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Anisotropic Heisenberg chain in coexisting transverse and longitudinal magnetic fields
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The one-dimensional spin-12XZ model in a mixed transverse and longitudinal magnetic field is studied.
Using the specially developed version of the mean-field approximation the order-disorder transition induced by
the magnetic field is investigated. The ground-state phase diagram is obtained. The behavior of the model in
the low transverse field is studied on the basis of conformal field theory. The relevance of our results to the
observed phase transition in the quasi-one-dimensional antiferromagi@@sis discussed.
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I. INTRODUCTION tropy parameter, which is assumed tobe -1.

The effects induced by magnetic fields in low- |t was proposefithat low-energy properties of gSoCl,
dimensional magnets are subjects of intensive theoretical aril the external magnetic field are described by the Hamil-
experimental resear¢h® One of the striking effects is the tonian(1) with A=0.25 andJ=0.23 meV. Evidently, in the
dependence of magnetic properties of quasi-one-dimensionaaseA =1 the behavior of the system does not depend on the
antiferromagnets with anisotropic exchange interactions omagnetic field direction and the modél) reduces to the
the direction of the applied magnetic field. The basic sotropic Heisenberg chain in a magnetic fikd\hZ+hZ. In
model of such types of magnets is the anisotropic Heisenberg,q limiting caseA — « the model(1) reduces to the antifer-
chain—the so-calleXXZ model. It is, therefore, important romagnetic Ising chain in a mixed longitudinal and trans-

to study the dependence of the properties of Xi&Z chain . . . . )
on the field direction. There are two studied cases of the field ' >¢ f!eld. This model was mv_estlga_t(_ed n Refs. 15 and 16,
where it was shown that there is a critical line in g, h,)

direction. First is theXXZ model in the uniform longitudinal =
magnetic field. This model is exactly solved by the BethePlane, where the ground state phase transition takes place.
ansat?® and has been studied in great detail. In the secondhe critical behavior in the vicinity of this transition line
case the field is applied in the transverse direction. XK&  belongs to the universality class of the two-dimensional Ising
model in the transverse field cannot be solved exactly anéhodel.

various approximate methods have been used for its Thus, the physics of the modg) is very well understood
study*~*4The behavior of th&XXZ model in the symmetry- in the caseh,=0 and is fairly good for the casés=0 and
breaking transverse field is essentially different from the €as@ . «, but no detailed studies are available in general case.
of the longitudinal field. In particular, the transverse field |y this paper we study the modél) using the mean-field
induces the perpendicular antiferromagnetic long-range orde{pproximation, which is the generalization of the approach
(LRO) and the ground state quantum phase transition takegeveloped in Ref. 13 for the case=0. This method allows
place at some critical field, where the LRO and the gap in thgys to determine the transition line with high accuracy. The
spectrum vanish. The phase transition of this type has beefehavior in the lowh, region will be considered using the
observed in the quasi-one-dimensional antiferromagnetonformal field theory method.

Cs,CoCl,.” In fact, the magnetic field can have both longitu-  The paper is organized as follows. In Sec. Il we consider
dinal and transverse components. For example, the magneticqualitative physical picture of the ground state phase dia-
field in recent neutron scattering experiments opGOEl,  gram based on the classical approximation. In Sec. Il the
has been applied at an angle to the anisotropy axes. Frofjean-field approach is developed and study of the critical
this point, it is of particular interest to study the ground-stateproperties of the model is presented. Scaling estimations of
properties of the Spil%—XXZ chain in coexisting longitudinal the gap and the LRO in lowig region are given in Sec. IV.

H, and transverse magnetic fielt. The Hamiltonian of The special casa=-1 is studied in Sec. V. In Sec. VI we

this model is given by discuss our results in relation to the experimental data for

N N N Cs,CoCl,.
H= 2 (SES:+1 + qu‘;l + ASiSiHl) - hzz Sf] - hxz S);'
n=1 n=1 n=1
(1) Il. THE CLASSICAL APPROACH
where In order to provide a physical picture of the phase dia-
OxzMeHx2) gram of the mode(1) we use the classical approximation,
Nyp = E— (2 when spins are represented as three-dimensional vectors. The

variational wave function corresponding to the classical ap-
is the effective dimensionless transve(kmgitudina) mag-  proximation has a form of a simple direct product of single-
netic field,J is the exchange constant, aadis the aniso- site spin statég
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FIG. 1. The ground state phase
diagram of the mode(l) for A
=0.25. The transition line between
the antiferromagnetic(AF) and
paramagnetic (PM) states ob-
tained in the mean-field approxi-
mation is shown by thick solid
line and that in the classical ap-
proximation(9) by a dashed line.
The thin solid line denotes the
classical line(10) and dotted line
corresponds to separatrix lifisee

