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We present analytical and numerical results for the electronic spectra of wires of ad-wave superconductor
on a square lattice. The spectra of Andreev and other quasiparticle states, as well as the spatial and particle-hole
structures of their wave functions, depend on interference effects caused by the presence of the surfaces and are
qualitatively different for half-filled wires with even or odd number of chains. For half-filled wires with an odd
number of chainsN at (110) orientation, spectra consist ofN doubly degenerate branches. By contrast, for even
N wires, these levels are split, and all quasiparticle states, even the ones lying above the maximal gap, have the
characteristic properties of Andreev bound states. These Andreev states above the gap can be interpreted as a
consequence of an infinite sequence of Andreev reflections experienced by quasiparticles along their trajecto-
ries bounded by the surfaces of the wire. Our microscopic results for the local density of states display
atomic-scale Friedel oscillations due to the presence of the surfaces, which should be observable by scanning
tunneling microscopy. For narrow wires the self-consistent treatment of the order parameter is found to play a
crucial role. In particular, we find that for small wire widths the finite geometry may drive strong fluctuations
or even stabilize exotic quasi-one-dimensional pair states with spin-triplet character.
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I. INTRODUCTION

Since the discovery of high-temperature superconductiv-
ity (HTS), the origin of the pairing phenomenon in these
materials has been the subject of intense debate, and is still
not clarified. Part of the unusual nature of HTS which has
hindered theoretical analysis is the short coherence length,
which allows short-wavelength fluctuations of various types
of local order to coexist with superconductivity. Most probes
of the nature of the superconducting state have been re-
stricted, until fairly recently, to measurements of bulk prop-
erties and tunneling through relatively large areas. Following
the pioneering work of Hesset al.,1 it was realized that scan-
ning tunneling microscopy(STM) could provide an atomic-
scale picture of the superconducting state, particularly useful
when applied to inhomogeneous situations such as the vortex
lattice. Measurements of this type were subsequently per-
formed on high-temperature superconductors.2 In the past
few years, scanning tunneling microscopy on the surface of
HTS have compiled a novel and fascinating picture of the
local electronic structure of a few of these materials.3–10 In
the Ba2Sr2CaCu2O8 system(BSCCO), one dramatic implica-
tion of these experiments is that even relatively high quality
single crystals display inhomogeneous electronic structure at
the nanoscale.7–10

In parallel to studies of the HTS materials, point-contact
spectroscopy has been used to study the electronic structure
of ultrasmall conventional superconducting islands.11 Among
many fascinating consequences of the nanoscale geometry
are number parity effects, in which the qualitative electronic
structure depends sensitively on whether the number of elec-
trons on the island are even or odd. More recently, supercon-
ducting wires of widths tens of nanometers12 have also been
fabricated. Although they have not yet been studied by STM

or similar methods, this should be technically feasible.
Isolated nanoscale grains and wires of HTS material have

not been fabricated to our knowledge. While this may prove
technically quite difficult to achieve due to the complexity of
the crystal structure, there seems to be no fundamental ob-
stacle in the long run. This applies as well to other supercon-
ductors thought to manifest unconventional superconducting
order, where effects of finite geometry should be easier to see
since coherence lengths tend to be larger.

It is our purpose in this paper to study howd-wave(e.g.,
HTS) and other unconventional symmetry superconductors
behave in finite geometry at the atomic scale. Ziegleret al.13

began the study of this problem in the case of(100) d-wave
quantum wires, pointing out the dependence of the Fermi-
level density of states on the parity of the wire width. This is
a natural consequence of the discretization of the electronic
energy levels due to the finite wire width in thed-wave state.
While in thes-wave case all the interesting physics is tuned
by the level discretization, one expectsa priori one funda-
mental difference in thed-wave case. For any geometry with
surfaces making an arbitrary angle with the crystal axes,
pair-breaking processes take place on a scale of the coher-
ence length. The most important consequence for the elec-
tronic structure should be the formation of Andreev surface
states.

However, little is known about how Andreev surface
states behave when the size of the superconductor becomes
comparable toj0. The zero-energy states form on surfaces
with orientations different from the antinodal directions of a
d-wave superconductor, due to the sign change of the order
parameter. In high-temperature superconductors, such states
manifest themselves as the zero-bias conductance peak in
tunneling spectroscopy in theab plane,14–39 the anomalous
temperature behavior of the Josephson critical current40–43
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and the upturn in the temperature dependence of the mag-
netic penetration depth44–46 (see also review articles, Refs.
47,48). The conventional description of Andreev surface
states, as well as the Andreev reflection itself, is based on the
quasiclassical approximation, a powerful tool in the theoret-
ical study of various properties of inhomogeneous supercon-
ducting systems.

The quasiclassical theory of superconductivity gives a so-
called coarse-grained description of the phenomena, aver-
aged over interatomic distances. This has been used, for ex-
ample, to calculate the local quasiparticle density of states
(LDOS). However, these coarse-grained averaged results are
not adequate to analyze atomic resolution measurements by
STM and some other contemporary experimental techniques
(e.g., atomic force microscopy49). To obtain this type of in-
formation, a fully quantum-mechanical atomic-scale ap-
proach going beyond the quasiclassical approximation in
describing inhomogeneous states of superconductors is re-
quired. We address this problem in the present paper using a
tight-binding BCS-like model of ad-wave superconductor on
a square lattice.

As a first step towards understanding the effect of con-
strained geometry, we study the simplest case ofd-wave su-
perconducting wires consisting ofN parallel chains as the
system size is reduced. The quasiparticle spectrum of such
systems is described both analytically, with an assumed spa-
tially homogeneous order parameter, and also numerically
with a fully self-consistent approach. In the limitN@1 the
usual surface Andreev states in lattice models,34,36,47as well
as the surface states known in continuous models,23 can be
recovered at each surface of the wire. However, for suffi-
ciently narrow wires, when the transverse wire dimension is
the order of the superconducting coherence length, the An-
dreev states strongly interfere and give rise to qualitatively
new effects. We show below that only those effects which
occur for bands sufficiently far from half filling and rela-
tively wide wires can be described with the quasiclassical
theory of superconductivity. In addition, we demonstrate
how and under what conditions one can recover earlier qua-
siclassical results for Andreev states ind-wave superconduct-
ing films50 from our microscopic approach.

The microscopic method adopted in this paper to con-
strain the geometry involves introducing lines of impuri-
ties of potential strength taken to infinity to bound the wire.
We show that earlier microscopic results on(110)
surfaces23,34,36,47,51and (100) wires13 can be reproduced by
this technique, and then extend it to calculate results on wires
with other orientations. We find that the results for electronic
spectra are very sensitive to the number parity of the wire
width, and that true zero-energy Andreev states can only ex-
ist in wires with odd numbers of chains. In even wires, the
Andreev states are split, pushed away from the Fermi energy,
and can have either surface or standing wave character. Fi-
nally, we show that for smaller wires self-consistency effects
become important and can even, within mean-field theory,
lead to condensation of a fully gapped spin-triplet state in-
stead ofd-wave order.

Our results may also have some qualitative relevance for
the related problem ofd-wave superconducting grains, where
the geometry is constrained in two dimensions. In addition to

artificially fabricated islands, some authors have proposed
that the BSCCO-2212 samples which display nanoscale in-
homogeneity should be thought of as a collection of weakly
coupledd-wave grains of roughly the size of the supercon-
ducting coherence lengthj0, or d-wave grains coupled to
grains of another electronic phase.7,9,10,52 In fact, the struc-
ture of a general, possibly irregular small grain ofd-wave
superconductor, has not been studied to our knowledge. Un-
derstanding how the LDOS of these wires depend on the
wire width and the orientation, as well as on the deviation
from half filling, could provide important intuition for the
question of the electronic structure of the small irregular
grains possibly present in BSCCO samples.

The outline of the paper is as follows. In Sec. II, we
introduce the formalism for the problem. In Sec. III, we dis-
cuss three special semi-infinite surface orientations:(110),
(210), and (100). In Sec. IV B 2, we study the(110) super-
conducting wires with even and odd width and make a com-
parison with the discrete states in normal metal wires(Sec.
IV B 1) to try to identify the nature of the true Andreev
states. In Sec. IV B 3, we study the effects of deviations from
the half filling. In Sec. V the results of fully self-consistent
calculations are presented. In particular, we allow the order
parameter to vary spatially and comment on the differences
in our results. In the case of narrow wires the self-consistent
study shows the appearance of some peculiar types of super-
conducting pairing. Finally, in Sec. VI, we present our con-
clusions.

II. MODEL DESCRIPTION AND FORMALISM

The Hamiltonian for a pure singlet superconductor can be
written as

H = − t o
ki,jl,s

cis
† cjs − o

i,s
fm − Uigcis

† cis + o
ki,jl

hDi j ci↑
† cj↓

† + H.c.j,

s1d

where we have chosen a nearest-neighbor tight-binding band
for simplicity; m is the chemical potential. A superconducting
pairing is defined for nearest neighborsDi j =−Vkcj↓ci↑l on the
bondhi , jj. The parametert is of order 150 meV for high-Tc

materials, and we consider both the particle-hole symmetric
model m=0 and the more realistic case of finitem. In non-
self-consistent calculations the order parameter has the fa-
miliar k-space formDk =D0fcosskaad−cosskbadg, where D0

= 1
2o±sDii±ra

−Dii±rb
d is independent ofi, and is taken to be

0.2t. The lattice constant is denoted bya. The maximum gap
is Dmax=2D0. We also present self-consistent calculations, in
which caseV is chosen to yield this same value ofD0 far
from wire edges.

It is possible to constrain the geometry underlying Eq.(1)
in several different ways. We present results here for a
method discussed, for example, in Refs. 34,53 in which the
on-site potentialsUi are chosen to lie on the boundary and
their value is taken to infinity to cut off electron transport
through the boundary. This technique has the virtue that the
strength of the barrier can in principle be lowered to allow
different degrees of transparency and the study of tunneling
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phenomena. In this work we restrict ourselves to impurity
configurations and strengths for which the constrained sys-
tem is completely isolated from its environment. This is
equivalent to the assumption of open boundaries, when no
hopping and no pairing take place outside the region. No
disorder is introduced in the system and we considerUi as
“impurity” potentials only so as to form the surfaces of the
superconducting region.

