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The ordering of the three-dimensional Heisenberg spin glass with the weak random anisotropy in magnetic
fields is studied by extensive equilibrium Monte Carlo simulations. Both the spin and the chirality are moni-
tored. We find strong numerical evidence that a replica symmetry breaking transition occurs in the chiral sector,
which accompanies the simultaneous spin-glass order. Despite the similarity in the global symmetry, the
ordering behavior of the weakly anisotropic Heisenberg spin glass differs significantly from that of the strongly
anisotropic Ising spin glass. The obtained phase diagram in the temperature-magnetic field plane is similar to
the experimental phase diagram. Our results highlight the importance of the chirality in the spin-glass ordering
of the Heisenberg-type spin glass, and support the spin-chirality decoupling-recoupling scenario of spin-glass

transitions.
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[. INTRODUCTION cused on the properties of the Ising $Gince no global

in al here f _symmetry exists in the Ising SG under magnetic fields, an
Spin glassesSGs are random magnets where ferromag -field transition, if any, should be a pure RSB transition.

netic and antiferromagnetic exchange interactions coexiefS ; | ical simulati he Isi h
and competé Experimentally, it is now well established that Unfortunately, numerical simulations on the Ising SG have

SG magnets in zero field exhibit a thermodynamic secondP€en unable to give a definitive answer concerning the exis-
order phase transition at a nonzero temperature into the thefence of a thermodynamic SG transition in magnetic
modynamic SG phase. By contrast, whether SG magnets ekelds®*®
hibit a thermodynamic phase transition in applied magnetic For the isotropic 3D Heisenberg SG in zero field, it has
fields has been a long standing, yet unsolved issue. This issiien believed for years that the SG transition occurs only at
is closely related to the fundamental question of whether the@ero temperature, i.eTsc=0.1°"23 Since applied magnetic
SG ordered state in zero field accompanies an ergodicitfields make the SG transition even more unlikely, one has
breaking not directly related to the global symmetry of theexpected no phase transition to occur in applied fields, and
Hamiltonian, i.e., the replica symmetry breaki(iSB). hence, until quite recently, no extensive numerical simulation
The experimental evidence of an in-field transition of SGhas ever been performed for the 3D Heisenberg SG in mag-
remains to be obscure. For the strongly anisotropic Isingnetic fields. Meanwhile, recent studies have revealed that the
type SG, FgsMngsTiO3, the nonexistence of an in-field SG Hejsenberg SG possesses an important physical ingredient
transition was reported in Ref. 2. Meanwhile, many of realabsent in the Ising SG, i.e., tivhirality.24-32In the chirality
SG materials are more or less Heisenberg-type rather thagtenario of Refs. 24 and 25, in particular, the chirality is
Ising-type in the sense that the magnetic anisotropy is corclaimed to be a hidden order parameter of the SG transition
siderably weaker than the isotropic exchange interadtion.of real Heisenberg-type SG magnets: In the fully isotropic
Recent experiments on such weakly anisotropic Heisenberg4eisenberg SG, the spin and the chirality, though they are
type SGs suggested the occurrence of an in-field SGoupled at short length scales, are eventually decoupled at
transition®4 in apparent contrast to Ref. 2. Setting aside thelong length scales, and the system exhibits a chiral-glass
question of the strict nature of the apparent SG “transition’transition at a finite temperature without accompanying the
observed experimentally in applied fields, it has been knowrtandard SG order. The chiral-glass transition corresponds to
that the “transition line” between the paramagnetic and thehe spontaneous breaking of tAg spin-reflection symmetry
SG phases is similar to the one obtained for the mean-fielq,ith preserving the S@) Spin-proper-rotation symmetry. In
Sherrington-Kirkpatrick SK) model® Namely, in the weak the more realistic weakly anisotropic system, the Heisenberg
field regime, the in-field transition temperaturg(H), is  spin, decoupled from the chirality in the isotropic system, is
rapidly suppressed with increasing the field intensityas  “recoupled” to the chirality at long length scales via the ran-
Hoc|1-T4(H)/T4(0)|*? [de Almeida-ThoulesgAT) line],  dom magnetic anisotropy. The SG order of the weakly aniso-
while in the high field regimeT,(H) stays rather robust tropic Heisenberg SG is then dictated at long length scales by
against H, behaving asHoc|1—Tg(H)/Tg(0)|1’2 [Gabay- the chirality ordering of the isotropic system. Some numeri-
Toulouse(GT) line’]. However, the reason why the mean- cal support of such a spin-chirality decoupling-recoupling
field results have given such a good description of the phasgcenario was already reported in zero figtch®
boundary, including the values of the critical exponents de- By contrast, some other groups claimed that the chiral-
scribing the phase boundary, has remained to be a mysterglass transition of the 3D isotropic Heisenberg SG already
On the theoretical side, most of numerical studies on the@ccompanied the standard SG order, which means that the
finite-ranged SG models in three dimensigB®) have fo- standard SG order occurs at a finite temperature simulta-
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neously with the chirality®—3¢ Note that this is in contrast to N

the earlier belief in the community that the SG transiton ~ H=-, (Jijs S+ 2 D{j‘”sugy) -HY'S,, (1)

occurs only aff=0 in the 3D Heisenberg SG. Reference 29 (i) wV=XY,Z i=1

maintains, however, thgt the SG orde'r'occurs at a temper%heresi:(swsy’sz) is a three-component unit vector, and

ture lower than the chiral-glass transition temperature, i.€y ic the intensity of magnetic field applied along theirec-

Teg>Tse>0, and the controversy remains. ) _tion. The isotropic nearest-neighbor exchange couplip
Recently, the present authors performed the first extensivVe < med to take either the vallier —J with equal probabil-

M% .;lmulatlt?n of tg?ﬁ?thHe'sﬁnbler? SGt in m_?gnetlc f'ektj.s’l't , while the nearest-neighbor random exchange anisotropy
and have observed that the chiral-glass transition, essentiallyj.g (4, v=X,y,z are spin-component indiceare assumed

of the same character as in the zero-field one, occurs at t%ijbe uniformly distributed in the range:D: D], whereD is

finite temperature even in magnetic fiefds$! The chiral- o : . ) .
o o the typical intensity of the anisotropy. We impose the relation
glass transition line in the temperature-magnetic field phas I
—Uii =Yij -

diagram turned out to have a striking resemblance to the GT I . . .

: . We perform equilibrium MC simulations on this model. In

line observed experimentally, although the nature of the tran; . . _ oo .
o ; ) ; ) the present simulation, we fi®/J=0.05, which is a typical

sition is entirely different from the mean-field GT line. Note value of D of real Heisenbera-tvoe SG materials. Simula

that the fully isotropic Heisenberg SG in fields possesses th 9-yp '

. . fons are then performed for a variety of field intensities in
global Z,X SQ2) symmetry, the chiral, referring to the the rangeH/J=0.02-3.0. The lattices studied are simple-

global spin reflection with respect to the plane containing th%ubic lattices witiN=L3 sites withL=4. 6. 8. 10. 12. and 16

mz_agne'ilct-_ﬂeld aX|s(,j ?hnd the $? r]ff?(;”ng to the global with periodic boundary conditions. Sample average is taken

splln r?ha lon aroun i t('e magne 'Cf' It?\ aX|s.k| isotronic?Ve" 64—800 independent bond realizations, depending on
N the more realistic case of the weakly anisoropiCy,, system sizé and the field intensityd. Limited amount

Heisenberg SG, by contrast, there no longer remains anYt yata are also taken far=20 in some case@2 samples

global symmetry in fields. Hence, from symmetry, the s:itua-to check the size dependence of physical quantities.

