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The one-dimensional spin-1/2XXZ model in a mixed transverse and longitudinal magnetic field is studied.
Using the specially developed version of the mean-field approximation the order-disorder transition induced by
the magnetic field is investigated. The ground-state phase diagram is obtained. The behavior of the model in
the low transverse field is studied on the basis of conformal field theory. The relevance of our results to the
observed phase transition in the quasi-one-dimensional antiferromagnet Cs2CoCl4 is discussed.
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I. INTRODUCTION

The effects induced by magnetic fields in low-
dimensional magnets are subjects of intensive theoretical and
experimental research.1–6 One of the striking effects is the
dependence of magnetic properties of quasi-one-dimensional
antiferromagnets with anisotropic exchange interactions on
the direction of the applied magnetic field.7–9 The basic
model of such types of magnets is the anisotropic Heisenberg
chain—the so-calledXXZ model. It is, therefore, important
to study the dependence of the properties of theXXZ chain
on the field direction. There are two studied cases of the field
direction. First is theXXZ model in the uniform longitudinal
magnetic field. This model is exactly solved by the Bethe
ansatz10 and has been studied in great detail. In the second
case the field is applied in the transverse direction. TheXXZ
model in the transverse field cannot be solved exactly and
various approximate methods have been used for its
study.11–14The behavior of theXXZ model in the symmetry-
breaking transverse field is essentially different from the case
of the longitudinal field. In particular, the transverse field
induces the perpendicular antiferromagnetic long-range order
(LRO) and the ground state quantum phase transition takes
place at some critical field, where the LRO and the gap in the
spectrum vanish. The phase transition of this type has been
observed in the quasi-one-dimensional antiferromagnet
Cs2CoCl4.

7 In fact, the magnetic field can have both longitu-
dinal and transverse components. For example, the magnetic
field in recent neutron scattering experiments on Cs2CoCl4
has been applied at an angle to the anisotropy axes. From
this point, it is of particular interest to study the ground-state
properties of the spin-1

2 XXZchain in coexisting longitudinal
Hz and transverse magnetic fieldsHx. The Hamiltonian of
this model is given by

H = o
n=1

N

sSn
xSn+1

x + Sn
ySn+1

y + DSn
zSn+1

z d − hzo
n=1

N

Sn
z − hxo

n=1

N

Sn
x,

s1d

where

hxszd =
gxszdmBHxszd

J
s2d

is the effective dimensionless transverse(longitudinal) mag-
netic field, J is the exchange constant, andD is the aniso-

tropy parameter, which is assumed to beDù−1.
It was proposed7 that low-energy properties of Cs2CoCl4

in the external magnetic field are described by the Hamil-
tonian (1) with D=0.25 andJ=0.23 meV. Evidently, in the
caseD=1 the behavior of the system does not depend on the
magnetic field direction and the model(1) reduces to the
isotropic Heisenberg chain in a magnetic fieldh=Îhz

2+hx
2. In

the limiting caseD→` the model(1) reduces to the antifer-
romagnetic Ising chain in a mixed longitudinal and trans-
verse field. This model was investigated in Refs. 15 and 16,
where it was shown that there is a critical line in theshx,hzd
plane, where the ground state phase transition takes place.
The critical behavior in the vicinity of this transition line
belongs to the universality class of the two-dimensional Ising
model.

Thus, the physics of the model(1) is very well understood
in the casehx=0 and is fairly good for the caseshz=0 and
D→`, but no detailed studies are available in general case.
In this paper we study the model(1) using the mean-field
approximation, which is the generalization of the approach
developed in Ref. 13 for the casehz=0. This method allows
us to determine the transition line with high accuracy. The
behavior in the low-hx region will be considered using the
conformal field theory method.

The paper is organized as follows. In Sec. II we consider
a qualitative physical picture of the ground state phase dia-
gram based on the classical approximation. In Sec. III the
mean-field approach is developed and study of the critical
properties of the model is presented. Scaling estimations of
the gap and the LRO in low-hx region are given in Sec. IV.
The special caseD=−1 is studied in Sec. V. In Sec. VI we
discuss our results in relation to the experimental data for
Cs2CoCl4.

