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Electronic structure of d-wave superconducting quantum wires
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We present analytical and numerical results for the electronic spectra of wired-ofae superconductor
on a square lattice. The spectra of Andreev and other quasiparticle states, as well as the spatial and particle-hole
structures of their wave functions, depend on interference effects caused by the presence of the surfaces and are
qualitatively different for half-filled wires with even or odd number of chains. For half-filled wires with an odd
number of chain®\ at (110) orientation, spectra consist BNfdoubly degenerate branches. By contrast, for even
N wires, these levels are split, and all quasiparticle states, even the ones lying above the maximal gap, have the
characteristic properties of Andreev bound states. These Andreev states above the gap can be interpreted as a
consequence of an infinite sequence of Andreev reflections experienced by quasiparticles along their trajecto-
ries bounded by the surfaces of the wire. Our microscopic results for the local density of states display
atomic-scale Friedel oscillations due to the presence of the surfaces, which should be observable by scanning
tunneling microscopy. For narrow wires the self-consistent treatment of the order parameter is found to play a
crucial role. In particular, we find that for small wire widths the finite geometry may drive strong fluctuations
or even stabilize exotic quasi-one-dimensional pair states with spin-triplet character.
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I. INTRODUCTION or similar methods, this should be technically feasible.

Since the discovery of high-temperature superconductiv- 'Solated nanoscale grains and wires of HTS material have
ity (HTS), the origin of the pairing phenomenon in these N°t been fabricated to our knowledge. While this may prove

materials has been the subject of intense debate, and is Sﬁﬂchnicallﬁ quite difficu:]t to achieve due to thef complexitylof
not clarified. Part of the unusual nature of HTS which has® erStah s:ructure, t ﬁ_re seel_ms to be”no uEdamenta ob-
hindered theoretical analysis is the short coherence lengtf§tacle in the long run. This applies as well to other supercon-

which allows short-wavelength fluctuations of various typesd’uctors thought to manifest unconventional superconducting

of local order to coexist with superconductivity. Most probeso.r der, where effects of finite geometry should be easier to see
ince coherence lengths tend to be larger.

of the nature of the superconducting state have been ré It is our purpose in this paper to study halawave (e.g.,

et U PYOP4T) and tner uncorventonl symmety suprcondsctr
the pioneering work of Hesst al.! it was realized th'at scan- behave n finite geometry at the atomic scale. Ziegtaal.

1€p Ing wc § ; ; began the study of this problem in the casg1#0) d-wave
ning tunneling microscopySTM) could provide an atomic- 4, antum wires, pointing out the dependence of the Fermi-
scale picture of the superconducting state, particularly usefyt,e| density of states on the parity of the wire width. This is
when applied to inhomogeneous situations such as the vortex natural consequence of the discretization of the electronic
lattice. Measurements of this type were subsequently peknergy levels due to the finite wire width in tdevave state.
formed on high-temperature superconducfots. the past while in thes-wave case all the interesting physics is tuned
few years, scanning tunneling microscopy on the surface oby the level discretization, one expectspriori one funda-
HTS have compiled a novel and fascinating picture of themental difference in the-wave case. For any geometry with
local electronic structure of a few of these materfal§.n  surfaces making an arbitrary angle with the crystal axes,
the BgSr,CaCy0Og system(BSCCO, one dramatic implica- pair-breaking processes take place on a scale of the coher-
tion of these experiments is that even relatively high qualityence length. The most important consequence for the elec-
single crystals display inhomogeneous electronic structure dtonic structure should be the formation of Andreev surface
the nanoscalé&:*° states.

In parallel to studies of the HTS materials, point-contact However, little is known about how Andreev surface
spectroscopy has been used to study the electronic structustates behave when the size of the superconductor becomes
of ultrasmall conventional superconducting islahtidmong  comparable tcé, The zero-energy states form on surfaces
many fascinating consequences of the nanoscale geometwith orientations different from the antinodal directions of a
are number parity effects, in which the qualitative electronicd-wave superconductor, due to the sign change of the order
structure depends sensitively on whether the number of ele@arameter. In high-temperature superconductors, such states
trons on the island are even or odd. More recently, supercommanifest themselves as the zero-bias conductance peak in
ducting wires of widths tens of nanomet&rkave also been tunneling spectroscopy in thab planel*-3°the anomalous
fabricated. Although they have not yet been studied by STMemperature behavior of the Josephson critical cuffetit
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and the upturn in the temperature dependence of the magutificially fabricated islands, some authors have proposed
netic penetration deptfr*® (see also review articles, Refs. that the BSCCO-2212 samples which display nanoscale in-
47,48. The conventional description of Andreev surfacehomogeneity should be thought of as a collection of weakly
states, as well as the Andreev reflection itself, is based on thepupledd-wave grains of roughly the size of the supercon-
quasiclassical approximation, a powerful tool in the theoretducting coherence lengtk,, or d-wave grains coupled to
ical study of various properties of inhomogeneous supercorgrains of another electronic phas1%52in fact, the struc-
ducting systems. L ture of a general, possibly irregular small grain dfvave

The quasiclassical theory of superconductivity gives a SOgperconductor, has not been studied to our knowledge. Un-

called coarse-grained description of the phenomena, avefjgrstanding how the LDOS of these wires depend on the
aged over interatomic distances. This has been used, for & o yigth and the orientation, as well as on the deviation

ample, to calculate the local quasiparticle density of state -~ A L
(LDOS). However, these coarse-grained averaged results EE%@m half filling, could provide important intuition for the

not adequate to analyze atomic resolution measurements Ulestion of the electronic structure of the small irregular
STM and some other contemporary experimental techniqu a_:_t;]s posT,_|ny pfreﬁent in BSCCO sfalrlnples.l S "

(e.g., atomic force microscoffy. To obtain this type of in- 1 "€ outline of the paper is as follows. In Sec. ll, we
formation, a fully quantum-mechanical atomic-scale alo_m'[roduce the formalism for the problem. In Sec. Ill, we dis-
proach going beyond the quasiclassical approximation iffUSS three special semi-infinite surface orientatiqi4o0),
describing inhomogeneous states of superconductors is r&210, and(100. In Sec. IV B 2, we study thel10) super-
quired. We address this problem in the present paper using@nducting wires with even and odd width and make a com-

tight-binding BCS-like model of a-wave superconductor on Parison with the discrete states in normal metal wiigsc.
a square lattice. IVB1) to try to identify the nature of the true Andreev

As a first step towards understanding the effect of conStates. In_S_ec. IV B 3, we study the effects of deviatior!s from
strained geometry, we study the simplest casd-ofave su- the half_ﬂllmg. In Sec. V the result_s of fully self-consistent
perconducting wires consisting & parallel chains as the calculations are presented. In particular, we allow _the order
system size is reduced. The quasiparticle spectrum of sudhgrameter to vary spatially and comment on the differences
systems is described both analytically, with an assumed spd? our results. In the case of narrow wires th_e self-consistent
tially homogeneous order parameter, and also numericalltudy shows the appearance of some peculiar types of super-
with a fully self-consistent approach. In the linht>1 the ~ conducting pairing. Finally, in Sec. VI, we present our con-
usual surface Andreev states in lattice modéfé47as well ~ clusions.
as the surface states known in continuous motfetsn be
recovered at each surface of the wire. However, for suffi-
ciently narrow wires, when the transverse wire dimension is
the order of the superconducting coherence length, the An- The Hamiltonian for a pure singlet superconductor can be
dreev states strongly interfere and give rise to qualitativelywritten as
new effects. We show below that only those effects which
occur for bands sufficiently far from half filling and rela- H=-t > CiTUng—E [ — Ui]ciTgciU+ 2 {Aijcﬁch +H.c},
tively wide wires can be described with the quasiclassical iy Lo @
theory of superconductivity. In addition, we demonstrate 1

how and under what conditions one can recover earlier qua—h h h . . .
siclassical results for Andreev stateslimvave superconduct- WNere we have chosen a nearest-neighbor tight-binding band

ing filmsS? from our microscopic approach. for_s_,implicity;_,u is the chemical potential. A superconducting
The microscopic method adopted in this paper to conP&iring is defined for nearest neighbds=-V(c;c;;) on the
strain the geometry involves introducing lines of impuri- Pondii.j}. The parametetis of order 150 meV for highf,
ties of potential strength taken to infinity to bound the wire. materials, and we consider both the particle-hole symmetric
surface®34364751and (100) wirest can be reproduced by se_lf-con3|stent calculations the order parameter has the fa-
this technique, and then extend it to calculate results on wiredliliar k-space formA,=Aq[cogk,a)-cogkya)], where Aq
with other orientations. We find that the results for eleCtroniC:%Ei(Aiiira_Aiiirb) is independent of, and is taken to be
spectra are very sensitive to the number parity of the wird.2t. The lattice constant is denoted AyThe maximum gap
width, and that true zero-energy Andreev states can only exs An,q.=249. We also present self-consistent calculations, in
ist in wires with odd numbers of chains. In even wires, thewhich caseV is chosen to yield this same value af far
Andreev states are split, pushed away from the Fermi energfom wire edges.
and can have either surface or standing wave character. Fi- It is possible to constrain the geometry underlying #y.
nally, we show that for smaller wires self-consistency effectdn several different ways. We present results here for a
become important and can even, within mean-field theorymnethod discussed, for example, in Refs. 34,53 in which the
lead to condensation of a fully gapped spin-triplet state in-on-site potentialgJ; are chosen to lie on the boundary and
stead ofd-wave order. their value is taken to infinity to cut off electron transport
Our results may also have some qualitative relevance fothrough the boundary. This technique has the virtue that the
the related problem af-wave superconducting grains, where strength of the barrier can in principle be lowered to allow
the geometry is constrained in two dimensions. In addition talifferent degrees of transparency and the study of tunneling

Il. MODEL DESCRIPTION AND FORMALISM
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phenomena. In this work we restrict ourselves to impurity
configurations and strengths for which the constrained sys- - ‘
tem is completely isolated from its environment. This is !
equivalent to the assumption of open boundaries, when no
hopping and no pairing take place outside the region. No
disorder is introduced in the system and we consldeas
“impurity” potentials only so as to form the surfaces of the
superconducting region.