t'%r.]lés _t:e _Zam(;ef ?r?eﬂf]:::totfhtarletr\:\é e:::'tggrllet)irlsg%s%sgﬂeesasg To facilitate efficient thermalization, we combine the stan-
\t?l\el nb:wtryl'avlvch'ral dearee of free dolm h'c%] s toptaII ab- dard heat-bath method with the temperature-exchange
Wi ' 9 which 1 y technique’” The temperature-exchange trial is performed ev-

sent in the Ising SG, the question of whether the orderinqary heat-bath sweep. Typically, for the sike16 (L=20)

properties of the weakly anisotropic Heisenberg SG in fleldsWe discard initial 8 10° (13X 10°) heat-bath sweeps and

are essentially the same as those of the Ising SG in fieldsh temperature-exchange trials for ilibration. and
seems not so trivial. This question is further promoted by thé € temperature-excnange trials for equiiibration, and use

apparently contradicting experimental observations on thgubsequent B10° (13X .105) 'heat-bath_ SWEEPS and the
Ising-type and weakly anisotropic Heisenberg-type 3@s. tempe'r'ature-exchange trials in calculating various physwal
In the present paper, we study both the spin-glass and tHauantities. Care is taken to be sure that the system is fully

chiral-glass orderings of the weakly anisotropic Heisenber qgilibra.tle:(_:l. Equilibrati_on if] checked by the T(E)”O\’lzingdplfo' h
SG in magnetic fields by extensive equilibrium Monte CarloC€dures: First, we monitor the system to travel back and fort

(MC) simulations®2 We find a clear numerical evidence that M2 times during the the temperature-exchange process
a finite-temperature RSB transition occurs in the chiral Sec(typycally rtnore tha}[n 10 tm?sbetv;ee? tLhe maxmlgm ar;]d K
tor, which also accompanies the simultaneous SG ordef!NIMuUM temperatureé points, and at the same time chec

Thus, in spite of the similarity in the symmetry properties,that the relaxation due to the standard heat-bath updating is

the ordering properties of the weakly anisotropic Heisenber gasonably fast at the highest temperature, whose relaxation

SG model turn out to be quite different from those of the ime is of order 18 Monte Carlo steps per spiMCS). This

standard Ising SG. This highlights the importance of theduarantees that different parts of the phase space are sampled
chirality. in each “cycle” of the temperature-exchange run. Second, we

check the stability of the results against at least three times

The paper is organized as follows. In Sec. I, we introduc% ‘ b ; los. B b ¢ Dhvsical
our model and explain the details of the MC simulation. onger runs for a subset of samples. Error bars of physical

Various physical quantities calculated in the simulation argiuantities are estimated by the sample-to-sample statistical

defined in Sec. lll, and the results of our numerical simuI:’:\-ﬂucwf"ltlon over the bpnd r.eallzauons. Further details of our
MC simulations are given in Table I.

tion are presented in Sec. IV. In Sec. V, we perform the

scaling analysis of the critical properties of the transition,

and construct a phase diagram of the model in the

temperature—magnetic field plane. Section VI is devoted to

summary and discussion. In this section, we define various physical quantities cal-
culated in our simulations.

Ill. PHYSICAL QUANTITIES

Il. THE MODEL AND THE METHOD

In this section, we introduce our model and explain some A. Chirality-related quantities

of the details of our numerical method. The model we con- We begin with the definition of the chirality. The local
sider is the isotropic classical Heisenberg model on a 3[xhirality at theith site and in theuth direction,y; ,, is defined
simple cubic lattice defined by the Hamiltonian, for three neighboring Heisenberg spins by the scalar

144412-2



MONTE CARLO STUDY OF THE ORDERING OF THE. PHYSICAL REVIEW B 70, 144412(2004)

TABLE I. Details of our MC simulationsH/J represents the sequences of systems in parallel with different spin initial
magnetic-field intensityl. the lattice sizeNg the total number of conditions and different sequences of random numbers.
samples,N; the total number of temperature points used in the  Sjnce the present model does not possess any global sym-
temperature-exchange ruiyna/J and Tyin/J the maximum and  metry, an odd quantiti(q,)] is generally nonzero even in the
minimum temperatures in the temperature-exchange run. hight-temperature phase. Taking this effect into consider-
ation, the chiral-glass order parameter may be defined by

H/J L N Ny Trnax!J Tonin J
67 =[(a,~ KayD)]. (5)
4 800 26 0.475 0.085 The associated chiral-glass susceptibility, normalized by the
6 800 26 0.475 0.085 local amplitudey, is defined by
8 600 26 0.475 0.113
=2
0.05 10 384 42 0.40 0.115 -
o= AN 6)
12 256 52 0.40 0.115 X ;4
16 180 50 0.35 0.12 _ _ o _
20 32 50 0.35 0.1775 The Binder ratio of the chirality is defined by
1 a(4)
I — X
4 400 26 0.475 0.085 9=5(3- G2/ (7)
6 400 26 0.475 0.085 X
0.5 8 400 26 0.475 0.113 where
10 300 42 0.40 0.115
=4 - _ 4
12 256 52 0.40 0.115 Gy =K@ =[a D] (8)
16 64 50 0.35 0.12 Here,g;, is normalized so that, in the thermodynamic limit, it
20 32 50 0.35 0.1775 vanishes in the high-temperature phase and gives unity in the
ordered phase if the ordered state is nondegenerate. The dis-
4 400 26 0.475 0.085 tribution function of the chiral overlap, is defined by
6 400 26 0.475 0.085 ' ’
P (a,) =[{aa, =] (9)
3.0 8 400 26 0.475 0.113 ) =L{oa, = )]
10 300 42 0.40 0.115 We consider the Fourier-transformed two-point chiral-
. o .
12 256 52 0.40 0.115 gl?ss c_otr)rlela'qonhfunﬁtlod(;ég(k)hbetr\:vzgn the twc\)/\llcr)]_clal chi-
16 64 50 035 0.125 ral variables in theuth and in thevth directions. ile one

can define various types of correlation functions depending
on the relative directions of the chiral variables,v) and
_ the direction ofk, we consider here the parallel component
Xip= SHeu (S % S“eu)’ ) CQG(k) whereu and v are both parallel wittk. Here, we set

wheree, (u=x,y,z) denotes a unit vector along theth K parallfl with thex direction,k=(k,0,0), so thatu=v=x.
axis. By this definition, there are in totaN3local chiral ~ Then, Ccg(k) can be written in terms of th&-dependent
variables in the system. The local chirality amplitude is thenchiral overlapg,(k),

defined by | ,
; Ceek) = [, (0P, (10
_ 1
=\ o2 2 [ 3) N
it e 1S @0 ayyi
A (k) = =2 xid X explik T, (1D
where (- --) represents the thermal average dnd] repre- Niz1

sents the average over the bond disorder. The local chirality » )
amplitude gives us the information of the extent of the non-\Wherer;i=(x;,y;,z) denotes the position vector of the chiral

coplanarity of local spin structures. variable at theith site. The associated chiral correlation
By considering two independent systetteplicas”) de-  length, &, is defined by
scribed by the same Hamiltonian, one can define an overlap i
of the chiral variable via the relation, ¢ = 1 | Cee0) 1 (12
LN X 2sinky2) V Chgkm
- (@, (b)
U= SNEMEWXWX”“ @ \where k,=(27/L,0,0) is a wave vector of the minimum
- magnitude.
WhereXi(a) andXi(b) represent the chiral variables of the rep- In order to study the equilibrium dynamics of the model,

licas “a” and “b,” respectively. In our simulations, we pre- we compute the equilibrium autocorrelation function of the
pare the two replicas and b by running two independent chirality defined by
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~ T2 = - 2 , = = Oy . (18
C)’((t):[<3NE > le(to)Xlu(t+to)>:|_[<qX>], a7 =[(ar-KanD?], ar M%qu Oxx+ Cyy- (18)

i=1 u=xy,z

(13 Note that as in the case of the chirality, the expectation value
of the first moment has been subtracted. We also consider the

where the “t_|me”t IS r_neaeured (|‘n un”|ts of MCS' Th.'s ch_|ra| spin-glass susceptibility for the transverse spin component
autocorrelation function is an “odd” quantity not invariant defined by

under the global flipping of the chirality. The corresponding
“even” time correlation functions which is invariant under T = N2 (19)
the global flipping of the chirality, may be defined by AT= NG