II. THE CLASSICAL APPROACH

In order to provide a physical picture of the phase dia-
gram of the model(1) we use the classical approximation,
when spins are represented as three-dimensional vectors. The
variational wave function corresponding to the classical ap-
proximation has a form of a simple direct product of single-
site spin states17
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uF1l = s1 + A1S1
+ds1 + A2S2

+ds1 + A1S3
+ds1 + A2S4

+d ¯ u↓↓↓¯l,

s3d

whereA1 and A2 are variational parameters. IfA1ÞA2 then
the ground state is twofold degenerate and another ground
state wave function is

uF2l = s1 + A2S1
+ds1 + A1S2

+ds1 + A2S3
+ds1 + A1S4

+d ¯ u↓↓↓¯l.

s4d

The form of the variational parametersA1 andA2 minimizing
the energy is different in the regionsuDu,1 andD.1. For
the caseuDu,1 they can be chosen as13

A1 = Aeif, A2 = Ae−if. s5d

The ground state energy for this case calculated withF1
(or F2) is

E

N
=

A cos 2f

s1 + A2d2 +
DsA2 − 1d2

4s1 + A2d
−

hxA cosf

1 + A2 −
hzsA2 − 1d

1 + A2 .

s6d

Minimizing this energy overA andf one obtains

f = cos−1 hxsD + 1d

2ÎsD + 1d2 − hz
2
,

A =Î1 + D + hz

1 + D − hz
. s7d

The twofold degenerate ground state atfÞ0 is character-
ized by a nonzero staggered magnetization along theY di-
rection, which plays the role of the LRO parameter

kSn
yl = s− 1dnA sin f

1 + A2 . s8d

For a given value ofD the line of phase transition on
shx,hzd plane(the transition line) is determined by the con-
dition f=0 and has a form

hx
2

4
+

hz
2

s1 + Dd2 = 1. s9d

This line separates the antiferromagnetic(AF) phase with the
LRO from the paramagnetic(PM) phase with uniform mag-
netization. The transition line forD=0.25 is shown on Fig. 1.

The caseD.1 can be analyzed in a similar way. In this
case the twofold degenerate ground state in the AF phase is
characterized by nonzero staggered magnetizations along the
X and Z axes. But the expression for the transition line is
rather cumbersome and we do not present it here. The tran-
sition line in the classical approximation forD=5 is shown
in Fig. 2.

As is well known17 there is a remarkable, so-called “clas-
sical” or disorder line, which lies in the AF region in the
(hx,hz) plane and is given by the equation

hz
2

s1 + Dd2 +
hx

2

2s1 + Dd
= 1. s10d

The classical line is remarkable in a sense that the ground
state on it is identical to the classical one and quantum fluc-
tuations are missing. It was shown in Ref. 17 that the ground
state of Eq.(1) on this line is twofold degenerate and the
exact ground-state wave functions have the product form(3)
and(4). The ground state energy on the classical line for any
evenN is

E

N
= −

1

2
−

D

4
. s11d

From Eqs.(7) one can find that in the caseuDu,1 the
magnetizations on the classical line are

kSn
zl =

1

2

hz

1 + D
,

kSn
xl =

hx

4
,

FIG. 1. The ground state phase
diagram of the model(1) for D
=0.25. The transition line between
the antiferromagnetic(AF) and
paramagnetic (PM) states ob-
tained in the mean-field approxi-
mation is shown by thick solid
line and that in the classical ap-
proximation(9) by a dashed line.
The thin solid line denotes the
classical line(10) and dotted line
corresponds to separatrix line(see
Sec. III).
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kSn
yl = s− 1dnhx

4
Î1 − D

1 + D
. s12d

For D.1 the parametersA1 andA2 on the classical line are

A1,2=
1 + D + hz

hx
S1 ±ÎD − 1

D + 1
D , s13d

and the magnetizations on two sublattices are

kSn
xl1,2=

A1,2

A1,2
2 + 1

,

kSn
zl1,2=

1

2

A1,2
2 − 1

A1,2
2 + 1

,

kSn
yl1,2= 0. s14d

Thus, the classical approach shows that the ground state is
different in the regions withuDu,1 andD.1. For uDu,1
the classical ground state is given by a configuration, with
the spins on odd and even sites pointing, respectively, at
anglesx and −x with respect to theXZ plane. ForD.1 in
the ground state all spin vectors lie in theXZ plane with the
spins on odd and even sites pointing, respectively, at angles
w1 andw2 with respect to theX axis. This means that besides
uniform magnetizations alongX andZ axes in the AF region
there is as well the staggered magnetizations: in theY direc-
tion for uDu,1 and in bothX and Z directions forD.1.16

These facts are confirmed on the classical line, where the
classical approximation gives the exact ground state.

Of course, one cannot expect that the classical approach
gives an accurate estimation of the transition line and correct
description of the phase transition(critical exponents).13

Nevertheless, as it will be shown below, the fact of the gen-
eration of the staggered magnetizations in theY direction for
uDu,1 and in both theX and theZ directions forD.1 is
qualitatively true.

