ
0 + iGQsTd, wherevQ

0 is again independent ofT and
GQsTd are the observed half widths. In this casexS8

0(Q ,vd
has a very significant temperature dependence. The tempera-

FIG. 17. Real(a) and imaginary(b) parts ofxS8
0sQ ,vd at Q=3.0 Å−1 vs v at temperaturesT=0.6 K and 2.1 K calculated using p-r

energiesvQ
0 having zero width. The dotted line isxS8

0sQ ,vd calculated with the Bose factorsnBsvd included inxS8
0sQ ,vd, the solid line

without. The two lines are nearly identical.
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ture dependence ofxS8
0sQ ,v) arises from theT dependence

of GQsTd in the first term ofxS8
0sQ ,vd and not from the terms

in xS8
0sQ ,vd containing the Bose functions. The temperature

dependence of the modelSsQ ,vd at low v shown in Figs. 9
and 10 arises from the temperature dependence ofGQsTd in
xR8

0sQ ,vd not from the “thermal” terms ofxR8
0sQ ,vd.

C. Condensate fraction andf-sum rule

The total dynamic structure factor satisfies thef-sum rule,

1

vR
f ;

1

vR
E dvSsQ,vdv = 1, s34d

where vR="Q2/2m is the free atom recoil frequency. The
separate contributions from the singular and regular parts,
SsQ ,vd=SSsQ ,vd+SRsQ ,vd, to the f-sum rule have also
been determined.25 The contribution from the singular part is

1

vR
fS=

1

vR
E dvSSsQ,vdv = n0S1 −

hQ

vR
D , s35d

where n0 is the condensate fraction andhQ is a potential
energy term that is difficult to evaluate directly. However,hQ
is approximately independent ofQ so thathQ/vR should be
small at highQ. Indeed, it is this contribution toSsQ ,vd that
is used5 at very highQ valuess25–100 Å−1d to determine
n0sTd.

Assuming thathQ/vR is small (negligible) we may esti-
maten0 using fS/vR=n0 at low T from the modelSSsQ ,vd
and data considered here. Attributing the sharp peak and the
broad resonance atv<3.5 meV to SSsQ ,vd, as we have
done throughout, we may calculatefS/vR numerically from
the data or from the model. The two give similar values. In
this way we find at lowT

FIG. 18. The same as in Fig. 17, but usingvQ
0 + iGQ with the observed widthGQ.
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fS/vR = n0 = 0.068 ± 0.07, at SVP;

and

fS/vR = n0 = 0.036 ± 0.05, at 20 bars; s36d

using data atQ=2.65 Å−1 and atQ=3.0 Å−1, respectively.
The SVP value is in good agreement with an accurate direct
measurement5 giving n0=s7.25±0.75d% at low T. The
20 bar value is consistent with Monte Carlo calculations.26

Thus data and models ofSsQ ,vd at intermediateQ values
“beyond the roton” can be used to estimaten0 using sum-rule
arguments. In systems where there are no direct measure-
ments of the condensate, this method may be used to find
approximate values ofn0sTd.

V. DISCUSSION

In this study we have formally separated the DS of a Bose
fluid into a singular and regular part,xsQ ,vd=xSsQ ,vd
+xR8sQ ,vd. ThexS is proportional to the condensate fraction
n0sTd and the single particle Green’s function,GsQ ,vd, as
seen from Eq.(4) and(6). xR8sQ ,vd involves states above the
condensate only. A key property of a Bose fluid with BEC is
that the totalxsQ ,vd andGsQ ,vd have common poles. Thus
the density responsesxd and the single particle responsesGd
have a common characteristic excitation energy dispersion
curve. In superfluid4He belowTc where there is a conden-
sate, this common energy dispersion curve is the p-r energy
dispersion curve. Particularly, in superfluid4He, there are no
low energy, single particle excitations lying under the p-r
curve to which the p-r mode can decay since the mode ofG
is part of the p-r mode itself. Thus the p-r excitations can
decay only to themselves and this four “phonon” process is
very small at low temperature. In this way the well defined
p-r mode in superfluid4He arises because there is a conden-
sate. In normal4He where there is no BEC, there is no p-r
mode except in the long wave limit.

