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Excitations and Bose-Einstein condensation in liquidHe
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We present a model of the dynamic structure fa8(@, w) of “He that reproduces the basic features of the
temperature dependence$f), w) as observed in inelastic-neutron scattering measurements. Wave v@ctors
beyond the rotoriQ>2.0 A1) are considered. The model is able to reproduce the decrease in the intensity of
the single excitatior(phonon-rotoi peak in S(Q,w) with an increase of temperatuf&) in the range 0.6
<T=<2.1 K. All vertices and interactions are assumed temperature independent, and only the condensate
fraction ny(T) changes withT. Also, it reproduces a second peak observed at higher eli@jgyhich repre-
sents the single excitation intensity lying in the two excitation band. The model is based on the formulation of
S(Q, w) of Gavoret and Nozieres. In this formulation, the dynamic susceptibyitis separated into a singular
part involving the condensate and a regular part involving states above the condengatey,. The weight
of the phonon-roton peak igs is proportional tany(T) and the phonon-roton peak disappears completely from
x in the normal phase whemg(T)=0. Using sum rule arguments, the condensate fraction can be estimated
from the data giving values in good agreement with accurate measurements at SVP and with Monte Carlo

calculations.
DOI: 10.1103/PhysRevB.70.144511 PACS nuni®er67.40.Db, 67.40.Bz
[. INTRODUCTION single p-r mode plus a part that describes the multi-excitation

We explore the temperature dependence of the dynamﬁomponent will be most clearly identifiable. At low in the

structure facto8(Q, w) of liquid “He at wave vectors beyond n?gggo:n datnhde ,‘rt%ttc;?, JZE'S?{]S(;?; Izlr%én;‘;stgtraesl:rglzl p;:rom_
the roton. The purpose is to see whether the weight of th y P gely

. : Bined into a single peak. Thus at lower energy it is more
phonon-rgtor(p-r) mode |nS(Q3w) scales Wlth. th? conden- difficult to identify the temperature dependence arising from
sate fractionny(T), or not. Equivalently, the aim is to show

ny(T) and separate it from the remaining components of
that the existence of an observable phonon-r¢mn mode S(()Eg )w) P g P

at higher wave vectors in superfluftie follows from the
existence of a condensate. This is done by using a rigoro
expression forS(Q,w) in which the condensatay(T) ap-
pears explicitly. All parameters in the expression are hel
independent ofl exceptny(T) and the Bose functiong(w)

At wave vectors “beyond the roton3(Q,w) has three
ucsomponents at low temperatuigee Fig. 2 There is a sharp
cPeak(at w~=1.5meV in Fig. 2 which is identified as the

=(eft*-1)"1, where 8=(kT)™* and k is Boltzmann’s con- 3 ' ' ' A ' '
stant. Model w — /
To set the stage, we show the observed energy dispersio 25 Q- 7 7]
curve, wq, of the single p-r excitation in superfluftHe at obg, rxere: //
low temperature in Fig. 1. This shows the “phonon,” — 2F / =
“maxon,” “roton” and “beyond the roton” regions of the dis- +g, ’/’
persion curve. The energy at the “roton” wave vecy, is g 15 2A
wq=A and a well defined single p-r mode exists out to wave ~~ o
vectorsQ=3.6 AL, As Q increases beyon@g, the weight, 39 o B i th
zo, of the p-r mode irS(Q, w) decreases unti, vanishes at 1t Mazop eyoRZtoize T
Q=3.6 AL, The two p-r band starts at energy 2nd con- Roton
tinues up to twice the maxon energy. There is a repulsion 05F Pho - .
. . B 7367
between the single and pair p-r componémthich prevents e
the single p-r energy from exceeding2We will focus on (1) S L L L L L 1
the single p-r self energy!? arising from this interaction. 0 05 1 15 2 25 3 35
At wave vectors “beyond the roton2.5<Q<3.6 A™%; Q (A—l)

see Fig. ], the momentunizQ) and energy transfdriw) in

S(Q,w) are at their highegt vglue relative to the interactions g 1. The observed p-r energy dispersion curgelid

in the fluid and yet there is still a p-r mode at low tempera-squareg a model p-r dispersion curvex, used in our calculations
ture. In this case, we anticipate the best separation betweggolid line), and the free particle energy=%Q%/2m (dotted lines.

the single p-r and the multiexcitation components 0f2A is twice the roton energy. Four regions of the p-r spectrum are
S(Q,w). In this region, we anticipate that an expression foridentified: the phonotiQ<0.7 A1), the maxon(Q~1.1 A 1), the
S(Q,w) separated into a part that containgT) and the roton(Q~1.9 A™Y) and beyond the rotofQ=2.4 A1) regions.
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0.7 — T T T T T T T 1 in addition, the temperature dependenceS®,w) at low
06 + T=135K + o (o<1 meV) (below the p-r peaks considered heree
—~ 0.6F T=160K x - . :
i T—102K x found it was necessary to include a temperature dependent
b= + =1. ; .
g 05 + _ . half width I'y to the p-r energies. We used the observed
= g T=22K O r'o(T) Q
. . Q .
'% 0.4 . Early measurements @&Q, ) at wave vectors beyond
~ 0.3k the roton (Q=2.5 A1) are summarized by Cowley and
3 Woods®’ Their data among other properties gives values of
o 02 the weightsz,, in the sharp peak d§(Q, w) at wave vectors
e 01l ; “beyond the roton.” They showed that this weight decreases
‘ g with increasing Q beyond the roton untilzo—0 at Q
0 : I A% =3.6 A1, the end point of the p-r excitations. Abov@
-2 -1 0 1 2 3 4 5 6 7 8 =36A" SQ,w) isa broad function ofw centered just
w (meV) below the free atom recoil frequenay;=%Q?/2m. Smithet

FIG. 2. Observed dynamic structure fac&e , w) of liquid ‘He
at SVP atQ=2.65 A1 vs the energy transfeq, andT=1.35, 1.60,
1.92, and 2.25 Kfrom Ref. 10. The solid line is a fit of our model
to the data at the highest temperattire2.25 K.

single p-r mode shown in Fig. 1. There is a broader pea
centered ato~3 meV in Fig. 2. This is interpretéd as the
single p-r response that lies in the two p-r bage>2A).

al.8 reported similar measurements trie under pressure.

Fak and AndersehFak et al? and F&k and Bos$yhave
presented a systematic series of measurements of the tem-
perature dependence 8fQ, w) for 2.3=Q<=4.0 A™%. Their
data shows clearly that & increases beyon@®=2.3 A1
the weight,z,, in the sharp p-r peak decreases with increas-
lfng Q. They showed that this weight is transferred to the
broad peak lying at energies in the two excitation band
(w>2A) asQ increases. Again a@=3.6 A1, 25=0. Their

Third, S(Q, w) has a very broad component that extends Ufyata also showed that the weight in both the sharp and broad

to energies of 7—8 meV. The weight of the first two compo-peak decreases with increasing temperature and that both
nents ofS(Q, w) decreases strongly with increasing tempera-peéu(S disappear at=T,. They fitted models to their data

ture and these components are not observable as separgjgich suggest that the weight in these two peaks is propor-

components af >T, in the normal phase whenm(T)=0.
The third component, especially at higheris largely inde-

tional to the condensate fractiomy(T), as noted below.
Glydeet all®and Pearcet al'* made high energy resolution

pendent of temperature and the same in superfluid and nofyeasurements ofS(Q,w) beyond the roton. ForQ

mal “He.
To describeS(Q, w) we employ an expression derived by
Gavoret and Noziéresin this expression, the dynamic sus-

ceptibility x(Q) of a Bose fluid containing a condensate is
formally separated into two parts,

x(Q) = xs(Q) + xr(Q), (1)

whereQ=0Q, w. x4(Q), the “singular part,” includes all terms
which involve the condensatgp=0 statg and ysong(T).
Xgr(Q), the “regular part,” involves the fluid above the con-
densate onlystatesp# 0). The xg(Q) at Q> Qg has a struc-
ture which reproduces the sharp and broad peal&@ w)
(as shown in Fig. Pwell while y5(Q, ) is a broad function
of w. The goal is to explore how well the temperature depen
dence ofS(Q,w) at severalQ values can be reproduced by
this expression allowing onlyy(T) and the Bose function
ng(w) to depend o. Forny(T) we use the result obsenked

at SVP,
Y
no(T) = ”0(0)[1 - (%) ] , @

=2.8 A%, these provide accurate and precise values of the
“p-r" energieswg, the position of the sharp peak. They show
specifically that the single p-r energyg, never exceedsX,
twice the roton energy. ForQ=2.8 A%, wg=2A
=1.48 meV at SVP, for example. The data also shows that
the weights in the sharp and broad peaks have the ge@eral
and temperature dependence noted above byeFak? and
Fak and Bossy(see Fig. 2