III. MEAN-FIELD APPROXIMATION

Previously, the mean-field approximation(MFA) has been
proposed to study the anisotropic Heisenberg chain in the
transverse magnetic field.13,14 It has been established that the
MFA works very well if the transverse field is sufficiently
strong and gives qualitative results for intermediate fields.
For D.−0.5 the MFA allows us to determine with high ac-
curacy the critical transverse field at which the order-disorder
transition occurs and to describe correctly the behavior of the
system in the transition region. The MFA is based on the
Jordan-Wigner transformation of spin-1/2 operators to the
Fermi operators with the subsequent mean-field treatment of
the Fermi Hamiltonian. In the case of coexisting transverse
and longitudinal magnetic fields it is impossible to reduce the
model Hamiltonian(1) to a local form in terms of the Fermi
operators. Nevertheless, for this complicated case the MFA
can be modified. In this section we develop the special ver-
sion of the MFA, which remains the variational approach.
This approach gives high accuracy in determining the tran-
sition line and correctly describes the whole ground state
phase diagram.

At first we perform a rotation of the spins in theXZ plane
by an anglew:

Sn
x = sn

x cosw + sn
z sin w,

Sn
z = − sn

x sin w + sn
z cosw,

Sn
y = sn

y, s15d

wheresn
a are new spin-1/2 operators.

The Hamiltonian(1) is transformed to the form

H = o sxsn
xsn+1

x + sn
ysn+1

y + zsn
zsn+1

z d − ho sn
z + H8,

H8 =
1 − D

2
sin 2w o ssn

xsn+1
z + sn

zsn+1
x d

− shxcosw − hzsinwd o sn
x, s16d

where

FIG. 2. The ground state phase
diagram of the model(1) for D
=5. The same notations as in Fig.
1 are used. The boundary of in-
commensurate critical(IC) phase
is shown schematically(Sec. IV).
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x = cos2w + Dsin2w,

z= Dcos2w + sin2w,

h = hz cosw + hx sin w. s17d

The anglew is a variational parameter over which we will
minimize the ground state energy.

After Jordan-Wigner transformation to the Fermi opera-
tors an

† andan

sn
† = expSipo

j,n

aj
†ajDan,

sn
z =

1

2
− an

†an, s18d

the Hamiltonian(16) takes the form

Hf = −
hN

2
+

zN

4
+ oSh − z+

1 + x

2
coskDak

†ak

+
1 − x

4 o sin ksak
†a−k

† + a−kakd

+ zo an
†anan+1

† an+1 + Hf8. s19d

We treat the HamiltonianHf in the MFA, which implies
the decoupling of the four-fermion term. The Fermi repre-
sentationHf8 has a nonlocal form. But we note that all terms
in Hf8 contain an odd number of Fermi operatorsan and
thereforekHf8l=0 in the MFA. This fact holds the MFA in the
frame of variational principle.

Thus, in the MFA the ground state energyE0 and the
one-particle excitation spectrum«skd have the form:

E0/N = −
h

2
+

z

4
+ sh − zdg1 +

1 + x

2
g2 +

1 − x

4
g3

+ zsg1
2 − g2

2 + g3
2d, s20d

«skd = Îsu + v coskd2 + w2sin2k, s21d

where

u = h − z+ 2zg1,

v =
1 + x

2
− 2zg2,

w =
1 − x

2
+ 2zg3. s22d

Quantitiesg1, g2, andg3 are the ground state expectation
values, which are determined by the self-consistent equa-
tions:

g1 = kan
†anl =E

0

p dk

2p
S1 −

u + v cosk

«skd
D ,

g2 = kan
†an+1l = −E

0

p dk

2p

su + v coskdcosk

«skd
,

g3 = kan
†an+1

† l = −E
0

p dk

2p

w sin2 k

«skd
. s23d

The solution of the self-consistent equations(23) gives the
minimum of the ground state energy(20) in a class of “one-
particle” wave functions at a given anglew. Thus, one should
minimize the energy(20) with respect to the anglew, solving
the self-consistent equations(23) for each value ofw. This
means that the proposed procedure remains the variational
one.

The physical meaning of the anglew is to show a direc-
tion of the total magnetization of the model(1),

Sz = ksn
zlcosw = s 1

2 − g1dcosw,

Sx = ksn
zlsin w = s 1

2 − g1dsin w. s24d

Transforming the mean-field treated Fermi Hamiltonian
back to the spin operators, we arrive at the well-studied an-
isotropicXY model in a longitudinal magnetic field,18

HXY = o fsv − wdsn
xsn+1

x + sv + wdsn
ysn+1

y g − uo sn
z.

s25d

The model(25) has a transition line defined by the equation

ushx,hz,Dd = vshx,hz,Dd, s26d

which separates the regionu,v with the LRO represented
by a staggered magnetization from the regionu.v, where
there is no LRO except for the uniform magnetization(24).
The transition linehzcshx,Dd is determined by the numerical
solution of Eqs.(23) and (26) with the minimization of the
ground state energy over anglew. The transition lines in the
MFA for D=0.25 andD=5 are shown in Figs. 1 and 2 by
thick solid lines.

It is well known18 that the critical properties of the model
(25) belong to the universality class of the two-dimensional
Ising model. This means that in the MFA the gap is closed
near the transition line linearly with the field and follows 1/8
law for the staggered magnetization.