2 The longitudinal and the transverse Binder ratios are defined,
a2 (1) = (3N2 Y xiultoxiut+to) | ) [-[(ap].  respectively, by

i=1 u=xy,z
54
14 1 q
(49 gL:§<3_(~«(;))2)! (20)
In displaying the data, we normalize these time correlation a
functions by their values at a unit timie 1, i.e., we set
’ ’ ~ ~(2)' ! 1 g
C,(1) =C,0/Cl(D), TGP =T O/ (1. (19 o = 5(3 (;;)2), (21)
Note that in the above definitions of the time-correlation '
functions(13) and(14), the second term$(q,)] and[(qf()], where
have been subtracted, which are nonzero even in the high-
temperature phase in the— limit due to the absence of CREI(CI I (22)
any global symmetry. This subtraction guarantees that both
C.(t) and §?(t) decay to zero ag— in the high- ~
) and 4, 1) decay - g 4 = [((ar - [(an]) ). (29

temperature phase In the possible ordered phase, by con-

trast, bothC,(t) andaf)(t) decay to zero if the ordered state Here, g/ and g} are normalized so that, in the thermody-

does not accompany the RSB, but tend to finite positive valnamic limit, they vanish in the high-temperature phase and

ues if the ordered state accompanies the RSB. The lattejive unity in the ordered state if the ordered state is nonde-

property arises because, in the presence of RSBt -the generate.

limits of the first terms of Eqs(13) and (14) are generally The full spin-overlap distribution function may be defined

greater than the second tern&g,)] and[(?)]. in the tensor space with>33=9 components. Here, we con-
In computing the first terms of Eq$13) and (14), the  sider the spin-overlap distribution function for the longitudi-

simulation is performed according to the standard heat-bathal and the transverse components, each defined by

updating without the temperature-exchange procedure, while

the starting spin configuration &tt, is taken from the equi- Py(a)) =[(8a —a))], (24)

librium spin configurations generated in our temperature-

exchange MC runs. The second terms of E48) and(14) , ,

are evaluated from the temperature-exchange MC runs. Py(ar) = [{alar —ar)], (25

whereq, andqg; are defined by Eqg17) and(18), respec-
B. Spin-related quantities tively. In the possible SG ordered state of iketropic sys-

As in the case of the chirality, it is convenient to define antem‘.PIS.(qT.) ddeveloEs fa nohntrlvr:al shape in the thermody-
overlap variable for the Heisenberg spin. In this case, thdamic limit due 1o the Tact that t € transverse-spin-ovegap

overlap might naturally be defined asiensorvariableq,,, tFraa?sfo?’rgws r:jogtgl\;lallyé un_(ljeréhe hglobalhspm rotation. See
between theu and » components(u,v=x,y.7) of the Refs- 38 an or details. But here, the system is aniso-

- : tropic so that no nontrivial structure arising from the uniform
Heisenberg spin, global spin-rotation is expected to ariseRgqgr) in the ther-
modynamic limit.

Quv = NE 51?35) (L=xY,2), (16) We consider the Fourier-transformed spin-glass correla-
= tion functions both for the longitudinal and the transverse

whereS® andS® are theith Heisenberg spins of the repli- cOmPonentsC, (k) andCr(k), which can be written in terms
casa arlld b, resbectively. of the k-dependent longitudinal and transverse spin overlaps,

In terms of these tensor overlaps, the “longitudingar-  d.(k) anddr(k), as
allel to the applied fielgand the “transverse(perpendicular
to the applied fiely SG order parameters may be defined by CLk) =[la ()1, Cr(k) = [ark)[3], (26)

G2 =[(a - [aD?], o=tz 17 with
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FIG. 1. (Color onling Temporal decay of the autocorrelation function of the chirefllg/t) defined by Eqs(13) and(15), for the fields
(@ H/J=0.05,(b) H/J=0.5, andc) H/J=3.0. The lattice size is=16. The data al =T are given in redby filled symbol$. In (a), in order
to check the finite-size effect, the datalof 20 are plotted with lines at temperatuiies]=0.18—-0.24 with an interval of 0.01. The estimated
transition temperature i§,/J=0.21 both forH/J=0.05 andH/J=0.5.

N ~ ~ ~
_1S cad® aonmin Ly CL(H=C(1)/C{ (D),
qL(k) - Nz Sz Sz equk r,),

N
~ 1
LN Cl(H= NE [(Sz(to) St + to)) ] = [{aL)], (30)
. i=1
ar(k) = 2 S - S explik ry), (27) |
i=1
Cr(t) = Cr0/CH(D),
where S1=(Sx,S,) represents the transverg¢ey) compo- LN
nent of the Heisenberg spin. The associated longitudinal angh/ .y _ = ) _
the transverse spin correlation lengtisand &y, are defined %T(t) NE [(Sirlto) - Sr(t+t))] = [{an]. (3Y)
by

The second term${q, )] and[{qgr)], have been subtracted in

1 C.(0) the same context as in the definition@f(t) for the chirality.
&= 2 sink/2) V. (k )‘1! (28) These spin autocorrelation functions are computed in the
Lm same way as the chiral autocorrelation functions, and are

normalized at their values at a unit timel. The corre-

1 C1(0) sponding “even” time correlation functions can also be de-
= -1, 29 i i i initi .
ér 2 sink./2) \/ ko) (29)  fined, though we skip their definitions here

. IV. NUMERICAL RESULTS
respectively.

The spin autocorrelation functions are defined both for the In this section, we show the results of our MC simulations
longitudinal and the transverse components by on the anisotropic Heisenberg SG wiihJ=0.05.
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FIG. 2. (Color onling Temporal decay of the time-correlation function of the chireiﬁil(”;}(t) defined by Eqs(14) and(15), for the fields
(@) H/J=0.05,(b) H/J=0.5, andc) H/J=3.0. The lattice size is=16. The data at =T, are given in redby filled symbol$. In (a), in order
to check the finite-size effect, the datalof 20 are plotted with lines at temperatuiiesl=0.18—-0.24 with an interval of 0.01. The estimated
transition temperature i§,/J=0.21 both ford/J=0.05 andH/J=0.5.

A. Time correlation functions of the chirality

In Fig. 1, we show the MC time dependence of the chiral

autocorrelation functiorTéX(t) for the sizeL=16 on log-log
plots, for the fields(a) H/J=0.05, (b) H/J=0.5, and(c)

is spontaneously broken. In the caseHfJ=0.5, as can be

seen from Figs. (b) and 2b), the data af/J<0.24 show a
slight up-bending tendency at a short titrve 107 while the
data afT/J=0.21 show a gradual down-bending tendency at
longer timest=10°, and the chiral transition temperature

H/J=3.0, respectively. In the casel/J=0.05, we have appears to lie somewhere betwebty=0.21 and 0.24. The
checked that, in the time range shown, the data can be rgransverse spin autocorrelation, which is to be shown in Fig.
garded as those of the bulk, since no appreciable size effegic) below, however, suggests the transition temperalyre

is discernible between the datalof 16 andL =20, the latter

=0.20-0.21. Then, we finally estimate the transition tem-

data being shown with lines in the figure. In Fig. 2, we ShOWperatureTg/J:0_211—0_02 forH/J=0.5 (see below. In the

the MC time dependence of the corresponding even quant
ties,” (1), for the fields(a) H/J=0.05,(b) H/J=0.5, and()

EaseH/J=3.0, by contrastéx(t) and’df)(t) always exhibits
a down-bending behavior in the temperature range studied,

H/J=3.0, respectively. As can clearly be seen from thesg,ggesting the absence of a phase transition, at least in the

figures, in the investigated time range, the observed behavigg

of C,(t) is essentially the same as that"q'ﬁ)(t).