Sec. ).
[1)= (1+AS)(L+AS)(L+ASHL+AS) -+ [LLL-+), P, ©
(3) 47 (1402 T

whereA, and A, are variational parameters. K,#A; then  Thjs line separates the antiferromagnés€) phase with the
the ground state is _twofold degenerate and another groundRo from the paramagneti®M) phase with uniform mag-
state wave function is netization. The transition line fak=0.25 is shown on Fig. 1.
_ + The caseA >1 can be analyzed in a similar way. In this
[2) = (L +AS)L+AS)L+AS)L+AS) - [LLL ) cace the twofold degenerate ground state in the AF phase is
(4) characterized by nonzero staggered magnetizations along the
X and Z axes. But the expression for the transition line is
rather cumbersome and we do not present it here. The tran-
sition line in the classical approximation f&r=5 is shown
in Fig. 2.
A =Ad?, A, =Aei?. (5) _ As is well knowrt” there is a remarkable, so-called “clas-
sical” or disorder line, which lies in the AF region in the
The ground state energy for this case calculated Wwith  (h,,h,) plane and is given by the equation
(or @,) is

The form of the variational parameteks andA, minimizing
the energy is different in the regions|<1 andA>1. For
the casgA| <1 they can be chosen'ds

h? hZ
E_Acos2 AN°-1)* hAcos¢ hZ(AZ—l). a +ZA)2+ 2(1:-A) =1 (10)
N (1+A%?2  4(1+A? 1+A2 1+A2
(6) The classical line is remarkable in a sense that the ground
state on it is identical to the classical one and quantum fluc-
Minimizing this energy oveA and ¢ one obtains tuations are missing. It was shown in Ref. 17 that the ground
state of Eq.(1) on this line is twofold degenerate and the
é=cos? h(A +1) exact ground-state wave functions have the product {&m
2V(A +1)2- hﬁ’ and(4). The ground state energy on the classical line for any
evenN is
1+A+h
A= — = (7 E__1.4
1+A-h, N 577 (11
The twofold degenerate ground stateds# 0 is character- From Egs.(7) one can find that in the cada|<1 the

ized by a nonzero staggered magnetization alongvtttB-  magnetizations on the classical line are
rection, which plays the role of the LRO parameter
1 h,

=iy

For a given value ofA the line of phase transition on
(hy,h,) plane(the transition ling is determined by the con- (S = hy
dition ¢=0 and has a form 4’
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FIG. 2. The ground state phase
diagram of the mode(l) for A
=5. The same notations as in Fig.
1 are used. The boundary of in-
commensurate criticallC) phase
is shown schematicallgSec. 1V).

h -A
=0Ty

IIl. MEAN-FIELD APPROXIMATION

12
(12 Previously, the mean-field approximatigWiFA) has been

proposed to study the anisotropic Heisenberg chain in the

For A>1 the parameterd; andA, on the classical line are transverse magnetic field:}41t has been established that the

1+A+hz< A—l)
1,2~ * ,
: h, A+1

and the magnetizations on two sublattices are

A
2 ’
Al,+1

<3§>1,2:

1A7,-1
2AZ,+1

<321>1,2:

<S\¥>1,2= 0.

MFA works very well if the transverse field is sufficiently
strong and gives qualitative results for intermediate fields.

(13 For A>-0.5 the MFA allows us to determine with high ac-
curacy the critical transverse field at which the order-disorder
transition occurs and to describe correctly the behavior of the
system in the transition region. The MFA is based on the
Jordan-Wigner transformation of spin-1/2 operators to the
Fermi operators with the subsequent mean-field treatment of
the Fermi Hamiltonian. In the case of coexisting transverse
and longitudinal magnetic fields it is impossible to reduce the
model Hamiltonian(1) to a local form in terms of the Fermi
operators. Nevertheless, for this complicated case the MFA
can be modified. In this section we develop the special ver-
sion of the MFA, which remains the variational approach.
This approach gives high accuracy in determining the tran-

(14)  sition line and correctly describes the whole ground state
phase diagram.