The Hamiltonian of the surface term is taken to be

U = U0o
,s

c,s
† c,s, s2d

where the set of sites, is determined exclusively by the
boundaries of the desired system(see below). The full Fou-
rier space Green’s function for the system in the presence of
these impurities is quite generally

Ǧsk,k8,vd = Ǧs0dsk,vddk,k8 + Ǧs0dsk,vdŤsk,k8,vd

3Ǧs0dsk8,vd, s3d

where theT matrix can be found from the following equa-
tions:

Ťsk,k8,vd = Ǔsk,k8d + o
k9

Ǔsk,k9dǦs0dsk9,vdŤsk9,k8,vd.

s4d

HereĞ andT̆ take 434 matrix form in the four-dimensional
product space of particle-hole and spin variables. If we
choose nonmagnetic on-site potentials and consider singlet
superconductors, the problem reduces to 232 matrices in
Nambu space. The Nambu retarded propagator for the pure
d-wave superconductor is

Ĝs0dsk,vd =
vt̂0 + jkt̂3 + Dkt̂1

sv + i0d2 − jk
2 − Dk

2 , s5d

where theta are the Pauli matrices andjk =−2tfcosskaad
+cosskbadg−m. Calculating theT matrix allows us to obtain
the eigenenergies of the system from the condition

detT̂−1svd=0.
The local spin-resolved quasiparticle density of states is

given as

r↑s↓dsr ,vd = − p−1Im G11,↑↑s↓↓dsr ,r ,vd. s6d

After integration of the LDOS over energy, we should obtain
the total number of quasiparticle states for each site. Since
each site on the lattice possesses two states with opposite
spins, the spin-resolved LDOS normalization is

E
−`

`

dvr↑s↓dsr ,vd = 1. s7d

III. SURFACE CASE

Upon a conventional reflection on the(110) surface of a
d-wave superconductor, the order parameter always changes

sign as the direction of the quasiparticle momentumk is
varied. This leads to Andreev reflection and, eventually, to
the formation of the dispersionless zero-energy surface An-
dreev bound states. For other surface orientations the sign
change does not take place for all incoming momentum di-
rections. It is important to notice that the number of consecu-
tive impurity lines that are needed in order to cut the system
depends on the orientation of the surface one wants to con-
sider. For(100) and(110) surfaces and nearest-neighbor hop-
ping, one line of impurities is sufficient to cut communica-
tion between the two sides. For a(210) surface, the nearest-
neighbor hopping and pairing terms can still connect this
particle with another across a single line of impurities, so for
a simple tight-binding band, two consecutive lines are
needed to close the system(Fig. 1). Alternatively, if one
includes a next-nearest-neighbor hoppingt8, even a(110)
surface is not closed by a single line of infinite impurities;
the system considered in Ref. 53 is therefore not a closed
(impenetrable) surface. For ashl0d surface in general,
maxsh, ld lines are needed for a model that includes nearest-
neighbor terms only, andh+ l lines are needed for a model
that includes next-nearest-neighbor terms. Clearly, the tech-
nique becomes cumbersome for arbitrary angles, but one can
nevertheless learn a good deal by considering special cases.

In the presence of a surface of arbitrary orientation, the
simplest way of applying Bloch’s theorem to this discrete
system is by using a surface-adapted Brillouin zone.36,51 We
define new coordinatessx̂, ŷd, rotated with respect to the

crystal axessâ,b̂d, where x̂ is the direction normal to the
surface andŷ is the direction along the surface. The system is
periodic along they direction and the crystal momentum
componentky of a quasiparticle is conserved. Instead of the
usual square Brillouin zoneka=f−p ,pg ,kb=f−p ,pg (for
unit lattice constanta=1) we now use the surface-adapted
Brillouin zone given bykx=f−p /d,p /dg andky=f−pd,pdg.
Hered=1/Îh2+ l2 is the distance between the nearest chains
(layers) aligned along the surfaces. The momenta in the two
coordinate systems are simply related through rotation of an
angleu=tan−1h/ l.

Now we turn to the solution of the equation for theT
matrix [Eq. (4)] for the case of one line of impurities. We
start with the ansatz

FIG. 1. (210) surface or wire. Two lines of impurities(closed
squares) are needed to isolate the lattice sites(closed circles) with
nearest-neighbor hopping.
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T̂ = T0t̂0 + T1t̂1 + T3t̂3 s8d

and find, for arbitrary strength of impurity potential,

T0sky,vd =
G0

s0ds0,ky,vd
D1

, s9d

T1sky,vd =
− G1

s0ds0,ky,vd
D1

, s10d

T3sky,vd =
c − G3

s0ds0,ky,vd
D1

, s11d

where D1sky,vd=fc−G3
s0ds0,ky,vdg2−G0

s0ds0,ky,vd2

+G1
s0ds0,ky,vd2,c=1/V0, and Gi

s0dsx,ky,vd is the Fourier
transform with respect tokx of the ith Nambu component of
the bare Green’s functionGi

s0dsk ,vd

Gi
s0dsn,ky,vd =

d

2p
E

kx=−p/d

p/d

Gi
s0dskx,ky,vdeikxnddkx. s12d

The site indexn corresponds tox-coordinatex=nd. For the
case of infinitely strong impurity potential considered here,

c=0. In this case the expression forT̂ can be written in the
compact form,

T̂sky,vd = − fĜs0ds0,ky,vdg−1, s13d

and the poles of theT matrix correspond to zeros of the

determinant of the Green’s functionĜs0ds0,ky,vd.
The Fourier transform with respect tokx of Eq. (3) is

Ĝsn,n8,ky,vd = Ĝs0dsn − n8,ky,vd − Ĝs0dsn,ky,vd

3fĜs0ds0,ky,vdg−1Ĝs0ds− n8,ky,vd.

s14d

Due to periodicity of the system along they direction, cal-
culation of the LDOS at siten will simply involve a sum of
Gsn,n,ky,vd over all values ofky within the surface-adapted
Brillouin zone and over two spin directions:

rsr ,vd = rsn,vd = −
2

p
ImE

−pd

pd dky

2pd
G11sn,n,ky,vd.

s15d

A. (100) surface

Since(100) surfaces are not pair breaking ind-wave su-
perconductors, we do nota priori expect to see interesting
physics arising from Andreev states. On the other hand, the
mere presence of a surface can induce surface Tamm
bands,54 decaying in the bulk on the atomic scale and expe-
riencing the Friedel-like oscillations of the LDOS. In our
model Tamm states have nothing to do with the supercon-
ductivity, although the possibility for pairing of electrons oc-
cupying these surface states is not excluded.55 While it is not
our intent to study these in detail, we present some results to

show that such states can be seen by the STM even in situ-
ations where surface Andreev states are absent. Figure 2
shows on upper and lower panels the LDOS for various dis-
tances from the surface in the normal metal and the super-
conducting states, respectively.

B. (110) surface

Results for a(110) surface are expected to be qualitatively
different from the ones obtained for a(100) surface. The bulk
order parameter in the coordinate system of the crystal axes

â andb̂ is Dk =D0scoskxa−coskyad, but in the coordinates of
the surfacex̂ (perpendicular to surface) and ŷ (parallel to
surface) becomesDk =2D0sinkxd sinkyd, with d=a/Î2. In
this case, an incident particle with any nonzeroky experi-
ences a sign change in the order parameter as it reflects from
the surface.

Calculation of the bare Green’s functionĜs0dsn,ky,vd
from Eq. (12) gives atm=0, G1,3sn,ky,vd=0 for evenn and
G0sn,ky,vd=0 for oddn. Explicitly,

FIG. 2. Local density of statesrsx,vd for a (100) surface. Nor-
mal state(upper panel) and superconducting state(lower panel),
rsx,vd vs v /Dmax for various distancesn=x/d from surface;
Dmax=0.4t ,m=0.
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Ĝs0dsn = 2m,ky,vd = −
i uvuexph− i unuzsgnfvsq2 − D2dgj

Îsv2 − D2dsq2 − v2d
t̂0

s16d

and

Ĝs0dsn = 2m+ 1,ky,vd

=
iD exph− i unuzsgnfvsq2 − D2dgjsgnfnsq2 − D2dg

Îsq2 − D2dsv2 − D2d
t̂1

+
iq exph− i unuzsgnfvsq2 − D2dgjsgnsvd

Îsq2 − D2dsq2 − v2d
t̂3, s17d

where

zskyd = tan−1Î q2 − v2

v2 − D2 , s18d

Dskyd = 2D0sinskydd, s19d

qskyd = 4t cosskydd, s20d

and Dskyd and qskyd are the maximum gapDk and single-
particle spectrumjk for fixed ky in (110) geometry. Note
that here the square-root function takes positive values
for positive arguments, i.e., under the conditions
uDskydu, uvu, uqskydu or uqskydu, uvu, uDskydu. For A2

−v2,0, the branchÎA2−v2→−i sgnsvdÎv2−A2, for either
A=D ,q. In Fig. 3 we show the LDOS spectra on the different
layers. Each layer is defined as an array of sites parallel to
the surface. Its index indicates its position; layern corre-
sponds to sites at a distancend away from the surface.

The Andreev bound states are manifested as zero-energy
peaks in the LDOS. Form=0, such states are found in all
odd layers, and are absent on even ones, as seen in Fig. 4.
This even-odd effect can be easily understood from the form

of the T matrix and Green’s functions, Eqs.(13)–(17). For
even n, the bare Green’s functionGs0dsn,ky,vd is propor-
tional to v for low frequencies. Then theT-matrix T,1/v
for smallv. Even though theT matrix has a pole atv=0, the
product of two Green’s functions in the analog of Eq.(3)
decreases faster, resulting in zero LDOS at zero frequency.
As seen from the right panel of Fig. 3, the low-energy den-
sity of states on even layers near the(110) surface is substan-
tially less than in the bulk, where it varies linearly with suf-
ficiently low energy. Furthermore, the amplitude of the gap
features in the LDOS is noticeably suppressed with decreas-
ing distance from the surface. These features of the LDOS
can be understood based on a simple relation between the

Green’s functionĜsn8=n,ky,vd of the half space and the

FIG. 3. Local density of states
rsx,vd in superconducting state
vs v /Dmax for the case of one
(110) surface, D0=0.2t ,m=0.
Left: chains an odd distancen
=x/d from surface atx=0. Right:
chains an even distance fromx
=0.