For the fieldH/J=0.05, as can be seen from Figga)l
and 2a), C,(t) and?qf)(t) exhibit either a down-bending or

mperature rangé€/J=0.125.

Since very much similar behaviors are observedjft)

an up-bending behavior depending on whether the tempera-
ture is higher or lower than a borderline valli¢J=0.21,
while just at this borderline temperature a straight-line be- ) ]
havior corresponding to a power-law decay is observed. This In Fig. 3, we show for the field$1/J=0.05 and 0.5 the
indicates that the chirality exhibits a phase transition into thdViC time dependence of the autocorrelation functions of the

low-temperature ordered phase where the replica symmetttyansverse component of the sﬁnﬁ}(t), Figs. 3a and 3c),

144412-6
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B. Time correlation functions of the spin
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FIG. 3. (Color onling Temporal decay of the spin autocorrelation functio(e: the transverse onéT(t) for H/J=0.05, (b) the
longitudinal oneEZL(t) for H/J=0.05, (c) the transverse one fdi/J=0.5, and(d) the longitudinal one foH/J=0.5. The lattice size i&
=16. The data al=Tg are given in redby filled symbol3. In the figures, in order to check the finite size effect, the data=#t0 are plotted
with lines at temperature$/J=0.18-0.24 with an interval of 0.01. The estimated transition temperaturég/Js=0.21 both forH/J
=0.05 andH/J=0.5.

and those of the longitudinal component of the $pinFigs.  behavior ofC,(t) where the transition temperature appears to
3(b) and 3d). Finite-size effect evaluated from the difference lie somewhere betweem/J=0.21-0.24. Since the transi-
between thd. =16 andL =20 data turns out to be rather small tion here is expected to be a simultaneous spin and chiral
(but not completely negligiblein the longitudinal compo- transition, we now estimate the transition temperature of the
nent, whereas it is more appreciable in the transverse confield H/J=0.5 to beT;=0.21+0.02. Meanwhile, the longitu-
ponent. Although a finite-size effect is not completely negli-dinal autocorrelation functio€, (t) for H/J=0.5 exhibits a
gible here, the autocorrelation functions of the spin formuch noisier behavior as shown in Figd® This is because,
H/J=0.05 turn out to behave quite similarly to those of thein large fields, the second term of E@0), [{q, )], becomes

chirality. Namely, boﬂf;L(t) andf:T(t) exhibit either a down- large, while the 'Iongitudi.nal spin.cor.relation' function itself
bending or an up-bending behavior depending on whethdpecomes small in magnitude which is obtained as a differ-

the temperature is higher or lower than the borderline valu&nce between the two large numbers. Note that the up-
bending behavior is discernible at a short titre10?, which

T/J=0.21, while just at this borderline temperature a. ; . ki

straight-line behavior corresponding a power-law decay idS /S0 observed in the chiral autocorrelation in a less pro-
observed. This indicates that the spin exhibits an RSB tranr—'g,tjnges’gi{)Tgrt‘g'?é‘elr?ti%n%'hg?;’]gggnto (t)ri]rft ?r%lrs;:nlgissd It seems
sition at the same temperature where the chirality exhibits an®' P P gdg

- . . From the behaviors of the chiral and the spin autocorre-
RSB transition. The sw_nulta_neous occurrence of the spin ane\tion functions shown above, we conclude that the spin and
the chirality orderings is quite natural in the presence of theﬁh :

: e chirality exhibit an RSB transition simultaneously at a
random anisotropy. - finite temperatureTy/J=0.21+0.02 for both the fieldsf/J

For the fieldH/J=0.5, the transverse compone@(t)  =0.05 and 0.5. The estimated transition temperaflykJ
shown in Fig. 8c) exhibits a rather clear up-bending/down- =0.21(2) is lower than the transition temperature of the cor-
bending behavior with the borderline temperatuféJ responding zero-field model with the same magnitude of an-

=0.20-0.21, which might be compared with the less cleaisotropy, i.e., T,/J=0.24282 indicating that applied mag-
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netic f|elc_is suppress the lspln-glasmral-glass ordering for 3D-ﬂlsing G T =005, Lo20
weaker fields. Indeed, this is exactly the feature expected for 088 88830 o oo
the experimental AT line. Interestingly, the estimated transi- TL T SIT e e Sl e ——
tion temperature under field$,/J=0.21, comes very close T, Teeee
to the chiral-glass transition temperature of the fully isotro- 0.6 ° o “:‘AAI M '
pic model in zero field, which was estimated to bgg/J = ’ “n°§§° 0
=0.202° This is exactly the feature expected for the experi- ?3’ T1=130 e e
mental GT line. Hence, the suppression fH) due to S04t o T
weaker field(AT line) as well as the robustness of it with %jég :
respect to stronger field$sT line) are consistent with the TJ=090
experimental observation for the weakly anisotropic 71J=0.80 -
Heisenberg-type SGs3* i S
02 ; 2 I3 I4
@ 10 t 10 10
C. Comparison with the autocorrelation functions of the 3D
Ising SG in fields i . i
. 3D +J Ising SG H1J=0.05, L=20
For comparison, we also calculate the autocorrelation e
function of the spinC,(t) defined by Eq.(30) for the 3D 08 “L ]
Ising SG with the 8 coupling for the fieldH/J=0.05. Note ]'"-. St -
that the Ising SG in fields shares the same symmetry prop- e T,
erty as the anisotropic Heisenberg SG in fields, i.e., the ab- & T
sence of any global symmetry. Neverthelegs Ising SG © '""'”-»_-._.,_‘_
does not possess any chiral degree of freed®hus, the e,
question of whether the 3D Ising SG behaves either similarly 0.7} 1
or differently from the weakly anisotropic Heisenberg SG \'l'
would be of special interest. 7.J=0.70 = :
The data ofC, (t) of the Ising SG are shown in Fig. 4 for =060 - - .
10? 10° 10

the sizeL=20. As can be seen from figure, the behavior of

C_(t) of the Ising SG differs significantly from that of the

weakly anisotropic Heisenberg SG. Although the tempera- FIG. 4. Temporal decay of the spin autocorrelation function,
ture range studied is as low as about 60% of the zero-fieldefined by Eq(30), of the 4] 3D Ising SG in a magnetic field of
transition temperaturd@y(H=0)/J=1.1, which is expected H/J=0.05. The system siz_e is=20 averaged over 100 samples. In
to be deep in the ordered state according to a tentative est@: the data are plotted in the temperature rafigé=0.60-1.3
mate of Ref. 18, no clear up-bending behavior as observed jith an interval of 0.1. The data of the two lowest temperatures

the weakly anisotropic Heisenberg SG is observed here. In./J=0-60 and 0.70 are shown ib), together with the fitted straight
. ines. Even at the lowest temperature studied, no up-bending behav-

stead,q(LZ)(t) and EL(t) persistently exhibit an almost linear o, is observed.
behavior even at the lowest temperature studiéd=0.6.

This is illustrated in Fig. @) where theC, (t) data at the two  sponding estimate based on the autocorrelation functions
lowest temperatures studied are shown. A comparison of thgiven above.