Thus, the classical approach shows that the ground state is At first we perform a rotation of the spins in the plane
different in the regions withA|<1 andA>1. For[A|[<1 by an angleg:

the classical ground state is given by a configuration, with

the spins on odd and even sites pointing, respectively, at S =0 cos ¢ + 0% sin o,
anglesy and -y with respect to theXZ plane. ForA>1 in
the ground state all spin vectors lie in th& plane with the S =-0f sing+ 0% cose,

spins on odd and even sites pointing, respectively, at angles

¢, and ¢, with respect to th& axis. This means that besides Y=o
uniform magnetizations along andZ axes in the AF region

(15

ne

there is as well the staggered magnetizations: invtilirec-  whereoy are new spin-1/2 operators.

tion for |[A|<1 and in bothX and Z directions forA>1.6 The Hamiltonian(1) is transformed to the form
These facts are confirmed on the classical line, where the o Z
classical approximation gives the exact ground state. H =2 (XOR0ht + 04001 + 205001) —h 2 o +H',

Of course, one cannot expect that the classical approach
gives an accurate estimation of the transition line and correct -

description of the phase transitiofritical exponents!3 H =

=sin 2 3 (730 + 0hk)

Nevertheless, as it will be shown below, the fact of the gen-
eration of the staggered magnetizations inYhdirection for — (h,cosp — h,sing) >, o, (16)
|A|<1 and in both theX and theZ directions forA>1 is

qualitatively true.

where
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X = coge + Asirfe,
z=AcoSp + sirfe,

h=h, cos¢+h, sin ¢. (17

The angleg is a variational parameter over which we will

minimize the ground state energy.

After Jordan-Wigner transformation to the Fermi opera-

torsa’ anda,

o= exp{in a;raj)an,

j<n

O-ﬁ:%—a:’]an, (18)

the Hamiltonian(16) takes the form

hN zN
_—+_

1+Xx
He = 2 +E(h—z+Tcosk>aEak
1-X$ ot
+ TE sin k(afal, + a_@a,)

+22) 388+ Hf - (19)

PHYSICAL REVIEW B 70, 144414(2004

@ >_f”%(l_u+v cosk)
V1= 8@ = o o 8(k) '

g dk (u+v cosk)cosk
e(k) '

V2= <a1:an+1> == f

o 2m

ot A 7Tﬁwsinzk
73_<anan+1>_ fo o &(K) (23

The solution of the self-consistent equatidi28) gives the
minimum of the ground state ener¢®0) in a class of “one-
particle” wave functions at a given angje Thus, one should
minimize the energy20) with respect to the angle, solving
the self-consistent equationi@3) for each value ofp. This
means that the proposed procedure remains the variational
one.

The physical meaning of the angleis to show a direc-
tion of the total magnetization of the moddl),

F=(ocos¢=(% - yi)cos ¢,

S'=(o%)sin o= (% - 71)sin @. (24)

Transforming the mean-field treated Fermi Hamiltonian
back to the spin operators, we arrive at the well-studied an-
isotropic XY model in a longitudinal magnetic field,

We treat the Hamiltoniat; in the MFA, which implies
the decoupling of the four-fermion term. The Fermi repre-
sentationH; has a nonlocal form. But we note that all terms
in H{ contain an odd number of Fermi operatas and
therefore(H{)=0 in the MFA. This fact holds the MFA in the

Hor= 2 [(0 = Wi + 0+ Woloha] -u S of,
(25

frame of variational principle.

Thus, in the MFA the ground state ener§y and the

one-particle excitation spectruatk) have the form:

h z 1+x 1-x
E/N=-C+ +h=Dn+—n+—
+2(Y2 - Y5+ 92), (20)
e(k) = V(u+v cosk)?+w?sirék, (21)
where
u=h-z+2zy,,
= ﬂ -2z
U= 2 '}’2;
1-x
w= — + 22ys3. (22

Quantitiesy,, y,, andy; are the ground state expectation

The model(25) has a transition line defined by the equation
u(hy,h,A) =v(hy,h,A), (26)

which separates the regian<v with the LRO represented
by a staggered magnetization from the regionv, where
there is no LRO except for the uniform magnetizati@d).
The transition lineh,(h,,A) is determined by the numerical
solution of Egs.(23) and (26) with the minimization of the
ground state energy over angbe The transition lines in the
MFA for A=0.25 andA=5 are shown in Figs. 1 and 2 by
thick solid lines.

It is well knownt8 that the critical properties of the model
(25) belong to the universality class of the two-dimensional
Ising model. This means that in the MFA the gap is closed
near the transition line linearly with the field and follows 1/8
law for the staggered magnetization.