There have been many theories and mddefg° of
S(Q,w) at wavevectors beyond the roton. At low wavevec-
tors, up to the roton region, the p-r mode at |dwcan be
interpreted as a single density excitatidrWith modern re-
finements accurate values @f, can be obtained within this
interpretatior?! Historically, Pitaevskii first focused onQ
values beyond the roton. He showed that the p-r enexgy
could not exceed &. As a result, he noted that the p-r dis-
persion curve would bend over @=2.5 At and become
flat at higherQ as shown in Fig. 1. He described the p-r
response by a single particle Green’s function,

1
w? - (oo%)2 - ngzlz(Q,w) '

G(Q,w) = (3

with ny(0)=7.25% andy=5.50 with a scale adjustment at as we use here in E¢26) below. In Eq.(3), on is a model
P=20 bars. In this way the aim is to reveal how the existenceénitial single p-r energy of the type calculated by Feynman
of the p-r mode depends on the existence of a condensate -and Cohen which does not explicitly include the interaction
at least at higher wave vectors. Anticipating the results, wéoetween the single p-r and pairs of p-r excitatigsse Fig.

find that theT dependence 08(Q, w) can be very well re-
produced allowing onlyn,(T) to vary with T. To reproduce,

14451

1). The self energy2,=nyJxJ in this G(Q,w) leads to a
repulsion between the single mode and the pair p-r response
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(x) which begins at energy® As a result of the repulsion, (a) Q Gap(Q)
the p-r energywg “bends over” beyond the roton anog o b

<2A out to the end point. He noted that since the

Im(x°%(Q,w)) goes abruptly from zero to a finite value at iy

w=2A, Re(x°(Q,w)) will have a logarithmic singularity at Vn, E_ b o2 o E ]
w=2A, as shown later in Fig. 13). (b) B = sAMQ)
-P

All subsequent formulations of response at wave vectors
“beyond the roton” have, as here, used this expression fol
G(Q, w)—with different variations of the model single p-r
energng and the pair dynamic susceptibility. In these
formulations, the three-point interactidnis often written as © 2 v Jas(0, Q)
05(Q)=VngnJ(Q) whereny=Ny/N andn=N/V is the number \ 7
density. Equation(3) has the same form a& for single -p
phonons in solids including the coupling to pairs of phonons
(x=G,) via the cubic anharmonic tertd=V;). Equation(1)
was also used by Jacks8rat lowerQ values to obtain the
single p-r energy, the sharp peak@®iQ, w) atw<2A where 4 . i Ly pis(p, ' Q)
IME'%Q,w))=0, and the second resonance at higher 5 8 e
o (w=4A) whereTm(2*3(Q, w)) # 0. -p+QR -prQ2

Ruvalds and ZawadowsKiand Zawadowsket all* ex- p+Q
amined the pair p-r responsg) which is observed in light o b
scattering from liquid'He. x(Q, ) was expressed in terms (@) Gap(p+ Q) Gys(—p)
of independent pair propagatiog,’, within a random pohase vo-p B
approximation(RPA), an equation of the fornfA27). x'° is . ) .
represented by various independent pair models, usually the FIG. 3. Basic con?ponen_ts of the model S@'“’)} @ S"_qgle
first term of Eq.(28) with n;=n,=0 andA=1 or analytic particle I_30$c_>n Gree_n s.functlo(b) vertex appearm-g n Eq6); (C.)
models. The interaction between tBeand pair p-r response three-p0|_nt |nter_a|ct|(r)1n,|(d} fou_r-pomt interaction; and(e) pair
via 212 was investigated in detail. They showed that singu—pr()pagatlor(partlc e-holg function.

larities in the pairy® could be removed by adding a very L ) .
small imaginary part tas, which we follow here. Zawad- sidered a simplified version of the Gavoret-Noziéres expres-

owski et al. presented an explicit formulation of both Sion Ed. (1) to model the temperature dependence of
¥(Q,w) and G(Q,w) emphasizing the interaction between S.(Q"")' They. particularly used &g that was deter_mmedo by
them via312 They emphasized that the hybridization of the fitting to data in the normal phase. Juge and Griffand Fak
single p-r mode with a two-roton “mode” vi&!2 would lead and Bossy began with a model p-r dlsopersmn cg\{e of the
to the observed bending over of the single p-r mode beginF€ynman-CohexC) form to describewg before> ™ is in-
ning atQ=2.2 A and a mixed character of the mode for troduced which we a(_jopt hefsee Fig. 1. Szwabinski and
Q=25 AL They also noted that(Q) (g,(Q)) could be WeyraucR® have derived and evaluated the Gavoret and

negative. An attractive interaction arising from a negagiye \OZi€res expression consistently 0 K. Recent work is

leads to two-roton bound states when the two interacting!iScussed more fully in Sec. V. _ _
In Sec. Il we introduce the model and derive the basic

excitations are rotons. . di vsis. In Sec. II]
Bedell et al16 evaluatedy, extensively and found thay, ~ €XPressions used in our analysis. In Sec. Il we present our
results and compare our model with experiment. In Sec. IV

was chiefly negative af values of interest. They reformu- ) , .
lated many properties using their improved valuegpEx- W€ analyze some of the important expressions in our model.
In Sec. V we discuss the model, connect to previous work

plicitly, calculations of(Q)=g,(Q) using a T-matrix and _ -
beginning from a pair potential in liquitHe find that!(Q) and list our conclusions.
oscillates in sign withQ at higherQ (Q=2 A™Y). These
oscillations inl(Q) at even highe values(5-10 A™) are Il. THE MODEL
observed in neutron scattering data.

Glyde?® evaluated the totay in Eq. (1) as a function of
temperature using a model based on the dielectri
formulation?224 This included bothG and the regular den-
sity, xp. At T>T,, the total y reduces toy, and y, can be ,
de>t/eerRined l‘romx data in th)é normal pr?gge, co)r(1Féepts we us:eXS(Q)JrXR(Q)' or

We consider a fluid oN Bosons in a volum#& that has a
gondensate fractiong=Ny/N in the zero momentunip=_0)
State. We begin with the exact expression for the dynamic
susceptibility, x(Q), of this Bose fluid in the formy(Q)

here. As here, the sharp p-r peakGnhas a weight propor- = A G A(O) + v/ 4
tional to ny(T) and Pearcet alll show that this model re- XQ) = A:(QCes(QpAQ +x=(Q), @
produces the observed temperature dependence well. whereQ=Q, w. In Egs.(1) and(4), x(Q) has been separated

Juge and Griffit® explored the temperature dependenceinto a singular pargs(Q) which involves the condensate and
of the single p-1IG(Q, w) and pair p-ry, interacting via>?>  a regular pariyx(Q, ) which involves stategp+ 0) above
without evaluatingS(Q, ) explicitly. Fak and Bossycon-  the condensate only. This separation was made originally by

144511-3
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p+Q/2

8

[

FIG. 4. Diagrammatic repre-
sentation of Eq(7).

v

—p+Q2

X152 Q) = X520 Q) + [dFX 58P, @) Lascad, ¥y Q) Xo142(Ps Q)

finite T in the Appendix. In normafHe, where there is no Xr(Q) =
condensateys(Q)=0. In Eq.(4), G,4(Q) is the single Boson
Green'’s functionsee Fig. 8a)] defined by

Gup(p,m) = = (T.a5(nalf(0)), (5

which has four component$a 1,2; p=1,2) with aj
=a,(a=1) andag =a’ o(@=2). In Eq.(5), 7is an |mag|nary where
time andT, is the tlme ordering operator. The vertgsee

Fig. 3b)] is xR(Q) = f dalx2314P, Q) + x5911(P. Q)] (11

pAQ) = \"”0{1 +f dpJsys(P. Qx12(P.Q) | (6) s the zeroth ordefindependent BosgrDS.
. o . _ . The equationg1) to (11) define the full x(Q) (see the
where Jg,5(p,Q) is the three-point interaction, defined in Appendiy. Our goal is to test how well the temperature de-

Fig. 0 [J5,s(P, Q) =144,5(0,p;Q)], P=P, @y X,152(P,Q) IS pendence of the dynamic structure factor,
the dynamic susceptibilityDS) for a specific momentunp

Gavoret and Noziérésait T=0 K and is reproduced here for \Vi
N

[X&O(Q)

+fdﬁf dFXéglb(p:Q)labco(p:p,:Q)Xéldz(p’:Q)
(10

(p#0) and indicesyl52 given by _ [ng(w)+1]
] - ] ] 12
, o SQ,w) . IM(x(Q, w)) (12
Xy102(P, Q) = X}152(P, Q)
can be reproduced by allowing only the Bose functions
+f 'X;géb(p Qlabed P, P, Q) xe1ao(P', Q). ng(w) and the condensate fractiog(T) to depend on tem-

perature. In a second model, we will allow the p-r energies
(7 w%+iFQ to have a temperature dependent half wilIg(T).