FIG. 4. Amplitude of Andreev state vs distancen=x/d from
(110) surface forD0=0.2t ,m=0.
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bare Green’s functionĜs0dsn−n=0,ky,vd, which takes place
for evenn=2m:

Ĝsn8 = n,ky,vd = h1 − expf− 2i unuz sgnsvsq2 − D2ddgj

3Ĝs0ds0,ky,vd. s21d

The factor in the braces in Eq.(21) controls the deviation
from the bulk behavior and diminishes with decreasing even
unu. At low energies only narrow regions ofky near the center
and the edge of the Brillouin zone contribute to the LDOS.
As a result, for even layers the density of states goes asuvu3
at low energies, with the main contributions arising fromky
near the edge of the Brillouin zone.

For odd layers, thet1 and t3 components ofĜs0dsn=2m
+1,ky,vd are the ones that are nonzero, and they approach a
constant value asv goes to zero. So the pole in theT matrix
generates the peak in the LDOS, associated with the zero-
energy Andreev surface states. For Andreev states,z is an
imaginary quantity. The size of the peak decreases as the
distance to the surface increases due to thee−un Im zu factor in
Eq. (17). For large unu, small ky dominates the integration
over ky in the LDOS and we obtain the following zero-
energy asymptotic behavior of the LDOS:rsvd
=s2t /pD0n

2ddsvd. The size of the zero-energy peak in the
LDOS ~n−2.

C. (210) surface

It is useful to study a case intermediate between the stan-
dard (100) and (110) surfaces to see what qualitatively new
features arise. From the usual quasiclassical viewpoint, the
weight of the zero-energy Andreev(210) surface states
should be finite, but smaller than for the(110) surface be-
cause the phase space for which the reflecting quasiparticle
experiences a sign change of the order parameter is reduced.
The tight-binding model leads to a more complicated depen-
dence of the weight of the zero-energy states on the surface
orientations relative to the crystal axes. Thus, for the(210)
surface the model shows at half filling no zero-energy An-
dreev states at all. We associate this discrepancy, in particu-
lar, with the difference between reflection channels incorpo-
rated in the two approaches.

Standard quasiclassical considerations imply that parallel
to a smooth surface the momentum componentky is con-
served in a reflection event, and only conventional specular
reflection takes place. A tight-binding model shows that, gen-
erally speaking, this is not the case, since thecrystal momen-
tumcomponentky can also change in a reflection process by
a reciprocal crystal vector along the surface. Due to a differ-
ence between reciprocal crystal vectors at the surface and in
the bulk, the momentum acquired by a quasiparticle in a
reflection event can be physically distinguished in the bulk
from that of specularly reflecting quasiparticle. Hence, spe-
cific crystal periodicity along a particularly oriented surface
can result in additional channels for quasiparticle reflection,
if there is a reflected statekxskyd ,ky on the Fermi surface
corresponding to theky surface Umklapp process.56

In this case the Fermi surface, considered as a part of the
surface-adapted Brillouin zone, should exhibit multiple val-

ues of outgoingkF,x for a fixed value ofkF,y. This situation is
realized for the comparatively complicated multisheet struc-
ture of the Fermi surface in the surface-adapted Brillouin
zone for the(210) surface, as obtained in Fig. 9 of Ref. 36. A
strong dependence of the particular shape of the surface-
adapted Brillouin zone, as well as the Fermi surface in the
zone, on surface orientation is an important characteristic
feature of the tight-binding models.36,51Within the quasiclas-
sical theory, the shape of the Fermi surface is usually con-
sidered as independent of surface orientations relative to the
crystal axes. We note that the zero-energy surface states can
disappear, if multiple channels for reflection of quasiparticles
from an impenetrable surface are assumed. In this section,
we now study the LDOS for quasiparticle spectra obtained
with the tight-binding model at half filling for(210) surface.

Technically, we now need to solve for the Green’s func-
tion in the presence of two impurity lines(Fig. 1). In the
general case of two parallel impurity lines, we cut the crystal
at an orientation given byshl0d and introduce an impurity
potential

Usr d = U0o
j

dsr − R jd, s22d

where R j are the points on the two impurity lines, at the
location of the boundaries. The first boundary is defined to
be located atx=0 with impurity sitesR j = jd−1ŷ and the other
is parallel and located atx=sN+1dd with R j =sN+1ddx̂+sc
+ jd−1dŷ, giving a total ofN free chains. Herec is a shift
alongy axis of sites on thesN+1dth chain relative to the sites
on the 0th chain. For the special case of the(210) surface, we
need two adjacent lines atx=0 andx=−d, so formally this
corresponds to the case ofN=−2.

The equation for theT matrix [Eq. (4)] for this impurity
potential can be solved by choosing the ansatz

T̂skx,kx8,kyd = t̂0 + t̂1e
isN+1ddkx + t̂2e

−isN+1ddkx8 + t̂3e
isN+1ddskx−kx8d.

s23d

In the limit of infinitely strong impurity potential this gives

FIG. 5. Local density of statesrsx,vd vs v /Dmax for a closed
(210) nontransparent surface at half filling model andD0=0.2t ,m
=0. Each curve corresponds to a chain located at a distancex/d to
the surface.
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t̂0 =
− Ĝs0ds0d−1

1 − Ĝs0ds0d−1Ĝs0ds− N − 1dĜs0ds0d−1Ĝs0dsN + 1d
,

t̂1 =
Ĝs0ds0d−1Ĝs0dsN + 1dĜs0ds0d−1

1 − Ĝs0ds0d−1Ĝs0ds− N − 1dĜs0ds0d−1Ĝs0dsN + 1d
,

t̂3 = −
Ĝs0ds0d−1

1 − Ĝs0ds0d−1Ĝs0dsN + 1dĜs0ds0d−1Ĝs0ds− N − 1d
,

t̂2 =
Ĝs0ds0d−1Ĝs0ds− N − 1dĜs0ds0d−1

1 − Ĝs0ds0d−1Ĝs0ds− N − 1dĜs0ds0d−1Ĝs0dsN + 1d
.

The Green’s function in this case can then be written as

Ĝsn,n8d = Ĝs0dsn − n8d − fĜs0dsnd Ĝs0dsn − N − 1dg 3 S Ĝs0ds0d Ĝs0ds− N − 1d

Ĝs0dsN + 1d Ĝs0ds0d
D−1S Ĝs0ds− n8d

Ĝs0dsN + 1 −n8d
D , s24d

where we have not written the dependence onky andv ex-
plicitly.

The equation for the bound state on(210) surface is

detS Ĝs0ds0d Ĝs0ds1d

Ĝs0ds− 1d Ĝs0ds0d
D = 0. s25d

Figure 5 displays the LDOS spectra calculated on several
layers for (210) surface. There is no zero-energy peak ob-
served on any chain at all, for the reasons explained in the
beginning of this section. The peaks in the LDOS, seen close
to the(210) surface at energies ±0.5Dmax, originate from the
gap features taken for the momentum along the surface nor-
mal: DskF,x,kF,y=0d=0.5Dmax. The peak atv=DskF,x,0d
arises for the homogeneous model of the order parameter,
while for the self-consistent spatially dependent order param-
eter it lies slightly belowDskF,x,0d. It is associated with the
surface Andreev states and decays in the depth of the super-
conductor. These peaks have been theoretically found first in
Ref. 23 with a continuous model and then also for the con-
ductance with a lattice model.36 We notice that the conduc-
tance spectrum shown in Fig. 14 of Ref. 36 is in agreement
with the LDOS on the first chain(at x=d) in Fig. 5. The
variations of the LDOS from chain to chain, which accom-
pany a large-scale behavior, are the Friedel-like oscillations.

IV. HALF-FILLED WIRES

We now consider wires where the second line of impuri-
ties confines the system to a finite width, i.e., we restrict
ourselves to the cases with surface normal along the(100)
and (110) directions. Semiclassically, a quasiparticle will go
through multiple scatterings, bouncing back and forth be-
tween the two walls. Hence we expect that the interplay be-
tween Andreev reflection, taking place due to sign change of
the order parameter, and the energy discretization, due to
finite wire width, to yield novel features. We again model the
surfaces by introducing impurities on the appropriate sites to
completely isolate the wires. The corresponding Green’s
function is given by Eqs.(24). The bound-state energies are
determined by the equation

detS Ĝs0ds0d Ĝs0ds− N − 1d

Ĝs0dsN + 1d Ĝs0ds0d
D = 0. s26d

A. (100) wires

Ziegler et al.13 investigated the problem of(100) d-wave
quantum wires in some detail, and discovered the existence
of a number-parity effect as a function of the widthN of a
mesoscopicd-wave wire: a finite total DOS is found at the
Fermi level for oddN and zero DOS(with a full gap in the
excitation spectrum, not ad-wave-like gap) is found for even
N, at least for a simple tight-binding band at half filling. The
differences between even and oddN were shown to survive
for more general bands, as well. For completeness, we repro-
duce, using our approach, some of their LDOS spectra in
Fig. 6.

B. (110) wires

1. Normal metal wires

Based on intuition from the surface case, we would expect
that Andreev states play an important role in(110) wires,
with geometry shown in Fig. 7. A crucial question which
arises in the following discussion is, how does one identify a
subgap state of true Andreev character? By merely measur-
ing the LDOS with an STM, for example, one may see sev-
eral peak structures, not all of which will be related to An-
dreev reflections at the surfaces. One set of candidate states
which needs to be investigated first is the set of discrete
dispersive(with respect toky) levels which arise simply be-
cause of the finite wire width. These are of course present
already in the normal-state wire.

