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Low field ac-susceptibility experiments have been carried out to study the effect of “chemical” disorder and
proximity to a magnetic quantum critical point(QCP) on the non-Fermi liquid(NFL) behavior in
CesRu1−xRhxd2Si2 for x=0.5 and 0.6 and CeCu5.9Au0.1. The susceptibility of strongly disordered NFL material
CesRu1−xRhxd2Si2 contains two components associated with different mechanisms; a disorder-driven compo-
nent dx and a mean-field(MF) quantum critical componentxMF. dx exhibits H /T-scaling in the form of
T−gfsH /Td with g depending onx. In contrast, the disorder-driven component has not been observed in weakly
disordered NFL material CeCu5.9Au0.1. The results of the scaling analysis strongly suggest thatdx is due to the
quantum Griffiths singularity.
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I. INTRODUCTION

Non-Fermi-liquid (NFL) phenomenon in strongly corre-
lated electron systems is a subject of great current interest
because it raises fundamental questions about the elementary
excitations of these systems with respect to the Fermi-liquid
(FL) nature in normal metals. Many heavy fermion materials
show the NFL behavior as they approach a magnetic quan-
tum critical point(QCP).1,2 These NFL materials have been
characterized by different values of the exponents that de-
scribeT-dependencies of the specific heat, the magnetic sus-
ceptibility and the electrical resistivity from those in the FL
state. The NFL behavior has been generally explained by the
notion of the quantum phase transition at zero temperature or
the effect of the “chemical” disorder.

In f-electron systems, two magnetic interactions originat-
ing from the hybridization of the localized electron state and
the conduction electron state are competing with each other,
the Kondo interaction and the Ruderman-Kittel-Kasuya-
Yoshida (RKKY ) interaction. The Kondo interaction drives
the conduction electrons to screen the localized spins and,
hence leads to the formation of the nonmagnetic FL state,
whereas the RKKY interaction drives the localized spins to
order magnetically and, hence leads to magnetic ground
states. The ratio of both interactions can be continuously
tuned by substitution for a constituent element, applying hy-
drostatic pressure or external magnetic field, and the
magnetic-nonmagnetic quantum phase transition is realized.
Some theories have predicted anomalous thermodynamic or
transport quantities as NFL critical behavior in the vicinity of
the QCP,3,4 which exists in the puref-electron systems, for
instance CeNi2Ge2 or CePd2Si2 under pressure.5

On the other, the origin of the NFL in alloy systems, for
instance UCu5−xPdx (Ref. 6) or CesRu1−xRhxd2Si2,

13 should

be more complicated, because chemical disorder due to al-
loying affects thermodynamic or transport properties in such
systems. Mirandaet al.predicted the instability of FL caused
by a wide distribution of local Kondo temperatureTK

local.7

When the weight ofTK
local at 0 K is finite, a logarithmic di-

vergence ofCsTd /T and xsTd results. In their model, the
inter-site interaction is completely neglected. Castro Netoet
al. suggested the similarity between the disordered Kondo
lattice system and the Ising spin glass system under trans-
verse field,8 where the quantum Griffiths singularity is ex-
pected in the vicinity of the QCP at 0 K. Thermodynamic
quantities diverge down toT=0 due to this singularity. The
quantum Griffiths model may explain a wide class of the
NFL phenomena in Kondo alloy systems.

The pseudobinary alloy system CesRu1−xRhxd2Si2 is a
good example for studying the two mechanisms for the NFL
phenomena. This system exhibits a rich variety of magnetic
ground state associated with strong electron correlation as
shown in Fig. 1. The base material CeRu2Si2 is a FL heavy
fermion compound with no evidence for magnetic ordering,9

whereas CeRh2Si2 is an antiferromagnetic compound with a
Néel temperatureTN=35 K.10 With decreasingx TN is sup-
pressed, and vanishes forx<0.6.11 Another region of mag-
netic order in the phase diagram appears in the low Rh-
concentration regions0.03,x,0.35d, where the ordering is
a spin density wave(SDW).12 In the intermediate Rh-
concentration region between both magnetic ordered phases,
NFL behavior was observed,13 which is characterized by
CsTd /T,−log T, xsTd,1−T1/3, rsTd,T1.6; here the chemi-
cal disorder due to high degree of substitution of Ru by Rh
coexists with the quantum critical fluctuation in the vicinity
of magnetic instability points.