In Eq. (7), | apeqis the usual four-point Boson-Boson interac-

tion [Fig. 3d)] and x'° is the zeroth-order, independent bo- A. Approximations
son DS, To reducey(Q) in Eq. (4) to a computationally tractable
X;gc 0,Q) = Goy(- P)Ged(p + Q), (8) form, we make the following approximations. We assume

that the four-point and three-point interactions are indepen-
[see Fig. 8)] where againG,4(p,) is the full four com-  dent of the indices, op and of energy,

ponent Green’s function. Equatiaid) is depicted in Fig. 4
and Iaﬁ'y&(p!p,:Q) - |(Q),

1 1

dp = \_/2p<_ E)En (9) ‘Jaﬁy(piQ) - ‘J(Q) . (13)
is a sum over momenturp and frequenciesw,. The four
terms inyg(Q) are represented diagrammatically in Fig. 5.

The xx(Q) is given by the usual expression for the DS for X(Q) =A(QG(QA(Q) + xx(Q), (14
a normal Bose fluid,

Thel(Q) andJ(Q) will be taken as temperature independent
constants at eac. Given approximatior{13),

where

. _< . ; . 6@ = 3 6,Q). 15
AQ) =Vng[1 +IQ)xA(Q], (16)
} i XA(Q = X2AQ) + xAQNQxA(Q), (17)

FIG. 5. Diagrammatic representation AGA. and
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1 1
X/,\O(Q) = f dﬁE X&gﬁz(p,Q)- (18) 9(Q = EB gaB(Q) =(ug- UQ)Z( ) ,
af @

ia)n—wOQ iwn+w%

Equation(17) for x}(Q) is not quite an exact reduction of (21)

Eq. (7) given approximatior13). Some truncation of indices and for the Bogoliubowiy anduo, (UQ—UQ)ZZEQ/LUO where
in the interaction term is also required to arrive at ELy). againeo=hQ?/2m. Q

jn_ most previous work, the interactionsgs(Q) We ?ake u2:zQ, the observed weight of the single p-r
=VnenJ(Q) and g4(Q)=1(Q) have been used. We prefer 10 peqy inS(Q,a%. In 911(Q,iwy), the first term proportional to
useJ(Q) sinceny(T) then appears explicitly in the expres- uj describes the creation of a quasipartiip) with wave
sions andJ(Q) can be held independent of temperature iNyectorQ above the condensatign S(Q, w) this process cor-
models. responds to the neutron exciting a qp out of the condensate
(p=0) to a stateQ above the condensalélhe second term
) in 911(Q,iw,), proportional to:;é, corresponds to annihila-

To evaluate(Fsgﬁ, e write tth:e_ self energy. as a sum of  {jon of 4 qp with wave vectod (above the condensateith
two parts % =%""+3"". TheX"™ includes all of the interac- he qn going into the condensate. Since only 7—8% of the
tions ofhthe single qua:|ﬁart|clési|ngle p—DdW|th r:he ﬂwdf fluid is in the condensafe,we expect thatué<vé (vé
except the interaction of the single p-r mode with pairs of p-r_ 2 2_ 2 : :
excitations, described b¥'? We are using the fact that at%r?’:'?loj?g' \-f-\fel;oeuCgﬁueslgﬁgjgr?éz\gdﬁsr: gafstz)d Cfgr:gisdéﬁ
G.4(Q) and x(Q) share common polé&?* to identify the with the r.elation(u o )Z:EQ/wO Q
mode described b with the p-r mode. The first part & Q T TR
is denotedF¢ since Feynman and Cohd&RrC)'? in their b
original calculation included all process@a principle) ex- C. Self energy,%
ceptX'% The FC energywd, is phonon like at lowQ, has a With the “FC” Green’s functiong,; determined by Egs.
minimum at wave vectors in the rotgn regid@x, and goes  (20) with “FC” energy 3 andug andvg set, we turn to the
to a free particle energyg— eq=AQ%/2m at highQ. Ex-  remaining single p-r self energ§'2 This arises from inter-
plicitly, we write action of the single p-r with pairs qf-r's and is

Gh= (gl t-3fS-32 =g l-522 (19
where g0, is the free Bose Green's function angf;
=(gop)t-3245 is the FC Green's function, which has the FC
energy noted above.

As the FC energygu%, we use the observed energy fQr
values up to the roton wave vect@g following Juge and o
Griffin'®and F&k and BossyFor Q> Qg, we c’(:)l”OWwOQ to go 3:5Q) = nOJ dpdaan(P, Q Xabedeas(P. Q). (23)
smoothly to7Q?/2m at highQ. We requirewg at Q=Qg to
be the observedyg, so that the roton energy, is “correct”  The approximation 0{22) to (23) may also be viewed as
and the two p-r excitation band which starts at twice theapproximating)(;bw(p,Q) by x.2.{p,Q) in Eqg. (23). As in

abci

roton energy, & will begin at the “correct” energy. ; N 12 ; ; _
The 212% most impgrtant af values whereu%yis close (13), we approximatel,g,(p, Q) —J(Q). X™is then inde
; ) pendent of indicesr and 8 and we obtain
to 2A (i.e., at the maxon an®> Qg). 312 provides a repul-
sion between the sharp part of the single p-r respgtise 31%Q) = ngd(Q)x(QI(Q), (24)
single p-r peak aQ>Qg) and the two p-r response. This
repulsion leads to the flattening of the observed single p-Where
energy atQ=2.5 A™! and keeps this energy belowA2The
model FC energy we use, the observed p-r energy anarg XéO(Q) =J dpG(- p)G(p+ Q) (25)
depicted in Fig. 1.
We assume that the FC Green'’s functiong(Q, i w,,) take
the Bogoliubov form

u2 2 p+Q2
gu(Qiwy) = | —2—5 - —2
- Iwn_wOQ iwn+w%’ Q O Q = Q L
o B - [ B

1 1 ) —ptQR2

iwn—on iwn+wOQ

B. Green's function, G,z(Q)

322(Q) =ng f dPJa(P. Q) Xabed . Q)Pegs(P. Q) (22)

where P(p,Q) is defined in the appendix. We approximate
this to

andG(p)=2,5 G,4(p) as in EqQ.(15).

012(Q,iwy) = - Uqu<
S = J X P

= Jdwp), 20 . . .
921(Qi1r) (20 FIG. 6. Diagrammatic representation of Eg2) for self energy
andg,,(Q,iw,)=011(Q, -iw,). With this structure, 312

144511-5
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We use thi'? to evaluateG(Q) in Egs.(15) and(19) as

G(Q)t=g(Q) -3 where from Eq. (21) 9(Q)
=2eo/[(iwn)?~(wQ)?] giving
G(Q) = 2% (26)

(1002~ (0))? ~ 263 Q1)

andiw,— w+iz.

D. Zeroth order x'%(Q,w+in)

In the expressions above, we have three types of zero
order DS’s with different dependences on the indices. In a

of these, we approximate the ful(p) by the “FC” g(p).
Collecting, the three are

x(Q) = J dpX 9u(- P2 gpa(p+ Q) (vertex,
a B

xQ = f dpg(- p)g(p+Q) (self energy,

Xd Q) = J P+ Dea= D) (Xed- (27)

Carrying out the frequency sums indicated in B, the y'°
all have the same basic structure,

A
w+in—w—w;

xX%Q,0) = %2 |:(n1+ Ny + 1)(

p

- ;> +(ng =)

w+int o+ o,

T Femee |
wtingto—w, oting-wto,) |’

(28)
wherew; = w), w,= ), o, N1=Ng(wp), N,=Ng(w), ) andA, B,
C, D are constants that depend @9 U,.q, v, @anduvp,q. FOr
example iNy{’(Q, ), A=B=C=D=(ey/ wp)(€prq/ @p,q)- I
X2(Q, ), we find

2

A=viul o+ H, B=ullo+H,
C=Uubo+H, D=vivio+H, (29)
whereH =ugUp.qupvpo- FOr X’AO(Q) they are
A=VoUpig, B=UpVpi,
C = UDU p+Qr D = Vpr+Q1 (30)

—2_ _.2_ _2
where Up=ug—ugvp, Vp=vp=Ugp, Upig=Us.o=UprQUp+s

ande+Q:v§+Q—up+va+Q. A key point is that to explore the
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terms made little difference up to temperatufies3.0 K in
the w range of interest here.