The kx-integrated bare normal-state Green’s function for
an infinite lattice aboveTc takes the form

G11
s0dsn,ky,vd =

d

2p
E

−p/d

p/d eikxnddkx

sv + i0d − jk

= −
i exp†i unuarccosf− v/qskydg‡

Îq2skyd − v2
, s27d

whereqskyd is defined in Eq.(20). The full Green’s function
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for a (110) wire may then be obtained by solving the
T-matrix equation as

G11sn,n8;ky,vd =
2 sinfnminzgsinfsnmax− N − 1dzg

Îq2skyd − v2sinfsN + 1dzg
,

s28d

where n,n8=1,2,… ,N,z;zsky,vd=cos−1f−v /qskydg ,nmin

=minsn,n8d, andnmax=maxsn,n8d.
For every value ofky, there generally exists a series of

eigenvalues which are the poles of the Green’s function.
They may be obtained by simply solving

sinfsN + 1dzsky,vdg = 0, s29d

which yields

vnskyd = − qskydcos
pn

N + 1
, n = 0,1,…,N + 1. s30d

This givesN branches of solutions forn=1,… ,N, distrib-
uted symmetrically with respect to the Fermi level, and two
special solutions(n=0 andN+1) with v= ±qskyd which we
refer to as defining the “effective band edge”. One interesting
feature is the existence in the normal metal wire of disper-
sionless zero-energy quasiparticle states(ZES) which form
the branchn=sN+1d /2 when the widthN of the wire is odd.
Since the group velocity vanishes for dispersionless states,
they are always localized. We note that the caseN=1 has
only the obvious dispersionless ZES since no transport is
allowed with only nearest-neighbor hopping. In the general
N=odd case, it appears that there is always exactly one such
localized state(doubly degenerate in particle-hole space) for
any fixed ky. A deviation from half filling shifts the zero-
energy states to −m. Thus, for positivem they are the hole
states, while form,0 they are the electron states.

The contribution of each of these states to the LDOS can
be estimated by examining the residue near the pole, where
the Green’s function can be approximated as

Gsn,n8;ky,vd <
Qnsn,n8d

v − vnskyd
, s31d

with the residue given by

Qnsn,n8d =

2 sin
npn

N + 1
sin

n8pn

N + 1

N + 1
, s32d

wheren is the index of the layers. Note from Eq.(32) and the
spectral representation of the Green’s function near a pole
that it is easy to read off the quasiparticle wave functions as
cnsnd=Î2/sN+1dsinfnpn / sN+1dg, i.e., just the wave func-
tions of a free particle confined to a box of widthsN+1dd.

It is easy to check that for anyn,n8 the residueQn van-
ishes everywhere for the “states” at the effective bandwidth

FIG. 6. Local density of states
rsx,vd vs v /Dmax for a (100) wire
of width N=4 (left panels) andN
=5 (right panels), using D0

=0.2t ,m=0.

FIG. 7. Geometry of(110) wire (sites are filled circles) of width
N bounded by two impurity lines(filled squares). Wire is infinite in
both y and −y directions.
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n=0 or N+1; we therefore do not discuss them further, but
focus on theN branches with finite residue. For these states
the residue can vanish locally on chains with numbern, for
which the quantitynn / sN+1d is an integer. The odd-N ZES,
for example, has a residue

QfsN+1d/2gsn,nd =

2Ssin
np

2
D2

N + 1
. s33d

As is seen from Eq.(33), the probability density of the ZES
oscillates with a period 2d, taking finite values only for odd
n and vanishing on all nearest-neighbor sites(where n is
even). This is also valid for the states with energies ±m in the
case of the deviation from half filling and ensures no trans-
port with nearest-neighbor hopping for quasiparticles with
energies ±m.

All these states are not surface-bound states, as one can
easily check that their amplitude does not decay across the
wire. The quasiparticle spectrum is discrete(for fixed ky) due
to the finite width of the wire and transforms into conven-
tional continuous quasiparticle spectrum in the massive nor-
mal metal in the limit N→`. The momentum resolved
LDOS in the normal metal wire with discrete dispersive
states takes the form

rsn,ky,vd = o
n=1

N

Qnsn = n8ddfv − vnskydg. s34d

The integration overky gives the LDOS,

rsn,vd =
1

2pd
o

vnskyd=v

Qnsn,nd
udvn/dkyu

, s35d

where the sum is taken over thoseky andn, which satisfy the
equationvnskyd=v.

The position of peaks in LDOS are then determined by
extrema of the dispersive branches, Eq.(30), taking place at
ky=0:

vn,peaks= − 4t cos
pn

N + 1
, n = 1,…,N. s36d

The peaks corresponding to theN normal metal wire
states are seen clearly in Figs. 8 and 9 at the eigenfrequencies
given by Eq.(36). It is easy to check that the weights agree
with Eq. (32). The LDOS for the normal metal wires quali-
tatively differs from the LDOS for bulk normal metals with
the nearest-neighbor hopping on the square lattice. The zero-
energy peak(the Van Hove singularity) in the bulk metal is
symmetric as a function of the energy and its log singularity
is much broader than thed-like peaks we find here for wires.

2. Superconducting wires

The T matrix and Green’s-function equations are neces-
sarily more complicated in the presence of superconductivity,
but they are still tractable in the(110) case. The bare Green’s

functionsĜs0d are given by Eqs.(16) and(17), as before. One
must then solve Eq.(26), which applies to any situation
which requires two lines of impurities, for the eigenenergies
v. Similar to the normal metal case, there are special solu-
tions of Eq. (26): v= ±Dskyd ,v= ±qskyd for any N and v
=0 for evenN. They are poles of theT matrix, but do not
correspond to the poles of the full Green’s function.

The behavior of subgap surface states on the narrow su-
perconducting wire differs qualitatively from the case of the
superconducting half space due to the interference of the
wave functions of the states on both surfaces. Since the zero-
energy peak in the LDOS for the half-filled surface vanishes
on each even chain(see Figs. 3 and 4), the spectrum of
Andreev states on the(110) wires becomes strongly depen-
dent on the parity of the numberN of chains in the half-filled

FIG. 8. Local density of states
for a (110) wire of width N=5,
with D0=0.2t ,m=0. Left: normal
state,rsx,vd vs v /Dmax; right: su-
perconducting state,rsx,vd vs
v /Dmax.
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wire. This effect is quite pronounced for wires whose width
is the order of or less than the superconducting coherence
length. As we demonstrate below, some new qualitative fea-
tures arising in the superconducting state of the(110) wires
in the quasiparticle spectrum aboveDskyd [see Eq.(19)] can
also be strongly dependent on the parity ofN.

Odd N. For a wire with oddN, only the Green’s functions
(16) with even argumentsn=0, ±sN+1d enter Eq. (26).
Since at small frequencies these Green’s functions are~v, it
is straightforward to show that the only subgap state is a
dispersionless ZESv=0. Dispersive modes exist as well and
take the form

vn
2skyd = q2skydcos2

pn

N + 1
+ D2skydsin2 pn

N + 1
,

n = 1,…,
N − 1

2
. s37d

This exactly coincides with the quasiparticle spectrum
in a bulk two-dimensional superconductor,v2sky,kxd
=j2sky,kxd+D2sky,kxd, if the discrete values of momentum
component across the wire,kx,n=pn / sN+1dd, are intro-
duced. We note that the dispersionless zero-energy Andreev
states are the only true subgap states in the spectrum, since
the energyuvnskydu of the dispersive states(37) lies above the
respective valueuDsky,kxdu of the order parameter, for anyn
andky.

There are, as in the normal state case,N−1 dispersive
modes in addition to the ZES. They are doubly degenerate
due to the particle-hole symmetry. This simple result can be
understood as follows. For a fixedky the problem reduces
to a one-dimensional problem. The corresponding two-
component Bogoliubov–de Gennes wave function takes its
values onN sites, resulting in 2N degrees of freedom in the
system. With this point of view it appears natural that for

fixed ky the total number of levels, which are twice degener-
ate, isN. The set of levels with positive energies forN=11 is
represented in panel(a) of Fig. 10.

The LDOS for the superconducting wires withN=5 is
shown in the right panel of Fig. 8. The dispersionless ZES
results in a pronounced peak at zero energy on odd layers.
Furthermore, each extremum of the dispersive modevskyd
results in the peak in the LDOS at the energyvky,extr

. One
series of peaks is associated with the extrema atky=0. Since
Dsky=0d=0, the peaks lie at the same positions as in the
normal metal wire(36). Although they are irrelevant to the
superconducting properties of the wire, some of these peaks
can lie at finite energies below the maximum of the gap
function, Dmax=2D0. For instance, the lowest position at fi-
nite energies of the peaks of this series is 4t sinfp / sN+1dg.
This can be both above or belowDmax, depending on the
ratio Dmax/ t and the wire widthN. In contrast with the nor-
mal metal wires, the dispersive quasiparticle modes[Eq.
(37)] in the superconducting wires have extrema also at the
edge of the surface-adapted Brillouin zoneky= ±p / s2dd.57

They are shown in panel(b) of Fig. 10 for the wire with
N=11. This leads to additional series ofsN−1d quasiparticle
peaks in the LDOS for the superconducting wires, which lie
below Dmax:

vpeaks= ± Dmaxsin
pn

N + 1
, n = 1,…,

N − 1

2
. s38d

Panel(c) of Fig. 10 displays the series of peaks in the LDOS
for N=11.

The dispersive states forming the nonzero low-energy
peaks(38) in LDOS arenot Andreev states. They lie below
Dskyd for ky near the edges of Brillouin zone, but they are
situated above the bulk gap functionDfkxsnd ,kyg. The wave
function for any of these states possesses the finite current of
the probability density, while for Andreev states the total
probability current vanishes.

FIG. 9. LDOS for a(110) wire
of width N=4 with D0=0.2t ,m
=0. Left: normal state,rsx,vd vs
v /Dmax; right: superconducting
state,rsx,vd vs v /Dmax.
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While positions of the peaks are determined by the ex-
trema of the dispersive energies, their weights in the LDOS
are controlled also by quasiparticle wave functions, which
form the quantityQsn,nd in Eq. (35). For this reason the
weights of the peaks can substantially differ on different lay-
ers and may vanish on some of them, quite analogous to the
normal metal wires[see Eq.(32)]. Due to an interference
from two surfaces, the wave function, taken on even layers,
turns out to coincide with the respective wave function in the
normal metal case(apart from a normalization constant). On
the other hand, the wave function on odd layers is a super-

position of electronlike and holelike Bogoliubov quasiparti-
cles on the wire.