The Hamiltonian of the surface term is taken to be

(h,D=(2,1)

U=Uo2 ¢i,Ceo, 2) ,
lo /
where the set of site¢ is determined exclusively by the S .,
boundaries of the desired systésee below The full Fou- e

rier space Green’s function for the system in the presence of

these impurities is quite generally FIG. 1. (210) surface or wire. Two lines of impuritie&losed

squarepare needed to isolate the lattice sitebsed circles with

é(k,k’,w) — é(o)(k,w)ékyk, + é(o)(k,w)'vl'(k,k’,w) nearest-neighbor hopping.

~ 0L 7 sign as the direction of the quasiparticle momentkinis

XGP(k',w), ) varied. This leads to Andreev reflection and, eventually, to

where theT matrix can be found from the following equa- the formation of the dispersionless zero-energy surface An-
tions: dreev bound states. For other surface orientations the sign
change does not take place for all incoming momentum di-

T,k @) = Ulk,k') + S Uk, k") GO K", 0)T(K" K, ). rections. It is important to notice that the number of consecu-
tive impurity lines that are needed in order to cut the system
depends on the orientation of the surface one wants to con-

(4)  sider. For100) and(110) surfaces and nearest-neighbor hop-

- - ) ) i ) ping, one line of impurities is sufficient to cut communica-
HereG andT take 4x 4 matrix form in the four-dimensional 51 petween the two sides. For210) surface, the nearest-
product space of particle-hole and spin variables. If Wepgighbor hopping and pairing terms can still connect this
choose nonmagnetic on-site potentials and consider singlgfarticle with another across a single line of impurities, so for
superconductors, the problem reduces té 2 matrices in g simple tight-binding band, two consecutive lines are
Nambu space. The Nambu retarded propagator for the puigeeded to close the syste(Rig. 1). Alternatively, if one

K"

d-wave superconductor is includes a next-nearest-neighbor hoppirig even a(110)
. - . surface is not closed by a single line of infinite impurities;
GO(K,w) = wTp+ §Ts+ ATy (5)  the system considered in Ref. 53 is therefore not a closed
' (w+i0)2- & - A2’ (impenetrablg surface. For a(hl0) surface in general,

. . _ maxh,!) lines are needed for a model that includes nearest-
where ther, are the Pauli matrices angl=-2t{coska)  paighbor terms only, anti+! lines are needed for a model
+codkya)] - . Calculating theT matrix allows us to obtain  {hat includes next-nearest-neighbor terms. Clearly, the tech-
the eigenenergies of the system from the conditiomigque becomes cumbersome for arbitrary angles, but one can

defTY(w)=0. nevertheless learn a good deal by considering special cases.
The local spin-resolved quasiparticle density of states is_In the presence of a surface of arbitrary orientation, the
given as simplest way of applying Bloch’s theorem to this discrete
system is by using a surface-adapted Brillouin z&iiéWe
pi()(r,@) ==771mM Gyy 1 (1.1, 0). (6)  define new coordinateé,y), rotated with respect to the

After integration of the LDOS over energy, we should obtainCTyStal axes(@,b), wherex is the direction normal to the.
the total number of quasiparticle states for each site. SincgUrface and is the direction along the surface. The system is

each site on the lattice possesses two states with opposigricdic along they direction and the crystal momentum

spins, the spin-resolved LDOS normalization is componenk, of a_qua}3|part|cle_|s conserve_d. Instead of the
usual square Brillouin zoné,=[-, 7], k,=[-m, ] (for

* unit lattice constana=1) we now use the surface-adapted
f dawpy)(r,w) =1. (7)  Brillouin zone given byk,=[-/d, 7/d] andk,=[-md, md].

Hered=1/\h?+I? is the distance between the nearest chains
(layers aligned along the surfaces. The momenta in the two
coordinate systems are simply related through rotation of an
lll. SURFACE CASE angle #=tarih/I. _ _
Now we turn to the solution of the equation for tfie
Upon a conventional reflection on tli#10) surface of a matrix [Eq. (4)] for the case of one line of impurities. We
d-wave superconductor, the order parameter always changesart with the ansatz
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T= Toro+ Ty + Ta7g (8) —
u
and find, for arbitrary strength of impurity potential, i o g:l
— n=3
GY(0ky, ) 0.1 " &
To(ky @) = — , (9) L y
Dl (@] _/'_/. {oue
© 3 e v
-G;7(0,k,, <
Tl(ky1 (1)) = 1 ( w) , (10) 0.05- g - - < N
D1 R \ e e
LSl
c-GP(0,k, ) Lo
Ta(ky,0) = —— , (11) ol . . .
Dy 210 -5 0
where Dy(ky, ®)=[c-GL(0 ky, ) P-G(0 kw2 @ oA,
+G2(0,k,, w)?,c=1/V,, and G”(x,k,, ) is the Fourier 04
transform with respect tk, of theith Nambu component of =i
the bare Green's functio6.” (k , w) I o
i 0.3
d .
G2(n,ky,w) = —f G\ (ke ky, w)g%dk,. (12) 4
27 J =i 8
= 02

The site indexn corresponds tx-coordinatex=nd. For the
case of infinitely strong impurity potential considered here,

¢=0. In this case the expression fércan be written in the 0.1
compact form,

T(ky ) = - [GO(0,ky, )], (13) 0

and the poles of th& matrix correspond to zeros of the (p)
determinant of the Green’s functid®?(0,k,, »).

The Fourier transform with respect kg of Eq. (3) is FIG. 2. Local density of states(x, w) for a (100 surface. Nor-

mal state(upper panél and superconducting stateower pane),

é(n,n',ky,w)=é(o)(n—n’,ky,w)—é(o)(n,ky,w) Z(x,ai)o\‘/‘ts w_/AmaX for various distances=x/d from surface;
max=0.4t, u=0.

X[G2(0,ky, )] }GO(- 1" ky, w).
(14)
Due to periodicity of the system along tlyedirection, cal-
culation of the LDOS at site will simply involve a sum of

G(n,n,ky, w) over all values ok, within the surface-adapted
Brillouin zone and over two spin directions:

show that such states can be seen by the STM even in situ-
ations where surface Andreev states are absent. Figure 2
shows on upper and lower panels the LDOS for various dis-

tances from the surface in the normal metal and the super-

conducting states, respectively.
d

Gll(n,n, ky, 0)) .

2
p(r,w) =p(n,w) = - —ImJ
n

—d 27Td
(15) B. (110) surface
Results for g110) surface are expected to be qualitatively
different from the ones obtained fo&00) surface. The bulk
order parameter in the coordinate system of the crystal axes

aandbis Ay =Ag(coskea-cosk,a), but in the coordinates of

A. (100) surface

Since(100) surfaces are not pair breaking dhwave su-
perconductors, we do nat priori expect to see interesting “ . -
physics arising from Andreev states. On the other hand, thfar|e surfacex (perpendlcular to s_urfa;cean_d y (para!l_el to
mere presence of a surface can induce surface TampH(face becomesd,=2Agsinkdsinkyd, with d=a/y2. In
bands3* decaying in the bulk on the atomic scale and expe!NiS case, an incident particle with any nonzégoexperi-
riencing the Friedel-like oscillations of the LDOS. In our €NCES a sign change in the order parameter as it reflects from
model Tamm states have nothing to do with the supercontn€ surface. .
ductivity, although the possibility for pairing of electrons oc- ~ Calculation of the bare Green's functioc®(n,k,,®)
cupying these surface states is not exclutiedthile it is not  from Eq.(12) gives atu=0, G; 5(n,k, )=0 for evenn and
our intent to study these in detail, we present some results tGy(n,k,, »)=0 for oddn. Explicitly,
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llolexpl-ilnizsgiw(q” - A9}
V(? = A% (0P - 0?)

GO(n=2mk,w) = -

70
(16)
and

GO(n=2m+1,k,w)
IAexp{—llnlzsgr[w(q - A?)]isgrin(g® - AZ)L

V(g2 = AY)(0? - A?)
iq exp{~ i|n|zsg{ w(g? - A?) }sgn(w) .
BN e o B
where

_ q2_ 2
z(ky):tanlwrzz, (18)
A(k,) = 2A¢sin(k,d), (19)
q(k,) = 4t cogk,d), (20)

and A(k,) andq(k,) are the maximum gap, and single-
particle spectrumy for fixed k, in (110) geometry. Note
that here the square-root function takes positive value
for positive arguments i.e., under the conditions
IA(ky)|<|w|<|q(ky)| _or_a(ky) |<|w|<|A(k . For A?
-w?<0, the branch\A2 w’— —i sgnw)Vw? A2 for either
A=A,q. In Fig. 3 we show the LDOS spectra on the different

layers. Each layer is defined as an array of sites parallel tc

the surface. Its index indicates its position; layeicorre-
sponds to sites at a distanod away from the surface.

The Andreev bound states are manifested as zero-energ

peaks in the LDOS. For=0, such states are found in all
odd layers, and are absent on even ones, as seen in Fig.

PHYSICAL REVIEW B 70, 144502(2004)

FIG. 3. Local density of states
p(X,w) in superconducting state
VS /A for the case of one
(1100 surface, Ay=0.2,u=0.
Left: chains an odd distance
=x/d from surface ak=0. Right:
chains an even distance from
=0.

of the T matrix and Green'’s functions, Eqel3)—(17). For
evenn, the bare Green’s functio®®(n,k,w) is propor-
tional to w for low frequencies. Then th&-matrix T~1/w

for small w. Even though thd matrix has a pole ab=0, the
product of two Green’s functions in the analog of Kg)
decreases faster, resulting in zero LDOS at zero frequency.
As seen from the right panel of Fig. 3, the low-energy den-
sity of states on even layers near thié0) surface is substan-
tially less than in the bulk, where it varies linearly with suf-
ficiently low energy. Furthermore, the amplitude of the gap
features in the LDOS is noticeably suppressed with decreas-
ing distance from the surface. These features of the LDOS
can be understood based on a simple relation between the

Green’s functioné(n’:n,ky,w) of the half space and the

S

Amplitude of Andreev state

layer index

4.FIG. 4. Amplitude of Andreev state vs distanoex/d from

This even-odd effect can be easily understood from the forni110) surface forA,=0.2, u=0.
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bare Green’s functioﬁ;(o)(n—nzo,ky,w), which takes place
for evenn=2m:

G(n' = n,ky, ®) = {1 - exg - 2i|n|z sgr{w(g® - A?))]}
xGO(0,ky, ). (21 o35

The factor in the braces in E¢21) controls the deviation 0‘:

from the bulk behavior and diminishes with decreasing even,, ,
In|. At low energies only narrow regions &f near the center  § a1s
and the edge of the Brillouin zone contribute to the LDOS.  os
As a result, for even layers the density of states godads 005
at low energies, with the main contributions arising frém .
near the edge of the Brillouin zone.