The MFA also shows that fofA| <1 (w>0) the model
has a staggered magnetization along Yhaxis,

W2 2 _ 112\11/8
(- gy = e DT 27)

V2(v +w)

values, which are determined by the self-consistent equawhile for A>1 (w<0) the staggered magnetizations exist

tions:

along theX and theZ axes:
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FIG. 3. The staggered magnetization near the transition line as a F!G- 4. The gap as a function & near the transition line for
function of h, for A=0.25 andh,=0.67. A=0.25 andh,=0.67.(The solid line is the MFA, and triangles are

DMRG results extrapolated to the thermodynamic limit.

[W2(02 _ u2)]1/8

(- 1)"SHy = — coso, DMRG results differs from that obtained in the MFA within
V2(v —w) 0.04%.
In addition to the transition line defined by E@6), the
W2(v2-ud)]ve Hamiltonian(25) contains another special line defined by the
(- )"S) =—F=—==—sino. (28)  equation
V2(v - w)
u? +w? =2, (30)

The validity of the two-dimensional2D) Ising type of the
critical properties of the modéLl) in the vicinity of the tran-  This line separates the so-called “oscillatory” regiah
sition line has been checked by the density matrix renormal+w?<v? (lying totally in the AF phasg where spin correla-
ization group® (DMRG) calculations of the staggered mag- tors of the mode(25) have oscillatory behavior with an in-
netization and the gap. The staggered magnetization isommensurate wavelength depending on the model param-

computed a¢ eters (h,,h,,A), from the region without such oscillatory
1 behavior of correlator¥ The line (30) is nothing but the
M2 = _<0|2 - DS, a=(xy.2) (29) classical line of the moddll). Remarkably, the MFA gives
N the exact ground state on the classical line. Along this line

the solution of Eqs(23) has a simple form:
where|0) and|1) are two lowest-energy states. These states

are degeneratéat N— ) in the ordered AF phase. There- . p 1+A

fore, in the AF phase the gap is given by the second excited sinfp = 1_—pl —A’ (31)
state, while in the disordered PM phase the ground state is

nondegenerate and the first excitation determines the gap imhere

the spectrum. We have performed the DMRG calculations )

using the infinite-size algorithm and open boundary condi- ngl—A (32)
tions and the number of statekept in the DMRG truncat- 41+A°

ing procedure is up to 25. We estimated the relative error due
to DMRG truncation from difference between the data com-
puted withs=25 and those witts=20 for chain lengthd\ 1 \T—p b

=202. The estimated relative error is of the order of°10 VIS - —————, Yo=yz=—— (33
which is sufficiently small for accurate estimates for the gap 2 2 4

and the staggered magnetization. As an example, in Figs. 3,4 fora>1

and 4 we show the plots ¢MY)8 and the gapn versush, in

the vicinity of the transition point fon=0.25 and fixedh, _ 1 _ _

=0.67 (these parameters are related to those for the antifer- =5 2V1-p’ Y2ET T 40 -py (34)
romagnet CgLoCly). A good linearity of the plotted data

definitely confirms the 2D Ising character of the transitionThe ground-state energy is given by Ed1). Substituting
line. The excellent agreement between the DMRG and th&gs.(31)—(34) into Eqgs.(24), (27), and(28), one can check
MFA results in Figs. 3 and 4 shows high accuracy of thethat the magnetizations on the classical line in the MFA co-
MFA. For example, the critical fieldh, estimated from the incide with those given by Eq$12) and(14).

The values ofy, for |A|<1 are

[E=Y
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The gap on the classical line in the MFA lieskat = and hﬁ 1-A\2 6
equals M= o8\ 14 A +0(hy). (41)
m=1-P_ V1-p, JAl<1 As one can see the difference betweerl1 three special lines
2 near pointF is very small, of the order df,.
The expressions for the gap are different to the left and to
—\1-2p-pA right of the separatrix line:
m:(l—E—\'l— )LE A>1. (39 g P
2 (1-p) hli-A] —
. T m=—%=|——|\Vhg(h,A)—h, h,<h,
It is necessary to note that the elementary excitation in the a2|1+A| T zo
AF phase can be regarded as a domain wall between the two
AF ground states. In the cyclic chain these excitations are m=|h,— hdhoA)|, h,> h,e (42)

created in pairs in contrast to open chains. In E®) the
end-chain correction term is omitted, and the spectrum, EqThe linear behavior of the gap in the vicinity of the transition
(21), determines the gap for the open ch#id! Therefore, in  line confirms the 2D Ising universality class of the transition
the AF region Eqgs(21) and (35) give half of the gap for a line.
cyclic chain. The staggered magnetizations in the vicinity of pdnt