The basic procedure is to determine the parametegs
Ugs vg, J, D) in xs=AGA, by fitting to data at lowT. These
parameters are held constant, independerit @pecifically,
the FC energies.uoQ were selected as shown in Fig. 1. To
moderate the singularities i6 and x'°, we added a small
imaginary part tow, (0 +in) with »=5 ueV. This is very
approximately 1/10th of the instrumental energy resolution
(50 neV) of the IRIS instrument at the prese@tvalues.

The three-point interactiod(Q) was determined so that

l@e position of the sharp single peak in the single particle

(Q,w) given by Egs.(24) and (26) reproduced the ob-
served p-r energy. That i9(Q) was determined so that'?
had the correct magnitude to reproduce the observed p-r en-
ergy. The four-point interactioHQ) was chosen by optimiz-
ing the fit of y4(Q,w) to S(Q, w) observed at lovT.

E. Regular response

While the sharp peak ab=1.5 meV and the broader
peak atw=3 meV in Fig. 2 are attributed tgs, the very
broad component that extends up to 8 meV in Fig. 2 is in-
terpreted as arising frongs. The regular componenj, is
given by Eqgs(8), (10), and(11). The very broad component
is largely independent of temperature and exists in normal
liquid “He. In normal*He there are no well defined p-r ex-
citations forQ=0.8 A%, The x in i is therefore not well
represented by a two p-r function. It is probably better de-
scribed by a nearly independent particle-hole response func-
tion, with particle energies given approximately by the
dashed line in Fig. 1, except at lowvand lowT. If x; is to
describe the very broad componemgo is not the same as
the p-r susceptibilities in Eq27) that appear irnys.

Rather than evaluatings(Q, w) we have determined it by
fitting to the data in the normal phase using two models:

MODEL A: DHO function In this case the whole of
Xr(Q,w) was represented by a damped harmonic oscillator
(DHO) function and the parameters were obtained by fitting
to data for normafHe. The DHO was held independentTof
In this case all T-dependence ofy(Q,w) comes from
xs(Q, w).

MODEL B: In this modelyx(Q,w) in Eq. (10) was writ-
ten as

XR(Q.®) = O(we ~ 0)AMXE(Q, ) + O(w =~ we) X DHO,
(3D

where O(w) is a step function. For low energiegy was
represented by the zeroth order, two p-r DS, BEd). For
energiesw > w, the interacting part of4(Q, w) is expected

to dominate and was represented by an empirical DHO fitted
to the data as in Model A. The energy. and constani(T)
were adjusted to match the absolute value and slope of the

temperature dependence, we have retained all four terms &#0 functions atw.. w. is usually close to the maximum of
¥'°, particularly the second two which include Bose func-the imaginary part ofy5(Q, ). In xg(Q,®) and in the
tions and difference processes. In all previous treatmentsther zeroth order susceptibilities, we used energj%s
only the first term was retained with Bose functions ne-— w%+iFQ(T) which had a half widthl'o(T) given by ob-
glected. Anticipating results, we found that including all four served values as a function of temperature. It is the use of
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xR(Q,w) and incorporating th&o(T) in xg(Q, ) that re- ' '
produces the observed temperature dependen8giw) at 0.14 | P =920 bar
low . ol F Q=274 |
i MODEL A
IIl. RESULTS 0.10 (zero Width)
In this section we compare our model for the DS, 0.08 I _
x(Q,w), with data at wave vectol®=2.5 A1 “beyond the
roton.” The aim is to identify the role of the condensate in 0.06
x(Q,w). x(Q,w) is separated into a singular pay&(Q, w) 0.04
which is proportional tay(T) and a regular pars(Q, w) as ’
shown in Eq(4). The xx(Q, w) is determined by a fit to data 0.02
in the normal phas€T>T,) whereny(T) and x4(Q, w) are
zero. The singular componentGA which is proportional to o
no(T) is zero forT>T, whereny=0. The parameters ifg X 010
=AGA are determined by fitting the totgl to data at the g ’
lowest temperature availablesually T=0.6 K). All param- ~0.08
eters are held independent Bfexcept the condensate frac- .Ja
tion ny(T) and the Bose functiong(w) (model A). In a sec- G 0.06
ond model(model B the p-r energies are assigned a half 0.04
width 'o(T) which has the observed temperature depen- 3
dence. ~ 0.02
The calculatedS(Q, w) has a “very” sharp single particle g
peak at lowT which can be approximated by a Dirac delta T
function. However, the observed p-r mode at low tempera- 0.06
ture measured using the IRIS instrument is “broadened” by
the instrumental energy resolution of IRIS which is 6V. 0.04
In order to incorporate this instrumental energy resolution 0.02
into our calculations ofS(Q,w), we convoluted the calcu- :
lated S(Q, w) containing the “sharp” low energy single par-
ticle peak with a resolution function that represents the in-
strumental broadening of IRIS. Following standard 0.06
procedures, this resolution function was obtained by fitting a 0.04
suitable function to the observed single particle peak at
=0.6 K. 0.02
In Fig. 7, data by Pearcet all! at p=20 bar pressure ,
whereT, =1.92 K are shown as crosses. The md8&, w) )
arising from yx(Q, ) alone, which is fitted to the data at
T=2.1K, is shown as the thick solid line. This thick solid w (meV)

line is reproduced in all frames as well as&t2.1 K to

illustrate the difference betwee®Q,w) above and below FIG. 7. S(Q, w) of liquid “He at p=20 bar foQ=2.7 A™L. The

T,. The thin solid line shows the full modgi=AGA + x;, at thin solid line is the calculate§(Q, w) at temperature$=0.6, 1.29

three temperature§<T,. At T=0.6 K, the thin solid line and 1.7 K. The thick solid line is a DHO fitted to data &t

clearly reproduces the sharp, single excitation peak well. IE2-1 K. The crosses are data from Ref. 11.

also reproduces the brqader _peak_ obse_rveq at higr(ezr sity in the sharp peak is too low dt=1.7 K. Second, the

~3 meV). The model intensity(thin solid ling in the Loy Kosition of the model sharp peahin solid ling moves

broader peak is somewhat less than the observed intensity higher w as temperature is increasedspecially atT

As T is increased, the intensity in the sharp peak and broad 1.7 K) a finding also noted by Fak and Bossin contrast

peak decreases. At=2.1 K there is clearly no intensity in the observed peak position is largely independentTof

either peak. The temperature dependence in the model foFhird, at low T, the observed intensity is very small at low

lows from the decrease ing(T) with increasingT. This  w=1.2 meV. The observed intensity at low grows asT

clearly reproduces the basic observéddependence of increases and is substantialfat2.1 K. This increase of ob-

S(Q,w). Figure 8 shows the same comparison with data aserved intensity at low» with increasingr is not reproduced

Q=3.0 AL, Thus the basic structure of E@4) and the by the model. It is not reproduced essentially because the

simple parametrization of its temperature dependence exx(Q,w) was held independent df.

plains the chief features of the data. To address the issue of the temperature dependence of
The model given by the thin solid line in Figs. 7 and 8 S(Q,w) at low w, we representeq¢;(Q,w) by Eq. (31). In

shows three discrepancies with experiment. First, the intenEq. (31), x4(Q,®) at low w is given by x(Q, ), the inde-
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011l l:’=20b‘z1,r1 1 0.14} P=20bar A~
Q=30A" Q=27A"
0.12 F .
0.09 - MODEL A 4 MODEL B
(zero width) 0.10F (width) ]
0.07 = 1 0.08 » -

T=06K

0.05

0.03

0.01

0.06

0.04

0.02

0.06

S(Q, w) (arb. units)

S(Q, w) (arb. units)