The MFA also shows that foruDu,1 sw.0d the model
has a staggered magnetization along theY axis,

ks− 1dnSn
yl =

fw2sv2 − u2dg1/8

Î2sv + wd
, s27d

while for D.1 (w,0) the staggered magnetizations exist
along theX and theZ axes:
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ks− 1dnSn
xl =

fw2sv2 − u2dg1/8

Î2sv − wd
cosw,

ks− 1dnSn
zl =

fw2sv2 − u2dg1/8

Î2sv − wd
sin w. s28d

The validity of the two-dimensional(2D) Ising type of the
critical properties of the model(1) in the vicinity of the tran-
sition line has been checked by the density matrix renormal-
ization group19 (DMRG) calculations of the staggered mag-
netization and the gap. The staggered magnetization is
computed as14

Mst
a =

1

N
k0uo s− 1dnSn

au1l, a = sx,y,zd s29d

whereu0l and u1l are two lowest-energy states. These states
are degenerate(at N→`d in the ordered AF phase. There-
fore, in the AF phase the gap is given by the second excited
state, while in the disordered PM phase the ground state is
nondegenerate and the first excitation determines the gap in
the spectrum. We have performed the DMRG calculations
using the infinite-size algorithm and open boundary condi-
tions and the number of statess kept in the DMRG truncat-
ing procedure is up to 25. We estimated the relative error due
to DMRG truncation from difference between the data com-
puted withs=25 and those withs=20 for chain lengthsN
=202. The estimated relative error is of the order of 10−5,
which is sufficiently small for accurate estimates for the gap
and the staggered magnetization. As an example, in Figs. 3
and 4 we show the plots ofsMst

y d8 and the gapm versushx in
the vicinity of the transition point forD=0.25 and fixedhz
=0.67 (these parameters are related to those for the antifer-
romagnet Cs2CoCl4). A good linearity of the plotted data
definitely confirms the 2D Ising character of the transition
line. The excellent agreement between the DMRG and the
MFA results in Figs. 3 and 4 shows high accuracy of the
MFA. For example, the critical fieldhx estimated from the

DMRG results differs from that obtained in the MFA within
0.04%.

In addition to the transition line defined by Eq.(26), the
Hamiltonian(25) contains another special line defined by the
equation

u2 + w2 = v2. s30d

This line separates the so-called “oscillatory” regionu2

+w2,v2 (lying totally in the AF phase), where spin correla-
tors of the model(25) have oscillatory behavior with an in-
commensurate wavelength depending on the model param-
eters shx,hz,Dd, from the region without such oscillatory
behavior of correlators.18 The line (30) is nothing but the
classical line of the model(1). Remarkably, the MFA gives
the exact ground state on the classical line. Along this line
the solution of Eqs.(23) has a simple form:

sin2w =
p

1 − p

1 + D

1 − D
, s31d

where

p =
hx

2

4

1 − D

1 + D
. s32d

The values ofgi for uDu,1 are

g1 =
1

2
−

Î1 − p

2
, g2 = g3 = −

p

4
s33d

and forD.1

g1 =
1

2
−

1

2Î1 − p
, g2 = − g3 =

p

4s1 − pd
. s34d

The ground-state energy is given by Eq.(11). Substituting
Eqs.(31)–(34) into Eqs.(24), (27), and(28), one can check
that the magnetizations on the classical line in the MFA co-
incide with those given by Eqs.(12) and (14).

FIG. 3. The staggered magnetization near the transition line as a
function of hx for D=0.25 andhz=0.67.

FIG. 4. The gap as a function ofhx near the transition line for
D=0.25 andhz=0.67.(The solid line is the MFA, and triangles are
DMRG results extrapolated to the thermodynamic limit.)
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The gap on the classical line in the MFA lies atk=p and
equals

m= 1 −
p

2
− Î1 − p, uDu , 1

m= S1 −
p

2
− Î1 − pD1 – 2p − pD

s1 − pd2 , D . 1. s35d

It is necessary to note that the elementary excitation in the
AF phase can be regarded as a domain wall between the two
AF ground states. In the cyclic chain these excitations are
created in pairs in contrast to open chains. In Eq.(19) the
end-chain correction term is omitted, and the spectrum, Eq.
(21), determines the gap for the open chain.20,21Therefore, in
the AF region Eqs.(21) and (35) give half of the gap for a
cyclic chain.

It is worth to mention one more special line on the phase
diagram, so-called “separatrix,” defined by the equation

uv = v2 − w2. s36d

This line separates the regionuv.v2−w2, where the lowest
excitation has momentumkmin=p from the regionuv,v2

−w2 (situated entirely in the AF phase), where the lowest
excitation has momentum, depending on the model param-
eters as

coskmin =
uv

w2 − v2 .