It is worth to mention one more special line on the phasevanish on two lines: on the transition line and on the line
diagram, so-called “separatrix,” defined by the equation  h,=0. Equationg24), (27), and(28) near pointF reduce to

uv = v - w2, (36) (§)=(-1)"B,

This line separates the regionm >v2-w?, where the lowest

L : P 111-A 1/4 h..—h 1/8
excitation has momenturk,,;,=7 from the regionuv <v = _‘ \F<ZC_Z> , (43)
-w? (situated entirely in the AF phagewhere the lowest 2[1+A 2
excitation has momentum, depending on the model parany. 1A|<1 and
eters as
— hX n
uv ==+ (-
COSKmin = Wt (S 4 (- 178,
For any A, the transition lineh,{(h,,A), the classical line 1 (="
h,¢(hy,A) and the separatrik,{hy,A) lie in the following (S0 = 27 o h.B, (44)
sequencésee Figs. 1 and)2
for A>1. To validate our analysis in the vicinity of poift
hzdhy, A) < hyg(hy, A) < hydhy, A). (37 one should also estimate the effect of the part of the Hamil-
; - tonianH’ in Eq. (16), omitted in the MFA. Near poinf the
:ﬁrllA;[.hese lines meet each other only at pokfh,=0.h, angle p=h,/2 and, therefore, these terms fifi are small
and can be taken into account as perturbations. The corre-
A. Point F sponding perturbation theory contains only even orders. The

estimate of the second order shows that the contribution of

Point F(hxzo.’hflJrA) |s.the special boundary point these terms to the ground-state energy and to the gap is of the
where all special lines terminate. The ground state at th%rder of hff and hi(hzc_hz)- This accuracy is sufficient to

pointF is a saturated ferromagnet. Near pdinth,<1) the confirm the above equations. We note that in the lidit

fermion density is small and the mean-field treatment of the | point F transforms to the so-called multicritical point

four-fermion term in Eq(19) gives an accuracy, at least, up with a macroscopic degeneracy of the ground stte.

to h!. We omit intermediate calculations here and give the
final expressions for the special lines. The transition and the B. Point A
separatrix lines near poifit have the form: :

In the caseh,=0 the model1) reduces to the anisotropic

hzdhyA) = hyg(hy, A) + mg + O(h), (38)  Heisenberg chain in the transverse magnetic field, which was
studied in Refs. 11, 13, and 14. At some value of magnetic
h,dhyA) = hyg(hy A) = my + O(hY), (390 field h,s(A) this model undergoes a transition from the anti-

ferromagnetic state to the paramagnetic gapful state. We de-

where the behavior of the classical ling,(hy,A) is given by note this transition by poink (see Figs. 1 and)2

Eq. (10): To study the behavior of the system in the vicinity of
h? : . point A one can follow the arguments of Ref. 16, where point
hae(hA) =1+A - 2T 321+0) +0(hy)  (40) A was analyzed in detail for the special case-x. As a

result one finds that fdn,=h,,(A) the perturbation theory in
andmy is the gap near poirf on the classical lingsee Eq. small parameteh, contains infrared divergencies that are
(35)]: absorbed in a scaling parame;erth. The analysis shows
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that the mass gap generated by the longitudinal magneti®l =0. Due to the gap in the spectrum the effect of e
field h, is proportional toh?, component of magnetic field in the AF region can be ob-
) tained in the frame of a regular perturbation theoripinThe
m=ah, (45) estimate of the first and the second orderh jindicates the
but the factora is given not only by the second-order cor- @Ppearance of the uniform magnetizations in bothXrend
rection but also by all collected divergent orders of the perthe Z directions and the staggered magnetization in he
turbation series. direction as
For a fixed value ofA the behavior of the transition line in (S9 ~ he+ (- ) hyh
the (h,,h,) plane near poin& can be found from the follow- X z
ing consideration. As it was established above in the vicinity R 2
of the transition line the gap is proportional to the deviation () ~ (= ™G+ hi,. (48)
from the line. This is valid for any direction of deviation  As follows from the last equations, in the casg=0 the
except the direction at a tangent to the transition line. Thusapplied transverse magnetic field does not cause the uniform
in the vicinity of pointA on the lineh,=h,A(A), the gap is  magnetization in th& direction and the staggered magneti-
zation in theX direction!?
M~ hea(A) = hulhzA). (46) The critical phase is characterized by nonzero magnetiza-
On the other hand, the gap is given by E45). Equaliz- tion 0<M <1/2 in the ground state and by the massless
ing these two expressions for the gap we obtain the equatiospectrum. The low-energy properties in this phase are de-

for the transition line in the vicinity of poinf as scribed by a free massless boson field theory with the Hamil-
tonian
hee(hz8) = hya(4) = f(A)RE, (47)
where the functionf(A) is generally unknown and can be Hf%f dX{(6,0)* + (3,D)°], (49

found numerically only.