Recently the magnetoresistance ofx=0.5 in the NFL re-
gion was measured, and was found to be well described by
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the dynamical mean-field theory(DMFT) of the spin glass
(SG) QCP above 1 T.15 The resistivity can be scaled by
sT/Dd onto one universal curve.D is a distance from the
QCP and a function of temperatureT, magnetic fieldH and
“chemical” distance from the critical concentrationr. On the
other hand, several features in the lower field region could
not be understood by the theory;14,15 (i) Divergent behaviors
of the susceptibility and the specific heat divided by tempera-
ture were observed down to 40 mK. For the quantum spin
glass, both quantities approach a finite value at 0 K.(ii )
Rapid increase of the magnetoresistance and strong nonlin-
earity of the magnetization were observed below 1 T. These
behaviors may be described by the disorder-driven mecha-
nism, that is, the quantum Griffiths singularity.

This article reports measurements of ac-susceptibilities of
the highly disordered NFL materials CesRu1−xRhxd2Si2 for
x=0.5 and 0.6 in dc-magnetic field. We investigate the scal-
ing analysis of the susceptibilities and the nonuniversal be-
havior of the critical exponents for the variance ofx, which
can be interpreted in terms of the quantum Griffiths effect.
For comparison, we also report measurements of the ac-
susceptibility of CeCu5.9Au0.1, known to be a weakly disor-
dered NFL material.

II. EXPERIMENT

Single crystalline samples forx=0.5 and 0.6 were pre-
pared by Czochralski pulling method using a tri-arc furnace.
The size of the samples used in the present experiments was
about 23231 mm. A single crystalline sample of
CeCu5.9Au0.1 was grown by the zone melt method. The ac-
susceptibility measurements were performed by a conven-
tional mutual inductance method in the temperature range
between 40 mK and 2.5 K. The amplitude and the frequency
of the ac-field were 2.1 Oe and 130 Hz. We tested the depen-
dence of the susceptibility for CesRu1−xRhxd2Si2 compounds
and CeCu5.9Au0.1 on ac-field amplitude between 0.5 and
5 Oe, and observed no significant ac-field dependence. Sig-
nificant frequency dependence was also not observed below
500 Hz. Thus, we can conclude that the susceptibility, mea-
sured in the above conditions, is equivalent to that atH=0
andv=0. In order to track the magnetic field dependence of

the susceptibility, we measured it under a dc-magnetic field
applied by superconducting magnet.

CesRu1−xRhxd2Si2 has the tetragonal ThCr2Si2-type crystal
structure(space groupI4mmm), and a strong uniaxial mag-
netic anisotropy along thec-axis.13 The susceptibility in the
ab-plain for each Rh-concentration is much smaller than that
along thec-axis sxab/xc,1/10d and shows very weak tem-
perature dependence above 1 K. CeCu5.9Au0.1 has the ortho-
rhombic CeCu6-structure (space groupPnma), and also
shows strong uniaxial magnetic anisotropy along the
c-axis.16 We neglect the small monoclinic distortion ob-
served below 70 K.17 The temperature dependences of the
susceptibility along magnetic hard axes in both compounds
are very weak, and thus, we measured the susceptibilities
only along the magnetic easy axis. The dc-field was also
applied along the magnetic easy axis.