For odd layers, the, and 73 components o5 (n=2m
+1 k,,w) are the ones that are nonzero, and they approach a
constant value a® goes to zero. So the pole in tAematrix FIG. 5. Local density of states(x, ) VS o/An,y for a closed
generates the peak in the LDOS, associated with the zerg210) nontransparent surface at half filling model ahg=0.2t, 1
energy Andreev surface states. For Andreev statés,an  =0. Each curve corresponds to a chain located at a distante®
imaginary quantity. The size of the peak decreases as th#e surface.
distance to the surface increases due toetfid™ 2 factor in

Eq. (17). For large|n|, small k, dominates the integration U€S Of outgoing , for a fixed value ok,. This situation is
over k. in the LDOS and wey obtain the following zero- realized for the comparatively complicated multisheet struc-
energ; asymptotic behavior of the LDOSp(w) ture of the Fermi surface in the surface-adapted Brillouin

_ > . . zone for thg210) surface, as obtained in Fig. 9 of Ref. 36. A
_(ZUWAO?Z)&(“’)' The size of the zero-energy peak in the strong dep%ndgnce of the particular sha%e of the surface-
LDOS n’=. adapted Brillouin zone, as well as the Fermi surface in the
zone, on surface orientation is an important characteristic
feature of the tight-binding modet&.51Within the quasiclas-

It is useful to study a case intermediate between the starsical theory, the shape of the Fermi surface is usually con-
dard (100) and (110 surfaces to see what qualitatively new sidered as independent of surface orientations relative to the
features arise. From the usual quasiclassical viewpoint, therystal axes. We note that the zero-energy surface states can
weight of the zero-energy Andreef210) surface states disappear, if multiple channels for reflection of quasiparticles
should be finite, but smaller than for thi@10) surface be- from an impenetrable surface are assumed. In this section,
cause the phase space for which the reflecting quasiparticige now study the LDOS for quasiparticle spectra obtained
experiences a sign change of the order parameter is reduceglith the tight-binding model at half filling fo¢210) surface.

The tight-binding model leads to a more complicated depen- Technically, we now need to solve for the Green’s func-
dence of the weight of the zero-energy states on the surfaafn in the presence of two impurity ling§ig. 1). In the
orientations relative to the crystal axes. Thus, for 880  general case of two parallel impurity lines, we cut the crystal
surface the model shows at half filling no zero-energy An-at an orientation given byhl0) and introduce an impurity
dreev states at all. We associate this discrepancy, in particiotential

lar, with the difference between reflection channels incorpo-

rated in the two approaches. U(r)=Us>, ar -R)), (22)

Standard quasiclassical considerations imply that parallel j
to a smooth surface the momentum comporignis con-  where R; are the points on the two impurity lines, at the
served in a reflection event, and only conventional speculapcation of the boundaries. The first boundary is defined to
reflection takes place. A tight-binding model shows that, genye |gcated ax=0 with impurity sitesR,-:jd‘ly and the other
erally speaking, this is not the case, sincedhgstal momen- s parallel and located at=(N+1)d with R;j=(N+1)dx+(c
tum componenk, can also change in a reflection process by+jd—1)9, giving a total ofN free chains. Here is a shift

a reciprocal crystal vector along the surface. Due to a differ-amngy axis of sites on théN+1)th chain relative to the sites

ence between reciprocal crystal vectors at the surface and lSh the Oth chain. For the special case of (2£0) surface, we

the bulk, the momentum acquired by a quasiparticle in &004 1o adjacent lines a0 andx=-d, so formally this
reflection event can be physically distinguished in the bu”%orresponds to the case NE-2. ’
from that of specularly reflecting quasiparticle. Hence, spe- The equation for thd matrix [Eq. (4)] for this impurity

cific crysta! perloq_|0|ty along a partlcularly_ orlgnted surche potential can be solved by choosing the ansatz
can result in additional channels for quasiparticle reflection,

if there is a reflected state(k,),k, on the Fermi surface :I\—(kka),(:ky) =1, + 1,8 WDk 4 @i NFDIdK 4§l (N+D (k)

corresponding to thé, surface Umklapp process. (23)
In this case the Fermi surface, considered as a part of the

surface-adapted Brillouin zone, should exhibit multiple val-In the limit of infinitely strong impurity potential this gives

C. (210) surface
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A -G90* A G20
t = ~ ~ ~ ~ l t3 == ~ ~ ~ ~ ]
* 1-69(0)160(- N- DGO IGON + 1) 1-G20)*GON+1)G?0)GO-N-1)
. GO(0)'GO(-N- )GO(0)!
~ ~ ~ 2~ ~ ~ ~ ~ .
- G20 *GO(N+1)G2(0) 1-G90)*GO(-N-1G20)*GO(N+1)
1— ~ ~ ~ ~ 1]
1-G90)GO(-N-1)GQ(0):GON + 1) The Green’s function in this case can then be written as
|
- - S o 690 GO9-N-1\[ GO-n
G(n,n")=GO9n-n")-[G9n) GO(n-N-1)] X ( . © A( : . ) : (24)
GON+1) G0 GON+1-n")
[
\I;vlrc?trls we have not written the dependencekpand w ex- ( é(O)(O) é(O)(_ N — 1)> 0 6
The equation for the bound state (#1.0) surface is GON+1)  GO0) '

de ( GO(0) G(o)(l)) 0o (25) A. (100) wires
GO(-1) GO0 Ziegler et al1® investigated the problem @i00) d-wave
. . uantum wires in some detail, and discovered the existence
Figure 5 displays the LDOS spectra calculated on severz-gf a number-parity effect as a function of the widthof a
layers for(210) surface. There is no zero-energy peak ob-mesoscopia-wave wire: a finite total DOS is found at the
served on any chain at all, for the reasons explained in thgermi level for oddN and zero DOSwith a full gap in the
beginning of this section. The peaks in the LDOS, seen closgxcitation spectrum, not@wave-like gapis found for even
to the(210) surface at energies +Q\3,,, originate from the N, at least for a simple tight-binding band at half filling. The
gap features taken for the momentum along the surface nodifferences between even and oddvere shown to survive
mal: A(Kgy,Key=0)=0.54,. The peak atw=A(kgy,0) for more general bands, as well. For completeness, we repro-
arises for the homogeneous model of the order parameteduce, using our approach, some of their LDOS spectra in
while for the self-consistent spatially dependent order paramFig. 6.
eter it lies slightly belowA(kg 4, 0). It is associated with the
surface Andreev states and decays in the depth of the super-
conductor. These peaks have been theoretically found first in 1. Normal metal wires
Ref. 23 with a continuous model and then also for the con-  Based on intuition from the surface case, we would expect
ductance with a lattice mOda.We notice that the conduc- that Andreev states p|ay an important ro|e(n:ﬂ_@ Wiresy
tance spectrum shown in Fig. 14 of Ref. 36 is in agreemenfyith geometry shown in Fig. 7. A crucial question which
with the LDOS on the first chaiitat x=d) in Fig. 5. The  arises in the following discussion is, how does one identify a
variations of the LDOS from chain to chain, which accom-subgap state of true Andreev character? By merely measur-
pany a large-scale behavior, are the Friedel-like oscillationang the LDOS with an STM, for example, one may see sev-
eral peak structures, not all of which will be related to An-
IV. HALF-FILLED WIRES dreev reflections at the surfaces. One set of candidate states
We now consider wires where the second line of impuri-W_hiCh ljeed§ to be investigated first_is th(_a set of discrete
ties confines the system to a finite width, i.e., we restrictdiSPersive(with respect tc,) levels which arise simply be-

ourselves to the cases with surface normal along(1@e) cause of the finite wire width. These are of course present
and (110 directions. Semiclassically, a quasiparticle will go alrfzrar\]dykm_ t?e notrrgatl)-state ere.l ate Green's function f
through multiple scatterings, bouncing back and forth be- € Kcintegrated bare normal-state reen's function for

tween the two walls. Hence we expect that the interplay be@N infinite lattice abovd takes the form

B. (110) wires

tween Andreev reflection, taking place due to sign change of © d (™ gkadgk,

the order parameter, and the energy discretization, due to Gi1(nky,w) = o m

finite wire width, to yield novel features. We again model the i k

surfaces by introducing impurities on the appropriate sites to i exdi|njarcco$- w/q(k,)]]
completely isolate the wires. The corresponding Green’s - T 2k,) - ? (27
function is given by Eqs(24). The bound-state energies are VaKy

determined by the equation whereq(k,) is defined in Eq(20). The full Green’s function
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9]

o]

a]

=

FIG. 6. Local density of states

p(X, w) VS wl Aax for a(100) wire
of width N=4 (left panel$ andN
=5 (right panels, using Aq
=0.2t,u=0.

9]

o]

a]

=

for a (110 wire may then be obtained by solving the T

T-matrix equation as @,(Ky) = = Q(ky)COSN w1 U7 0,1...N+1. (30

’. _ 2 Sir[nminZ]Sir{(nmax_ N - 1)2]
Gl )= k) - s (N 1]

(28)

where n,n'=1,2,...,N,z=2z(ky, w)=cos[~w/q(ky)], Nmin
=min(n,n’), andny,,=maxn,n’).

This givesN branches of solutions for=1,...,N, distrib-
uted symmetrically with respect to the Fermi level, and two
special solutiongr=0 andN+1) with w=*q(k,) which we
refer to as defining the “effective band edge”. One interesting
feature is the existence in the normal metal wire of disper-
sionless zero-energy quasiparticle sta8&S) which form
the branchv=(N+1)/2 when the width\ of the wire is odd.

For every value ok,, there generally exists a series of Since the group velocity vanishes for dispersionless states,
eigenvalues which are the poles of the Green’s functionthey are always localized. We note that the chisel has

They may be obtained by simply solving
sinf (N + 1)z(ky,w)] =0, (29

which yields

N+Ix X

FIG. 7. Geometry of110) wire (sites are filled circlesof width
N bounded by two impurity line€filled squares Wire is infinite in
bothy and -y directions.

only the obvious dispersionless ZES since no transport is
allowed with only nearest-neighbor hopping. In the general
N=o0dd case, it appears that there is always exactly one such
localized stat€doubly degenerate in particle-hole spafie
any fixedk,. A deviation from half filling shifts the zero-
energy states to . Thus, for positivex they are the hole
states, while foru <0 they are the electron states.