L=20 data with the_=16 data indicates that some amount of As argued in Refs. 27, 31, and 40 for the isotropic case,
finite-size effect still remains. Neverth6|ess, an almost "neafhe existence of a persistent negative d|p is a Sign of a one-
behavior without any discernible up-bending tendency is rostep-like RSB transition. In the present anisotropic model
bustly observed in common both far=16 andL=20, sug-  under fields, there no longer exists a global spin-reflection
gesting that this feature is a bulk property. symmetry in contrast to the isotropic model under fields.
Hence, the behavior expected fg} here might be the one
for the one-step RSB systewithout a reflection symmetry
Such a system was theoretically analyzed in Ref. 41, where
In Fig. 5, we show the temperature and size dependendée behavior of the Binder ratig) in the thermodynamic
of the chiral Binder ratia! for the fieldH/J=0.05. The data  limit was reported as shown in Fig.“6.Indeed, the overall
of g)’( has a negative dip at a size-dependent temperature behavior of our preserg)’( shown in Fig. 6 seems consistent
=Tgip(L), which, with increasingd., tends to deepen and shift with such a behavior.
to lower temperatures. The existence of a persistent negative
dip with increasing depth, is a sign of a phase transition
occurring atT=Ty,(L=). By extrapolatingTg,(L) to L
=, as shown in the inset of Fig. 5, the bulk chiral-glass In Fig. 7(a), we show the temperature and size depen-
transition temperature is estimated to gJ=0.222). The  dence of the Binder ratio of the longitudinal component of
estimated transition temperature agrees well with the correthe sping, for the fieldH/J=0.05. Althoughg, for smaller

(b) t

D. The Binder ratio of the chirality

E. The Binder ratio of the spin

144412-8
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FIG. 5. (Color online The temperature and size dependence of o5l transverse
the Binder ratio of the chiralityg, for a field H/J=0.05. In the ’ TR
inset, we show the reciprocal size dependence of the dip tempera- g .
ture of g)’(. Dashed line represents a linear fit of the data. The bulk ol R
chiral-glass transition temperature is estimated to TgJ . I
=0.222). i { ; I=
* .05} (W F L=
sizesL <12 does not show any characteristic feature sugges- g L=
tive of a phase transition, the one for larger sizes 16 ¥ éf
tends to exhibit a negative dip similar to the one as observed ! g -
in the chiral Binder ratiay!. Then, for large enough, the Z
’ X H H ’ g
overall shape ofj, would be similar to that o, although -1.5 o~ . - .
; ; 0 0.1 0.2 0.3 0.4 0.5
the one for smallet is very different. (b) ol

In Fig. 7(b), we show the temperature and size depen-
dence of the Binder ratio of the transverse component of the F|G. 7. (Color online The temperature and size dependence of
spingy for the fieldH/J=0.05. Althoughg for smaller sizes  the Binder ratio ofa) the longitudinal component of the spgj,
L=12 exhibits a single maximum with a crossing point oc-and of (b) the transverse component of the sgih, for a field
curring aroundT/J=0.28, the one for larger sizds=16  H/J=0.05.
exhibits double maxima. The apparent crossing point ob-
served for smaller sizes a/J=0.28 disappears for larger peak at a lower temperature will survive. Then, for large
lattices, indicating that it does not correspond to a true phas@noughL, the overall shape af} would be similar to that of
transition point. Among _the two maxima gfr. observed for g, andg/, although the one for smallér is very different.
L=16, the one at a higher temperature is gradually supgyr observation here that the Binder ratio of the chiragfy,
pressed with increasing, while the one at a lower te_mpera- and those of the spim andg), asymptotically show mutu-
ture tends to be enhanced. Presumably, inlthew limit, g1y similar behavior, which resembles the one depicted in
the peak at a higher temperature will disappear, while the-jg g seems consistent with the spin-chirality decoupling-
. recoupling scenario. Indeed, the recoupling length-scale es-
gt timated in Refs. 29 and 38,, =20, is consistent with the
observed behavior.

F. Overlap distribution function of the chirality

We show in Fig. 8 the size dependence of the overlap
distribution function of the chirality,P,(q,), for several

Te cases, i.e.(a) H/J=0.05 andT/J=0.18, (b) H/J=0.5 and
o T T/J=0.19,(c) H/J=0.5 andT/J=0.12, andd) H/J=3.0 and
T/J=0.13.

In the caseH/J=0.05, in addition to a primary peak cor-
responding tog,=q5*>0, which grows and sharpens with
increasingL, there appears a second peak at arogyw0,
which also grows and sharpens with increading he exis-
FIG. 6. A sketch of the typical temperature dependence of thdence of two distinct peaks, both growing and sharpening
Binder ratiog’ in the thermodynamic limit, which is expected in a With increasingL, is a clear indication of the occurrence of
system without a reflection symmetry exhibiting a one-step RSBRSB. As reported in Ref. 2R,(q,) in zero field exhibits a

transition. feature of a one-step-like RSB, i.e., a central pea at0

144412-9
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FIG. 8. (Color online The chiral-overlap distribution functions for the field and the temperai@eH/J=0.05 andT/J=0.18, (b)
H/J=0.5 andT/J=0.19,(c) H/J=0.5 andT/J=0.12, and(d) H/J=3.0 andT/J=0.13. The transition temperatureTg/J=0.21 for both
cases oH/J=0.05 and 0.5, while it is lower than 0.13 fbet/J=3.

coexisting with self-overlap peaks qj;.:iq)'fA. TheP,(q,) not observed even at the lowest temperature studied
observed here may be regarded as the in-field counterpart 6f0.13. Thus, fotH/J=3.0, no sign of RSB transition is ob-
the zero-fieldP,(q,) with a feature of such a one-step-like served down to this low temperature.
RSB. Indeed, if one closely looks &,(q,) shown in Fig.
8(a), one sees that a broad peak, which is a remnant of the
q,= q A peak of the zero-field model, is dlscernlble for
smaller sized <8, whereas, for larger sizes, thig= q We show in Fig. 9 the size dependence of the overlap
peak disappears and thg=0 peak begins to grow. Interest- distribution function of(a) the longitudinal component of the
ingly, for the sizel =8, P,(q,) possesses three broad peaks,spin P¢(q.), and of(b) the transverse component of the spin
at aroundq)(—+qEA andq,=0. Such a three-peak structure is Ps(qy), for the field H/J=0.05 and at a temperatur®/J
rarely seen in a system exhlbmng the full RSB, and gives &0.18. The longitudinal spin-overlap distribution function
further indication that the RSB occurring here is the in-field Py(q, ) for smaller sized <16 possesses only a single grow-
counterpart of the one-step-like RSB. ing peak at aroundy =0.2, in apparent contrast to the
ForH/J=0.5,P,(q,) shows a similar behavior as that for double-peak structure observed in the chiral-overlap distribu-
H/J=0.05. Namely, for largeL, it exhibits two distinct tion. Quite interestingly, however, for the largest size studied
peaks, both growing and sharpening with increaslng L=20, one sees that the second peak just begins to emerge at
whereas it exhibits three broad peaks for an intermediate aroundq, =0.1 [see the arrow in Fig. (8)]. This second
As compared with thé1/J=0.05 case, the second peak is peak is reminiscent to the one observed in the chiral-overlap
located slightly offq, =0, reflecting the fact that the higher distribution function of Fig. 8, though it appears here only
field breaks they, < —q, symmetry more strongly. Anyway, for the largest size in a less pronounced manner: It appears to
our data shown in Figs.(8-8(c) give a strong numerical be an echo of the strongly divergimg =0 peak observed in
support that there indeed occurs a chiral-glass transition atthe chiral-overlap distribution. Our observation that the one-
finite temperature and that the chiral-glass ordered state astep RSB-like structure of the overlap distribution appears in
companies a one-step-like RSB. the chiral sector from smaller sizes, while it appears in the
For the still higher fieldH/J=3.0, in contrast to the cases spin sector in a less pronounced manner only for larger sizes,
of H/J=0.05 and 0.5, the double-peak behaviolPfqg,) is  suggests that the order parameter of the present one-step-