Even N. In the case of even-N half-filled wires, the qua-
siparticle spectra become more complicated. The Green’s
functions (16) and (17) with even sn=0d and oddfn= ± sN
+1dg arguments enter Eq.(26), which can be reduced to the
following form:

qskydtanfsN + 1dzg = aDskydtanz, s39d

wherea= ±1,0øzøp /2. Solutionszn,askyd of Eq. (39) are
directly associated withv, in accordance with Eq.(18):

vn,a
2 skyd = q2skydcos2zn,askyd + D2skydsin2zn,askyd. s40d

Here n=1,… ,sN/2d and a are the indices of the solution.
Comparing Eqs.(37) and (40) for the spectra of odd and
even wires, one can see thatz/d plays the role of effective
discrete values of the momentum componentkx (at fixedky)
across the wire. Equation(39) can be transformed to a poly-
nomial equation in tanz of the Nth degree, if one excludes
the special solutionsv= ±Dskyd , ±qskyd mentioned above.
Hence, for a fixeda there are exactlyN/2 positive andN/2
negative solutions forv, describingN dispersive branches of
the quasiparticle spectrum. Explicit analytical form of the
spectra can be easily found from Eqs.(39) and (40) in the
particular casesN=2,

va = ±
1

2
fqskyd + aDskydg, s41d

andN=4 sn= ± ,a= ± d,

vn,a
2 skyd = D2skyd +

1

8
qskydfqskyd + aDskydgF3 − 5a

Dskyd
qskyd

+ nÎ5 − 6a
Dskyd
qskyd

+ 5
D2skyd
q2skyd

G . s42d

Equation(42) is defined for allky in the Brillouin zone for
which vn,a

2 skyd is positive. Equations(41) and (42) describe
the quasiparticle spectra for non-self-consistent wires with
small numbers of chains. As we will show in Sec. V, the
self-consistent treatment of the problem can lead to impor-
tant modifications of the results, at least if the width of the
wire is less than or of order the superconducting coherence
length.

Whereas in the normal metal state,n is the only index of
the solution(for a givenky), in the superconducting even-N
wire each branch with fixedn splits into two, corresponding
to two values of the indexa, giving a total of 2N distinct
branches. Since the order parameter vanishes forky=0, the
splitting is absent in this particular case. The splitting is as-
sociated with the symmetry breaking of the eigenstates with
respect to the sign reversal ofky. In the normal even-N wires,
as well as in the odd-N wires (both in the normal metal and
in the superconducting states), each separate branch of the
spectravnskyd is an even function ofky. This is not the case,
however, for the even-N superconducting(110) wires. As
directly seen from Eq.(39) and the relationsqs−kyd
=qskyd ,Ds−kyd=−Dskyd, the solutions of Eq.(39), zn,askyd,
with fixed a are not odd or even functions ofky, due to the

FIG. 10. Quasiparticle spectra and the LDOS for superconduct-
ing half-filled (110) wire with N=11. (a) Dispersive modes(kyd vs
v / t) for N=11,D0=0.2t, andm=0. (b) The blowup of the disper-
sive spectra near the edge of the Brillouin zone.(c) The LDOS for
energies less thanDmax: n=2 (solid line) and n=1 (dashed line),
where a broadeningd=0.005t has been used.
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nonzero right-hand side of Eq.(39) in the superconducting
state. Evidently, each separate branch of the spectravn,askyd
possesses the same property. The whole spectrum, however,
remains symmetric with respect toky→−ky, since the
branches with positive and negativea simply interchange
with each other under this transformation. Spectra of the
half-filled N=10 superconducting wire with positive energies
are shown in panel(a) of Fig. 11. They agree with the above
discussion. For branches with higher energies, the splitting is
less than for lower branches. For small splittings,dv
~D / sN+1d.

The splitting manifests itself by slightly shifting the posi-
tions of peaks in the LDOS, due to respective shifts of ex-

trema of dispersive quasiparticle energies. In contrast with
the double number of extrema, the total number of the peaks
in the LDOS does not change. Any peak in the LDOS origi-
nates from the two extrema, situated symmetrically with re-
spect to the sign ofky. Each pair of extrema belongs to two
spectral branches, which differ only by their indexa= ±1. If
we disregard the splitting of the quasiparticle spectra, the
positions of the peaks in the LDOS coming, for example,
from the edge of the Brillouin zone, are as follows:

vpeaks= ± Dmaxcos
pn

N + 1
, n = 1,…,

N

2
. s43d

The splitting shifts the peak positions towards slightly lower
energiesuvu, as compared with those in Eq.(43). The respec-
tive extrema of dispersive energies are shifted towards lower
values ofukyu from ky= ±p / s2dd. These low-energy peaks in
the LDOS are shown in panel(c) of Fig. 11.

The other peaks in the LDOS come, neglecting the split-
ting, from the center of the Brillouin zone. Since the order
parameter vanishes in the center of the zone, the positions of
the peaks are still the same as in Eq.(36) for the normal
metal state. The splitting, taking place in the superconducting
state, slightly shifts the extrema of the spectra from the cen-
ter of the zone, so that the peaks move to larger energy
valuesuvu, as compared with those in Eq.(36).

The LDOS for the superconducting wire withN=4 is
shown in the right panel of Fig. 9. In addition to the peaks at
finite energies, discussed above, there is also a well-
pronounced zero-energy peak there[see also panel(c) of Fig.
11]. This peak originates from the extrema of two dispersive
branches of Andreev states, which take place at ±ky,0d
= ±tan−1s2t /D0d, where the relationqsky,0d=Dsky,0d holds.
Indeed, as follows from Eqs.(18) and(39) and, in particular,
directly seen from Eq.(42), the energy and its derivative
equal zero forky= ±ky,0. It turns out that the multiplicity of
zeros of the lowest dispersive branches of states at the ex-
tremaky= ±ky,0 is N/2, i.e., v~ uky−ky,0uN/2 in the close vi-
cinity of ky,0. This follows directly, for instance, from Eq.
(50) given below. We notice that the lowest dispersive curve
in panel(b) of Fig. 11 manifests very slow change of energy
when it touches the zero-energy line. This agrees with our
expectationv~ uky−ky,0u5 for the (110) wire with N=10. The
respective peak in the LDOS of wires with large evenN
diverges atv=0, but is not ad-like peak as it is for wires
with odd N.

The identification of the Andreev nature of the quasipar-
ticle bound states in confined geometries turns out to be a
nontrivial problem, at least in the case of half-filled(110)
wires with evenN, where there is a symmetry breaking with
respect toky→−ky. As seen from Eqs.(39)–(42), the asym-
metry can be associated with the order-parameter behavior
Ds−kyd=−Dskyd and with the sensitivity of the quasiparticle
energies to thep shift of the order-parameter phase. A de-
pendence of the dispersive energy curve on the order-
parameter phase is usually an intrinsic feature of Andreev
bound states only. We consider the vanishing of the probabil-
ity density current as an defining property of Andreev bound
states. These states should be able to carry finite electric

FIG. 11. Quasiparticle spectra and the LDOS for superconduct-
ing half-filled (110) wire with N=10. (a) Dispersive modes(kyd vs
v / t) for N=10,D0=0.2t ,m=0. (b) The blowup of the spectra near
the edge of the Brillouin zone.(c) The LDOS for energies less than
or equal toDmax: n=2 (solid line), n=1 (dashed line), where a
broadeningd=0.005t has been used.
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current, however. In odd-N wires only zero-energy disper-
sionless quasiparticle states satisfy the above requirements.
In evenN (110) wires the zero-energy dispersionless states
do not arise at all. The interference of wave functions located
near two surfaces of the even-N wire induces dispersive An-
dreev branches ±vAskyd, which transform into the zero-
energy states in the limit of infinitely largeN. Moreover, all
quasiparticle states in the half-filled(110) superconducting
wire with evenN, even those lying above the gap, turn out to
satisfy the above-mentioned conditions, i.e., possess the
properties of Andreev bound states. As an example, we de-
scribe below in detail the structure of the lowest dispersive
quasiparticle branch, which we denote as Andreev branch
vAskyd, although its energy varies withky over a large range,
including both the subgap and the supergap regions(see, for
example, Fig. 11).

For those ky where minhuDskydu ,qskydj, uvAskydu
,maxhuDskydu ,qskydj, the wave function of the state can be
written on odd layerssn=2m+1d as

Su

v
D = C sgnvAsinfsN + 1 −ndzgS 1

i sgnky
D , s44d

and on even layersn=2m

Su

v
D = Cs− 1dN/2sinsnzdS 1

− i sgnky
D . s45d

In the range ofky for which uvAskydu,minhuDskydu ,qskydj,
the quantityz, entering Eq.(40), becomes imaginary. Under
the condition uvAskydu, uDskydu,qskyd the wave function
takes the following form on odd layerssn=2m+1d:

Su

v
D = C1s− 1dmsgnvAsinhfsN + 1 −ndz1gS 1

i sgnky
D ,

s46d

and on even layersn=2m

Su

v
D = C1s− 1dmsinhsnz1dS 1

− i sgnky
D . s47d

Analogously, if uvAskydu,qskyd, uDskydu, the wave function
on odd layerssn=2m+1d

Su

v
D = C2sgnvAsinhfsN + 1 −ndz1gS 1

i sgnky
D , s48d

and on even layersn=2m,

Su

v
D = C2sinhsnz1dS 1

− i sgnky
D . s49d

Here C, C1, and C2 are normalization constants,z1
= uIm zsvAskyd ,kydu ,z is defined in Eq.(18) and taken atv
=vAskyd.

The conditionuusn,kydu= uvsn,kydu, which is valid for all
solutions, Eqs.(44)–(49), results in zero total probability cur-
rent density, while the electric current does not vanish for the
given branch. This ensures the Andreev character, as defined
above, of all the states in evenN wires, regardless of whether
their energies lie above or below the gap.

The quasiparticle states which belong to the same disper-
sive branchvAskyd can have their wave functions both sym-
metrically decaying in the depth of the wire[Eqs.(46)–(49)]
or oscillating and forming standing waves across the wire
[Eqs.(44) and(45)]. In particular, the amplitude of the wave
functions in Eqs.(46)–(49) takes its maximum value on lay-
ersn=1 andn=N, and manifests Friedel-like oscillations, as
the layer index changes from odd to a neighbor even value or
vice versa. On a larger scale the amplitude decays in the bulk
of the wire symmetrically with respect to two surfaces.