The contribution of each of these states to the LDOS can
be estimated by examining the residue near the pole, where
the Green’s function can be approximated as

Ql}(n7n’)
G(n,n";k,w) = —————, 31
(') = ) (3)
with the residue given by

S nmv . n'mwv

2 sin——sin——
Q)= —t N (32

R N+1 :

wheren is the index of the layers. Note from E@2) and the
spectral representation of the Green’s function near a pole
that it is easy to read off the quasiparticle wave functions as
U, (n)=y2/(N+1)sin(n7v/ (N+1)], i.e., just the wave func-
tions of a free particle confined to a box of widfN+1)d.

It is easy to check that for any,n’ the residueQ, van-
ishes everywhere for the “states” at the effective bandwidth
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v=0 or N+1; we therefore do not discuss them further, but The position of peaks in LDOS are then determined by
focus on theN branches with finite residue. For these statesextrema of the dispersive branches, Bf), taking place at
the residue can vanish locally on chains with numipefor k,=0:

which the quantityny/(N+1) is an integer. The odtt ZES,

for example, has a residue W, peaks= — 4t cos,\%, v=1,...,N. (36)
nr\?
2 sin—) The peaks corresponding to tié normal metal wire
Qunspyz(NN) = ————. (33) states are seen clearly in Figs. 8 and 9 at the eigenfrequencies
N+1 given by Eq.(36). It is easy to check that the weights agree

with Eq. (32). The LDOS for the normal metal wires quali-
tatively differs from the LDOS for bulk normal metals with
the nearest-neighbor hopping on the square lattice. The zero-

As is seen from Eq(33), the probability density of the ZES
oscillates with a period@ taking finite values only for odd

n and vanishing on all nearest-neighbor sifegeren is energy peakthe Van Hove singularityin the bulk metal is

even. This is als_o \./a“d for the states with energigs i the symmetric as a function of the energy and its log singularity
case of the deviation from half filling and ensures no trans-

: . . . . _.>1s much broader than th&like peaks we find here for wires.
port with nearest-neighbor hopping for quasiparticles with
energies #.

All these states are not surface-bound states, as one can
easily check that their amplitude does not decay across the The T matrix and Green’s-function equations are neces-
wire. The quasiparticle spectrum is discréfer fixed k) due sarily more complicated in the presence of superconductivity,
to the finite width of the wire and transforms into conven- but they are still tractable in th@10) case. The bare Green’s
tional continuous quasiparticle spectrum in the massive nofunctionsG©® are given by Eqs(16) and(17), as before. One
mal metal in the limitN—o. The momentum resolved must then solve Eq(26), which applies to any situation
LDOS in the normal metal wire with discrete dispersive which requires two lines of impurities, for the eigenenergies

2. Superconducting wires

states takes the form o. Similar to the normal metal case, there are special solu-
N tions of Eq.(26): o=xA(k),w=xq(k,) for any N and
_ o _ =0 for evenN. They are poles of th& matrix, but do not
plnky, ) = EQ”(n =n)deo-o,k)]. (34) correspond to the poles of the full Green’s function.

The behavior of subgap surface states on the narrow su-

The integration ovek, gives the LDOS, perconducting wire differs qualitatively from the case of the
superconducting half space due to the interference of the
_ 1 Q,(n,n) wave functions of the states on both surfaces. Since the zero-

pnw)=_— > === (35)

27d, (=0 |dw,/d|g,| ' energy peak in the LDOS for the half-filled surface vanishes
Y on each even chaisee Figs. 3 and)4 the spectrum of

where the sum is taken over thdgeandv, which satisfy the ~ Andreev states on th€l10) wires becomes strongly depen-

equationw, (k) = o. dent on the parity of the numbatof chains in the half-filled
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wire. This effect is quite pronounced for wires whose widthfixed k, the total number of levels, which are twice degener-
is the order of or less than the superconducting coherencate, isN. The set of levels with positive energies fd=11 is
length. As we demonstrate below, some new qualitative fearepresented in panéh) of Fig. 10.

tures arising in the superconducting state of ¢th&0) wires The LDOS for the superconducting wires with=5 is
in the quasiparticle spectrum aboek,) [see Eq(19)] can  shown in the right panel of Fig. 8. The dispersionless ZES
also be strongly dependent on the parityNof results in a pronounced peak at zero energy on odd layers.

Odd N For a wire with odd\, only the Green’s functions Furthermore, each extremum of the dispersive made)
(16) with even argumentsi=0,+(N+1) enter Eq.(26). results in the peak in the LDOS at the enemy - One
Since at small frequencies these Green’s functionscareit  series of peaks is associated with the extremq,%it). Since
is straightforward to show that the only subgap state is a\(k,=0)=0, the peaks lie at the same positions as in the
dispersionless ZE®=0. Dispersive modes exist as well and normal metal wire(36). Although they are irrelevant to the
take the form superconducting properties of the wire, some of these peaks
can lie at finite energies below the maximum of the gap
v function, A= 24,. For instance, the lowest position at fi-
N+l nite energies of the peaks of this series tisid] 7/(N+1)].
This can be both above or below,,,, depending on the
ratio A/t and the wire widthN. In contrast with the nor-
N-1 mal metal wires, the dispersive quasiparticle mogEsg.
v=1,..,—/. (37) (37)] in the superconducting wires have extrema also at the
edge of the surface-adapted Brillouin zokg= +7/(2d).>’
This exactly coincides with the quasiparticle spectrumThey are shown in panéb) of Fig. 10 for the wire with
in a bulk two-dimensional Superconductortpz(ky,kx) N=11. This leads to additional series(@®f—1) quasiparticle
:fz(ky,kx)"'Az(ky,kx), if the discrete values of momentum peaks in the LDOS for the superconducting wires, which lie
component across the wire, ,=mv/(N+1)d, are intro- Delow Ap,y
duced. We note that the dispersionless zero-energy Andreev
states are the only true subgap states in the spectrum, since
the energyw, (k)| of the dispersive statg87) lies above the
respective vaIu¢A(ky,kX)| of the order parameter, for any
andk,. Panel(c) of Fig. 10 displays the series of peaks in the LDOS
There are, as in the normal state cale;1 dispersive for N=11.
modes in addition to the ZES. They are doubly degenerate The dispersive states forming the nonzero low-energy
due to the particle-hole symmetry. This simple result can b@eaks(38) in LDOS arenot Andreev states. They lie below
understood as follows. For a fixdq the problem reduces A(ky) for k, near the edges of Brillouin zone, but they are
to a one-dimensional problem. The corresponding twosituated above the bulk gap functidiky(»),k,]. The wave
component Bogoliubov—de Gennes wave function takes itfunction for any of these states possesses the finite current of
values onN sites, resulting in B degrees of freedom in the the probability density, while for Andreev states the total
system. With this point of view it appears natural that for probability current vanishes.

mwy

N+1

wi(ky) = g?(k,)cos + A?%(k,)sirn?

. TV N-1
Wpeaks™ iAmaxsmm_, v 1,...,7. (38)
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kyd N=11 position of electronlike and holelike Bogoliubov quasiparti-
cles on the wire.

Even N In the case of eveht half-filled wires, the qua-
siparticle spectra become more complicated. The Green’s
functions(16) and (17) with even(n=0) and odd[n=%(N

1.5
1

0.5 +1)] arguments enter E@26), which can be reduced to the
0 following form:
-0.5 akytar{ (N + 1)z] = eA(k )tanz, (39
-1 wherea=+1,0<z=< /2. Solutionsz, ,(k,) of Eq. (39) are
1501 directly associated witlv, in accordance with Eq18):
0 1 > 3 4 @’ (k) = G2(k,)c0Sz, 4 (K) + A%(k,)SirPz, ,(K,). (40)
w/t Here v=1,...,(N/2) and « are the indices of the solution.
1.2 Comparing Eqs(37) and (40) for the spectra of odd and
-1.05 even wires, one can see tt@d plays the role of effective
discrete values of the momentum componigntat fixedk,)
13 across the wire. Equatiaf39) can be transformed to a poly-
-1.35 nomial equation in taz of the Nth degree, if one excludes
14 the special solutionso=+A(k,), £q(k,) mentioned above.
) Hence, for a fixedy there are exactiiN/2 positive and\/2
-1.45 negative solutions fow, describingN dispersive branches of
15 the quasiparticle spectrum. Explicit analytical form of the
spectra can be easily found from E@39) and (40) in the
-1.55 { { | particular casedl=2,
— : — 1
I R A w0, = % Slak) + ad (k)] (41
ST R A
i ' ' ' I andN=4 (v=%,a=1),
02f | ; : foor - 1 A(ky)
2 [V P of,a(ky) = A%(ky) + ca(ky)lak,) + aA(kyﬂ{s ~Ba X
2| \ : : : ay
: 5 ; ; : Alk) | A%k
N U R R AV, eofs-al | a2
o , : alk) Pk,
\ \ : ’ Equation(42) is defined for allk, in the Brillouin zone for
N ; which w? (k,) is positive. Equations41) and (42) describe
0 1 ; H the quasiparticle spectra for non-self-consistent wires with
0 0.1 0.2 0.3 04 0.5 small numbers of chains. As we will show in Sec. V, the
ot self-consistent treatment of the problem can lead to impor-

FIG. 10. Quasiparticle spectra and the LDOS for superconduc tant modifications of the results, at least if the width of the

ing half-filled (110) wire with N=11. (a) Dispersive modegk,d vs wire is less than or of order the superconducting coherence
wlt) for N=11,49=0.2t, and x=0. (b) The blowup of the disper- |€ngth.