For any D, the transition linehzcshx,Dd, the classical line
hzclshx,Dd and the separatrixhzsshx,Dd lie in the following
sequence(see Figs. 1 and 2):

hzsshx,Dd ø hzclshx,Dd ø hzcshx,Dd. s37d

All these lines meet each other only at pointFshx=0,hz

=1+Dd.

A. Point F

Point Fshx=0,hz=1+Dd is the special boundary point
where all special lines terminate. The ground state at the
point F is a saturated ferromagnet. Near pointF shx!1d the
fermion density is small and the mean-field treatment of the
four-fermion term in Eq.(19) gives an accuracy, at least, up
to hx

4. We omit intermediate calculations here and give the
final expressions for the special lines. The transition and the
separatrix lines near pointF have the form:

hzcshx,Dd = hzclshx,Dd + mcl + Oshx
6d, s38d

hzsshx,Dd = hzclshx,Dd − mcl + Oshx
6d, s39d

where the behavior of the classical linehzclshx,Dd is given by
Eq. (10):

hzclshx,Dd = 1 +D −
hx

2

4
−

hx
4

32s1 + Dd
+ Oshx

6d s40d

andmcl is the gap near pointF on the classical line[see Eq.
(35)]:

mcl =
hx

4

128
S1 − D

1 + D
D2

+ Oshx
6d. s41d

As one can see the difference between three special lines
near pointF is very small, of the order ofhx

4.
The expressions for the gap are different to the left and to

right of the separatrix line:

m=
hx

2

4Î2
U1 − D

1 + D
UÎhzclshx,Dd − hz, hz , hzs

m= uhz − hzcshx,Ddu, hz . hzs. s42d

The linear behavior of the gap in the vicinity of the transition
line confirms the 2D Ising universality class of the transition
line.

The staggered magnetizations in the vicinity of pointF
vanish on two lines: on the transition line and on the line
hx=0. Equations(24), (27), and(28) near pointF reduce to

kSn
yl = s− 1dnB,

B =
1

2
U1 − D

1 + D
U1/4

ÎhxShzc− hz

2
D1/8

, s43d

for uDu,1 and

kSn
xl =

hx

4
+ s− 1dnB,

kSn
zl =

1

2
−

s− 1dn

2
hxB, s44d

for D.1. To validate our analysis in the vicinity of pointF
one should also estimate the effect of the part of the Hamil-
tonianH8 in Eq. (16), omitted in the MFA. Near pointF the
angle w<hx/2 and, therefore, these terms inH8 are small
and can be taken into account as perturbations. The corre-
sponding perturbation theory contains only even orders. The
estimate of the second order shows that the contribution of
these terms to the ground-state energy and to the gap is of the
order of hx

6 and hx
2shzc−hzd. This accuracy is sufficient to

confirm the above equations. We note that in the limitD
→` point F transforms to the so-called multicritical point
with a macroscopic degeneracy of the ground state.22

B. Point A

In the casehz=0 the model(1) reduces to the anisotropic
Heisenberg chain in the transverse magnetic field, which was
studied in Refs. 11, 13, and 14. At some value of magnetic
field hxAsDd this model undergoes a transition from the anti-
ferromagnetic state to the paramagnetic gapful state. We de-
note this transition by pointA (see Figs. 1 and 2).

To study the behavior of the system in the vicinity of
point A one can follow the arguments of Ref. 16, where point
A was analyzed in detail for the special caseD→`. As a
result one finds that forhx=hxAsDd the perturbation theory in
small parameterhz contains infrared divergencies that are
absorbed in a scaling parametery=hz

2N. The analysis shows
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that the mass gap generated by the longitudinal magnetic
field hz is proportional tohz

2,

m= ahz
2, s45d

but the factora is given not only by the second-order cor-
rection but also by all collected divergent orders of the per-
turbation series.

For a fixed value ofD the behavior of the transition line in
the shx,hzd plane near pointA can be found from the follow-
ing consideration. As it was established above in the vicinity
of the transition line the gap is proportional to the deviation
from the line. This is valid for any direction of deviation
except the direction at a tangent to the transition line. Thus,
in the vicinity of pointA on the linehx=hxAsDd, the gap is

m, hxAsDd − hxcshz,Dd. s46d

On the other hand, the gap is given by Eq.(45). Equaliz-
ing these two expressions for the gap we obtain the equation
for the transition line in the vicinity of pointA as

hxcshz,Dd = hxAsDd − fsDdhz
2, s47d

where the functionfsDd is generally unknown and can be
found numerically only.