At low Q andv, and low temperature, all of the weight of
SsQ ,vd lies in the single common pole—i.e.,SsQ ,vd
=SsQddsv−vQd. In this case the separation ofx into xS and
xR is not very useful. Similarly, in the roton regionsQ
<1.95 Å−1d, wherevQ is again low, almost all ofSsQ ,vd
lies in a single peak. Again,xS andxR must contribute in the
same energy range and the separation ofx into xS andxR is
not very useful.

At higher wave vectorssQù2.5 Å−1d, SsQ ,vd peaks at
higher energy, the weight in the p-r peak is much smaller and
SsQ ,vd has substantial weight at energies abovevQ. The
SsQ ,vd is spread over a wide energy range and there is more
opportunity to identify the componentsxSsQ ,vd and
xR8sQ ,vd within the total. Specifically, in the present model
at these wave vectors, the sharp peak inxsQ ,vd arises from
the sharp peak inGsQ ,vd in xSsQ ,vd. The weight of the
sharp peak is proportional ton0sTd and the sharp peak dis-
appears completely fromxsQ ,vd in the normal phase where
n0sTd=0. This basic temperature dependence arising from
n0sTd which reproduces experiment is the chief finding here.
The value ofn0 at low T can be estimated from this structure.

We also found that the increase in intensity at lowv with
increasing temperature arises from the thermal broadening of
the p-r modes. We would not expect the present model to
describe theT dependence ofSsQ ,vd at the phonon or roton
Q well since the coupling betweenxS andxR is strong at low
v. Also, there is a mode inxRsQ ,vd at phonon wavevectors
Q since there is a sound mode in normal4He. We have as-
sumed here, atQ*2.5 Å−1, that there is no mode inxR.

As Q increases, the weight in the sharp peak decreases. At
Qù3.6 Å−1, the weight in the sharp peak is not observable
and the p-r mode is said to end. All the intensity arising from
xSsQ ,vd at Qù3.6 Å−1, which is proportional ton0sTd, now
lies at higher energy,vù2D, as a broad peak in the multi-
excitation band. This broad resonance gradually sharpens
with a further increase inQ until at very highQ (e.g., Q
.25 Å−1) it is a “delta function” peak at the free atom recoil
energy,vR="Q2/2m. Thus the broad resonance at interme-
diate Q evolves into the peak that is used to determine the
condensate fraction in very high momentum transfer
experiments.5

xsQ ,vd in anharmonic solids can be written in the same
form as the model used here. If we writexsQ ,vd as the sum
of one phonon scattering(x1sQ ,vd), two phonon scattering
(x2sQ ,vd), interference between the one and two phonon
scattering(x12sQ ,vd) plus the remainder, we have

xsQ,vd = x1sQ,vd + x12sQ,vd + x21sQ,vd + x2sQ,vd ¯ ,

= LGL + xR, s37d

whereLGL=x1+x12+x21 has the same structure as Eq.(4).
G is the single phonon Green’s function andx80sQ ,vd in L
is the two phonon DS. The cubic anharmonic term plays the
role of J and I =0. A comparison of the magnitude of the
interference terms in liquid and solid helium has been
made.22

In liquid 4He at pù20 bars,SsQ ,vd at the “maxon” dis-
plays the same physics asSsQ ,vd at Q values “beyond the
roton” considered here. For example, at 20 bars the “maxon”
energy given by the position of the sharp peak inSsQ ,vd,
vQ=1.283 meV is right at the limit of 2DsD=0.6355 meVd.
Thus, as at higher pressure, the p-r energy at the maxon is
limited by the requirementvQø2D. The weight in the sharp
p-r peak at 20 bar is much less than that at SVP. The weight
of SsQ ,vd above 2D at 20 bar is much greater than that at
SVP. Thus as pressure is increased27 and vQ moves toward
2D, weight is transferred from the sharp “p-r” peak to the
broad peak that lies above 2D in the two excitation band. As
temperature is increased, the weight in the sharp “p-r” peak
at the maxon decreases uniformly with increasingT and the
maxon energy is nearly constant independent ofT as seen at
Q values “beyond the roton.” The maxon energy actually
decreases marginally with increasingT. Thus the maxon at
20 bar could be described by the present model.