sive spectra near the edge of the Brillouin zof@.The LDOS for Whereas in the normal metal staieis the only index of
energies less that,: n=2 (solid ling) andn=1 (dashed ling  the solution(for a givenk,), in the superconducting eve-
where a broadening=0.003 has been used. wire each branch with fixed splits into two, corresponding

to two values of the indexy, giving a total of N distinct

While positions of the peaks are determined by the exbranches. Since the order parameter vanisheg fo0, the
trema of the dispersive energies, their weights in the LDOSplitting is absent in this particular case. The splitting is as-
are controlled also by quasiparticle wave functions, whichsociated with the symmetry breaking of the eigenstates with
form the quantityQ(n,n) in Eq. (35). For this reason the respect to the sign reversallkyf In the normal eveN wires,
weights of the peaks can substantially differ on different lay-as well as in the oddk wires (both in the normal metal and
ers and may vanish on some of them, quite analogous to the the superconducting stajegach separate branch of the
normal metal wiregsee Eq.(32)]. Due to an interference Spectraw,(k,) is an even function ok,. This is not the case,
from two surfaces, the wave function, taken on even layershowever, for the eveid superconducting110) wires. As
turns out to coincide with the respective wave function in thedirectly seen from Eq.(39) and the relationsqg(-ky)
normal metal caséapart from a normalization constanOn  =q(k,),A(-k,)=-A(ky), the solutions of Eq(39), z, ,(k),
the other hand, the wave function on odd layers is a supemith fixed « are not odd or even functions &, due to the
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kyd N=10 trema of dispersive quasiparticle energies. In contrast with
the double number of extrema, the total number of the peaks
1.5 in the LDOS does not change. Any peak in the LDOS origi-
1 nates from the two extrema, situated symmetrically with re-
spect to the sign ok,. Each pair of extrema belongs to two
0.5 spectral branches, which differ only by their index £1. If
0 we disregard the splitting of the quasiparticle spectra, the
positions of the peaks in the LDOS coming, for example,
05 from the edge of the Brillouin zone, are as follows:
-1
mwy
-1.5 Wpeaks= * Ama,posNTl, v=1,... >y (43
0 1 2 3 4
(@) o/t The splitting shifts the peak positions towards slightly lower
-1.2 energiegw|, as compared with those in E@3). The respec-
125 tive extrema of dispersive energies are shifted towards lower
values oflk,| from k,=+/(2d). These low-energy peaks in
13 the LDOS are shown in panét) of Fig. 11.
-1.35 The other peaks in the LDOS come, neglecting the split-
a4 ting, from the center of the Brillouin zone. Since the order
parameter vanishes in the center of the zone, the positions of
-1.45 the peaks are still the same as in E86) for the normal
15 metal state. The splitting, taking place in the superconducting
155 state, slightly shifts the extrema of the spectra from the cen-
(b)‘ . 4 : rt ter of the zone, so that the peaks move to larger energy
: : : P values|w|, as compared with those in E(g6).
[ L A The LDOS for the superconducting wire witi=4 is
] ‘| : P shown in the right panel of Fig. 9. In addition to the peaks at
\ : ; P finite energies, discussed above, there is also a well-
02k 1\ : P J pronounced zero-energy peak thigee also panét) of Fig.
& \ ; i b - 11]. This peak originates from the extrema of two dispersive
5 L\ : : ' branches of Andreev states, which take place &f ¢
\\ » A N\ ==+tarm(2t/Ay), where the relationg(k, o)=A(k, o holds.
0.1f SQANCAS -V Indeed, as follows from Eq$18) and(39) and, in particular,
b directly seen from Eq(42), the energy and its derivative
] oo equal zero fork,= £k, . It turns out that the multiplicity of
. zeros of the lowest dispersive branches of states at the ex-

tremak, ==k, is N/2, i.e., wx|k,~k, o/"'? in the close vi-
©) w/t cinity _of ky,0- This foIIow_s directly, for instance, frqm Eq.
(50) given below. We notice that the lowest dispersive curve
FIG. 11. Quasiparticle spectra and the LDOS for superconductin panel(b) of Fig. 11 manifests very slow change of energy
ing half-filled (110) wire with N=10. (a) Dispersive modegk,d vs ~ when it touches the zero-energy line. This agrees with our
o/t) for N=10,40=0.2, 2=0. (b) The blowup of the spectra near expectationw = |k,~k, o|* for the (110) wire with N=10. The
the edge of the Brillouin zongc) The LDOS for energies less than respective peak in the LDOS of wires with large ev§n
or equal t0An,: n=2 (solid ling), n=1 (dashed ling where a  diverges atw=0, but is not as-like peak as it is for wires
broadeningé=0.003 has been used. with odd N.

. . . . The identification of the Andreev nature of the quasipar-
nonzero right-hand side of E39) in the superconducting ticle bound states in confined geometries turns out to be a

state. Evidently, each separate branch of the spegfrk,) nPntriviaI problem, at least in the case of half-fillétl0)

posseses e same prpery The ol spsu eI IR L ELT U o LMD,
yl

branches with positive and negative simply interchange respect tok, — K. AS. seen f_rom Eqs:39)~(42), the asym- .
with each other under this transformation. Spectra of thd"€lry can be associated with the order-parameter behavior
half-filled N=10 superconducting wire with positive energies 2(~k,)=-A(k,) and with the sensitivity of the quasiparticle
are shown in paneb) of Fig. 11. They agree with the above energies to ther shift of the order-parameter phase. A de-
discussion. For branches with higher energies, the splitting ifendence of the dispersive energy curve on the order-
less than for lower branches. For small splitting®y  parameter phase is usually an intrinsic feature of Andreev
< A/(N+1). bound states only. We consider the vanishing of the probabil-
The splitting manifests itself by slightly shifting the posi- ity density current as an defining property of Andreev bound
tions of peaks in the LDOS, due to respective shifts of ex-states. These states should be able to carry finite electric
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current, however. In odd# wires only zero-energy disper- 02 ; ; - — T |
sionless quasiparticle states satisfy the above requirement: | e—ecven N
In evenN (110) wires the zero-energy dispersionless states o o0dd N

do not arise at all. The interference of wave functions located o.15
near two surfaces of the evéhwire induces dispersive An-
dreev branches a(ky), which transform into the zero-
energy states in the limit of infinitely large. Moreover, all
quasiparticle states in the half-filled10) superconducting
wire with evenN, even those lying above the gap, turn out to
satisfy the above-mentioned conditions, i.e., possess thi
properties of Andreev bound states. As an example, we de 03[
scribe below in detail the structure of the lowest dispersive
quasiparticle branch, which we denote as Andreev branct
wa(ky), although its energy varies wity over a large range, U ' . ' : ' . ' : '

Weight of ZES
<
T
1

including both the subgap and the supergap regises, for > 1 N . 2 »
example, Fig. 11
For those k, where mir{|A(ky)| ,q(ky)} < |wA(ky)| FIG. 12. The weight of the zero-energy peak in the LDOS, taken

<max|A(k,)|,q(k,)}, the wave function of the state can be at the first layer, as a function on odapen circleyand evertfilled
written on odd layergn=2m+1) as circles N.

u 1

( ) =Csgnwasin(N+1 —n)z](_ ) (44) The quasiparticle states which belong to the same disper-

v i sgnk, sive branchwa(k,) can have their wave functions both sym-

and on even layers=2m metrically decaying in the depth of the wifEgs.(46)—(49)]

or oscillating and forming standing waves across the wire
(U) =C(-1 N/ZSin(nz)( 1 ) (45) [Egs.(44) and(45)]. In particular, the amplitude of the wave

v —isgnk, functions in Eqs(46)—«49) takes its maximum value on lay-
ersn=1 andn=N, and manifests Friedel-like oscillations, as
the layer index changes from odd to a neighbor even value or
vice versa. On a larger scale the amplitude decays in the bulk
of the wire symmetrically with respect to two surfaces.

It is instructive to follow how the above results transform
into the well-known dispersionless zero-energy Andreev sur-
face states in the limit of larg. For sufficiently large width
of the wire compared with the coherence length, and for
(46) thosek, where the wave function decays in the depth of the

wire, the dispersive energya(k,) takes a relatively simple

In the range ok, for which |wa(ky)| <min{|A(k)[,q(k)},
the quantityz, entering Eq(40), becomes imaginary. Under
the condition |wa(ky)| <|A(k,)| <q(k,) the wave function
takes the following form on odd layefs=2m+1):

1
(S) = Cy(~ 1)"sgnwpsint{ (N +1 - ”)Zl](i sgnky> ’

and on even layers=2m

form:
u . 1
<v> ~ay Smml)(-i Sgnky)' “n walk) = i"|qZZ(Ak(l; )qii()k )
v )~ y
Analogously, if|wa(k,)| <q(k,) <|A(k,)|, the wave function ,
on odd Iayers(n:Zmi 1) ’ ’ xexp| - (N + 1)sinh‘1m,mi|A(ky)|’j(ky)} _
u 1 \“J|q (ky) -A (ky)|
(U ) = C,sgnwpsinf(N+1 - n)zl](i sgnky>' (48) (50)

It follows from Eq.(50) that the energy of the Andreev states
is exponentially small and vanishes in the limit of infinitely
u ) 1 large N. With decreasing energy, the rangelgfwhere the
v Cqsinh(nz) —isgnk,/)’ (49 wave function oscillatefsee Eqs(44) and (45)], converges
Y to the center and to the edges of the Brillouin zone and
Here C,C;, and C, are normalization constantsz; finally collapses to the respective points. Hence, in the limit
=|Im z(wa(ky) k)| ,z is defined in Eq(18) and taken aw  of very largeN the amplitude of the wave function decays
=wa(ky). inside the wire for practically all values d&f,. This means
The condition|u(n,ky)|=[v(n k)|, which is valid for all  that for N— o the dispersive brancha(k,) transforms into
solutions, Eqs44)—<49), results in zero total probability cur- the zero-energy dispersionless surface states situated near the
rent density, while the electric current does not vanish for theéwo surfaces.
given branch. This ensures the Andreev character, as defined Figure 12 showdN dependence of the weight of the zero-
above, of all the states in evéhwires, regardless of whether energy peak in the LDOS. For oddl the weight diminishes
their energies lie above or below the gap. with increasingN, while for evenN it increases. In the limit

and on even layera=2m,
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of largeN the two curves will converge to the weight for the

infini 0.4 Y A Ak)
zero-energy surface states when the surfaces are infinitely fe ~ VA A
apart. The odd-even effects become negligibly small only for AT B
Nd> &, One could try to recover the quasiclassical results 0.2 A TN i

for wide wiresNd> a after averaging over odd and even film
widths. The boundary conditions for quasiclassical propaga @A, o
tors are taken somewhere on a distahdem the surface

and imply some uncertainty about the boundary positions, a:

well as the film(wire) thickness(a<l<§&;). As seen from o2 e

Fig. 12, averaging of the weights of the peaks over odd anc )4

even N will strongly reduce their width dependence. This )

kind of averaging is much closéalthough not identicalto 1.5 - 0.5 0 05 1 15
the quasiclassical results on the width dependence of th kd