Summarizing all above, we conclude that the MFA cor-where ®(x) and ©(x) are the boson and dual field, respec-
rectly describes the critical properties of the transition linetively, andv(A,h,) is the renormalized spin-wave velocity.
and determines the transition line with hlgh accuracy. This is The spin-density operators are representééj as
because the MFA gives the exact ground state on the classi- 1 ®
cal line, which is close to the transition line. In addition, the _ = _q\n it
MFA is asymptotically exact in the vicinity of poinE. S=M+ WR&X(I)+al( Y COE(R +27TMX)’
Therefore, for any value &, the accuracy in determining of

the transition line drops as one moves from pdirtb point S = by(— 1)" cog27RO) + b, cog27RO)

A. The MFA quality for the casé,=0 was investigated in

Refs. 13 and 14, where it was shown that the accuracy of the xco{g + 277Mx>, (50)
MFA is high for A>-0.5, and the MFA fails in the limifA R

— =1 (where the accuracy decreases to 20Besides, the
high accuracy of the MFA in the vicinity of the transition line
is confirmed by DMRG calculationsee Figs. 3 and)4The
MFA qualitative correctly describes the ling=0 (no gap
and soundlike spectrum for,<1+A), but one cannot expect
that the MFA gives correct critical exponents in Idwy+e-
gion.

wherea,, by, andb, are constant§ and we identify the site
index n with the continuous space variabte The magneti-
zationM(A, h,) and the compactification radil&A,M) are
functions of A and h, and can be determined by solving
Bethe-ansatz integral equatiofts’

Both terms of operatd® in Eq. (50) are oscillating when
M #0 and are not relevant to the uniforkhcomponent of
IV. THE LOW- h, REGION the magnetic field. But as was shown in Ref. 28 the second

, term in Eq.(50) corresponding to perturbation
On the lineh,=0 the model1) reduces to the well-known

exactly solvableXXZ model in the longitudinal magnetic
field. In this model three phases exist in different ranges of
the magnetic fielch,: the ferromagneti¢F) phase ah,>1 )
+A, the antiferromagnetidAF) phase at 6<h,<hg(A) has conformal spirs=1 and generates two other perturba-
[ho(A) is a lower critical field®], and the critical phase at 1ONS with zero conformal spin:
0<h,<1+A (JA]<1) andh,g(A)<h,<1+A (A>1). V; ~ h? cog47R0),

In the F phase the ground state is a saturated ferromagnet
M =(S)=1/2with a gap in the spectrum. In this region the ) 20
appearance of the transverse magnetic field does not cause a Vo~ hy CO{E + 47TMX>- (52
noticeable change in the system properties. It results in the
appearance of a uniform magnetization in ¥direction and The scaling dimensions of perturbatiovisandV, are 2y
small decreasing of the magnetization in theélirection. and 2/y (p=2mR?), respectively. The perturbatiovi, de-

In the AF region the system is in a gapful phase with thescribes umklapp processes and it is responsible for the gap
long-range Néel ordeMZ, and zero uniform magnetization generation in the AF region, wheh=0. But in the critical

)
Vo ~ h, co427R0O) cos(E + 27-er> (51)
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region(h,>0) the magnetizatiotM # 0 and the perturbation The staggered magnetization along thaxis in Eq.(56)

V, as well as the operatd¥, does not conserve the total can be derived in the same manner as was derived the gen-

momentum and will be frozen out. erated perturbation¥; andV, in Egs. (52). According to
Therefore, in the uniform longitudinal magnetic fidhd  Egs. (50) the nonzero contribution to the first-order correc-

the critical exponent for the mass gap is determined by th&ion in h, to the staggered magnetizatiof+-1)"S.) is given

only nonoscillating perturbatiol;: by the following terms in spin-density operators:
m~ h/@7, (59
— 1\ -
We note that in the special cabg=0(|A|< 1) the mag- -1'S, COS( R * 277MX>’

netizationM=0 and all perturbationd/,, V;, and V, are
nonoscillating?® In this case in the regiom >cog m2]