The reason thatvQ is largely independent ofT whenvQ is
right at the limit, vQ.2D, is probably a combination of
factors. First, the roton energyDsTd decreases with increas-
ing T. If vQ cannot exceed 2D, then we would expect the
position of the sharp peak to decrease withT as 2D decreases
with T, or to disappear. However, the singularity that pre-
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vents any sharp component from having an energy greater
than 2D also softens with increasingT as the p-r excitations
broaden. The softening of the edge of the two-excitation
band DOS is seen in Fig. 18(b), for example, when the ob-
served width of the p-r modes is included in the calculation
of xS8

0. This softening would reduce the amountvQ must
decrease withT to follow 2DsTd. Third, the repulsion be-
tween the single and pair excitation scattering which keeps
vQ below 2D also weakens with increasingT, asn0sTd de-
creases. In the present model, we allowedn0sTd to decrease
with increasingT. We have not allowed the p-r energies to
decrease with increasingT. Clearly, getting the temperature
dependence ofSsQ ,vd completely correct atv.2D would
require an accurate model including the temperature depen-
dence of thevQsTd, GQsTd andn0sTd.

To compare with recent calculations, we note that Juge
and Griffin18 have evaluated the singlesGd and pairsxd p-r
response functions using several models forvQ

0 and includ-
ing temperature dependent widthsGQ. Their results show
how G and x depend on the model assumptions forvQ

0 , g3
=În0nJ andg4= I. They note particularly that the coupling of
G andx via g3 vanishes atTl wheren0=0 as in the present
formulation.

In a direct comparison with their data forSsQ ,vd, Fåk
and Bossy3 begin with the Gavoret and Nozières expression,
Eq. (4), and setL=1 so thatx=Z1GsQ ,vd+xRsQ ,vd. Their
GsQ ,vd is Eq. (3) with a weightZ1. The vQ

0 is a FC like
single p-r energy which we have adopted here.xR is repre-
sented by a DHO function as in model A here. TheZ1, theg3
in S12, and the DHO are obtained by fits to data. Theirg3 is
somewhat smaller, but comparable to that found here. To
represent theT-dependence ofx, they takeZ1~n0sTd andxR

is refitted at eachT. This provides a good fit to data suggest-
ing that Z1 is indeed approximately proportional ton0sTd.
The two peaks inSsQ ,vd arise fromGsQ ,vd. xRsQ ,vd is
largely independent ofT, especially at highv.

Pistolesi has created a model in which the neutrons excite
either singlesGd or pairssx2d of p-r excitations atT=0 K.
The single and pair processes interact viag3sQd. The totalx
is structurally the same as the first term of Eq.(4) plus a two
p-r termx2. TheG is given by Eq.(3). The x2 is written as
x2= x̃ / s1−I12x̃d whereI12=g3Gg3. x̃sG̃d includes all interac-
tions exceptI12. This formulation has the virtue that all terms
clearly have a common denominators1−g3G̃g3x̃d as required
by the dielectric formulation. Thex is, however, fitted to all
of the intensity including that of highv. This cannot be
appropriate since most of the intensity atv.2D is indepen-
dent ofT and exists, unchanged, in normal4He where there
are no p-r excitations. The fit to data shows thatvQ does not
exceed 2D.

Szwabinski and Weyrauch have evaluated the Gavoret
and Nozières expression for liquid4He atT=0 K. This for-
mulation is essentially aT=0 K version of the present ex-
pressions. They were more ambitious in that the single p-r
Green’s function andvQ were obtained by an iteration pro-
cess so that the singleG in Eq. (26) and theG usedsx0d in
Eq. (27) were the same and internally consistent. They show
fits to data having both positive and negativeg4sQd(=IsQd)
values. They foundg3sQd(⇒JsQd) larger thang4 as found
here.
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APPENDIX: THE DYNAMIC SUSCEPTIBILITY

In this section, we separate the DS,xsQ ,vd, into a part
involving the condensate[the zero momentum statesp=0d],

FIG. 19. Diagrammatic repre-
sentation of Eq. (A8) for
xsp,p8 ;Qd.