LDOS for the d-wave superconducting fil&?. Very recent

quasiclassical result§, treating various wire orientations, FIG. 13. The lowest energy branches fé=24,25,26. The pa-
demonstrate the appearance of energy bands of quasiparti¢kmeters ar¢=2.5,4=0.2=0.5,A9=0.2=0.5, andApq,=240=1.
states, in particular, fof110) wires. Our microscopic model

for high-quality half-filled wires with fixed number of chains Consider, for example, low-energy quasiparticle states under
gives, however, only a couple of branches, &§0), for  the conditiongw|,|A(k,)|<q(k,). This ensures that the qua-
evenN wires and the dispersionless zero-energy states fosiparticle energies lie close to the Fermi surface and one can
odd-N wires. We associate the difference between the microtake their energies in the normal metal state to be in the
scopic and the quasiclassical results with the particular coninear form ocve-(k —kg). Under this approximation, effects
dition of half filling. The quasiclassical approach implies no of the particle-hole asymmetry are small and one can use a
singular behavior of the LDOS in the normal metal state neagyasiclassical approximation, which is valid for quasiparti-
the Fermi surface, whereas the Van Hove singularity takegles close to the Fermi surface. Then only the order param-
place in the LDOS on the Fermi surface for the normal metakter on the Fermi surfac&(ke , k) enters the equations.

state of half-filled infinite square lattice. An agreement of oUrFqy the wire geometry the momentum componépy, is
microscopic results with the quasiclassical ones arises in thg,  independent  parameter,  whileke (ke bt “and

presence of deviations from half fillingee below Eqg52) Alke o(Ke,) ke y] are actually functions oe,. For =0 the

and(53)|]. d ioned. in th . h il Fermi surface for th€110) wire is a square with sides par-
As already mentioned, in the evéhwires the particle- g 1o x or y axis. Hencekg =+ 7/(2d) actually does not

hole structure of.ar_1y quaS|part_|c;Ie states with brok depend orke ., in this case ana\[+/(2d), ke ,]= +A(Ke ),

_.ky symmetry satisfies the cond|t|¢u(n,ky)|:|u(n,ky_)|. Our in accordan’)(l:e with Eq.(19). For finite ’y,u we fi’)rlwd

picture is that for the states above the gap this Andreey, (ke . ke ) =[AGKe )/ Q(Ke o) 1\ P (Ke ) — 122

particle-hole structure is generated by the infinite sequence Izyxt’heF’(y:ase onLpercg’r);dJcting;’zvirzeé the equation for qua-

of “overbarrier” (overgappeyg Andreev reflections, induced siparticle  suboap  energies near the Fermi surface
by a sign reversal of the order parameter, which the quasi b gap 9

particles experience along their trajectories being boundeH"|<|A(kF’X’kay)| takes the form
inside the wire with impenetrable surfaces. This unconven- \m

tional feature does not take place for the states above the gap uﬁ(sinh2 (N + 1)d Fxo F.y + sirfg(ke y))

in the oddN wires, since the two surfaces always result in (ke y)| '

the standing waves across the Wire_vv_ith no impor';a_nt inter- = Az(kF,Xka,y)Sin2¢(kF,y)v (51)
ference effects in this case. For negligibly small splitting one

should consider a superposition of two wave functions, dewhere (kg ) =kg ,d(N+1). The lowest branches of quasi-
scribing the two split states. Then the Andreev structure oparticle spectra, which follow from Eq51) for N=24, 25,
initially nondegenerate wave functions is lost, since the26, are shown in Fig. 13. The solution of E§1) reduces to
moduli of particle and hole amplitudes can easily differ froma simple form in the limit of largeN:

each other. The Andreev structure of quasiparticle wave

functions can be lost also in the presence of deviations from walkey) = £ 2A(ke )sin (ke )

the half filling, if u is larger or of the same order as the A(K

splitting. Since the splitting vanishes fay=0, one can ex- XGXP{— (N+ 1)%'}%% : (52)
pect that for sufficiently smak, the Andreev structure of the XY,

wave functions will be destroyed even for small In the For half-filled wires, whenu=0, the phasep(kg,) does
following section some other consequences of deviationsiot depend ok, being equal tap,qq=m for odd-N wires
from half filling are considered. and geyer=(M+1/2) 7 for evenN wires. This difference be-

tween the phase&,qq and ¢even plays an important role in

forming well-pronounced odd-even effects in the spectra of
The shape of the Fermi surface dependsuoand has a wires with odd and even numbers of layers. Indeed, for half-

strong influence on the low-energy quasiparticle spectrunfilled oddN wires Eq.(52) reduces to the zero-energy dis-

3. Deviations from half filling
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shown. A well-pronounced peak at=—u arises with a de-
viation from half filling in the LDOS for the oddN wires.

We remind the reader that in the half-filled normal state0)

wires with oddN the dispersionless zero-energy quasiparticle
states have been found in Sec. IV Bsee Eq.(30) with v
=(N+1)/2]. The wave function of these states, as well as the
residue of the polelike term in the Green’s function, B38),

is a standing wave across the wire, taking zero values on
alternating sites. In the superconducting state the zero-energy
1=0.2t standing wave disappears and the dispersionless zero-energy
Andreev surface states arise. Their weight exponentially de-

N=10

layer
layer

R N —
[= RV SV P

layer
layer

cays in the bulk of wide odd{ wires. In the presence of a
A \ J‘L ] 1 deviation from half filling the energy of the quasiparticle
1 \ ~N7 00 i i i
NN states in the normal state odlwires shifts to . These
2 -\ 3 . : s Ly
3 AT A—::JJJ 4 dispersionless states with finite energy keep the character of
‘; . YA N S g standing waves. Further, in the superconducting wires with
04 02 0 02 04 04 =020 02 04 finite u the low-energy states become dispersive both for
ol o/t odd- and everN wires. As seen from Fig. 13 for the wire

with N=25, the branch with lowest energy has in this case
two extrema. The maximal value @b| for the states forming
éhis branch, lies ak,=0 and contributes to the peak at

—p associated with the hole contribution,gf>0. Since the
order parameter vanishes lgt=0, the respective quasiparti-
le wave function is a standing wave and the peak position
oincides with that in the normal metal state of the wire. The
minimal value of|w| is zero and contributes to the zero-

FIG. 14. Local density of states for(@10) wire with N=10 (left
column and N=11 (right column); w=0 (upper panels u=0.2
(lower panels On each panel the different curves represent variou
chains.

persionless Andreev states. At the same time, for half-filleci
evenN wires Eq.(52) describes a dispersive branch of qua-

siparticle energies, which coincides with H§0) under the  operqy neak. The zero-energy peak is associated with com-
condition|A(k,)[<q(ky). _ paratively large value ok, comparable with the size of the
For u#0 the phasep(k,) noticeably depends ok : Brillouin zone, and the order parameter at this valudf
u of orderA, . Thus, the zero-energy peak is associated with
d(key) =Kexd(N+1)=(N+ 1)003_1(— P ))- (53)  surface Andreev states, whose quasiparticle wave function
AKey decays in the bulk of wide odi-wires. For narrow wires,
Qualitative deviations of low-energy quasiparticle spectrathe self-consistency condition becomes important. As shown
shown in Fig. 13, from the respective spectra of half-filledin the following section, at finitg. the self-consistency con-
wires (see Figs. 10 and }lre associated with the behavior dition can lead to more important consequences as compared
of the phaseg(k ). The odd-even effect in the spectra of with the caseu=0.
(110) wires becomes less pronounced in the case of fijte
as found by Ziegleet all3 For some values ofi the spectra
of odd-N and everN wires may have no qualitative differ-
ences at all. As it follows from Eq(52) and, in a more In previous sections, the order parameter was assumed
general case, from E@51), for u# 0 additional and strong constant over the whole width of the wire in order to allow
dispersion of the spectra comes from tqedependence of for analytical solutions. Even for a singl#10) surface, how-
the phase¢(ke,). The larger theN, more oscillations of ever, a self-consistent treatment of the order parameter gives
sin ¢(ky) take place with varying thé&e,. Hence, more ex- rise to interesting effects: thd._,.-wave order parameter is
trema ofwa(ke ) arise. This results in additional peaks in the strongly suppressed near the surface and a complex
LDOS, which appear only in the presence of finjie As  is-admixture (or some other time-reversal symmetry-
seen from Eq(53), the phasep can considerably vary, when breaking stateis possible, which leads to a splitting of the
the film (wire) thickness varies fronNd to Nd—| anda<|  zero-energy Andreev bound stdfe'822:24.33:34.39.59-6fyen
<&, <Nd. Thus, in averaging the spectrum over the film larger effects are therefore to be expected for the wire limited
thickness, a large number of respective additional peakby two (110) surfaces. Indeed, our self-consistent evaluation
arises, filling the whole low-energy band in tk&10) wire  indicates that for very narrow wires a quasi-one-dimensional
with edges described by E¢2). This is in agreement with triplet superconducting state can replace the conventional
the quasiclassical resuft$>8 dye-y2+is state. For finite chemical potential the normal
The particle-hole asymmetry is another important featurenetal state can become energetically favorable as the ground
of the spectra. It can be well pronounced for finitgbut lies  state for narrow wires, while superconductivity recovers with
beyond the quasiclassical approximation. Figure 14 display#creasing wire width. Under special conditions, even a mix-
the asymmetric LDOS, calculated with E@L5) for (1100  ture of singlet- and triplet-pairing can occur. It is important
superconducting wires withN=10 andN=11 in the casq.  to recall at this point that one expects mean-field theory to
=0.2. For comparison, the respective LDOS for0 is also  break down as the one-dimensioaD) limit is approached

V. SELF-CONSISTENT TREATMENT OF (110) WIRES
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even atT=0. Thus the predictions for various kinds of su- T T T T T
perconducting order mentioned below are to be treated witt o—e A, - center o—e A, - center
some skepticism as regards quantitative predictions. Never o--0 A — edge o--0 1A — edge
theless, we view our results as presenting intriguing evidence
that when surface energies begin to become comparable t
the energy differences betweerwave and other bulk pair
channels, strong fluctuations with symmetries optimal for N
quasi-1D system, including spin-triplet pair fluctuations, will
result.