Summarizing all above, we conclude that the MFA cor-
rectly describes the critical properties of the transition line
and determines the transition line with high accuracy. This is
because the MFA gives the exact ground state on the classi-
cal line, which is close to the transition line. In addition, the
MFA is asymptotically exact in the vicinity of pointF.
Therefore, for any value ofD, the accuracy in determining of
the transition line drops as one moves from pointF to point
A. The MFA quality for the casehz=0 was investigated in
Refs. 13 and 14, where it was shown that the accuracy of the
MFA is high for D.−0.5, and the MFA fails in the limitD
→−1 (where the accuracy decreases to 20%). Besides, the
high accuracy of the MFA in the vicinity of the transition line
is confirmed by DMRG calculations(see Figs. 3 and 4). The
MFA qualitative correctly describes the linehx=0 (no gap
and soundlike spectrum forhz,1+D), but one cannot expect
that the MFA gives correct critical exponents in low-hx re-
gion.

IV. THE LOW- hx REGION

On the linehx=0 the model(1) reduces to the well-known
exactly solvableXXZ model in the longitudinal magnetic
field. In this model three phases exist in different ranges of
the magnetic fieldhz: the ferromagnetic(F) phase athz.1
+D, the antiferromagnetic(AF) phase at 0,hz,hz0sDd
[hz0sDd is a lower critical field23], and the critical phase at
0,hz,1+D suDu,1d andhz0sDd,hz,1+D sD.1d.

In the F phase the ground state is a saturated ferromagnet
M ;kSn

zl=1/2 with a gap in the spectrum. In this region the
appearance of the transverse magnetic field does not cause a
noticeable change in the system properties. It results in the
appearance of a uniform magnetization in theX direction and
small decreasing of the magnetization in theZ direction.

In the AF region the system is in a gapful phase with the
long-range Néel orderMst

z and zero uniform magnetization

M =0. Due to the gap in the spectrum the effect of theX
component of magnetic field in the AF region can be ob-
tained in the frame of a regular perturbation theory inhx. The
estimate of the first and the second orders inhx indicates the
appearance of the uniform magnetizations in both theX and
the Z directions and the staggered magnetization in theX
direction as

kSn
xl , hx + s− 1dnhzhx,

kSn
zl , s− 1dnMst

z + hzhx
2. s48d

As follows from the last equations, in the casehz=0 the
applied transverse magnetic field does not cause the uniform
magnetization in theZ direction and the staggered magneti-
zation in theX direction.13

The critical phase is characterized by nonzero magnetiza-
tion 0,M ,1/2 in the ground state and by the massless
spectrum. The low-energy properties in this phase are de-
scribed by a free massless boson field theory with the Hamil-
tonian

H0 =
v
2
E dxfs]xQd2 + s]xFd2g, s49d

whereFsxd and Qsxd are the boson and dual field, respec-
tively, andvsD ,hzd is the renormalized spin-wave velocity.

The spin-density operators are represented as24

Sn
z . M +

1

2pR
]xF + a1s− 1dn cosSF

R
+ 2pMxD ,

Sn
x . b0s− 1dn coss2pRQd + b1 coss2pRQd

3cosSF

R
+ 2pMxD , s50d

wherea1,b0, andb1 are constants25 and we identify the site
index n with the continuous space variablex. The magneti-
zationMsD ,hzd and the compactification radiusRsD ,Md are
functions of D and hz and can be determined by solving
Bethe-ansatz integral equations.26,27

Both terms of operatorSx in Eq. (50) are oscillating when
M Þ0 and are not relevant to the uniformX component of
the magnetic field. But as was shown in Ref. 28 the second
term in Eq.(50) corresponding to perturbation

V0 , hx coss2pRQd cosSF

R
+ 2pMxD s51d

has conformal spinS=1 and generates two other perturba-
tions with zero conformal spin:

V1 , hx
2 coss4pRQd,

V2 , hx
2 cosS2F

R
+ 4pMxD . s52d

The scaling dimensions of perturbationsV1 andV2 are 2h
and 2/h sh=2pR2d, respectively. The perturbationV2 de-
scribes umklapp processes and it is responsible for the gap
generation in the AF region, whereM =0. But in the critical
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regionshz.0d the magnetizationM Þ0 and the perturbation
V2 as well as the operatorV0 does not conserve the total
momentum and will be frozen out.

Therefore, in the uniform longitudinal magnetic fieldhz
the critical exponent for the mass gap is determined by the
only nonoscillating perturbationV1:

m, hx
1/s1−hd. s53d

We note that in the special casehz=0 suDu,1d the mag-
netization M =0 and all perturbationsV0, V1, and V2 are
nonoscillating.29 In this case in the regionD.cosfpÎ2g
<−0.266 the perturbationV0 becomes most relevant and de-
termines the mass gap as13