G. Overlap distribution function of the spin
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0.09 T - — smaller sized <8. ForL=10, however{/L decreases with
longitudinal L=4 v+ : o .
0.08} Yf L=6 rx-i L at any temperature studied, no longer exhibiting a crossing
0.07 / L=8 oo atT,/J=0.21. For even larger sizés=16 andL=20, a ten-
07r HIJ=0.05 L=10 r-s--s 1 9 .
=018 L=12 0w dency of crossing reappears at aroundJ=0.21, but now
0.061 - L=t - 1 at a lower value of/L.
2 0.05¢ N Such a complex size dependence of the spin correlation
2 0.04b lengths ‘may naturfally be intgrpreted by thel spin-chirality
decoupling-recoupling scenario in the following way: For
0.03f . : .
smaller sizes, i.e., at shorter length scales, the spin and the
0.02¢ chirality are trivially coupled in correlations irrespective of
0.01 8 the anisotropy, so that the crossing in the sizes8 may
0 Feall , . , reflect this trivial coupling at short length scales. For larger
0 005 01 015 02 025 03 035 04 sizes, i.e., at long length scales, the spin is “recoupled” to the
(a) . chirality via the anisotropy in a way different from the trivial
0.04 coupling at short length scales. Thus, the two different types
: transverse of crossing is expected in the normalized correlation lengths
0.035 for smaller and for larger sizes, which is exactly the behavior
observed in Figs. 10) and 1@c). The characteristic length
0.03 H/J=0.05 . . . .
scale separating the coupling and the recoupling regimes was
0.025F L=4 * T1=0.18 estimated to be about 20 lattice spacify® Therefore, al-
E 0.02 f:g though we cannot simulate here the sizes larger ttm0
al L=10 *» due to the lack of our computational capability, we do expect
0.015 fjé ] that a clear crossing behavior will eventually set in for
0.01F L=20 L>20.
0.005
it V. THE CRITICAL PROPERTIES AND THE PHASE
o il , , A B
06 -04 02 0 02 04 06 DIAGRAM
(b) Gatno In this section, we further analyze the nature of the chiral-

glass(spin-glasstransition observed in the preceding section
by means of a scaling analysis, and construct a magnetic
phase diagram of the model in the temperature-magnetic
field plane.

We apply a dynamical scaling analysis to the chiral auto-
correlation functions in order to estimate the critical expo-
nents of the transition. The standard bulk dynamical scaling

form is assumed for the autocorrelation functioﬁsa(t),

FIG. 9. (Color onling The overlap distribution functions @&)
the longitudinal component of the spin, and (bf the transverse
component of the spin, for a field/J=0.05 at a temperaturg/J
=0.18. The transition temperature Tg/J=0.21. In(a), a sign of
the second peak just begins to emerge for the largest.siz9 at
the arrow position.

RSB transition might be the chirality, rather than the spin._ >
Again, this observation is fully consistent with the spin- C(t), andCx(t),
chirality decoupling-recoupling scenaft?® -
As shown in Fig. @), the behavior of the transverse- C(t) = |(T = TIIPF(E(T = T/I>), (32

spin-overlap (_j|st_r |but|on_ funcuor?s(qT) IS more complex. whereTy is the transition temperature determined in the pre-

Such a behav!qr is certainly consistent with the occurrence Oéeding section, whilés, v, andz refer to the order parameter,

an RSB transition. the correlation length and the dynamical exponents, respec-

tively. The exponent® andzv are to be determined so that a

good data collapse is obtained in the scaling plot. The quality
We show in Fig. 10 the temperature and size dependencd@f the scaling plot is judged by eyes.

of the normalized correlation lengths ¢&) the chirality

&,/L, of (b) the longitudinal component of the spip/L, and A. Dynamical scaling analysis of the chiral autocorrelation

of (c) the transverse component of the sgjiL, for the field function

H/J=0.05. The location oT ,(H) obtained from the autocor- . ) )

relation functions are displayed with arrows in the figures. N Fig. 11, we show the scaling plots of the chiral auto-
Concerning the chirality, as can be seen from the inset o€orrelation functiorC,(t) for the fields(a) H/J=0.05 andb)

Fig. 1Q@), a clear crossing behavior is observed Tdt) H/J=0.5. The transition temperature is fixed to bgg/J

=(.22 for larger sized. =12. The crossing temperature =0.21 both forH/J=0.05 andH/J=0.5, as determined in the

T/J=0.21 observed for larger sizes turns out to be close tgreceding section.

our previous estimate of. As can be seen from the figures, the chiral autocorrelation
Concerning the longitudinal and the transverse compofunction scales well both above and beldly, with Bcg

nents of the spin, a crossing is observedigt)=0.21 for ~ =0.8 andzcgrce=5.0 forH/J=0.05, and withBcc=0.7 and

H. Correlation lengths
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FIG. 10. (Color onling The temperature and size dependence of the normalized correlation lengi#ystioé chirality, of (b) the
longitudinal component of the spin, and (@ the transverse component of the spin, for a flald=0.05. In(a), a magnified figure is given
in the inset for the three largest sizés; 12, 16, and 20. The arrows in the figures indicate the locationg(®f), i.e., T4/J=0.21.

Zcoveg=5.5 forH/J=0.5. Examining by eyes the quality of good as shown in Fig. 12, caution might be required here in
the scaling plots with varying the assumed exponents valuesegarding the fitted values oBgg and zggrsg as true
we finally quote Bc=0.8+0.2 andz-grc=5.0+1.0 for asymptotic spin exponents, since our observation time win-
H/J=0.05, and Bcg=0.7+0.2 and z;grcc=5.521.0 for dow is shorter than the expected recoupling time scale.
H/J=0.5. The estimated chiral-glass exponents are not far

from the corresponding zero-field valuBsg=1.1 (Ref 25

andZCGVCGZ4-5-28 C. Chiral-glass and spin-glass susceptibilities
) . . ) . In order to estimate the chiral-glass and the spin-glass
B. Dynamical scaling analys_ls of the spin autocorrelation susceptibility exponentycg and ysg, We plot in Fig. 13a)
functions the reduced chiral-glass susceptibiljy, and(b) the trans-

Next, we apply a dynamical scaling analysis to the spinverse spin-glass susceptibilifyr, as a function of the re-
autocorrelation functions. In Fig. 12, we show the scalingduced temperatur€T-T,)/ Ty for the field H/J=0.05 on a
plots both for(a) the longitudinal and fotb) the transverse log-log plot. The chiral-glass and the spin-glass susceptibili-
components of the spin for the field/J=0.05. The transi- ties in the thermodynamic limit are expected to behave as
tion temperature is fixed to b&;/J=0.21. In Ref. 32, we
observed that the quality of the scaling plot of the spin time-
correlation functiorq(Lz) was not as good as its chiral coun-
terpartqf). As argued in Ref. 32, if the chirality, rather than
the spin, is the order parameter of the transition, in the timerpe T, value is fixed to bely/J=0.21. From the asymptotic
regime shorter than the recoupling time scg@stimated to  sjope of the data, the exponents; and ysg are estimated to
be 10-1¢° MCS), the spin time-correlation might not reach pe y.;=2.1(2) and ysg=2.42), respectively. Here, the ob-
an asymptotic scaling regime even when the chiral timetained values ofysg and ycg turn out to be rather close.
correlation reaches an asymptotic scaling regime. Hence, ajngeed, the spin-chirality decoupling-recoupling scenario
though the scaling o€, (t) and C(t) turns out to be fairly predicts an equalityss=yca.