It is instructive to follow how the above results transform
into the well-known dispersionless zero-energy Andreev sur-
face states in the limit of largeN. For sufficiently large width
of the wire compared with the coherence length, and for
thoseky where the wave function decays in the depth of the
wire, the dispersive energyvAskyd takes a relatively simple
form:

vAskyd = ±
2Dskydqskyd

Îuq2skyd − D2skydu

3expF− sN + 1dsinh−1minhuDskydu,qskydj
Îuq2skyd − D2skydu

G .

s50d

It follows from Eq.(50) that the energy of the Andreev states
is exponentially small and vanishes in the limit of infinitely
large N. With decreasing energy, the range ofky where the
wave function oscillates[see Eqs.(44) and (45)], converges
to the center and to the edges of the Brillouin zone and
finally collapses to the respective points. Hence, in the limit
of very largeN the amplitude of the wave function decays
inside the wire for practically all values ofky. This means
that for N→` the dispersive branchvAskyd transforms into
the zero-energy dispersionless surface states situated near the
two surfaces.

Figure 12 showsN dependence of the weight of the zero-
energy peak in the LDOS. For oddN, the weight diminishes
with increasingN, while for evenN it increases. In the limit

FIG. 12. The weight of the zero-energy peak in the LDOS, taken
at the first layer, as a function on odd(open circles) and even(filled
circles) N.
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of largeN the two curves will converge to the weight for the
zero-energy surface states when the surfaces are infinitely far
apart. The odd-even effects become negligibly small only for
Nd@j0. One could try to recover the quasiclassical results
for wide wiresNd@a after averaging over odd and even film
widths. The boundary conditions for quasiclassical propaga-
tors are taken somewhere on a distancel from the surface
and imply some uncertainty about the boundary positions, as
well as the film(wire) thicknesssa! l !j0d. As seen from
Fig. 12, averaging of the weights of the peaks over odd and
even N will strongly reduce their width dependence. This
kind of averaging is much closer(although not identical) to
the quasiclassical results on the width dependence of the
LDOS for the d-wave superconducting film.50 Very recent
quasiclassical results,58 treating various wire orientations,
demonstrate the appearance of energy bands of quasiparticle
states, in particular, for(110) wires. Our microscopic model
for high-quality half-filled wires with fixed number of chains
gives, however, only a couple of branches, Eq.(50), for
even-N wires and the dispersionless zero-energy states for
odd-N wires. We associate the difference between the micro-
scopic and the quasiclassical results with the particular con-
dition of half filling. The quasiclassical approach implies no
singular behavior of the LDOS in the normal metal state near
the Fermi surface, whereas the Van Hove singularity takes
place in the LDOS on the Fermi surface for the normal metal
state of half-filled infinite square lattice. An agreement of our
microscopic results with the quasiclassical ones arises in the
presence of deviations from half filling[see below Eqs.(52)
and (53)].

As already mentioned, in the even-N wires the particle-
hole structure of any quasiparticle states with brokenky→
−ky symmetry satisfies the conditionuusn,kydu= uvsn,kydu. Our
picture is that for the states above the gap this Andreev
particle-hole structure is generated by the infinite sequence
of “overbarrier” (overgapped) Andreev reflections, induced
by a sign reversal of the order parameter, which the quasi-
particles experience along their trajectories being bounded
inside the wire with impenetrable surfaces. This unconven-
tional feature does not take place for the states above the gap
in the odd-N wires, since the two surfaces always result in
the standing waves across the wire with no important inter-
ference effects in this case. For negligibly small splitting one
should consider a superposition of two wave functions, de-
scribing the two split states. Then the Andreev structure of
initially nondegenerate wave functions is lost, since the
moduli of particle and hole amplitudes can easily differ from
each other. The Andreev structure of quasiparticle wave
functions can be lost also in the presence of deviations from
the half filling, if m is larger or of the same order as the
splitting. Since the splitting vanishes forky=0, one can ex-
pect that for sufficiently smallky the Andreev structure of the
wave functions will be destroyed even for smallm. In the
following section some other consequences of deviations
from half filling are considered.

3. Deviations from half filling

The shape of the Fermi surface depends onm and has a
strong influence on the low-energy quasiparticle spectrum.

Consider, for example, low-energy quasiparticle states under
the conditionsuvu , uDskydu!qskyd. This ensures that the qua-
siparticle energies lie close to the Fermi surface and one can
take their energies in the normal metal state to be in the
linear form ~vF ·sk −kFd. Under this approximation, effects
of the particle-hole asymmetry are small and one can use a
quasiclassical approximation, which is valid for quasiparti-
cles close to the Fermi surface. Then only the order param-
eter on the Fermi surfaceDskF,x,kF,yd enters the equations.
For the wire geometry the momentum componentkF,y is
an independent parameter, whilekF,xskF,yd, and
DfkF,xskF,yd ,kF,yg are actually functions ofkF,y. For m=0 the
Fermi surface for the(110) wire is a square with sides par-
allel to x or y axis. Hence,kF,x= ±p / s2dd actually does not
depend onkF,y in this case andDf±p / s2dd ,kF,yg= ±DskF,yd,
in accordance with Eq.(19). For finite m we find
DskF,x,kF,yd=fDskF,yd /qskF,ydgÎq2skF,yd−m2.

In the case of superconducting wires the equation for qua-
siparticle subgap energies near the Fermi surface
uvu, uDskF,x,kF,ydu takes the form

v2Ssinh2FsN + 1dd
ÎD2skF,x,kF,yd − v2

uvx,fskF,ydu
G + sin2fskF,ydD

= D2skF,x,kF,ydsin2fskF,yd, s51d

wherefskF,yd;kF,xdsN+1d. The lowest branches of quasi-
particle spectra, which follow from Eq.(51) for N=24, 25,
26, are shown in Fig. 13. The solution of Eq.(51) reduces to
a simple form in the limit of largeN:

vAskF,yd = ± 2DskF,ydsinfskF,yd

3expF− sN + 1dd
uDskF,ydu

uvx,fskF,ydu
G . s52d

For half-filled wires, whenm=0, the phasefskF,yd does
not depend onkF,y, being equal tofodd=mp for odd-N wires
andfeven=sm+1/2dp for even-N wires. This difference be-
tween the phasesfodd and feven plays an important role in
forming well-pronounced odd-even effects in the spectra of
wires with odd and even numbers of layers. Indeed, for half-
filled odd-N wires Eq.(52) reduces to the zero-energy dis-

FIG. 13. The lowest energy branches forN=24,25,26. The pa-
rameters aret=2.5,m=0.2t=0.5,D0=0.2t=0.5, andDmax=2D0=1.
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persionless Andreev states. At the same time, for half-filled
evenN wires Eq.(52) describes a dispersive branch of qua-
siparticle energies, which coincides with Eq.(50) under the
condition uDskydu!qskyd.

For mÞ0 the phasefskF,yd noticeably depends onkF,y:

fskF,yd = kF,xdsN + 1d = sN + 1dcos−1S−
m

qskF,yd
D . s53d

Qualitative deviations of low-energy quasiparticle spectra,
shown in Fig. 13, from the respective spectra of half-filled
wires (see Figs. 10 and 11) are associated with the behavior
of the phasefskyd. The odd-even effect in the spectra of
(110) wires becomes less pronounced in the case of finitem,
as found by Ziegleret al.13 For some values ofm the spectra
of odd-N and even-N wires may have no qualitative differ-
ences at all. As it follows from Eq.(52) and, in a more
general case, from Eq.(51), for mÞ0 additional and strong
dispersion of the spectra comes from theky dependence of
the phasefskF,yd. The larger theN, more oscillations of
sinfskyd take place with varying thekF,y. Hence, more ex-
trema ofvAskF,yd arise. This results in additional peaks in the
LDOS, which appear only in the presence of finitem. As
seen from Eq.(53), the phasef can considerably vary, when
the film (wire) thickness varies fromNd to Nd− l and a! l
!j0, l !Nd. Thus, in averaging the spectrum over the film
thickness, a large number of respective additional peaks
arises, filling the whole low-energy band in the(110) wire
with edges described by Eq.(52). This is in agreement with
the quasiclassical results.50,58

The particle-hole asymmetry is another important feature
of the spectra. It can be well pronounced for finitem, but lies
beyond the quasiclassical approximation. Figure 14 displays
the asymmetric LDOS, calculated with Eq.(15) for (110)
superconducting wires withN=10 andN=11 in the casem
=0.2t. For comparison, the respective LDOS form=0 is also

shown. A well-pronounced peak atv=−m arises with a de-
viation from half filling in the LDOS for the odd-N wires.
We remind the reader that in the half-filled normal state(110)
wires with oddN the dispersionless zero-energy quasiparticle
states have been found in Sec. IV B 1[see Eq.(30) with n
=sN+1d /2]. The wave function of these states, as well as the
residue of the polelike term in the Green’s function, Eq.(33),
is a standing wave across the wire, taking zero values on
alternating sites. In the superconducting state the zero-energy
standing wave disappears and the dispersionless zero-energy
Andreev surface states arise. Their weight exponentially de-
cays in the bulk of wide odd-N wires. In the presence of a
deviation from half filling the energy of the quasiparticle
states in the normal state odd-N wires shifts to −m. These
dispersionless states with finite energy keep the character of
standing waves. Further, in the superconducting wires with
finite m the low-energy states become dispersive both for
odd- and even-N wires. As seen from Fig. 13 for the wire
with N=25, the branch with lowest energy has in this case
two extrema. The maximal value ofuvu for the states forming
this branch, lies atky=0 and contributes to the peak atv=
−m associated with the hole contribution, ifm.0. Since the
order parameter vanishes atky=0, the respective quasiparti-
cle wave function is a standing wave and the peak position
coincides with that in the normal metal state of the wire. The
minimal value of uvu is zero and contributes to the zero-
energy peak. The zero-energy peak is associated with com-
paratively large value ofky, comparable with the size of the
Brillouin zone, and the order parameter at this value ofky is
of orderDmax. Thus, the zero-energy peak is associated with
surface Andreev states, whose quasiparticle wave function
decays in the bulk of wide odd-N wires. For narrow wires,
the self-consistency condition becomes important. As shown
in the following section, at finitem the self-consistency con-
dition can lead to more important consequences as compared
with the casem=0.