m, hx
2/s4−h−1/hd. s54d

The perturbation V1 corresponds to the spin-
nonconserving operatorosSn

xSn+1
x −Sn

ySn+1
y d.24 This means that

the behavior of the system(1) at smallhx is similar to that of
well studiedXYZ chain in magnetic fieldhz with small an-
isotropy in theXY plane.30 Using the results of Ref. 30 we
conclude that in the regionD.1 the presence of a smallX
component of magnetic field leads to a sequence of three
transitions with increasing longitudinal magnetic fieldhz.
The first one occurs athz0sDd sh=2d, where the AF phase
transforms to the incommensurate critical(IC) or “floating”
phase(see Fig. 2). In the IC phase the perturbationV1 is
irrelevant and the spectrum remains gapless. Here the corre-
lation functions display a power-law decay with a magneti-
zation dependent wave vector. There is no LRO in the IC
phase, except uniform magnetizationsM andkSn

xl=xxhx (the
susceptibilityxx is finite in the critical phase). Unfortunately,
neither the field theory approach nor the MFA allows us to
determine the boundary of the IC phase. Therefore, this
phase boundary is shown on Fig. 2 schematically.

Further increasing ofhz leads to the transition of the
Kosterlitz-Thouless type taking place at the pointhz1sDd
whereh=1. At hz.hz1sDd the perturbationV1 becomes rel-
evantsh,1d and the system crosses from the IC phase to a
strong-coupling regime with the staggered magnetizations in
both X andZ directions(AF phase).

The last transition with further increasing ofhz occurs
near the pointF at hz=hzc (see Fig. 2). This transition to the
PM phase was studied in Sec. III.

The field theory approach allows us also to determine the
exponent for the LRO. The transverse magnetic field gener-
ates the staggered magnetization along theY axis at uDu,1
as

kSn
yl ,

s− 1dn

jh/2 , s− 1dnmh/2 , s− 1dnhx
h/s2–2hd s55d

and alongX andZ axes atD.1 andhz1sDd,hz,1+D,

kSn
xl , xxhx + s− 1dnhx

h/s2–2hd,

kSn
zl , M + s− 1dnhx

s2−hd/s2–2hd. s56d

We note, that in the limithz→1+D sh→1/2d, the exponents
for the mass gap(53) and staggered magnetizations in Eqs.
(55) and (56) agree with the MFA results in Eqs.(42)–(44).

The staggered magnetization along theZ axis in Eq.(56)
can be derived in the same manner as was derived the gen-
erated perturbationsV1 and V2 in Eqs. (52). According to
Eqs. (50) the nonzero contribution to the first-order correc-
tion in hx to the staggered magnetizationks−1dnSn

zl is given
by the following terms in spin-density operators:

s− 1dnSn
z , cosSF

R
+ 2pMxD ,

Sn
x , coss2pRQdcosSF

R
+ 2pMxD . s57d

Then the leading contribution comes from small distances of
order of ultraviolet cutoff(the lattice constant)

s− 1dx1Szsz1d , hxE d2z2e
i2pMsx2−x1dexpF− i

Fsz1d
R

G
3expFi

Fsz2d
R

Gcosf2pRQsz2dg

,hx cosf2pRQsz1dg , hxs− 1dx1Sxsz1d.

s58d

Thus, the relation between the staggered magnetization along
X andZ axes is established,

ks− 1dnSn
zl , hxks− 1dnSn

xl, s59d

which results in the critical exponent forks−1dnSn
zl written in

Eq. (56).

V. SPECIAL CASE D=−1

When D→−1 point F tends to zero, and exactly on the
line D=−1 both classical and transition lines disappear. In
the vicinity of the lineD=−1 it is convenient to rotate the
coordinate system in such a way that the Hamiltonian(1)
takes the form

H = H0 + Vh + VD,

H0 = − o Sn ·Sn+1 − hx o s− 1dnSn
z,

Vh = − hzo Sn
x,

VD = s1 + Dd o Sn
xSn+1

x . s60d

The unperturbed HamiltonianH0 describes the critical be-
havior of the system at 0,hx,h0,

31 where the estimate ofh0
is h0<0.53s3d.13 The spin-density operators ofH0 are related
to the bosonic fields by Eqs.(50) with M =0, where the com-
pactification radiusRshxd is a function ofhx. This depen-
dence is generally unknown, but the limiting values of
hshxd=2pR2shxd are known:13
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hshxd =
hx

p
, hx → 0

hshxd =
1

4
, hx → h0. s61d

The perturbationsVh andVD have scaling dimensionsh /2
and 2h, respectively. Therefore, according to Eqs.(61) both
perturbationsVh and VD are relevant in the critical region
0,hx,h0 and produce mass gaps

mh , hz
1/s2−h/2d,

mD , u1 + Du1/s2–2hd. s62d

In particular, mh,Îhz,mD,Îu1+Du at hx→0 and mh
,hz

8/15,mD,u1+Du2/3 at hx→h0.
The gap atD=−1 and forhx,hz!1 can be asymptotically

exactly described by the spin-wave theory.13 The validity of
the spin-wave approximation is quite natural because the
number of magnons forming the ground state is small for
hx,hz!1. The spin-wave result for the gap is

m= Îhzshz + hx
2/2d. s63d

For hz!hx
2!1 Eq. (63) agrees with the conformal theory

result, Eq.(62), at h→0 and gives the preexponential factor
for the gap.