Xy = IT- Tg|_yCGr Xr=[T- Tg|_ySG- (33
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10? JT=005 . . the lower field regiméd/J=< 0.05 more precisely, and to map
~ Ti7=0.21 out a phase diagram with varying the anisotropy strefiyjth
”ﬂn%" Bes=0.8 This is a computationally demanding task, and is left as a
’ ZegVes=5.0 future task.
& 10'F Ti7=0.29 5
5 Ti7=0.28
SIS - VI. SUMMARY AND DISCUSSION
% 100k %;8;%2 Ti=0.18 ° iy _ ] In summary, we performed a large-scale equilibrium
o %fggg . %fglig : \ Monte Carlo simulation of the weakly anisotropic 3D
e  Ti=015 Heisenberg SG in magnetic fields, paying attention both to
T=020 - TU=0.14 o g} the spin and to the chirality. The model is expected to be a
1o°tp T9=019 - TW=0.13 - N reasonably realistic model of many real Heisenberg-type SG
o - " - - magnets. Due to the presence of both the random anisotropy
10 10 10 10 10 and the magnetic field, the model lacks in any global sym-
(@) HI=Tueee metry so that the transition, if any, is expected to be a pure
RSB one. Among other things, we have found a clear nu-
10! HIJ=05 ' T =021 merical evidence that such a pure RSB transition indeed oc-
a o curs at a finite temperature simultaneously in the spin and in
Bee=0.6 the chiral sectors. The temporal decay of the time correlation
o e ZeaVea=5.5 functions of the chirality and of the spin, as well as the
éli_ Treoss “Q‘”""s overlap distribution function of the chirality and the spin,
=, TI=027 + gave a strong numerical evidence of the occurrence of a ther-
Z Ti=026 «© modynamic RSB transition in applied fields. We feel this
= 10°% ;gfg-gi finding for the weakly anisotropic Heisenberg SG to be
R TU=023 « TJ=0.18 rather remarkable, in view of the long controversy in the
Ty=022 - TUJ=0.17 community concerning the in-field ordering properties of the
TI=020 - %ﬁgig Ising SG, which apparently looks much simpler.
TI=0.19 -~ T/J=0.14 Indeed, a comparison with the 3D Ising SG in fields have
. ' . : revealed that the weakly anisotropic Heisenberg SG in fields
107 107 10°¢ 107 107 behaves differently from the Ising SG in fields, a sign of the
(b) H(T=T o RSB transition being much clearer in the weakly anisotropic

Heisenberg SG than in the Ising SG. The observed stronger
FIG. 11. (Color onling Dynamical scaling plots of the chiral gjgn of the RSB transition is closely connected to the one-
autocorrelation functiorC,(t), for fields (a) H/J=0.05 and(b)  step-like nature of its RSB pattern, which is certainly not the
H/J=0.5. case in the Ising SG. Such a difference in the ordering prop-
erties of the two models might at first sound surprising, since
D. H-T phase diagram the Ising SG in fields and the weakly anisotropic Heisenberg
SG in fields share the same symmetry property. However, in
Finally, we show in Fig. 14 a phase diagram of the presengpite of the similarity in symmetry, a significant difference
model with D/J=0.05 in the temperature-magnetic field exists in the two models in that the Ising SG does not possess
plane. The obtained phase diagram has two noticeable feany chirality degree of freedom in contrast to the weakly
tures. First, for weaker fieldd/J=0.05=D/J, the transition anisotropic Heisenberg SG. Then, our observation highlights
line Ty(H) exhibits an AT-like behavior, i.e., the spin-glass the possible importance of the chirality in realizing the RSB
(chiral-glasg transition temperature is suppressed rapidly untransition in the weakly anisotropic Heisenberg SG. This
der weak applied fields. In sharp contrast to this, for strongegives a strong support to the chirality scenario of the SG
fields of H/J=0.05=D/J, the spin-glasgchiral-glas$ tran-  transition of Heisenberg-type S&%2°
sition temperature turns out to be rather insensitive to the We also have found that the sign of the RSB transition is
field intensity, indicating that the spin-glagshiral-glasg or-  often observed more strongly in the chirality-related quanti-
dered state is robust against applied fields. The estimategks than in the spin-related quantities. For example, the sec-
Ty(H) value stays almost unchanged between the field valuesnd peak of the overlap distribution function shows up
H/J=0.05 and 0.5, the latter value is already more tharclearly even from smaller lattices for the chirality, but more
twice the zero-field transition temperature. Indeed, Tji¢1) ~ weakly and only for larger lattices for the spin: Compare Fig.
value in this field range is very close to the zero-field chiral-8(a) and Fig. 9a). This observation seems consistent with
glass transition temperature of the fuiptropicmodel. This  the chirality scenario that the order parameter of the transi-
is exactly the feature of the GT line. tion is the chirality whereas the spin is recoupled to the
Overall, the obtained phase diagram is consistent with thehirality beyond a certain crossov@ecoupling length scale
experimental phase diagram of Heisenberg-type S®f about 20 lattice spacings. We have also observed that the
magnets-3* In order to make a more quantitative compari- behaviors of certain spin-related quantities, e.g., the Binder
son, however, we have to determine the phase boundary matio or the normalized correlation length, differ between in
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FIG. 12. (Color online Dynamical scaling plots of the autocor-
relation functions ofa) the longitudinal component of the sp@; ,

and of (b) the transverse component of the sﬁm, for a field
H/J=0.05.

smaller and in larger lattices, the borderline size being
aroundL = 20. Again, these behaviors could naturally be ex-
plicable on the basis of the spin-chirality decoupling-
recoupling scenarié*?°

We also have constructed a roughT phase diagram of
the model. It has turned out th@g(H) is rapidly suppressed
by weak applied fieldsH =D, but is then kept almost un-
changed up to rather higher fieldstef J=0.5~2T,(0). The
phase boundary in the weak field regime resembles the AT
line, while that in the high field regime resembles the GT
line, although its nature is very different from the mean-field
AT or GT line>7 These features of the phase diagram are
consistent with the experimental result of the weakly aniso-
tropic Heisenberg S&? The obtained phase diagram is also
fully consistent with the one expected from the chirality
scenaric?*?53%32|ndeed, the chirality scenario predicts that,
in the low-field regime where the anisotropy is important, the
change in the broken symmetry from the zero-field case

FIG. 13. (Color onling Temperature and size dependencéapf
the chiral-glass susceptibility, and @) the transverse spin-glass
susceptibility, for a fieldH/J=0.05. The transition temperatures is
set to beT,/J=0.21.

0.5F  DI=005 - 1

0.4¢ 1
L0387 CG PM A
3 (SG)

0.2t ]

0.1t .