~-0.266 the perturbatiox, becomes most relevant and de- S~ Cos(sz@)C()g(? + 277Mx). (57)
termines the mass gap'as R

m~ g4, (54)  Then the leading contribution comes from small distances of

The perturbation V, corresponds to the spin- order of ultraviolet cutoff(the lattice constant

nonconserving operat®(SS, ;- 9S.,,).2* This means that ®

the behavior of the syste) at smallh, is similar to that of (- 1)aS(z) ~ hy f d222ei2wM(Xz-X1>exp[_ |ﬂ]

well studiedXY Zchain in magnetic fieldh, with small an- R
isotropy in theXY plane® Using the results of Ref. 30 we ()

conclude that in the regioA >1 the presence of a small X P[ ]COS{ZWR®(22)]
component of magnetic field leads to a sequence of three

transitions with increasing longitudinal magnetic fiefg ~hy cog27RO(z;)] ~ h,(- 1)1S(zy).
The first one occurs di,g(A) (=2), where the AF phase (58)

transforms to the incommensurate criti¢eC) or “floating”

phase(see Fig. 2 In the IC phase the perturbatiof, is  Thys, the relation between the staggered magnetization along
irrelevant and the spectrum remains gapless. Here the corr-andz axes is established,

lation functions display a power-law decay with a magneti-

zation dependent wave vector. There is no LRO in the IC (- DS ~ hy((- D"SY, (59)
phase, except uniform magnetizatidisand(S:) = x,h (the

susceptibilityy, is finite in the critical phase Unfortunately,  which results in the critical exponent f¢(-1)"S) written in
neither the field theory approach nor the MFA allows us togq. (56).
determine the boundary of the IC phase. Therefore, this
phase boundary is shown on Fig. 2 schematically.

Further increasing oh, leads to the transition of the
Kosterlitz-Thouless type taking place at the pomi(A) When A — -1 pointF tends to zero, and exactly on the
wheren=1. At h,>h;(A) the perturbatiorV; becomes rel-  |ine A=-1 both classical and transition lines disappear. In
evant(7<1) and the system crosses from the IC phase to @he vicinity of the lineA=-1 it is convenient to rotate the
strong-coupling regime with the staggered magnetizations igoordinate system in such a way that the Hamiltoni&n

V. SPECIAL CASE A=-

both X and Z directions(AF phasé. takes the form
The last transition with further increasing bof occurs
near the point ath,=h,. (see Fig. 2 This transition to the H=Hg+V,+V,,

PM phase was studied in Sec. IlI.
The field theory approach allows us also to determine the

exponent for the LRO. The transverse magnetic field gener- Ho==2 Sy Spi—h 2 (- DS,
ates the staggered magnetization along¥hexis at|A| <1
as
(-1)" Vh:_hzz Sﬁ,
<%> ~ W — (_ 1)nm77/2 ~ (_ 1)nh)1(7/(2—277) (55)
and alongX andZ axes atA >1 andh,(A)<h,<1+A, Va=({d+4) 2 S (60)
(SY ~ yuh+ (- 1)nh)7(7/(2—277), The unperturbed Hamiltoniar, describes the critical be-

havior of the system at€ h, < hy,3! where the estimate df,
N (2-7I(2-27) is hy=~0.533).23 The spin-density operators bf, are related
(S ~M+(-1 h (56) to the bosonic fields by Eqé&50) with M=0, where the com-
We note, that in the limih,— 1+A (— 1/2), the exponents pactification radiusR(h,) is a function ofh,. This depen-
for the mass gaj53) and staggered magnetizations in Egs.dence is generally unknown, but the limiting values of
(55) and(56) agree with the MFA results in Eqé42)—(44). n(hy)=2mwR2(h,) are known3
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h Magnetization
n(h) =~ h—0 200
a ’—_——C
1.75 ,
1 ] /
nh) =7, he— ho. 61
4
1.25 - /
The perturbation¥,, andV, have scaling dimensiong/ 2 /
and 25, respectively. Therefore, according to E¢1) both 1001 7/
perturbationsV,, and V, are relevant in the critical region g7 //
0<h,<hg and produce mass gaps 7
1/2-7/2) 0507 //
my, ~ h," 7]
noe 0.25 /
’/
my ~ |1 +A[M@27, (62 000 =™ . - ——
. — —_— 00 02 04 06 08 10 12 14 16 18 20 22
In particular, m,~ vh,my~\|1+A| at h,—0 and mj H (Tesla)

~h&5m, ~|1+A?? at hy— hy.
The gap at=-1 and forh,,h,<1 can be asymptotically FIG. 5. Uniform (dashed ling and staggeredsolid line) mag-
exactly described by the spin-wave thebhhe validity of  netization curves.
the spin-wave approximation is quite natural because the
number of magnons forming the ground state is small fowhich form the magnetically ordered ground state in the real

h,,h,<1. The spin-wave result for the gap is compound atH=0, and this effect is absent in the one-
dimensional mode{1). The behavior of the magnetizations
m= Vhy(h, +hZ/2). (63 in the vicinity of the critical field in Fig. 5 is similar to the

experimental curve. But the value of the critical field on Fig.
5is 1.6 T, while the experimental value is 2.1 T. We do not
believe that the MFA is the reason for this discrepancy. The
possible reason may lie in the fact that,CeCl, is described

by the szg antiferromagnetic model with strong single-ion
VI. DISCUSSION AND CONCLUSION anisotropy and its reducing to tilse 3 model is approximate.