0.04

0.02

0.06

0.04

0.02

FIG. 8. The same as in Fig. 7 b@=3.0 A w (meV)

pendent two p-r part OX',?(Q’“)) In Eq. (7). To rep,rOduce the FIG. 9. The same as Fig. 7 except that p-r ener@%ﬂnaving a
obser\_/edT deper_ldence 0$(Q,w)_at l(?W “”OW_e included & 4t width I'o(T) fitted to the observedo(T) are used throughout
half width I'o(T) in the p-r energiesoy— wg+il'g at all Q and x4(Q, ®) is given byMODEL B

in all the zeroth order DS’s given by Eq®7) and(28). We

used the observed valuesla§(T). The highero component also broadens the single p-r peak somewhat, especially at
is ascribed to the interacting term pk(Q, ) in Eq.(7)and ~ T=1.7 K. Figure 10 shows the same modelQst3.0 A™.

is represented again by a temperature independent DH®NhuUs the temperature dependenceS@, ») at low w arises
which was again determined by a fit to data in the normafrom the widths in the p-r excitations. It does not arise from

phase. including the “thermal” termg[proportional tong(w)] in
The thin solid line in Fig. 9 shows the temperature depenx’%(Q, ) of Eq. (28) nor from the Bose factor in Eq12).
dence ofS(Q, w) with the observed’'o(T) included. Clearly, In Fig. 11 we compare the mod8(Q, w) which uses Eq.

at T=0.6 K there is zero intensity in the model fas  (31) for x4(Q,w) and p-r excitations with the observed half
<1.2 meV as is observed. Asincreases, the intensity in the widths I'o(T) with data at saturated vapor pressygy/pP).

model increases fab<1.2 meV largely as observed. This  The same basic temperature dependence as seen in Figs. 9
dependence comes from tlig(T) in the p-r's atlower Q  and 10 is obtained. The chief discrepancy is that no single
values inxﬁo(Q,w). TheT dependence arising from the Bose p-r peak is obtained in the model @a=1.92 K whereas a

functions in thex’%(Q,») was negligible. Including’o(T) small peak is observed.
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P = 20 bar 1r SVP ]
g=aoa ]
MODEL B 0.8
0.09 F - :
(width) 07} (width)
0.07 F - 0.6 .
05
— 0.05 0.4k
X 0.3}
% 0.03 o2l
: 00lk —~ O1F
= 2
. 0.06 g osf
. 04F
— 0.04
3 "C% 0.3}
S 0.02 ~— 0.2}
g; 3 ol
0.06 o
5{ 051

0.04
0.02

0.06 -

0.04

0.02

w (meV)

FIG. 10. The same as Fig. 9 b@=3.0 AL, w (meV)

In Fig. 12, the model withl'o(T)=0 is compared with FIG. 11. The same as Fig. 9 for liquitHe at saturated
data taken by F&k and Bo§sfpr 4He at SVP. In this com- Vvapor pressurgSVP) and wave vectorQ=2.65 A1, At SVP,
parison, the chief discrepancy is that the model p-r peakr=2-17 K. Data from Glydet al. (Ref. 10.

moves to highew asT increases which is not observed.  the combined width fronT'(T) and the self energ¥2 is

We now show that the position and magnitude of the p-fisg |arge. We do not believe thdtQ) necessarily depends
peak at higher temperatufe.g., aiT=1.7 K) can be made 0 o temperature. Rather, we illustrate that minor adjustments
agree with experiment by increasing the magnitude of thegf the model parameters with temperature can bring the
three-point interactiod(Q). The upper frame of Fig. 13 re- model into agreement with experiment. Particularly, we note
produces the model results Bt 1.7 K found in Fig. 9 when  pelow that the roton energg(T), does decrease significantly
J(Q) is held constant independent ®f The middle frame  wjth T. If this decrease were included in the modes., 2A
shows the same model whé(@Q) is increased by a factor of decreases witf), we do expect this to prevent the model p-r
1.4 andl'n(T)=0. In this event, both the p-r peak position energies from increasing witdi at Q values investigated
and the intensities in the sharp and broad peaks are restorédre. A more detailed analysis of the model appears in the
to the observed value. This suggests that eithed(®@ does  following section.
increase withT or should use a temperature dependeghtis
discussed below. The lower frame shows the model with
J(Q) increased by a factor of 2 withig(T) included. In this In this section we examine the different components of
case the p-r peak position is again approximately correct, buthe singular part o8(Q, w), particularly the vertex function

IV. ANALYSIS
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T T
0.07
120 |- SvPp =
Q=25A" 0.00
100 b MODEL A 0.05
(zero width) 0.04
80 - - 0.03
0.02
60 - 7 0.01|
40 b . -
£ o007
20 - _ § 0.06 - i
& 005
o
— = 004
;I> 60 L ] 3 0.03
b} O; 0.02
B sl 1 &= oot
<3 2 : 0.07
O; 0.06
— 60 | | 0.05
(@)
0.04
40 - 7 0.03
20 L i 0.02
0.01}
-2
60 .
w (meV)
40 - ] FIG. 13. Dependence oB(Q,w) (solid line) at Q=2.7 AL,
T=1.7 K, and 20 bar pressure on the magnitude of the three-point
20 - 7] interaction,J(Q), compared with experimental daterosses Top
frame:S(Q, w) as in Fig. 9 withJ(Q) determined at 0.6 K and held
5 constant withT. Middle frame:S(Q, w) calculated WitthQ having

zero width and)(Q) increased by a factor of 1.4 in the real part of
)
w (mev) the_self energy only. Bpttom fram@(Q,w) calculated withwgq
having the observed width and{Q) increased by a factor of 2
FIG. 12. The same as Fig. 7 compared with data of Fak andeverywhere.”
Bossy(Ref. 3.

with A(Q) set to one. Figure 14 shows the basic features of
A(Q). Second, we investigate the importance of the Bos&s{(Q,w), a sharp single excitation p-r peak plus a broader
functions in the zeroth order DS’s, Eq27) and(28), and  resonance in the two p-r excitation band centeredwat

their role in determining th&-dependence (Q, w). Third, = =4 meV. While we expect the sharp peak to come from the
we show how the condensate fraction can be estimated fromsingle particle Green'’s functiorG(Q,w), Fig. 14 demon-
the data using sum rule arguments. strates that the broader resonance also comes & w),

from a second resonance Gwhere the two-excitation den-
sity of states is not zero as noted by F&k and BéJdye two
excitation density of states entégB$Q, w) via the self energy

In this section we investigate the importance of the vertexs,1? as shown in Eqs(24)—«26). These two contributions to
function A(Q) and the four-point interaction contained in S(Q,w) were found in the early calculations 6(Q,w) by
XA(Q) on the structure of S(Q,w)=—{[ng(w)  Jacksof® and A(Q)=1 has been used in all recent calcula-
+1]/ 7 IMA(Q)G(Q)A(Q)]. To set the stage, we show in tions to date except that of Pistol¥sand Szwabinski and
Fig. 14 the singularS(Q,w) at Q=3.0 A1 and T=0.6 K Weyrauch?®

A. Importance of the vertex A
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w
g i T=06K J
5 0.04 AQ) —1
= Q=30A4"1
=
&
5 o02f .
7 J
0N
CQ 0 1 1
=2 0 2 4 6 8
w (meV)

FIG. 14. S{Q,w) calculated with vertex function set to one
[A(Q)=1] such thatS{Q, w)=—{[ng(w)+1]/7}IM(G(Q,w)) at T
=0.6 K andQ=3.0 A™L.

In Fig. 15 we show8{Q, w) calculated withA(Q) # 1 for
three different values of the four-point interactidfQ) =0,

PHYSICAL REVIEW B 70, 144511(2004

100 and 200 KA. Figure 16 shows the corresponding values 0 1 2 3 4 5 6 7 8
w (meV)

—r— FIG. 16. Real and imaginary parts of the vertex functio(®@)
for Q=3.0 AL, T=0.6 K for three values of the four-point interac-
tion 1(Q)=0, 100, and 200 in units of KA The vertexA(Q) is
unitless. The values ok for 1(Q)=100 and 200 K& have been
rescaled for clarity. The horizontal line 8te(A)=1 serves as a
guide to the eye as doésn(A)=0.
of the real and imaginary parts ok(Q,w). To discuss