VI. DISCUSSION AND CONCLUSION

As mentioned earlier the order-disorder transition induced
by the magnetic field has been observed in the quasi-one-
dimensional antiferromagnet Cs2CoCl4 described, as sup-
posed, by the model(1) with D=0.25. It is interesting to
compare the magnetization curves obtained in the neutron-
scattering experiment7 with those in the MFA. In this experi-
ment the magnetic fieldH has been applied at an angleb
.40° to theXY plane. This means thatHx.Hz.H /Î2. Ac-
cording to Ref. 7,g factors in Cs2CoCl4 aregx,y=2gz=4.80.
Therefore, the ratio of the effective fields in the model(1) is
hx/hz=2Hx/Hz.2. The total magnetizationMtot is

Mtot =
mB

Î2
sgxkSn

xl + gzkSn
zld, s64d

wherekSn
xl and kSn

zlare the magnetizations calculated in the
MFA at the effective fieldshx=2hz. The AF ordered moment
is given byMst=gymBkus−1dnSn

yul. In Fig. 5 we plotMtot and
Mst as the functions of the magnetic fieldH sH
=Î2hxJ/gxmBd. These magnetization curves are qualitative
similar to the experimental ones(Figs. 12 and 14 in Ref. 7).
The maximal value of staggered magnetization 1.7mB agrees
with the experimental magnitude of the AF ordered moment
1.6mB. The total magnetization atH→` in the MFA Mtot
=1.9mB is consistent with the saturation moment 1.7mB esti-
mated in Ref. 7. At the same time, there is an essential dif-
ference in the low-field behavior ofMst. The experimental
AF ordered moment is finite atH=0, whileMst=0 atH=0 in
Fig. 5. This difference is due to weak interchain couplings,

which form the magnetically ordered ground state in the real
compound atH=0, and this effect is absent in the one-
dimensional model(1). The behavior of the magnetizations
in the vicinity of the critical field in Fig. 5 is similar to the
experimental curve. But the value of the critical field on Fig.
5 is 1.6 T, while the experimental value is 2.1 T. We do not
believe that the MFA is the reason for this discrepancy. The
possible reason may lie in the fact that Cs2CoCl4 is described
by the s= 3

2 antiferromagnetic model with strong single-ion
anisotropy and its reducing to thes= 1

2 model is approximate.
Magnetic measurements in Ref. 7 were performed in the

field applied at a fixed angleb to the anisotropy axis. It is
interesting to consider how the properties of the model(1)
are changed when the magnetic field is turned from purely
longitudinal sb=0d to the transverse directionsb=p /2d. If
the effective fieldh is in the ranges1+Dd,h,hxAsDd for
uDu,1 or hxAsDd,h, s1+Dd for D.1 then there is the
critical angleb0, which is defined by the intersection of the
circle hx

2+hz
2=h2 with the transition line. At this angle the

phase transition from the AF phase atb.b0 sb,b0d for
D,1 sD.1d to the PM phase atb,b0 sb.b0d takes place.
The staggered magnetization and the gap vanish atb=b0 as
Mst,ub−b0u1/8 andm,ub−b0u.

In conclusion, we have studied the spin-1
2 XXZ Heisen-

berg chain in the mixed longitudinal and transverse magnetic
field. It was shown that the ground-state phase diagram
on the shx,hzd plane contains the AF and the PM phases
separated by the transition line. The transition line was de-
termined using the proposed special version of the MFA,
which reduces theXXZ model in the mixed fields to theXY
model in the uniform longitudinal field. The MFA gives
the transition line with high accuracy at least forD
ù−0.5. This fact is confirmed by comparison of the MFA
results with DMRG calculations. The MFA gives a satisfac-
tory description of the whole phase diagram, though the criti-
cal exponents of low-hx dependence of the gap and the mag-
netization cannot be found correctly in the MFA. These
exponents have been found with use of the conformal field
method.

FIG. 5. Uniform (dashed line) and staggered(solid line) mag-
netization curves.
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The field theory approach also shows that in the region
D.1 the phase diagram contains IC or floating phase char-
acterized by the gapless spectrum and power-law decay of
correlation functions. The form of the boundary of IC phase
can be determined only numerically. But this boundary is
located certainly on the left of the classical line, where the
spectrum is gapped.

We believe that the modified MFA is suitable for the
studying of the magnetic phase transitions of the quasi-one-
dimensional anisotropic magnets induced by the applied

magnetic field. The important problem is to take into account
effects of interchain interactions.32
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