3 Magnetic measurements in Ref. 7 were performed in the

For h,< h)2(<1 Eq. (63) agrees with the conformal theory
result, Eq.(62), at »— 0 and gives the preexponential factor
for the gap.

As mentioned earlier the order-disorder transition induce
by the magnetic field has been observed in the quasi-on
dimensional antiferromagnet &30Cl, described, as sup-
posed, by the moddll) with A=0.25. It is interesting to
compare the magnetization curves obtained in the neutro ) . o
scattering experimehtith those in the MFA. In this experi- (he €ffective fieldh is in the range(1+A) <h<h(A) for
ment the magnetic fieltd has been applied at an angie  |A/<1 or hya(A)<h<(1+A) for A>1 then there is the
=40° to theXY plane. This means thét, = HZzH/\«“E. Ac-  Critical angles,, which is defined by the intersection of the
cording to Ref. 7g factors in CsCoCl, aregy,=2,=4.80. circle h2+h2=h? with the transition line. At this angle the
Therefore, the ratio of the effective fields in the modblis ~ Phase transition from the AF phase Bt 3, (8< o) for

ield applied at a fixed angl@ to the anisotropy axis. It is
Interesting to consider how the properties of the madel
are changed when the magnetic field is turned from purely
r{(_)ngitudinal (B=0) to the transverse directiofB=/2). If

he/h,=2H,/H,=2. The total magnetizatioM, is A<1(A>1) tothe PM phase g8< B, (8> o) takes place.
The staggered magnetization and the gap vaniggraé, as
_ Me Mg~ | B—Bol¥® andm~ | 8- By
M= —= + , 64 st ol ol . .
ot ¢2(9X<S§'> 94S)) 649 In conclusion, we have studied the sgirXXZ Heisen-

o ) berg chain in the mixed longitudinal and transverse magnetic
where(S,) and(S;)are the magnetizations calculated in thefig|q. |t was shown that the ground-state phase diagram
!VIFA at the effective field$,=2h,. Th.e AF ordered moment gn the (h,h,) plane contains the AF and the PM phases
is given byMg=g,us(|(-1)"S]). In Fig. 5 we plotMy,; and  separated by the transition line. The transition line was de-
Mg as the functions of the magnetic fieldld (H  termined using the proposed special version of the MFA,
=\2h,J/g,ug). These magnetization curves are qualitativewhich reduces th&XZ model in the mixed fields to th¥Y
similar to the experimental ong€bigs. 12 and 14 in Ref.)7  model in the uniform longitudinal field. The MFA gives
The maximal value of staggered magnetizatiornuk.dgrees the transition line with high accuracy at least fdx
with the experimental magnitude of the AF ordered moment=-0.5. This fact is confirmed by comparison of the MFA
1.6up. The total magnetization & —« in the MFA M,  results with DMRG calculations. The MFA gives a satisfac-
=1.9uz is consistent with the saturation momentdg7esti-  tory description of the whole phase diagram, though the criti-
mated in Ref. 7. At the same time, there is an essential difeal exponents of lovix, dependence of the gap and the mag-
ference in the low-field behavior d¥lg. The experimental netization cannot be found correctly in the MFA. These
AF ordered moment is finite & =0, whileM=0 atH=0in  exponents have been found with use of the conformal field
Fig. 5. This difference is due to weak interchain couplings,method.

144414-9



D. V. DMITRIEV AND V. YA. KRIVNOV

PHYSICAL REVIEW B 70, 144414(2004

The field theory approach also shows that in the regiormagnetic field. The important problem is to take into account
A>1 the phase diagram contains IC or floating phase chaeffects of interchain interactiorfs.
acterized by the gapless spectrum and power-law decay of

correlation functions. The form of the boundary of IC phase
can be determined only numerically. But this boundary is

located certainly on the left of the classical line, where the

spectrum is gapped.
We believe that the modified MFA is suitable for the
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