0 . . . e,
0 005 01 015 02 025
T

0.3

causes a crossover, accompani_ed \_Nith a rapid S_uppress_ion of FIG. 14. (Color online The phase diagram of the anisotropic
the transition temperature, while in the high-field regimeHeisenberg SG with the random anisotropy @fJ=0.05 in the
where the anisotropy is negligible relative to the appliedtemperature-magnetic field plane. “CG”, “SG,” and “PM” stand for

magnetic field, the SG transition line should essentially behe

“chiral-glass,”

given by the chiral-glass transition line of the fully respectively.
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isotropic systeni® recoupling scenarit?*3 Interestingly, very recent experi-

Another remarkable feature of the present phase diagramments have given support to these predictions from the
is that the GT-like phase boundary is quite robust againsthirality scenarid*—46
magnetic fields, extending without much reduction to the In concluding this paper, we wish to emphasize again that,
field at least as twice large as the zero-field transition temeven if one sets aside the question of the detailed mechanism
perature. Such a robustness of the SG ordered phase und#grthe SG transition or the validity of the chirality scenario,
fields is also in accord with the chirality scenario, since thethe present numerical results have demonstrated beyond rea-
chirality, regarded as a hidden order parameter of the SGonable doubt that the weakly anisotropic Heisenberg SG
transition, is only weakly coupled to the magnetic field. Noteexhibits a thermodynamic RSB transition in applied mag-
that the magnetic field couples directly to the spin via thenetic fields. In view of the fact that the property of the ap-
Zeeman term in the Hamiltonian, not to the chirality, while parently simpler, strongly anisotropic Ising SG still remains
the effective coupling between the field and the chirality isunclear in spite of the long controversy, this finding seems
rather weak. surprising and somewhat ironical. Clarifying the relation be-

Thus, overall, our observations on the weakly anisotropidween the weakly anisotropic Heisenberg SG possessing the
Heisenberg SG gives a strong support to the spin-chiralitghiral degree of freedom and the strongly anisotropic Ising
decoupling-recoupling scenard®2°In other words, it would ~ SG not possessing the chiral degree of freedom is still open,
be difficult to interpret all of our present observations basedand is left for future studies.
on the more conventional view that the spin is the order
parameter of the transition and the chirality is just a compos- ACKNOWLEDGMENTS
ite (secondary.

A decisive test of the spin-chirality decoupling-recouping The numerical calculation was performed on the
scenario would be to directly probe the chiral-glass orderHITACHI SR8000 at the supercomputer system, ISSP, Uni-
Recently, a proposal was made concerning the way to meaersity of Tokyo, and Pentium IV clustering machines in our
sure the linear and the nonlinear chiral susceptibilities ofaboratory. The authors are thankful to I.A. Campbell, K.
canonical SGs by using the Hall probe, together with theHukushima, H. Yoshino, and G. Tatara for useful discussion
scaling prediction from the spin-chirality decoupling- and comments.

1For reviews on spin glasses, see e.g., K. Binder and A. P. Young, Phys. Rev. Lett.87, 197204(2001).
Rev. Mod. Phys 58, 801(1986); K. H. Fischer and J. A. Hertz, 17J. Lamarcq, J.-P. Bouchaud, and O.C. Martin, Phys. Re%8B

Spin GlassegCambridge University Press, Cambridge, 1991 012404(2003.
A. Mydosh, Spin GlassegTaylor and Francis, London, Wash- 18A. Cruz, L. A. Fernandez, S. Jiménez, J. J. Ruiz-Lorenzo, and A.
ington, DC, 1993 Spin glasses and Random Fieldslited by Tarancén, Phys. Rev. B7, 214425(2003.
A. P. Young(World Scientific, Singapore, 1997 193, R. Banavar and M. Cieplak, Phys. Rev. LetB, 832 (1982

2J. Mattsson, T. Jonsson, P. Nordblad, H. ArugaKatori, and A. Ito, M. Cieplak and J. R. Banavar, Phys. Rev.2B, 469 (1984.
Phys. Rev. Lett.74, 4305(1995. 20W. L. McMillan, Phys. Rev. B31, 342(1985).

3D. Petit, L. Fruchter, and I. A. Campbell, Phys. Rev. L&8, 213, A. Olive, A. P. Young, and D. Sherrington, Phys. Rev3B
5130(1999. 6341(1986.

4D. Petit, L. Fruchter, and I. A. Campbell, Phys. Rev. Le8, 22F, Matsubara, T. lyota, and S. Inawashiro, Phys. Rev. L&Ti.
207206(2002. 1458(199)).

5G. Kotliar and H. Sompolinsky, Phys. Rev. Le&31751(1984.  23H. Yoshino and H. Takayama, Europhys. Le22, 631 (1993.
6J. R. L. de Almeida and D. J. Thouless, J. Physl1A983(1978. 244, Kawamura, Phys. Rev. Lett68, 3785 (1992; Int. J. Mod.
M. Gabay and G. Toulouse, Phys. Rev. Let#, 201 (1981). Phys. C7, 6341(1996.

8E. R. Grannan and R. E. Hetzel, Phys. Rev. Léf,. 907(1991). 25H. Kawamura, Phys. Rev. LetB0, 5421(1998.

9R. R. P. Singh and D. A. Huse, J. Appl. Phy89, 5225(1991). 26H. Kawamura, J. Phys. Soc. Jp64, 26 (1995.

10N, Kawashima, N. Ito, and M. Suziki, J. Phys. Soc. Jp#l,  2’K. Hukushima and H. Kawamura, Phys. Rev. &, R1008

1777(1992; N. Kawashima and N. Itapid. 62, 435(1993. (2000.
11D, Badoni, J.C. Ciria, G. Parisi, F. Ritort, J. Pech, and J.J. Ruiz?8M. Matsumoto, K. Hukushima, and H. Takayama, Phys. Rev. B
Lorezo, Europhys. Lett21, 495(1993. 66, 104404(2002.
12E Marinari, G. Parisi, and F. Zuliani, J. Phys. 34, 1181(1998. 29K . Hukushima and H. Kawamuréunpublishegt H. Kawamura
13M. Picco and F. Ritort, Physica 250, 46 (1998 and K. Hukushima, Activity Report of ISSP Supercomputer
1G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, Phys. Rev. Center 2002, 112003.
B 57, 13617(1998. 30H, Kawamura and D. Imagawa, Phys. Rev. Le8, 207203
153, Houdayer and O.C. Martin, Phys. Rev. Le82, 4934(1999; (2001).
E. Marinari, G. Parisi, and F. Zulianibid. 84, 1056 (2000; J. 31p, Imagawa and H. Kawamura, J. Phys. Soc. Jih.127(2002.
Houdayer and O.C. Martiribid. 84, 1057 (2000). 32D, Imagawa and H. Kawamura, Phys. Rev. Le®2, 077204

16F, Krzakala, J. Houdayer, E. Marinari, O.C. Martin, and G. Parisi, (2004).

144412-15



D. IMAGAWA AND H. KAWAMURA PHYSICAL REVIEW B 70, 144412(2004

33F. Matsubara, S. Endoh, and T. Shirakura, J. Phys. Soc.&pn. 40K . Hukushima and H. Kawamura, Phys. Rev6E, 3360(2000.
1927(2000; S. Endoh, F. Matsubara, and T. Shirakibid. 70,  *!M. Picco, F. Ritort, and M. Sales, Eur. Phys. J1B, 565 (2007).
1543 (2001); F. Matsubara, T. Shirakura, and S. Endoh, Phys.*?G. Tatara and H. Kawamura, J. Phys. Soc. Jph.2613(2002.

Rev. B 64, 092412(2001). 434, Kawamura, Phys. Rev. LetB0, 047202(2003.
%4T. Nakamura and S. Endoh, J. Phys. Soc. Jfih.2113(2002. 44T. Taniguchi, K. Yamanaka, H. Sumioka, T. Yamazaki, Y. Tabata,
35L. W. Lee and A. P. Young, Phys. Rev. Lef0, 227203(2003. and S. Kawarazakiunpublisheg
36|, Berthier and A. P. Young, Report No. cond-mat/0312327.  “°P. Pureur, F. Wol Fabris, J. Schaf, and I. A. Campbell, Europhys.
87K. Hukushima and K. Nemoto, J. Phys. Soc. JiG5, 1604 Lett. 67, 123(2004; cond-mat/031231{unpublishel

(1995. 46N, Aito, M. Soda, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn.
384, Kawamura and M. S. Li, Phys. Rev. LeB7, 187204(2001). 72,1226(2003; T. Kageyama, N. Aito, S. likubo, and M. Sato,
39D. Imagawa and H. Kawamura, Phys. Rev6B, 224412(2003. ibid. 72, 1491(2003.

144412-16