. S{(Q,w) and A(Q), we note thatA(Q) in Eg. (16) can be
:@ written in the form
= o AQ) = Vng[1 + Qx4 ()], (32)
e 04rF I =100 — A where
lav} 10
: 03 xA(Q) = % (33
3 ool | -1QXQ)
O; The three-point interactiod(Q) in Eq.(32) was held fixed at
> 01fp 7 the value required i'? to get the energy of the single p-r
0‘53 0.0 \,\ mode correct inG(Q,w), as discussed in Sec. lll. When
: o4y 1(Q)=0, x,(Q) reduces to the zeroth order D,@"O(Q). The
oy real part of '%(Q,w) has nearly singular behavior a
0.06 - 7= 200 — ~2A. (Recall that we added a small imaginary payt
: = =5 peV to thewg, in x'%) In this case Re(A(Q,w)) be-
comes very large at energiasnear the single p-r energy at
0.04 AMQ)#1 ay | Q values beyond the rotofsee the upper frame of Fig. 16
Q =3.004 Effectively, theJ(Q)x'°%(Q) is much larger than the unit term
0.02f T=06K . in A(Q). As a result, the magnitude of the single p-r excita-
}W tion peak inS{(Q,w) becomes very largésee the upper
0.00 frame of Fig. 15. For 1(Q)=0, the weight in the single p-r

1 1 | | | 1 1 1 1 i i “ ”

5T 0 1 7 3 4 5 6 7 8 peak is a factor of 100 greater than that in the “bare

FIG. 15. S{Q,w)={[ng(w)+1]/ 7}Im(xQ,w)) vs w for Q

G(Q,w) for the parameters used hgi@mpare Fig. 14 and
the upper frame of Fig. 25As I(Q) is increased, the singu-
larity is moderated, the magnitude pf(Q) is decreased and

=3.0 A1, T=0.6 K and three values of the four-point interaction the weight of the single excitation peak 8(Q,w) is de-

I(Q) in units of KA3. SQ, w) is in the same units as Fig. 14.

creasedsee Fig. 15 For|(Q)=200 KA3, the value used for
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/

&

Iﬁ 0.02 g:(l)i_ (b) ek
—0.03 T=06K 0.04 ' i

§ —0.08 1 0.00

o —013 Q=30A1{ —004

S —0.18 zero width ] —0.08

\g | —0.12

EJZ 0.02 0.12

3 oo} oo

3 —0.08 0.00

o -0.13 —0.04

9?3 018 ~0.08
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w (IneV) w (meV)

FIG. 17. Real(a) and imaginary(b) parts ofxgo(Q,w) at Q=3.0 A1 vs w at temperature§=0.6 K and 2.1 K calculated using p-r
energieSwoQ having zero width. The dotted line 'pgg_o(Q,w) calculated with the Bose factorg(w) included inxgo(Q,w), the solid line
without. The two lines are nearly identical.

the results in Sec. Ill, the weight in the single p-r peak isn=0.022 A3, and the condensate fractiom,, yields J(Q)
comparable to that in Fig. 15. =g3/Vnon=240 KA3. Juge and Griffi# quote a value of
These results show that a finite valuel@®) is required  g;=1.9x 103 erg cn¥ A=3? for a wave vectorQ=2.8 A™*
in x\(Q) to get agreement with experiment. Use of the bareand T=1.2 K, corresponding td(Q)=350 KA3. Our value
X'AO(Q,w) in A(Q) which has singular behavior would not of J(Q) is of the same order of magnitude as theirs but it is
give good results. To assess the magnitudg@P, we note  determined explicitly from the self energy.
that the Landau parameté&s, (see Glyde? pp. 247-250
which describes(Q) in dimensionless units in liquitHe at
Q—0, is 52.2 at 20 bar pressure. Dividifg by the density
of states which is 0.014A3)™! gives 3730 KA. But this
value decreases by a factor of 10Quincreases bringing it in The zeroth order DS's used in the present calculations
line with values ofl(Q) used here. PistoléSiobtains a value given by Eqs(27) and(28) have four terms. The first term is
of -4.7 meV A& for g, which is equivalent to -55 KA Be-  the only term that survives &t=0 K for positive energies,
dell et all® quote a value ofg,=-4x103ergcn?  @>0. All previous calculations in liquidHe have retained
(=-30 KA3) (at a pressure of 24.2 bar and roton pair mo-only the first term. In calculations &(Q, ) in anharmonic
mentum 2.7 A1), and Szwabinski and Weyrai®huseg,  solids, all four terms are usually included. We kept all four
=190 KA3 in their calculations. Essentially, our value of terms to test whether the thermal terms proportional to the
1(Q)=200 KAZ is in excellent agreement with that used by Bose functions could play a role in the temperature depen-
Szwabinski and Weyrauch. Thus a value dfQ) dence ofS(Q, w). Particlularly,S(Q, w) increases in intensity
~ 200 KA3 is a physically reasonable value. A positiM€) at low w with increa}sing temperature which could arise from
value indicates that the interactions between the rotons ai@e thermal terms in’%(Q, ).
repulsive at thiQ value. Figures 17a) and 17b) show the real and imaginary parts
From an operational point of view, the magnitude@)  of x:(Q,®) calculated using temperature independent p-r
adjusts the weight in the single excitation peak relative toenergies that have zero width. For temperatures between
that in the broad resonance ai~4meV in the two- =0.6K andT=2.1K, x5%Q,w) is essentially independent
excitation band. Approximately, for largeQ), x\(Q)= of T. Thus the finite temperature termsﬁ(Q,w) make an
-1/1(Q). Typical values of J(Q) used here are)(Q) insignificant contribution, except at very low energies,
=700 KA3. While this is larger than the four-point vertex @<KT, and can be neglected.
1(Q), it is comparable to other interactions found in quantum Figures 18a) and 18b) show x:%(Q,w) using p-r ener-
liquids. Szwabinski and Weyrauthquote a value ofg;  dies, w3+il'o(T), wherewQ is again independent of and
=0.3 K nn#2 which when converted to units of KBand T'o(T) are the observed half widths. In this cagd(Q, )
divided by the square roots of both the density of ligtite,  has a very significant temperature dependence. The tempera-

B. Importance of the Bose functionsng(w) in the dynamic
susceptibilities
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FIG. 18. The same as in Fig. 17, but usim%+iFQ with the observed width's.

ture dependence Q&O(Q,w) arises from thel dependence 1 1 ho

of F%(T) in the first term ofy¢%(Q, ») and not from the terms w*Rfs: o f doS{Q,w)w = no(l - wR>, (395
in xs (Q,w) containing the Bose functions. The temperature

dependence of the mod8(Q, w) at low w shown in Figs. 9 . . . .
and 10 arises from the temperature dependend&,6f) in where ng is the condensate fraction arg, is a potential

X&O(Q, ) not from the “thermal” terms oj(gf(Q, ). energy term that i_s difficult to evaluate directly. Howevgy,
is approximately independent &f so thathg/ wg should be

small at highQ. Indeed, it is this contribution t8(Q , w) that

) o is used at very highQ values(25-100 A1) to determine
The total dynamic structure factor satisfies fh&um rule, no(T).

C. Condensate fraction andf-sum rule

1 1 Assuming thathg/ wg is small (negligibley we may esti-

—f=— J dwS(Q,w)w=1, (34 maten, using fs/ wg=ny at low T from the modelS{(Q, )

“R “R and data considered here. Attributing the sharp peak and the
where wg=%2Q?/2m is the free atom recoil frequency. The broad resonance ab~3.5 meV to S{(Q,w), as we have
separate contributions from the singular and regular partgjone throughout, we may calculate/ wg numerically from
SQ,w)=5(Q,w)+SK(Q,w), to the f-sum rule have also the data or from the model. The two give similar values. In
been determinetf. The contribution from the singular part is this way we find at lowTl
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fdwr=ny=0.068+0.07, at SVP; We also found that the increase in intensity at lawith
increasing temperature arises from the thermal broadening of
and the p-r modes. We would not expect the present model to
fdwr=ny=0.036+0.05, at 20 bars; (36) describg ther dependgnce dHQ, w) at the phonon or roton
_ ) ., _ Q well since the coupling betweeys and yg is strong at low
using data aQ=2.65 A™* and atQ=3.0 A™%, respectively. . Also, there is a mode igg(Q, ) at phonon wavevectors
The SVP value is in good agreement with an accurate dirqu since there is a sound mode in norrlle. We have as-
measurement giving ny=(7.25£0.75% at low T. The  symed here, ap=2.5 A%, that there is no mode igg.
20 bar value is consistent with Monte Carlo calculatiéhs. AsQ increases, the Weight in the Sharp peak decreases. At
Thus data and models JQ, ) at intermediateQ values  Q=3.6 A™%, the weight in the sharp peak is not observable
“beyond the roton” can be used to estimageising sum-rule  and the p-r mode is said to end. All the intensity arising from
arguments. In systems where there are no direct measurgs(Q, ») atQ=3.6 A%, which is proportional ta(T), now
ments of the condensate, this method may be used to finges at higher energyy=2A, as a broad peak in the multi-