III. RESULTS AND ANALYSES

A. Susceptibility of Ce„Ru1−xRhx…2Si2

We show the results of the ac-susceptibility of
CesRu1−xRhxd2Si2 for x=0.5 and 0.6 with zero and finite dc-
magnetic field in Fig. 2. An ac-susceptibility under dc-field
represents a differential susceptibilityxsT,Hd=]M /]H at
H=Hdc. The susceptibility for each concentration at zero
field diverges asT→0 K. The divergence ofxsTd is easily
suppressed by applying an external magnetic field of about
50 Oe, and a broad maximum is found. The field dependence
of xsT,Hd found in Fig. 2 is too strong to be explained by the

FIG. 1. The phase diagram of CesRu1−xRhxd2Si2.

FIG. 2. The ac-susceptibilities of CesRu1−xRhxd2Si2 for x=0.5
(a) and 0.6(b) measured in condition described in text under dc-
magnetic field up to 1 kOe. The solid lines are the fits of the sus-
ceptibilities at zero field to the expressioncTg+xMFsTd. The dotted
lines represent thexMFsTd. The arrows represent the temperatures,
TmsHds, where the susceptibilities show broad maxima.
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existence of individually fluctuating spins. The suppression
of xsT,Hd by such small fields indicates existence of huge
magnetic clusters, which are estimated to be more than
10 mB. This indicates the quantum Griffiths nature of these
compounds. The fluctuation of the huge clusters at 0 K and
zero field causes the divergence of the susceptibilities. The
huge clusters can be frozen easily along the direction ofH in
moderate magnetic field.

In the previous paper,15 we reported the nondivergent be-
havior of the susceptibility, 1−T3/4, above 1 kOe forx=0.5
and its analysis is based on the dynamical mean-field theory
(DMFT). The experimental results quantitatively agree with
the DMFT predictions. The divergent behavior observed in
lower fields, as shown in Fig. 2, should be interpreted by the
existence of another component due to the large fluctuating
clusters, as argued above. Thus, we assume that the tempera-
ture dependencies of the susceptibilities forx=0.5 and 0.6
take the form of,

xsT,Hd = dxsT,Hd + xMFsTd. s1d

The first termdxsT,Hd will be a disorder-driven component
and expresses the divergent behavior at zero field. Thedx at
zero field is written ascT−g and exhibits strong field depen-
dence. The second termxMFsTd is a nondivergent MF com-
ponent and hardly shows any field dependence within the
field region in the present works. The solid lines correspond
to the best fits of the susceptibilities at zero field forx=0.5
and 0.6, with g=0.71 and 0.60 andc=0.013 and
0.0038 emu/mol, respectively.xMFsTd for x=0.5, see in Ref.
15, is described by three parameters which areT0=20 K,
H0=13 T, andr =7310−3. T0 andH0 are characteristic tem-
perature and field, respectively, and are proportional to the
Kondo temperatureTK. r is a chemical distance from the
QCP. ThexMF for x=0.6 is obtained from the analysis of the
susceptibility at 1 kOe above 1.8 K, whereT0 and H0 are
fixed to the values ofx=0.5. The value ofr of x=0.6 is
4.0310−3, which is smaller than that ofx=0.5. It means that
x=0.6 is closer to the QCP thanx=0.5, which is in agree-
ment with the phase diagram shown in Fig. 1.

g, the exponent of the divergent term in the susceptibility,
is smaller than 1, and depends on the value ofx, which
corresponds to a variance in the degree of chemical disorder
or of a distance from the QCP. In order to understand this
fact, it should be noticed that in the quantum Griffiths model8

the exponentl, which describes the divergent behavior in
several thermodynamic quantities, also depends on the dis-
tance from the QCP. In their notation,8 the exponentg is
given by 1−l, andl=0.29 and 0.40 forx=0.5 and 0.6 are
obtained, respectively.