A. Order parameter

4 >
Self-consistent solutions to Hamiltoniéh) were obtained 2¢-eoo o g oo ooFoo T
by solving the Bogoliubov—de Gennes equations (ftt0) 0 0.5 1 150 0.5 1 L5
wires, (@) u/t (b) w/t
T T T T I T T T T | T T T T T T T T | T T T T | T T T T
( gk}’ Aky )(uky)‘> - Eky)\(Uky)\> (54) A S?ngie: is * trlplet Al=—A2
AT -§ v A o singlet A x triplet |A |#|A
YTV " N| o singlet A +iA plec 1181 I\
where E, with A=1,...,N are the eigenvalues of the |;leeeee AAAA
Bogoliubov—de Gennes equations and its eigenvector: i eenm AAA A1l
ukyx(n) and _vkyx(n) are the coefficients of the Bogoliubov 10f®®®®®4 ik N AnnA %9
transformation: 8xO*xxAAAA AA
ooao AAAAAZYT

E{ + . } OF % ¥ x * AAAA X % % % % %
C = U \(N) — v n * AAAAS
kym N ’yk)’)\T ky)\( ) 7kyhl k)’)\( ) ' FREE R ESERY V-V-ERERE ]
* kKK KK KK KK KK K k%3
PEEEEEEREREEEE Y

IIII|IIII|I\I\ IIII|IIII|IIII
L ANNNTY 3
C—kynrg{ykymvkyx(”“?’kyuukyx(n)}- (55 0 05 4 ! Ls 05 i ! L.

FIG. 15. Narrow wires with a nearest-neighbor interaction
strength of V=1.157%, which gives rise to a gap value o,
=0.2 for the bulk system at.=0. Lower panels: phase diagram of
the wires with even widtlic) and with odd width(d). White space
denotesA=0, i.e., the normal state. Upper panels: corresponding

Furthermore &, andA, are matrices in th&l layers of the
(110 wire, i.e., the layers irx direction, and are given by
(for notation see Fig. )7

y = ’ + ’ - ’ . . . .
(éky)”” 2L coSKy(Syna + Gyrn-1) = 4, amplitudes of thed,..,» and is-order parameters displaying the
value in the center of the wire for thkz_,>-wave case and the value
A = (AT ek + AT @R S+ (AT ey at the edge of the wire in thewave case. These are the positions
( ky)”” (Ann € Ovnea + (A where the largest values of the respective order parameters are ex-
+AT eiky)(gn,n 1 (56) pected in the usual,z_,2+is state.
nn’ -1

The gap values are determined by the following self-

consistency equations: Ap=0.2t in a bulk system at.=0, is displayed in Fig. 15. For

wires with widths up toN=9 we find a new phase over a
. 1 ik wide range of chemical potentials characterized Ay=
Al = ‘VNE & Y(Cy e Ciny) -A; [stars in Figs. 1&) and 1%d)], which is a signature of
ky triplet pairing withS,=0, the only triplet component compat-
1 i . ible with Hamiltonian (1). For =0 the amplitude ofA;;
=VN§ 2;4 U+ Do), (57)  oscillates across the wire between zero and its maximum
y value[see Fig. 169)], indicating a one-dimensional nature of
To simplify the numerical evaluation of the these new triplet-superconducting correlatiofsee Fig.
Bogoliubov—de Gennes equations we consider isolated wires6(b)]. Although the oscillating behavior af;; remains for
here. For a Hamiltonian on a discrete lattice like that of Eqfinite u, its amplitude no longer vanishes exactly on alternat-
(1), an isolated wire is equivalent to a wire limited by lines ing layers. Thus the strict one-dimensionality of the super-
of unitary impurities, which is the boundary condition usedconducting correlations seems to be a feature peculigr to
for the analytical calculations in the previous sections. =0. This new triplet superconducting phase will be discussed
For narrow wires we find a variety of different phases.in more detail below. At first we will focus on the singlet
The resulting phase diagram for a nearest-neighbor interasuperconducting phase with possilole .- and s-wave or-
tion strength ofV=1.157%, which gives rise to a gap of der parameters.
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The dependence of the amplitude of the ,.-wave order
parameter on the widtN of the wire is shown in Fig. 17.
The upper panels refer to an interaction strengthVof
=1.157%, which gives rise to a gap df;=0.2 for the bulk
system aju=0. Foru=0 we observe an even-odd oscillation
in the amplitude of the order parametgee Fig. 17)],
which disappears for larger chemical potentials. The effect of
finite u on the suppression of thi._,>-wave order param-
eter is considerably stronger in narrow wires than in the bulk
system. Foru/t=0.4 thed,>_.-wave order parameter van-
ishes forN<10 [squares in Fig. 1@)], although the bulk
gap is only reduced by a factor of approximately (s@e
Fig. 17c)]. The dramatic suppression of thg_ .-wave or-
der parameter for finite: is reduced upon consideration of
larger nearest-neighbor interaction strengths, as can be seen
in the lower panels of Fig. 17. For a larger interaction
strength ofV=1.7682, which gives rise to a bulk gap value
of Ag=0.4 at ©=0, a pronounced even-odd effect remains at
wlt=0.4[see Fig. 1@)] and the amplitude in the center of
an N=12 wire is already very close to the bulk val{see
Fig. 17f)], contrary to the smaller interaction strength,
where the amplitude in the center of &l=12 wire is still
suppressed by a factor of more than 3 with respect to the
bulk value[see Fig. 1{c)].

The emergence of a new triplet-superconducting phase for
very narrow wires can be most easily understood by consid-
ering the smallest wire, i.e., thl=2 wire. Although the
effect of fluctuations will be larger for smaller wires, we
focus only on possible solutions of the BCS mean-field
Hamiltonian(1) in the present paper. Inspection of the phase
diagram of Fig. 15 shows that ttetwave order parameter
vanishes for thé&l=2 wire. To investigate alternative ways in
which theN=2 wire could lower its ground-state energy, we
map it to a 1D chair{see Fig. 18 Although the gap values

FIG. 16. Quasi-one-dimensional triplet superconducting stateA and A; could in principle differ in amplitude and by a
for N=8 andu=0. (a) Bond gap value:s}‘nn+1 [for deflnltlon see Eq. phase factors, we restrict our treatment t¢=0 and = 1.
e e ons oty s o Note ha=0 orresponds 0 @ singet paling tate, wercas

a ; ) ¢=is a triplet pairing state witl$,=0.5° To investigate the
1=0. (c) Density of states starting from the outermost layer of the - - Lo .
wire up to the middle layer of the wire, where for illustrational possibility of triplet superconductivity in these systems in
purposes each layer has been shifted by an additional offsettof 0. gnore generality, one should retain pairing correlations with

S,=+1 in the mean-field Hamiltonian as well. For now, how-

Although we do not understand all details of the variabil-ever, we are satisfied with the observation that even for the
ity of the phase diagram, a few general trends seem cleasimple nearest-neighbor pairing Hamiltonigl) a triplet or-
The larger the width of the wire the more of the usualder parameter can be favored over a singlet order parameter
de_2+is phaseffilled circles in Figs. 1tc) and 1%d)] is  in narrow geometries.
recovered. The corresponding amplitudes ofdpe,.- andis After Fourier transformation Hamiltoniafl) for the 1D
components of the order parameter are displayed in the uppehain reads
panels of Fig. 15. For narrow wires the amplitude of the
dy2-y2-wave order parameter is finite only for small chemical
potentialsu and a pures-wave phase is favorable for large
u. These two phases are separated by a normal state region.
For larger wire widths the range of tligz._,.-wave phase and _ _
the amplitude of thed,>_,>-wave order parameter increase. + 2 {(A €+ A ™l . +H.e),  (58)
The amplitude of thes-wave order parameter, on the other k
hand, decreases and theave phase moves towards smaller
chemical potentials until it merges with the. -wave
phase, thereby giving rise to a finite admixture near the WwhereAj,;==-V(Ci11/Ci1)=A1 and Aj,4;=-V(Cj|Cis11) =4 It
edges of the wire, as expected in analogy to a siiifl€) can be easily diagonalized using the Bogoliubov transforma-
surface. tion to give a quasiparticle dispersion of

HMF = - E (2[ coskd+ ﬂ)cl(rck(r
ko
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Abu]k(p,:()) =0.2t =0 & A, =02 p=0.4 & A_ /t=0.16 _

0.2 T T 1 T [ T 0.2 | L L L L LI L L L 0.2 FIG. 17. Evolution of the
() dy2-y2-wave order parameter with

[~~~ ==~~~ increasing wire width for two dif-

o—e A, — center ferent interaction strengthsV

| ooA -edge _{y =1%2$ E:Jpper panell); ang_ \r/]

_ =1 ower panely whic

o—e A, — center moe Ay bulk < give rise to a gap value of\,

e /=04 o—oA -edge I 1< =0.2t and Ay=0.4 for the bulk
N b bodboboldedod 0 s_ystem at,u:O,_ respectively. Th(_a
4 6 8 10 12 2 4 6 8 10122 4 6 8 10 12 first column displays the ampli-
N layer layer tude of thed,2_y2 order parameter
as a function of the wire width for
A uikqueoy = 04 we=0 & A, /t=0.4 wi=0.4 & A /1=0.37 two different chemical potentials

wlt=0 and u/t=0.4. The other
two columns show the variation of
the dy2-y2- and is component of
the order parameter across the
0.2 wire for w/t=0 (center columin
and w/t=0.4 (right column. For

o o s s g L 2
t

(45'3) )

—o A | — center

e—e A, — center o—o A -edge

A —ed 1e B L 3 comparison the reduced magni-
oo S mede -=- &~ bulk tude of the bulk order parameter at
Lo o d b 0 ,L:l,/t:(;).4 is d.isplayed with dashed
2 4 6 8 10122 4 6 8 10 12 lines in the right panels.
layer layer
E, = \;’EEJrAi, kd=+#/2 whereas the triplet state gap function is