FIG. 20. Diagrammatic repre-
sentation of Eq. (A12) for
Gsp,p8 ;Qd.
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xSsQ ,vd, and a part that contains states above the conden-
satespÞ0d only, xR8sQ ,vd,

xsQ,vd = xSsQ,vd + xR8sQ,vd. sA1d

This is done essentially by expandingxsQ ,vd in momentum
states, identifying the terms involvingp=0, and collecting all
these terms inxSsQ ,vd. The separation forx is formally the
same as is done often for the Hamiltonian in Bose systems
(Bogoliubov,28 Hugenholtz and Pines,29 Mahan30) to identify
the terms that depend on the condensatesp=0d. Our formu-
lation is identical to that of Gavoret and Nozières except that
it is done here at finite temperature,T.

We begin with the DS for the density response of a Bose
fluid as

xsQ,td = −
1

N
kTt rsQ,tdr†sQ,0dl, sA2d

wherersQd=ok ak
†ak+Q=op ap−Q/2

† ap+Q/2 is the Fourier trans-
form of the number density in a second quantized represen-
tation. Theap andap

† are the usual operators that annihilate
and create particles in momentum state"p, t= it /" is an
imaginary time,Tt is the time ordering operator andN is the
number of Bosons. The dynamic structure factorSsQ ,vd is
related toxsQ ,vd by

SsQ,vd = −
1

p
fnBsvd + 1gIm„xsQ,v + ihd…, sA3d

where xsQ ,v+ ihd=xsQ , ivnd is the Fourier transform of
Eq. (A2) defined at the frequency pointsivn, v+ ih is the
usual continuation ofivn to the real axis andnBsvd=sebv

−1d−1 is the Bose function withb=skBTd−1.
The corresponding single particle Green’s functions for

the Bose fluid having a condensate are

Gabsp,td = − kTt ap
astdap

†bs0dl, sA4d

wherea=1,2. Fora=1, ap
a=ap anda=2, ap

a=a−p
† . G11sp ,td

is the usual Green’s function describing propagation of par-
ticles and the others(e.g., G12) are anomalous functions
which are not zero if there is a condensate.

Inserting the expression forrsQd into Eq. (A2), we have

xsQ,td =
1

NVo
p,p8

xsp,p8;Q,td, sA5d

where

xsp,p8;Q,td ; VkTt ap−Q/2
† stdap+Q/2stdap+Q/2

† s0dap−Q/2s0dl.

sA6d

Our starting point is the equation for the two-body
Green’s function,

Gabgds1,2;3,4d = Vkap1

a st1dap2

b st2dap3

g st3dap4

d st4dl,

sA7d

given, for example, by Abrikosovet al.31 (1963) on p. 139.
We note that xsp,p8 ;Q ,td=G2112s−p+Q/2 ,p+Q/2 ;p8
+Q/2 ,−p8+Q/2d. That is,x and Gabgd are the same ifp1

=−p+Q/2 anda=2, p2=p+Q/2 andb=1, p3=p+Q/2 and
g=1, p4=−p8+Q/2 andd=2, t1=t2=t andt3=t4=0. From
the equation for the Fourier transform of Eq.(A7) we obtain
the equation for the Fourier transform ofxsp,p8 ;Q ,td,

FIG. 21. Diagrammatic repre-
sentation of Eq. (A20) for
Gsp,p8 ;Qd.

FIG. 22. Diagrammatic repre-
sentation of Eq. (A26) for
Psp,Qd.
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xsp,p8;Qd = fx2112
0 sp,Qddp8,−p + x2211

0 sp,Qddp8,pg

3Vs− b"ddn,n8

+ x2a1b
0 sp,QdGabgdsp,p8;Qdxg1d2

0 sp8,Qd,

sA8d

where

xabgd
0 ; GabS− p +

Q

2
DGgdSp +

Q

2
D sA9d

represents the independent propagation of a pair of particles
and

xsQd =
V

N
E dp̄E dp̄8xsp,p8;Qd, sA10d

where

E dp̄=
1

Vo
p
S−

1

b"
Do

n

, sA11d

and Gspd=Gsp , ivnp
d, Gsp+Qd=Gsp+Q , ivnp

+ ivnd, Q
=Q , ivnp

, p=p , ivnp
. In Eq. (A8) Gabgdsp,p8 ;Qd is the full

interaction between a pair of particles and can be written as

Gabgdsp,p8;Qd = Iabgdsp,p8;Qd

+ Iabehsp,p9,Qdxehjl
0 sp9,QdGjlgdsp9,p8;Qd.

sA12d

In Eq. (A12), Iabgd represents that part ofGabgd which
does not have a free pairsx0d as an intermediate state. Equa-
tions (A8) and (A12) are represented in Figs. 19 and 20,
respectively, and are the starting point of our analysis.