approximate values afy(T). excitation band. This broad resonance gradually sharpens
with a further increase iQ until at very highQ (e.g.,Q
V. DISCUSSION =25 A1) it is a “delta function” peak at the free atom recoil

energy,wg=%Q?/2m. Thus the broad resonance at interme-

In this study we have formally separated the DS of a Boseliate Q evolves into the peak that is used to determine the
fluid into a singular and regular park(Q,®)=x«Q,w) condensate fraction in very high momentum transfer
+xr(Q, w). The xsis proportional to the condensate fraction experiments.
no(T) and the single particle Green’s functioB(Q,w), as x(Q,w) in anharmonic solids can be written in the same
seen from Eq(4) and(6). x4(Q, ) involves states above the form as the model used here. If we wrj{éQ, ») as the sum
condensate only. A key property of a Bose fluid with BEC isof one phonon scatteringy;(Q, w)), two phonon scattering
that the totaly(Q, w) andG(Q, w) have common poles. Thus (x»(Q,w)), interference between the one and two phonon
the density respondg) and the single particle respon&g) scattering(x12(Q, w)) plus the remainder, we have
have a common characteristic excitation energy dispersion _
curve. In superfluidHe belowT, where there is a conden- X(Q, ) = x2(Q, ) + x12Q, ) + x21(Q, ) + x2(Q, ) -+,
sate, this common energy dispersion curve is the p-r energy =AGA + xR, (37
dispersion curve. Particularly, in superfifide, there are no
low energy, single particle excitations lying under the p-r
curve to which the p-r mode can decay since the mod® of
is part of the p-r mode itself. Thus the p-r excitations can

decay only to themselves and this four phonon” process ig o o ence terms in liquid and solid helium has been
very small at low temperature. In this way the well definedmadezz a

p-r mode in superfluidHe arises because there is a conden- In liquid “He at p=20 bars SQ, w) at the “maxon” dis-

sate. In normafHe where there is no BEC, there is no p-r . B
mode except in the long wave limit. P plays the same physics &Q,w) at Q values “beyond the
At low Q andw, and low temperature, all of the weight of roton” considered here. For example, at 20 bars the “maxon”
SQ,w) lies in the single common pole—i.eS(Q, ) energy given by- thg position qf tlhe sharp pealSi®, w),
=S(Q)8w-wg). In this case the separation gfinto ys and 0=1.283 me_V is right at the limit of 2(A=0.6355 meY. _
xr is not very useful. Similarly, in the roton regiofQ Thl,JS' as at hlgher_ pressure, the p-r energy at the maxon is
~1.05 &Y where wg is again low, almost all 0S(Q, w) limited by the requqemeersZA. The weight in the sharp_
lies in a single peak. Agaings and yg must contribute in the p-r peak at 20 bar is much Iesg than that at SVP. The weight
o . of S(Q,w) above A at 20 bar is much greater than that at
same energy range and the separatioy ofto x5 and xg is -
not very useful. SVP. T_hus as pressure is increaeahd g moves toward
2A, weight is transferred from the sharp-t” peak to the

At higher wave vector§Q=2.5 A1), S(Q,w) peaks at ; o
higher energy, the weight in the p-r peak is much smaller an{i)road peak that lies aboveddn the two excitation baggaﬁs

S(Q,w) has substantial weight at energies abaxg The emperature is increased, the weight in the sharp

S(Q. ) is spread over a wide energy range and there is morat the maxon decreases uniformly with increasingnd the
opp(,)rtunity to identify the componentsqQ, ) and Fhaxon energy is nearly constant independent aé seen at

) . - , Q values “beyond the roton.” The maxon energy actually
Xr(Q, @) within the total. Specifically, in the present model jocreases marginally with increasifig Thus the maxon at
at these wave vectors, the sharp peak(Q, w) arises from 50 par could be described by the present model.

the sharp peak I5(Q,w) in xs(Q,w). The weight of the The reason thabg, is largely independent of whenwg, is
sharp peak is proportional t,(T) and the sharp peak dis- right at the limit, wg=24, is probably a combination of
appears completely from(Q, w) in the normal phase where factors. First, the roton energy(T) decreases with increas-
no(T)=0. This basic temperature dependence arising fronng T. If wg cannot exceed £, then we would expect the
no(T) which reproduces experiment is the chief finding here position of the sharp peak to decrease Withs 2A decreases
The value ofng at low T can be estimated from this structure. with T, or to disappear. However, the singularity that pre-

where AGA = y;+ x1o+ x21 has the same structure as E4).

G is the single phonon Green’s function apt?(Q,w) in A

is the two phonon DS. The cubic anharmonic term plays the
ole of J and1=0. A comparison of the magnitude of the
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pron p+O72 p+Q72 p+Q12
1 1
= + +
2 2 FIG. 19. Di i
~ . 19. Diagrammatic repre-
- Rrwver 02 .
Q2 prQ P sentation of Eq. (A8) for
x(p.p’; Q).
_ 0 0 0

vents any sharp component from having an energy greater Pistolesi has created a model in which the neutrons excite
than 2A also softens with increasinf as the p-r excitations either single(G) or pairs(y,) of p-r excitations aff=0 K.
broaden. The softening of the edge of the two-excitationThe single and pair processes interact@jéQ). The totaly
band DOS is seen in Fig. {8, for example, when the ob- is structurally the same as the first term of @ plus a two
served width of the p-r modes is included in the calculationp-r termy,. The G is given by Eq.(3). The x; is written as

of Xgo. This softening would reduce the amoung must  y,=%/(1-I,,x) wherel;,=gsGgs. X(G) includes all interac-
decrease withl to follow 2A(T). Third, the repulsion be- tions except;,. This formulation has the virtue that all terms

tween the single and pair exqitat_ion scgttering which keep‘s,kaa”y have a common denomina(ar—gségﬁ() as required
wq below 2A also weakens with increasing asno(T) de-  py the dielectric formulation. Thg is, however, fitted to all
creases. In the present model, we allowg(r) to decrease of the intensity including that of higho. This cannot be
with increasingT. We have not allowed the p-r energies to appropriate since most of the intensityaat- 2A is indepen-
decrease with increasirif Clearly, getting the temperature dent of T and exists, unchanged, in nornfale where there
dependence o(Q, w) completely correct at»=2A would  are no p-r excitations. The fit to data shows thatdoes not
require an accurate model including the temperature depemxceed A.
dence of thewg(T), ['o(T) andny(T). Szwabinski and Weyrauch have evaluated the Gavoret

To compare with recent calculations, we note that Jugend Noziéres expression for liquftHe atT=0 K. This for-
and Griffin'® have evaluated the sing(&) and pair(y) p-r  mulation is essentially &=0 K version of the present ex-
response functions using several modelsdgrand includ-  pressions. They were more ambitious in that the single p-r
ing temperature dependent widtlig,. Their results show Green’s function and, were obtained by an iteration pro-
how G and y depend on the model assumptions ta% gs  cess so that the singl® in Eq. (26) and theG used(x°) in
=\ngnJ andg,=1. They note particularly that the coupling of Eqg.(27) were the same and internally consistent. They show
G and y via g5 vanishes afl, whereny=0 as in the present fits to data having both positive and negatiyg£Q)(=1(Q))
formulation. values. They found);(Q)(0 J(Q)) larger thang, as found

In a direct comparison with their data f&Q,w), FAk  here.
and Bossy begin with the Gavoret and Noziéres expression,
Eq. (4), and setA=1 so thaty=2,G(Q, w) + xg(Q, w). Their ACKNOWLEDGMENTS
G(Q,w) is Eq. (3) with a weightZ,. The w% is a FC like It is a pleasure to acknowledge valuable discussions with
single p-r energy which we have adopted hefgis repre-  P. Noziéres, B. Fak, J. Bossy, J. Szwabinski, and M. Wey-
sented by a DHO function as in model A here. Thetheg;  rauch. The authors are particularly grateful to B. Fak for a
in 312, and the DHO are obtained by fits to data. Thajis  critical reading of the manuscript. Partial support from the
somewhat smaller, but comparable to that found here. T®ational Science Foundation, DMR-0115663, is gratefully
represent th@-dependence of, they takeZ;«ny(T) andyg ~ acknowledged.
is refitted at eac. This provides a good fit to data suggest-

ing that Z, is indeed approximately proportional t@(T). APPENDIX: THE DYNAMIC SUSCEPTIBILITY

The two peaks ir5(Q,w) arise fromG(Q,w). yr(Q,w) is In this section, we separate the DEQ,w), into a part
largely independent of, especially at highw. involving the condensatghe zero momentum state=0)],
p+Q2 p+0r2 p+Q72 Q2 p+Q2

i Y B ¥

= +

) 3 o 3 FIG. 20. Diagrammatic repre-

p+Q/2 _p+n Q2 —p"+Q2 QR sentat/ion of Eg. (A12) for
I'(p.p";Q).
I = I + I ¥ T

144511-15



A. R. SAKHEL AND H. R. GLYDE PHYSICAL REVIEW B70, 144511(2004

p+Q2 p+Q/2

B Y

Q 8 = . .