V. SELF-CONSISTENT TREATMENT OF (110) WIRES

In previous sections, the order parameter was assumed
constant over the whole width of the wire in order to allow
for analytical solutions. Even for a single(110) surface, how-
ever, a self-consistent treatment of the order parameter gives
rise to interesting effects: thedx2−y2-wave order parameter is
strongly suppressed near the surface and a complex
is-admixture (or some other time-reversal symmetry-
breaking state) is possible, which leads to a splitting of the
zero-energy Andreev bound state.17,18,22,24,33,34,39,59–64Even
larger effects are therefore to be expected for the wire limited
by two (110) surfaces. Indeed, our self-consistent evaluation
indicates that for very narrow wires a quasi-one-dimensional
triplet superconducting state can replace the conventional
dx2−y2+ is state. For finite chemical potentialm the normal
metal state can become energetically favorable as the ground
state for narrow wires, while superconductivity recovers with
increasing wire width. Under special conditions, even a mix-
ture of singlet- and triplet-pairing can occur. It is important
to recall at this point that one expects mean-field theory to
break down as the one-dimensional(1D) limit is approached

FIG. 14. Local density of states for a(110) wire with N=10 (left
column) and N=11 (right column); m=0 (upper panels), m=0.2t
(lower panels). On each panel the different curves represent various
chains.
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even atT=0. Thus the predictions for various kinds of su-
perconducting order mentioned below are to be treated with
some skepticism as regards quantitative predictions. Never-
theless, we view our results as presenting intriguing evidence
that when surface energies begin to become comparable to
the energy differences betweend-wave and other bulk pair
channels, strong fluctuations with symmetries optimal for
quasi-1D system, including spin-triplet pair fluctuations, will
result.

A. Order parameter

Self-consistent solutions to Hamiltonian(1) were obtained
by solving the Bogoliubov–de Gennes equations for(110)
wires,

S jky
Dky

D−ky

* − jky

DSukyl

vkyl
D = EkylSukyl

vkyl
D , s54d

where Ekyl with l=1,… ,N are the eigenvalues of the
Bogoliubov–de Gennes equations and its eigenvectors
ukylsnd and vkylsnd are the coefficients of the Bogoliubov
transformation:

ckyn↑ = o
l

hgkyl↑ukylsnd − gkyl↓
† vkyl

* sndj,

c−kyn↓
† = o

l

hgkyl↑vkylsnd + gkyl↓
† ukyl

* sndj. s55d

Furthermore,jky
andDky

are matrices in theN layers of the
(110) wire, i.e., the layers inx direction, and are given by
(for notation see Fig. 7):

sjky
dnn8 = − 2t coskysdn8n+1 + dn8n−1d − mdn8n,

sDky
dnn8 = sDnn8

+ e−iky + Dnn8
− eikyddn8n+1 + sDnn8

− e−iky

+ Dnn8
+ eikyddn8n−1. s56d

The gap values are determined by the following self-
consistency equations:

Dnn+1
± = − V

1

No
ky

e±ikykc−kyn+1↓ckyn↑l

= V
1

No
ky

o
l

e±ikyukylsn + 1dvkyl
* snd. s57d

To simplify the numerical evaluation of the
Bogoliubov–de Gennes equations we consider isolated wires
here. For a Hamiltonian on a discrete lattice like that of Eq.
(1), an isolated wire is equivalent to a wire limited by lines
of unitary impurities, which is the boundary condition used
for the analytical calculations in the previous sections.

For narrow wires we find a variety of different phases.
The resulting phase diagram for a nearest-neighbor interac-
tion strength ofV=1.1575t, which gives rise to a gap of

D0=0.2t in a bulk system atm=0, is displayed in Fig. 15. For
wires with widths up toN=9 we find a new phase over a
wide range of chemical potentials characterized byDi j =
−D ji [stars in Figs. 15(c) and 15(d)], which is a signature of
triplet pairing withSz=0, the only triplet component compat-
ible with Hamiltonian (1). For m=0 the amplitude ofDi j
oscillates across the wire between zero and its maximum
value[see Fig. 16(a)], indicating a one-dimensional nature of
these new triplet-superconducting correlations[see Fig.
16(b)]. Although the oscillating behavior ofDi j remains for
finite m, its amplitude no longer vanishes exactly on alternat-
ing layers. Thus the strict one-dimensionality of the super-
conducting correlations seems to be a feature peculiar tom
=0. This new triplet superconducting phase will be discussed
in more detail below. At first we will focus on the singlet
superconducting phase with possibledx2−y2- and s-wave or-
der parameters.

FIG. 15. Narrow wires with a nearest-neighbor interaction
strength of V=1.1575t, which gives rise to a gap value ofD0

=0.2t for the bulk system atm=0. Lower panels: phase diagram of
the wires with even width(c) and with odd width(d). White space
denotesD=0, i.e., the normal state. Upper panels: corresponding
amplitudes of thedx2−y2 and is-order parameters displaying the
value in the center of the wire for thedx2−y2-wave case and the value
at the edge of the wire in thes-wave case. These are the positions
where the largest values of the respective order parameters are ex-
pected in the usualdx2−y2+ is state.
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Although we do not understand all details of the variabil-
ity of the phase diagram, a few general trends seem clear.
The larger the width of the wire the more of the usual
dx2−y2+ is phase[filled circles in Figs. 15(c) and 15(d)] is
recovered. The corresponding amplitudes of thedx2−y2- andis
components of the order parameter are displayed in the upper
panels of Fig. 15. For narrow wires the amplitude of the
dx2−y2-wave order parameter is finite only for small chemical
potentialsm and a pures-wave phase is favorable for large
m. These two phases are separated by a normal state region.
For larger wire widths the range of thedx2−y2-wave phase and
the amplitude of thedx2−y2-wave order parameter increase.
The amplitude of thes-wave order parameter, on the other
hand, decreases and thes-wave phase moves towards smaller
chemical potentials until it merges with thedx2−y2-wave
phase, thereby giving rise to a finiteis admixture near the
edges of the wire, as expected in analogy to a single(110)
surface.

The dependence of the amplitude of thedx2−y2-wave order
parameter on the widthN of the wire is shown in Fig. 17.
The upper panels refer to an interaction strength ofV
=1.1575t, which gives rise to a gap ofD0=0.2t for the bulk
system atm=0. Form=0 we observe an even-odd oscillation
in the amplitude of the order parameter[see Fig. 17(a)],
which disappears for larger chemical potentials. The effect of
finite m on the suppression of thedx2−y2-wave order param-
eter is considerably stronger in narrow wires than in the bulk
system. Form / t=0.4 thedx2−y2-wave order parameter van-
ishes forN,10 [squares in Fig. 17(a)], although the bulk
gap is only reduced by a factor of approximately 0.8[see
Fig. 17(c)]. The dramatic suppression of thedx2−y2-wave or-
der parameter for finitem is reduced upon consideration of
larger nearest-neighbor interaction strengths, as can be seen
in the lower panels of Fig. 17. For a larger interaction
strength ofV=1.7682t, which gives rise to a bulk gap value
of D0=0.4t at m=0, a pronounced even-odd effect remains at
m / t=0.4 [see Fig. 17(d)] and the amplitude in the center of
an N=12 wire is already very close to the bulk value[see
Fig. 17(f)], contrary to the smaller interaction strength,
where the amplitude in the center of anN=12 wire is still
suppressed by a factor of more than 3 with respect to the
bulk value[see Fig. 17(c)].

The emergence of a new triplet-superconducting phase for
very narrow wires can be most easily understood by consid-
ering the smallest wire, i.e., theN=2 wire. Although the
effect of fluctuations will be larger for smaller wires, we
focus only on possible solutions of the BCS mean-field
Hamiltonian(1) in the present paper. Inspection of the phase
diagram of Fig. 15 shows that thed-wave order parameter
vanishes for theN=2 wire. To investigate alternative ways in
which theN=2 wire could lower its ground-state energy, we
map it to a 1D chain(see Fig. 18). Although the gap values
Di j and D ji could in principle differ in amplitude and by a
phase factorf, we restrict our treatment tof=0 andf=p.
Note thatf=0 corresponds to a singlet pairing state, whereas
f=p is a triplet pairing state withSz=0.65 To investigate the
possibility of triplet superconductivity in these systems in
more generality, one should retain pairing correlations with
Sz= ±1 in the mean-field Hamiltonian as well. For now, how-
ever, we are satisfied with the observation that even for the
simple nearest-neighbor pairing Hamiltonian(1) a triplet or-
der parameter can be favored over a singlet order parameter
in narrow geometries.

After Fourier transformation Hamiltonian(1) for the 1D
chain reads

HMF = − o
ks

s2t coskd+ mdcks
† cks

+ o
k

hsD1e
ikd + D2e

−ikddc−k↓
† ck↑

† + H.c.j, s58d

whereDii+1=−Vkci+1↓ci↑l=D1 andDi+1i =−Vkci↓ci+1↑l=D2. It
can be easily diagonalized using the Bogoliubov transforma-
tion to give a quasiparticle dispersion of

FIG. 16. Quasi-one-dimensional triplet superconducting state
for N=8 andm=0. (a) Bond gap valuesDnn+1

± [for definition see Eq.
(58)] across the wire.(b) Illustration of the one-dimensional struc-
ture of the superconducting correlations for anN=6-s110d wire at
m=0. (c) Density of states starting from the outermost layer of the
wire up to the middle layer of the wire, where for illustrational
purposes each layer has been shifted by an additional offset of 0.3t.
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Ek = Îek
2 + Dk

2,

with ek =
qskd

2
+ m = 2t coskd+ m,

Dk
2 = D1

2 + D2
2 + 2D1D2cos 2kd, s59d

where the gap values are to be determined from the follow-
ing self-consistency equations:

D1 = − V
1

4pd
E

−pd

pd

dk
D1 + D2cos 2kd

Ek
,

D2 = − V
1

4pd
E

−pd

pd

dk
D1cos 2kd+ D2

Ek
. s60d

Four different phases emerge from this model by variation of
the chemical potentialm and the nearest-neighbor interaction
strengthV (see Fig. 19). Below a critical interaction strength
the order parameter vanishes and the normal state is the
ground state of the 1D chain. For intermediate interaction
strengths and small chemical potentials we findD1=−D2,
i.e., a pure triplet superconducting state, whereas for large
chemical potentials the ground state is characterized byD1
=D2, i.e., a singlet extendeds-wave state. In the singlet
state the gap function isDk,coskd, i.e., it has nodes at

kd= ±p /2 whereas the triplet state gap function is
Dk,sinkd, and therefore is maximum atkd= ±p /2. This
explains why the triplet state is favored over the singlet state
for m=0, where the Fermi surface of the nearest-neighbor
tight-binding model is atkd= ±p /2. For larger chemical po-
tentials the situation is reversed and the singlet extended
s-wave state becomes more favorable than the triplet state.
For large interaction strengths, we find different magnitudes
for D1 andD2, which corresponds to a mixture of singlet and
triplet pairing. In the limitV→`, either of the gap valuesD1
and D2 approaches zero whereas the other goes to infinity,
corresponding to an admixture of triplet and singlet order
parameters with equal amplitudes.