A ~sinkd, and therefore is maximum &d=+7/2. This
q(k) explains why the triplet state is favored over the singlet state
with .= —— + u =2t coskd + u, for ©=0, where the Fermi surface of the nearest-neighbor
2 tight-binding model is akd=+ /2. For larger chemical po-
tentials the situation is reversed and the singlet extended
Af=AT+AZ+2A,A,c08 Xd, (59)  swave state becomes more favorable than the triplet state.
For large interaction strengths, we find different magnitudes
for A; andA,, which corresponds to a mixture of singlet and
triplet pairing. In the limitV — oo, either of the gap values,;
_ 1 (™ A;+Aycos kd and A, approaches zero whereas the other goes to infinity,
A= _Vm _dek E, ' corresponding to an admixture of triplet and singlet order
parameters with equal amplitudes.
1 (™ A.coskd+A With the phase diagram of the 1D chain in mind we are
Ay=-V— gk=r—=="" —2 (60) now able to better understand the phase diagram of narrow
4mdJ_q Ex wires as displayed in Fig. 15. For small the new phase
¥Vith Ajj=-Aji simply arises from the formation of quasi-one-
dimensional triplet-superconducting correlations aldiwg?2

where the gap values are to be determined from the follow
ing self-consistency equations:

Four different phases emerge from this model by variation o
the chemical potentigk and the nearest-neighbor interaction

strengthV (see Fig. 19 Below a critical interaction strength 4 - T ‘ | ‘ |
the order parameter vanishes and the normal state is the 200e,, N |
ground state of the 1D chain. For intermediate interaction | ®e Al =14, ._"
strengths and small chemical potentials we fihg=—A,, ) ®e °®
i.e., a pure triplet superconducting state, whereas for large i . . o
chemical potentials the ground state is characterized py s, L ° i
. . . > °
=A,, i.e., a singlet extended-wave state. In the singlet
state the gap function ia,~coskd, i.e., it has nodes at I A=-4, ol A=A
1E i
. [ 3 Ay
; / vk. 4; ‘;-;_‘_‘. [ e e e e 0[ J | A | |
A, 0 0.5 1 AZp 15 2
/it
FIG. 18. Mapping of theN=2 wire with (110) orientation to the
1D chain with lattice constart. Note thatA,=—A; corresponds to FIG. 19. Phase diagram for 1D chain as a function of chemical
a triplet pairing state wittg,=0. potential/t and nearest-neighbor interactivft.
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wires[see Figs. 1@) and 16b)]. This also explains why this N=10 N=11
new phase is more favorable for wires with even width than L I L
with odd width(compare left and right panels in Fig.)1as & Ay=0.2t 8=02t 15
only the former can be divided evenly inkb=2 wires. Note = =
that also for the narrow wires, a critical coupling strength of _'_/\_j\ JL« j\_jr\k ]
similar magnitude as in the 1D chain is necessary to induce | A M Ads
tEe tri;;llet—_supercqnducting s:]ate, wh(;ch iz, _hom;lgver, smaller g‘/\bq\—jv = A vt:\— It _/j;/,:A g
than the interaction strength considered in this paper. At ; 2
larger chemical potentials we find an extendedave order 1t ==ttt 1
parameter analogous to the one-dimensional chain. More dif 5 Fop S0 {"““15 5
ficult to reconcile with the phase diagram of the one- & ol obnnd | 2
dimensional chain, however, are the seemingly arbitrarily n "
distributed mixtures of singlet- and triplet-superconducting g A ‘Jf}v‘—~ B 6
order parametergcrosses in Fig. 16 The normal state re- Z P S | PN o A B _i
gions, which occur for narrow wires and intermediate chemi- 2 TR % \ﬁg
cal potentials in Fig. 15, reflect the fact that superconductiv- 7L . 1T 1 =771 . | et SO, o
ity becomes less favorable in finite geometries and a critical 0402002 04 0402002 04
coupling strength is necessary to inducit. o/t o/t

FIG. 20. Density of states for thid=10 wire (left panel$ and

B. Density of states the N=11 wire (right panel$. Upper panels show the non-self-

. A . consistent results assuming a constdpt,> order parameter of

What does the phase diagram in Fig. 15 imply about the, —q x whereas the lower panels dispylay the density of states
possible existence of Andreev bound states in narrow wireSggiting from the self-consistently determined values otkheave
In Fig. 16c) the local density of states and the variation of orger parameter, whose variation throughout the wire is depicted in
the order parameter throughout the wire is depicted for thene insets. All panels show the density of states starting from the
quasi-one-dimensional triplet superconducting state using thutermost layer of the wire up to the middle layer of the wire,
N=8 wires atu=0 as an example. Obviously, the density of where for each layer towards the center of the wire an additional
states in this state is fully gapped, in analogy to the oneeffset of 0.3 has been used.
dimensional chain, and there are no Andreev bound states.

Close to ha_lf filling, for wider wire widths, the_ results are  New and interesting physics arises from interference ef-
more conventional and the effects of self-consistency mucky, s petween the two surfaces of the wire when its width is
simpler. In Fig. 20 the Ioc_al density of stqtes is displayed foryf the order of the superconducting coherence length. Con-
theN=10 and theN=11 wires at=0, which are character- 5 tos.wave superconductors in finite geometries, the sur-
ized by a pured,c.,2 order parameter. Here, the main differ- ¢506 pair breaking plays an important role. In this respect, the
ence between the self-consisteliwer panels of Fig. 20 gyistence and nature of Andreev bound states in constricted
and the non-self-consistent resultpper panels of Fig. 30 geometry is of particular interest. In order to single out new
is the suppression of the magnitude of thevave order pa-  gffects peculiar to quantum wires and arising from the inter-
rameter especially towards the edges of the wiee also  ference of the two surfaces, we have addressed the case of a
insets of Fig. 20 Whereas the weight of the zero-energy gingle surface in the first part of the paper, concentrating on
peak is reduced in the even-widtN=10) wire the weight of ¢ ;rfaces with (100), (210), and (110 orientations in a
the zero-energy state in the odd-width wife=11) is hardly  npearest-neighbor tight-binding model at half filling. Andreev
affected. bound states can form on surfaces with orientations deviating
from the(100) direction due to the sign change of tthevave
order parameter. However, in the presence of several chan-
nels for reflection of quasiparticles from the surface, the

Motivated by recent scanning tunneling experiments orzero-energy Andreev states may not exist, as is the case for
the BaSr,CaCyOg systems which reveal inhomogeneousthe(210) surface of the square lattice. Here our results are in
electronic structure on the nanoscale, we have analyzed iqualitative agreement with earlier work based either on the
detail the electronic structure al-wave quantum wires. quasiclassical approximation or Bogoliubov—de Gennes
These wires exemplify the effects of a constrained geometrgquations. Only for th&110) surface, which involves the
while still being simple enough to allow for analytical solu- strongest pair breaking, do we find a zero-energy Andreev
tions. To impose a restricted geometry we use lines of impubound state, whose amplitude decreases with the square of
rities with infinite scattering strength, a method which allowsthe inverse distance from the surface and vanishes on even
to cut arbitrarily shaped objects out of the two-dimensionalayers.
plane. In principle, it is straightforward to extend this method In the main part of this work, we focused on quantum
to investigate the effects of tunneling between neighboringvires with (110 orientation, which display a pronounced
grains by reducing the scattering strength of the impuritieswidth parity” effect. The special case of electrons hopping
and thus lowering the potential barrier between neighboringpn a square lattice with half-filled tight-binding band was
grains. treated most extensively. For wires of this type with an odd

VI. CONCLUSION
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number of chaindN only one subgap state, a dispersionlessterized by the absence of Andreev bound states. The larger
zero-energy Andreev bound state, exists. As in the singlethe width of the strip, the more thé+is state, which is
surface case, the amplitude of the ZES vanishes on evegxpected for a single surface with10) orientation, domi-
layers and decays towards the center of the wire. In additionates the phase diagram near half filling. With respect to the
to the ZES, there ar—1 dispersive modes, which are dou- density of states at half filling, where the order parameter has
bly degenerate due to particle-hole symmetry and are nanly a d-wave component, the main effect of the self-
Andreev states. consistent treatment is the suppression of the magnitude of
In the case of eveit half-filled wires, a splitting of the the d-wave order parameter, especially near the surfaces of
branches occurs which is associated with a symmetry brealthe wire.
ing k,— -k, and a total of Rl dispersive modes exist. Al- It is interesting to end this discussion with some specula-
though there is no dispersionless ZES, all quasiparticle statd®ns on the role of bound quasiparticle states and edge ef-
in the even width wire are of Andreev character in the senséects of this type on the spectra of weakly coupled supercon-
that the current of the probability density vanishes due taglucting grains as apparently observed in STM experiments.
opposite contributions from particle and hole excitations.Such irregular grains should contain nanoscale “facets” at all
These quasiparticles occupy either conventional Andreewpossible angles, so presumably the most general situation
type surface states or a new type of Andreev standing waveyith sizable particle-hole asymmetry and mixture of even-
according to their momenturk, parallel to the wire. In the and oddN boundary conditions will apply. If we first assume
2D limit N—«, the lowest energy dispersive state wasthat the pair interaction and grain size are such that one may
shown to transform into the usual zero-energy Andreevgnore the triplet states found in the self-consistent treatment,
bound state at the impenetrable surface, while the standirgye expect the spectra of weakly coupled grains to be domi-
wave states evolve into either the continuous spectrum or theated by the zero-dimensional analogs of the dispersive sub-
surface states. With increasing deviation from half-filling, gap states discussed here, i.e., there should be a wide distri-
odd-even effects in the wires become less pronounced. THeution of bound-state energies depending on local geometry
evolution of the Fermi-surface shape with these deviation®f the grain, and visible in the LDOS as measured by STM.
can result in additional extrema in the quasiparticle disperin this sense we question whether the weakly coupled grain
sive modes and, hence, new peaks in the LDOS. Large-scajcture is, in fact, applicable to the experiments in question,
faceting of the surfaces with characteristic scales larger thawhich appear to see a vetyomogeneouspectrum at low
the wire thickness will not influence our results significantly. energies in the superconducting state.
However, small-scale inhomogeneities such as pointlike de- A second remark is based on our observation that in
fects and impurities can substantially change the effects ofianoscale confined geometry, spin-triplet fluctuations may
interference induced by wire surfaces, even if the phaséecome more favorable. Such time-reversal symmetry break-
breaking length is large. ing fluctuations will clearly lead to local spontaneous cur-
The small coherence length of high-temperature superents, an issue which has recently been raised again in angle-
conductors leads to further restrictions on the applicability offesolved photoemission studi®sFuture studies of small
the quasiclassical results to superconducting wires or filmsgrains are planned to address these issues.
whose width is less than or comparable to the coherence
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