FIG. 21. Diagrammatic repre-
Q2 - pHQA2 sentation of Eq. (A20) for
I'(p,p"; Q).
r = IV + P G P
xs(Q,w), and a part that contains states above the conden- Gaplp, 1) =—=(T, ag(T)a;ﬁ(o», (A4)
sate(p+ 0) only, xr(Q, w),
X(Q,0) = xs(Q,w) + x(Q,w). (A1)  wherea=1,2. Fora=1,a;=a,anda=2, ag:afp. Gy(p, 7

is the usual Green'’s function describing propagation of par-
ticles and the otherge.g., G, are anomalous functions
which are not zero if there is a condensate.

Inserting the expression fer(Q) into Eg. (A2), we have

This is done essentially by expandig¢Q, ) in momentum
states, identifying the terms involvinge 0, and collecting all
these terms invs(Q, w). The separation fox is formally the
same as is done often for the Hamiltonian in Bose systems
(Bogoliubov?® Hugenholtz and Pine®¥,Mahar) to identify

the terms that depend on the condengpte0). Our formu- 1
lation is identical to that of Gavoret and Noziéres except that x(Q,7) = WE x(p,p";Q,7), (A5)
it is done here at finite temperaturk, '

We begin with the DS for the density response of a Bose

fluid as
where

Q== ST, pQAFQO). (A2
X(P.p'5Q.7) = (T, al_go( Dap.qra Vg r2(0)a-gr2(0)).

wherep(Q) =3y ala.q=3p @l o8p+qr2 IS the Fourier trans- (AB)
form of the number density in a second quantized represen-
tation. Thea, and a‘r; are the usual operators that annihilate
and create particles in momentum stdte, r=it/% is an
imaginary time,T is the time ordering operator amdis the
number of Bosons. The dynamic structure fac¥®, w) is
related toy(Q, w) by

Our starting point is the equation for the two-body
Green’s function,

Gupyol 1,2:3,4 = V(@ (r)af (m)al (ms)ad (7)),
(A7)

SIQ.0) == ~[ng(o) + IIM((Q0+i7),  (A3)

given, for example, by Abrikosoet al3! (1963 on p. 139.
where x(Q,w+i7)=x(Q,iw,) is the Fourier transform of We note that x(p,p’;Q,nN=Gy{—p+Q/2,p+Q/2;p’
Eq. (A2) defined at the frequency pointe,, w+iz is the  +Q/2,-p’+Q/2). That is, x and G4, are the same ip;

usual continuation ofw, to the real axis anthg(w)=(e®”  =-p+Q/2 anda=2, p,=p+Q/2 andB=1, p;=p+Q/2 and
-1)"1is the Bose function withB=(kgT) ™. v=1, p,=-p’'+Q/2 and=2, ,=1,=7 and r3=7,=0. From
The corresponding single particle Green’s functions forthe equation for the Fourier transform of Eé\7) we obtain
the Bose fluid having a condensate are the equation for the Fourier transform gfp,p’;Q, 7),
p+Q/2
Q Y
g 3 FIG. 22. Diagrammatic repre-
sentation of Eq. (A26) for
—p+Q2
P P(p.Q).
—_ !
P = J + J xg T
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’. —r.0 0
XPPQ =beendP Db p ¥ Xoad P Dol X0(Q.0)= 1 °S Go(Q,0) + Xir(Qu), (ALY
B

XV(_ Bﬁ) 5n]nr
+Xgalﬁ(p!Q)Faﬁyﬁ(p!p/;Q)Xg/léz(p’!Q)’ whereny=Np/N is the condensate fraction, and
A8 , 1
(A8) Xor(Q, w) = Nz ( )E [X9114P.Q) + x3514(P. Q)]
where p
Al8
0 =Gl —p+2)e,p+ 2 (A9) -
Xapys = Cap| ~P 2 )78 P 2 To display howys and yg are obtained from EqA8), we

write Eq.(A8) schematically, using EqA16), as
represents the independent propagation of a pair of particles

and x = (NoG + xg) + (NoG + x0)T'(NoG + x) = NoG + NoGI'x
VI (. , + Noxol'G + xo + xol Xo- (A19)
XQ)= N f dpf dp'x(p.P"Q), (A10) We also write Eq(A12) schematically using EqA16)
where T'=1+1(NG+ x)T,
_ 1 1 Y
dp==— R , All =I'" + NOPGP (AZO)
f P VEp ( ,Bﬁ)zn: (A1)

All terms involving more than on& vanish(the interac-
and G(p)=G(p, Iwn) G(p+Q)=G(p+Q,iw, +iw,), Q  tionis zero in these equationsn Eq. (A20),

=Q,iwn, P=p,iwy 'In Eq. (A8) T p,s(p.p';Q) s the full Popy(P'sQ) =T 00p,(0,0";Q) (A21)

interaction between a pair of particles and can be written as
is the four-point interaction with one index zero so that it

Lapys(PP";Q) =l apys(pp’; Q) becomes a three-point interaction. TRe is the full four-

+1 07.0)y° " QT " 0':0). point interaction given by EqA12) but with x, replaced by
apen( PP QXener (P, Q) 1ol P, P Q) X6 Equation(A20) is depicted in Fig. 21.

(A12) Substituting Eq.(A20) into Eq. (A19) the full dynamic
In Eq. (A12), |,4, represents that part df,s,s which x(Q) in Eqg. (A10) is
O ’

does not have a free pdit”) as an intermediate state. Equa- X(Q) = A(Q)Gu4(Q) A Q) + XH(Q), (A22)
tions (A8) and (A12) are represented in Figs. 19 and 20, )
respectively, and are the starting point of our analysis. ~ WhereG,5(Q)=G,4(Q,iwy),

Our goal now is to identify the terms ig(Q) involving _ -
the condensatép=0). We do this exactly as in the case of Q) =Vng| 1+ f dpLs12(p.Q) |, (A23)

the Ham|lt0n|an(BogoI|ubov28) by identifying wherep=0
and replacingag=a_y= a0 by \NO When p=0 the Green’'s and
function reduces to

Gaﬁ(pv n=—(T, ag T)a;gﬁ(o» =-N, (A13) J dpl—,Blz(pvQ) :f dpP,Bya(pvQ)Xylaz(p Q)
for all «, B and the Fourier transform is B 2 ( )
_ B _ Bh
Gp(p,iwp) :f dre' "G 4(p, 7), o
0
XE Pﬁyﬁ(plQ)Gyl<p + E)
=— Nof3Hi 0. (A14) "
Using this result, the terms involving the condensate in XGaz(‘F“;)- (A24)
the free two particle propagator H@#\9) can be identified as
The
Xoy6(P. Q) = (= NoB#) 3, d G Q) 8y -1z + G Q) 5 2] o . o
, ! = ’ + ! ! ! A 5
+Xg,gy5(pvQ)1 (A15) Xr(Q) = xor + Xol " X0
o . involves states above the condensate only. ThamjéQ) is
mheregiaﬁég(p;o(\gl)slnvorl]ve st?teTI above the condensate only. glven exactly by Eqs(A8) and (A10) in which X ~and
e write Eq.(ALS) schematically as I, 5,5 INvolve states above the condensate onIy

Xo=NgG + x5 (A16) We note thatP satisfies an equation analogous to Eq.

. ) (A12) (see Fig. 22,
Explicitly, the zeroth order terms ¢f{(Q, w) [obtained from

the first two terms of Eq(A8)] are P=J+Jxl",
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=J+1"xoJ, (A26)
and xoP=xgd+xol" xod=x'J, where
X =Xxo* xol'"xo= X0+ xolx', (A27)

for any set of indicesyByd. Thus we may write

PHYSICAL REVIEW B70, 144511(2004

Lp12(P.Q) = Ps,s(p. QX 3(P. Q).

=J5y5(P, QX152(P, Q). (A28)

and x’; »(p,Q) is given by Eq.(A27) and x, by Eq. (A9).
Equations(A22), (A23), (A28), and (A25) are the starting
points of our model for(Q).
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