B. Comparison study: Susceptibility of CeCu5.9Au0.1

For comparison, we have measured the low field ac-
susceptibility of the weakly disordered NFL material,
CeCu5.9Au0.1 with the same experimental condition as those
for CesRu1−xRhxd2Si2. The results are shown in Fig. 3(a). In
contrast to the case of CesRu1−xRhxd2Si2, the susceptibility of
CeCu5.9Au0.1 shows nondivergent behavior even at zero field
as well as in the higher field measurements.1 This can be

clealy seen in the logs−Tdx /dTd vs logT plot, where the
slope corresponds to an exponent of a leading term of the
susceptibility. In Figs. 3(b) and 3(c), the plots for
CesRu0.5Rh0.5d2Si2 and CeCu5.9Au0.1 are shown, respectively.
It is clearly found that the plot of CesRu0.5Rh0.5d2Si2 shows a
negaive slope, corresponding to a negative exponent, and
hence, the susceptibility diverges down to 0 K. On the other
hand, a positive slope is found in the plot of CeCu5.9Au0.1,
which indicates that the susceptibility in CeCu5.9Au0.1 is non-
divergent.

The susceptibility in CeCu5.9Au0.1 at zero field can be
well described by a functional dependencex0s1−aTad with
a=0.36, which is represented by the solid line in Fig. 3(a). It
is similar to the functional dependence 1−T1/3 predicted by
Hatataniet al.18 on the basis of the mode-mode coupling
theory of the AF spin fluctuation with a magnetic propaga-
tion vectorQ=G; G being a reciprocal lattice vector. They
pointed out that AF fluctuations withQ=G also lead a
−log T-dependence ofC/T. A different approach to analyze
the dynamical and the static susceptibilities of CeCu5.9Au0.1
resulted from the point of view of the strong coupling
theory.17,23 Here the functional dependence of the static sus-
ceptibility at zero field isC/ sua8+Ta8d with a8Þ1. The best
fit of this function to the data at zero field is represented by
the dashed line in Fig. 3(a), wherea8=0.63, which is smaller
than 0.75 obtained from the data at 1 kOe. Both functions
can describe the experimental data in the temperature region
between 40 mK and 2.0 K.

FIG. 3. (a) The ac-susceptibility of CeCu5.9Au0.1 with different
dc-magnetic fields. The solid and dashed lines represent the pos-
sible temperature dependences of the susceptibility,x0s1−Tad and
C/ sua8+Ta8d, respectively.(b) and(c) show logs−Tdx /dTd vs logT
plots for CesRu0.5Rh0.5d2Si2 and CeCu5.9Au0.1, respectively. The
solid lines represents a positive and negative slopes in respective
compounds.
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The field dependence of the susceptibility in CeCu5.9Au0.1
is found below 0.3 K, to be much smaller than that observed
in CesRu1−xRhxd2Si2. We show the field dependencies of the
susceptibilities of both materials at 50 mK in Fig. 4.
CesRu1−xRhxd2Si2 shows strong field dependence below
300 Oe and an almost flat field dependence at higher field:
the former belongs to the field dependence ofdxsT,Hd and
the latter to that ofxMF. On the other hand, CeCu5.9Au0.1
shows almost no field dependence down to zero field.

Taking account of the temperature and field dependencies
of the susceptibility in the present work,dx is completely
lacking or unmeasurablely small in CeCu5.9Au0.1. This is not
contradictory to the argument in the previous section, in
which dx is disorder-driven.

C. Scaling analysis ofdx

In Sec. III A, we have argued that the divergent behavior
of the susceptibility in CesRu1−xRhxd2Si2 could be due to the
quantum Griffiths singularity. Here, we show the result of the
scaling analysis of the susceptibility. As previously argued,
we can conclude that the susceptibility in CesRu1−xRhxd2Si2
has two components; the disorder-driven component
dxsT,Hd and the MF componentxMFsTd. By considering the
fact thatdx diverges down to 40 mK in zero field, we as-
sume the following scaling form:

dxsT,Hd = cT−gfS H

TdD . s2d

Little freedom is left in the choice of parameters in order to
make all of data collapse onto a single curve. In Fig. 5(a), the
scaling plots ofdx’s for x=0.5 and 0.6 are shown, where the
scaled susceptibilitiesdxsT,Hd /cT−g are plotted vs the re-
duced fieldh;H /Td for T,1.4 K. In the scaling plots, the
values ofg for x=0.5 and 0.6 are taken to be 0.71 and 0.60,
respectively, which are the same values of the exponents in
the divergent terms of the susceptibilities at zero field. The
c-coefficients are also assigned the values obtained from the
analysis at zero field. In order to see how the quality of the
scaling plot varies withd, we have made a histogram of lnsfd
with a stepsize of 0.1 on a lnshd=lnsH /Tdd scale between