With the phase diagram of the 1D chain in mind we are
now able to better understand the phase diagram of narrow
wires as displayed in Fig. 15. For smallm the new phase
with Di j =−D ji simply arises from the formation of quasi-one-
dimensional triplet-superconducting correlations alongN=2

FIG. 17. Evolution of the
dx2−y2-wave order parameter with
increasing wire width for two dif-
ferent interaction strengthsV
=1.1575t (upper panels) and V
=1.7682t (lower panels), which
give rise to a gap value ofD0

=0.2t and D0=0.4t for the bulk
system atm=0, respectively. The
first column displays the ampli-
tude of thedx2−y2 order parameter
as a function of the wire width for
two different chemical potentials
m / t=0 and m / t=0.4. The other
two columns show the variation of
the dx2−y2- and is component of
the order parameter across the
wire for m / t=0 (center column)
and m / t=0.4 (right column). For
comparison the reduced magni-
tude of the bulk order parameter at
m / t=0.4 is displayed with dashed
lines in the right panels.

FIG. 18. Mapping of theN=2 wire with (110) orientation to the
1D chain with lattice constantd. Note thatD2=−D1 corresponds to
a triplet pairing state withSz=0.

FIG. 19. Phase diagram for 1D chain as a function of chemical
potentialm / t and nearest-neighbor interactionV/ t.
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wires [see Figs. 16(a) and 16(b)]. This also explains why this
new phase is more favorable for wires with even width than
with odd width(compare left and right panels in Fig. 15), as
only the former can be divided evenly intoN=2 wires. Note
that also for the narrow wires, a critical coupling strength of
similar magnitude as in the 1D chain is necessary to induce
the triplet-superconducting state, which is, however, smaller
than the interaction strength considered in this paper. At
larger chemical potentials we find an extendeds-wave order
parameter analogous to the one-dimensional chain. More dif-
ficult to reconcile with the phase diagram of the one-
dimensional chain, however, are the seemingly arbitrarily
distributed mixtures of singlet- and triplet-superconducting
order parameters(crosses in Fig. 15). The normal state re-
gions, which occur for narrow wires and intermediate chemi-
cal potentials in Fig. 15, reflect the fact that superconductiv-
ity becomes less favorable in finite geometries and a critical
coupling strength is necessary to induce it.50

B. Density of states

What does the phase diagram in Fig. 15 imply about the
possible existence of Andreev bound states in narrow wires?
In Fig. 16(c) the local density of states and the variation of
the order parameter throughout the wire is depicted for the
quasi-one-dimensional triplet superconducting state using the
N=8 wires atm=0 as an example. Obviously, the density of
states in this state is fully gapped, in analogy to the one-
dimensional chain, and there are no Andreev bound states.

Close to half filling, for wider wire widths, the results are
more conventional and the effects of self-consistency much
simpler. In Fig. 20 the local density of states is displayed for
theN=10 and theN=11 wires atm=0, which are character-
ized by a puredx2−y2 order parameter. Here, the main differ-
ence between the self-consistent(lower panels of Fig. 20)
and the non-self-consistent results(upper panels of Fig. 20)
is the suppression of the magnitude of thed-wave order pa-
rameter especially towards the edges of the wire(see also
insets of Fig. 20). Whereas the weight of the zero-energy
peak is reduced in the even-widthsN=10d wire the weight of
the zero-energy state in the odd-width wiresN=11d is hardly
affected.

VI. CONCLUSION

Motivated by recent scanning tunneling experiments on
the Ba2Sr2CaCu2O8 systems which reveal inhomogeneous
electronic structure on the nanoscale, we have analyzed in
detail the electronic structure ofd-wave quantum wires.
These wires exemplify the effects of a constrained geometry
while still being simple enough to allow for analytical solu-
tions. To impose a restricted geometry we use lines of impu-
rities with infinite scattering strength, a method which allows
to cut arbitrarily shaped objects out of the two-dimensional
plane. In principle, it is straightforward to extend this method
to investigate the effects of tunneling between neighboring
grains by reducing the scattering strength of the impurities
and thus lowering the potential barrier between neighboring
grains.

New and interesting physics arises from interference ef-
fects between the two surfaces of the wire when its width is
of the order of the superconducting coherence length. Con-
trary tos-wave superconductors in finite geometries, the sur-
face pair breaking plays an important role. In this respect, the
existence and nature of Andreev bound states in constricted
geometry is of particular interest. In order to single out new
effects peculiar to quantum wires and arising from the inter-
ference of the two surfaces, we have addressed the case of a
single surface in the first part of the paper, concentrating on
surfaces with (100), (210), and (110) orientations in a
nearest-neighbor tight-binding model at half filling. Andreev
bound states can form on surfaces with orientations deviating
from the(100) direction due to the sign change of thed-wave
order parameter. However, in the presence of several chan-
nels for reflection of quasiparticles from the surface, the
zero-energy Andreev states may not exist, as is the case for
the (210) surface of the square lattice. Here our results are in
qualitative agreement with earlier work based either on the
quasiclassical approximation or Bogoliubov–de Gennes
equations. Only for the(110) surface, which involves the
strongest pair breaking, do we find a zero-energy Andreev
bound state, whose amplitude decreases with the square of
the inverse distance from the surface and vanishes on even
layers.

In the main part of this work, we focused on quantum
wires with (110) orientation, which display a pronounced
“width parity” effect. The special case of electrons hopping
on a square lattice with half-filled tight-binding band was
treated most extensively. For wires of this type with an odd

FIG. 20. Density of states for theN=10 wire (left panels) and
the N=11 wire (right panels). Upper panels show the non-self-
consistent results assuming a constantdx2−y2 order parameter of
D0=0.2t, whereas the lower panels display the density of states
resulting from the self-consistently determined values of thed-wave
order parameter, whose variation throughout the wire is depicted in
the insets. All panels show the density of states starting from the
outermost layer of the wire up to the middle layer of the wire,
where for each layer towards the center of the wire an additional
offset of 0.3t has been used.
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number of chainsN only one subgap state, a dispersionless
zero-energy Andreev bound state, exists. As in the single-
surface case, the amplitude of the ZES vanishes on even
layers and decays towards the center of the wire. In addition
to the ZES, there areN−1 dispersive modes, which are dou-
bly degenerate due to particle-hole symmetry and are not
Andreev states.

In the case of even-N half-filled wires, a splitting of the
branches occurs which is associated with a symmetry break-
ing ky→−ky, and a total of 2N dispersive modes exist. Al-
though there is no dispersionless ZES, all quasiparticle states
in the even width wire are of Andreev character in the sense
that the current of the probability density vanishes due to
opposite contributions from particle and hole excitations.
These quasiparticles occupy either conventional Andreev-
type surface states or a new type of Andreev standing wave,
according to their momentumky parallel to the wire. In the
2D limit N→`, the lowest energy dispersive state was
shown to transform into the usual zero-energy Andreev
bound state at the impenetrable surface, while the standing
wave states evolve into either the continuous spectrum or the
surface states. With increasing deviation from half-filling,
odd-even effects in the wires become less pronounced. The
evolution of the Fermi-surface shape with these deviations
can result in additional extrema in the quasiparticle disper-
sive modes and, hence, new peaks in the LDOS. Large-scale
faceting of the surfaces with characteristic scales larger than
the wire thickness will not influence our results significantly.
However, small-scale inhomogeneities such as pointlike de-
fects and impurities can substantially change the effects of
interference induced by wire surfaces, even if the phase
breaking length is large.

The small coherence length of high-temperature super-
conductors leads to further restrictions on the applicability of
the quasiclassical results to superconducting wires or films,
whose width is less than or comparable to the coherence
length. For narrow wires of(110) orientation, the self-
consistent treatment of the order parameter is found to have a
large effect. For wires with widths less than the supercon-
ducting coherence length(up to N=9 for the particular pa-
rameters used in our numerical calculations), especially for
the even width wires, a new phase characterized by quasi-
one-dimensional triplet pairing is found in the mean-field
phase diagram. This new phase is fully gapped and charac-

terized by the absence of Andreev bound states. The larger
the width of the strip, the more thed+ is state, which is
expected for a single surface with(110) orientation, domi-
nates the phase diagram near half filling. With respect to the
density of states at half filling, where the order parameter has
only a d-wave component, the main effect of the self-
consistent treatment is the suppression of the magnitude of
the d-wave order parameter, especially near the surfaces of
the wire.

It is interesting to end this discussion with some specula-
tions on the role of bound quasiparticle states and edge ef-
fects of this type on the spectra of weakly coupled supercon-
ducting grains as apparently observed in STM experiments.
Such irregular grains should contain nanoscale “facets” at all
possible angles, so presumably the most general situation
with sizable particle-hole asymmetry and mixture of even-
and odd-N boundary conditions will apply. If we first assume
that the pair interaction and grain size are such that one may
ignore the triplet states found in the self-consistent treatment,
we expect the spectra of weakly coupled grains to be domi-
nated by the zero-dimensional analogs of the dispersive sub-
gap states discussed here, i.e., there should be a wide distri-
bution of bound-state energies depending on local geometry
of the grain, and visible in the LDOS as measured by STM.
In this sense we question whether the weakly coupled grain
picture is, in fact, applicable to the experiments in question,
which appear to see a veryhomogeneousspectrum at low
energies in the superconducting state.

A second remark is based on our observation that in
nanoscale confined geometry, spin-triplet fluctuations may
become more favorable. Such time-reversal symmetry break-
ing fluctuations will clearly lead to local spontaneous cur-
rents, an issue which has recently been raised again in angle-
resolved photoemission studies.66 Future studies of small
grains are planned to address these issues.
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