Our goal now is to identify the terms inxsQd involving
the condensatesp=0d. We do this exactly as in the case of
the Hamiltonian(Bogoliubov 28) by identifying wherep=0
and replacinga0=a−0=a0

† by ÎN0. When p=0 the Green’s
function reduces to

Gabsp,td = − kTt ap
astdap

†bs0dl = − N0 sA13d

for all a, b and the Fourier transform is

Gabsp,ivnd =E
0

b"

dteivntGabsp,td,

=− N0b"dn,0. sA14d

Using this result, the terms involving the condensate in
the free two particle propagator Eq.(A9) can be identified as

xabgd
0 sp,Qd = s− N0b"ddn,0fGabsQddp,−Q/2 + GgdsQddp,Q/2g

+ xabgd
08 sp,Qd, sA15d

wherexabgd
08 sp,Qd involve states above the condensate only.

We write Eq.(A15) schematically as

x0 = N0G + x08. sA16d

Explicitly, the zeroth order terms ofxSsQ ,vd [obtained from
the first two terms of Eq.(A8)] are

x0sQ,vd =
N0

N o
ab

GabsQ,vd + x0R8 sQ,vd, sA17d

wheren0=N0/N is the condensate fraction, and

x0R8 sQ,vd =
1

No
p
S−

1

b"
Do

n

fx2112
08 sp,Qd + x2211

08 sp,Qdg.

sA18d

To display howxS andxR are obtained from Eq.(A8), we
write Eq. (A8) schematically, using Eq.(A16), as

x = sN0G + x08d + sN0G + x08dGsN0G + x08d = N0G + N0GGx08

+ N0x08GG + x08 + x08Gx0. sA19d

We also write Eq.(A12) schematically using Eq.(A16)

G = I + IsN0G + x08dG,

=G8 + N0PGP. sA20d

All terms involving more than oneG vanish(the interac-
tion is zero in these equations). In Eq. (A20),

Pabgsp8,Qd ; Gaabgs0,p8;Qd sA21d

is the four-point interaction with one index zero so that it
becomes a three-point interaction. TheG8 is the full four-
point interaction given by Eq.(A12) but with x0 replaced by
x08. Equation(A20) is depicted in Fig. 21.

Substituting Eq.(A20) into Eq. (A19) the full dynamic
xsQd in Eq. (A10) is

xsQd = LasQdGabsQdbLsQd + xR8sQd, sA22d

whereGabsQd=GabsQ , ivnd,

bLsQd = În0F1 +E dp̄Lb12sp,QdG , sA23d

and

E dp̄Lb12sp,Qd =E dp̄Pbgdsp,Qdxg1d280 sp,Qd

=
1

Vo
p
S−

1

b"
D

3o
n

Pbgdsp,QdGg1Sp +
Q

2
D

3Gd2S− p +
Q

2
D . sA24d

The

xR8sQd = x0R8 + x08G8x08 sA25d

involves states above the condensate only. That is,xR8sQd is
given exactly by Eqs.(A8) and (A10) in which xabgd80 and
Gabgd8 involve states above the condensate only.

We note thatP satisfies an equation analogous to Eq.
(A12) (see Fig. 22),

P = J + Jx08G8,
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=J + G8x08J, sA26d

andx08P=x08J+x08G8x08J=x8J, where

x8 ; x08 + x08G8x0 = x08 + x08Ix8, sA27d

for any set of indicesabgd. Thus we may write

Lb12sp,Qd = Pbgdsp,Qdxg1d280 sp,Qd,

=Jbgdsp,Qdxg1d28 sp,Qd, sA28d

and xg1d28 sp,Qd is given by Eq.(A27) and x08 by Eq. (A9).
Equations(A22), (A23), (A28), and (A25) are the starting
points of our model forxsQd.
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