−3.5 and −10 for each concentration and have calculated the
mean square(log) deviationslnsfd from the mean step values
as a function ofd, as shown in Figs. 5(b) and 5(c). The
values of slnsfd of x=0.5 and 0.6 are minimal ford
=1.01±0.06 and 0.96±0.08, respectively. Thus, we can con-
clude that the values ofd for both concentrations are 1 within
margin of errors. In Fig. 5(a), the values ofd are fixed to be
1. We found that all of the data forx=0.5 and 0.6 success-
fully collapse onto a single scaling curve.

The solid line in Fig. 5(a) corresponds to a scaling func-
tion

fshd =
1

s1 + h2de/2 s3d

with e=1.5. Although Eq.(3) lacks theoretical foundation,
nevertheless, it describes the experimental data very well.
The scaling functionfshd approaches 1 forh→0, which rep-
resents that thedx asymptotes to the divergent behaviorcT−g

asH→0. fshd also asymptotes toh−1.5 ash→`, which rep-

FIG. 4. The field dependences of the susceptibilities of
CesRu0.5Rh0.5d2Si2 and CeCu5.9Au0.1 at 50 mK. The solid lines are
guides to the eyes.

FIG. 5. (a) Scaling plots ofdxsT,Hd for x=0.5 and 0.6. The
values ofg and thec-coefficients are assigned the values obtained
from the analysis at zero field, whereg=0.71 and 0.6 andc
=0.013 and 0.0038 emu/mol forx=0.5 and 0.6, respectively. The
values ofd are fixed to be 1 for both concentrations. The solid line
represents the scaling functionfshd described in the text. The
dashed lines represent the asymptotic behaviors offshd ash→0 and
ash→`, respectively.(b) and (c) show the mean square(log) de-
viation slnsfd (see text) for x=0.5 and 0.6, respectively. The solid
lines are fits to a quadratic function.
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resentsdxsT,Hd→cH−1.5T1.5−g asT→0. The values ofg are
smaller than 1.5, thus,dxsT,Hd’s in finite field vanish at 0 K.

Note that the values ofd for x=0.5 and 0.6 are fixed to be
1. In the quantum Griffiths model22 the magnetization has a
scaling form

MsH,Td =
H

T1−lgSH

T
D s4d

which leads the scaling form of the susceptibility as in Eq.
(2) with d=1, where fshd=gshd+hg8shd. Thus, the fact of
d=1 offers strong evidence thatdxsT,Hd originates from the
quantum Griffiths singularity.

IV. DISCUSSION

In the last section, we argued that the susceptibility of the
disordered NFL material CesRu1−xRhxd2Si2 contains two
components, the MF quantum critical componentsxMF and
the disorder-driven componentsdx, which could originate
from the quantum Griffiths singularity.dx has strong field
dependence, and is distinguished fromxMF by applying a
very small magnetic field.

It is not a trivial question why the susceptibility of
CesRu1−xRhxd2Si2 can be separated into two different com-
ponents. Ohashi and Suga predicted the possibility of a “non-
trivial” distribution function of TK

local in a two-dimensional
disordered electron system based upon the quantum Monte
Carlo method.24 They pointed out that the distribution func-
tion PsTK

locald has a broad maximum in a higherTK
local region,

and separately, has a finite weight atTK
local=0. In a three-

dimensional system, a similar distribution function was
obtained.25 Their calculation was done in a finite-size sys-
tem. At the thermodynamic limit, the system may have a
continuous distribution with large density atTK

local=0, as
shown in Fig. 6.

MacLaughlinet al. analyzed the magnetic susceptibility
and themSR spectra data forx=0.5 in a highs.2 Kd tem-
perature region within the framework of the quantum Grif-
fiths model and the Kondo-disorder model.21 The distribution
functions PsDd’s they obtained on a basis of both models

have no weight atD=0; D is the tunneling energy associated
with a magnetic cluster in the quantum Griffiths model,
whereasD is TK

local in the Kondo-disorder model. Their re-
sults indicate the nonsingular properties of the compound at
T=0. However, singular properties were found at lower tem-
peratures, as presented in this article. Taking account of our
experimental results, CesRu1−xRhxd2Si2 is considered to have
a distribution ofTK

local with a “tail” in a low TK
local-region, as

shown in Fig. 6.PsTK
locald obtained in Ref. 19 corresponds to

a broad distribution in a highTK
local-region. Here the tail of

PsTK
locald was left out at lower temperature. It is noted that the

mean-value ofTK
local they obtaineds,30 Kd is compatible

with the value of T0s=20 Kd, which representTK in the
model,19,20 obtained from the MF analysis as given in Ref.
15. Consequently, we can speculate that Ce-spins in
CesRu1−xRhxd2Si2 for x=0.5 and 0.6 are distinguished into
two groups, namely, Ce-spins whoseTK

local belonging to the
broad distribution in a highTK

local-region and Ce-spins whose
TK

local belonging to the tail ofPsTK
locald in a low TK

local-region,
represented by a shaded portion in Fig. 6. The Ce-spins in
the former group couple with the spins of the conduction
electrons through the Kondo interaction of order of 20 K and
couple with each other through the RKKY interaction, and
give the xMF in the susceptibility. On the other hand, the
Ce-spins in the latter group form magnetic clusters because
their TK

local is almost 0 K, and give thedx.
The field dependence ofdxsT,Hd can be described by the

scaling form derived in Sec. III C. The results of the scaling
analysis strongly suggests thatdxsT,Hd is due to the quan-
tum Griffiths singularity, namely,(i) the exponentg depends
on the value ofx, and(ii ) the exponentd is 1.0. And also, we
found the universal scaling function offshd, which is not
affected by the value ofx within the margin of error. Castro
Neto and Jones predicted the scaling form of the magnetiza-
tion in the quantum Griffiths regime22 as Eq.(4), which leads
to the H /T-scaling of the susceptibility. According to the
arguments in Ref. 22, the scaling function of the magnetiza-
tion gshd, and alsofshd, depend on the value ofl in contra-
diction to the results of our scaling analysis. They derived
that gshd and fshd asymptote to a constant value forh→0
and toh−1+l for h→`. We found in Fig. 5(a) that the experi-
mental fshd extrapolates to 1 forh→0 and toh−1.5 for h
→`, which isg-independent, that is,l-independent. Hence,
the asymptotic behaviors of the experimental and the theo-
retical fshd for h→` are inconsistent with each other. In a
higherh region, i.e., in a lower temperature region,fshd’s for
x=0.5 and 0.6 could deviate from each other and may show
l-dependent behavior.

V. CONCLUSION

We have measured the low field ac-susceptibilities of the
strongly disordered and the weakly disordered NFL materi-
als, CesRu1−xRhxd2Si2 and CeCu5.9Au0.1, in dc-magnetic
fields. The susceptibilities of CesRu1−xRhxd2Si2 contain two
components; the disorder-driven componentdx and the MF
quantum critical componentxMF. The disorder component
has not been observed in the weakly disordered materials

FIG. 6. Schematic illustration of a “nontrivial” distribution func-
tion of TK

local. The dashed line represents the mean value ofTK
local.
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CeCu5.9Au0.1. In CesRu1−xRhxd2Si2 dx diverges down to 0 K
with the x-dependent exponentg at zero field, and is sup-
pressed by small magnetic field.dx also exhibits the
H /T-scaling. These results can be well interpreted in terms

of the quantum Griffiths model, however the universal scal-
ing curve fshd obtained from the scaling analysis of the
present experimental data disagrees with thel-dependent
scaling curve predicted by the model.
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