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The ordering of the three-dimensional Heisenberg spin glass with the weak random anisotropy in magnetic
fields is studied by extensive equilibrium Monte Carlo simulations. Both the spin and the chirality are moni-
tored. We find strong numerical evidence that a replica symmetry breaking transition occurs in the chiral sector,
which accompanies the simultaneous spin-glass order. Despite the similarity in the global symmetry, the
ordering behavior of the weakly anisotropic Heisenberg spin glass differs significantly from that of the strongly
anisotropic Ising spin glass. The obtained phase diagram in the temperature-magnetic field plane is similar to
the experimental phase diagram. Our results highlight the importance of the chirality in the spin-glass ordering
of the Heisenberg-type spin glass, and support the spin-chirality decoupling-recoupling scenario of spin-glass
transitions.
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I. INTRODUCTION

Spin glasses(SGs) are random magnets where ferromag-
netic and antiferromagnetic exchange interactions coexist
and compete.1 Experimentally, it is now well established that
SG magnets in zero field exhibit a thermodynamic second-
order phase transition at a nonzero temperature into the ther-
modynamic SG phase. By contrast, whether SG magnets ex-
hibit a thermodynamic phase transition in applied magnetic
fields has been a long standing, yet unsolved issue. This issue
is closely related to the fundamental question of whether the
SG ordered state in zero field accompanies an ergodicity
breaking not directly related to the global symmetry of the
Hamiltonian, i.e., the replica symmetry breaking(RSB).

The experimental evidence of an in-field transition of SG
remains to be obscure. For the strongly anisotropic Ising-
type SG, Fe0.5Mn0.5TiO3, the nonexistence of an in-field SG
transition was reported in Ref. 2. Meanwhile, many of real
SG materials are more or less Heisenberg-type rather than
Ising-type in the sense that the magnetic anisotropy is con-
siderably weaker than the isotropic exchange interaction.1

Recent experiments on such weakly anisotropic Heisenberg-
type SGs suggested the occurrence of an in-field SG
transition,3,4 in apparent contrast to Ref. 2. Setting aside the
question of the strict nature of the apparent SG “transition”
observed experimentally in applied fields, it has been known
that the “transition line” between the paramagnetic and the
SG phases is similar to the one obtained for the mean-field
Sherrington-Kirkpatrick(SK) model:5 Namely, in the weak
field regime, the in-field transition temperature,TgsHd, is
rapidly suppressed with increasing the field intensityH, as
H~ u1−TgsHd /Tgs0du3/2 [de Almeida-Thouless(AT) line6],
while in the high field regime,TgsHd stays rather robust
against H, behaving asH~ u1−TgsHd /Tgs0du1/2 [Gabay-
Toulouse(GT) line7]. However, the reason why the mean-
field results have given such a good description of the phase
boundary, including the values of the critical exponents de-
scribing the phase boundary, has remained to be a mystery.

On the theoretical side, most of numerical studies on the
finite-ranged SG models in three dimensions(3D) have fo-

cused on the properties of the Ising SG.1 Since no global
symmetry exists in the Ising SG under magnetic fields, an
in-field transition, if any, should be a pure RSB transition.
Unfortunately, numerical simulations on the Ising SG have
been unable to give a definitive answer concerning the exis-
tence of a thermodynamic SG transition in magnetic
fields.8–18

For the isotropic 3D Heisenberg SG in zero field, it has
been believed for years that the SG transition occurs only at
zero temperature, i.e.,TSG=0.19–23 Since applied magnetic
fields make the SG transition even more unlikely, one has
expected no phase transition to occur in applied fields, and
hence, until quite recently, no extensive numerical simulation
has ever been performed for the 3D Heisenberg SG in mag-
netic fields. Meanwhile, recent studies have revealed that the
Heisenberg SG possesses an important physical ingredient
absent in the Ising SG, i.e., thechirality.24–32 In the chirality
scenario of Refs. 24 and 25, in particular, the chirality is
claimed to be a hidden order parameter of the SG transition
of real Heisenberg-type SG magnets: In the fully isotropic
Heisenberg SG, the spin and the chirality, though they are
coupled at short length scales, are eventually decoupled at
long length scales, and the system exhibits a chiral-glass
transition at a finite temperature without accompanying the
standard SG order. The chiral-glass transition corresponds to
the spontaneous breaking of theZ2 spin-reflection symmetry
with preserving the SO(3) spin-proper-rotation symmetry. In
the more realistic weakly anisotropic system, the Heisenberg
spin, decoupled from the chirality in the isotropic system, is
“recoupled” to the chirality at long length scales via the ran-
dom magnetic anisotropy. The SG order of the weakly aniso-
tropic Heisenberg SG is then dictated at long length scales by
the chirality ordering of the isotropic system. Some numeri-
cal support of such a spin-chirality decoupling-recoupling
scenario was already reported in zero field.24–28

By contrast, some other groups claimed that the chiral-
glass transition of the 3D isotropic Heisenberg SG already
accompanied the standard SG order, which means that the
standard SG order occurs at a finite temperature simulta-
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neously with the chirality.33–36Note that this is in contrast to
the earlier belief in the community that the SG transition
occurs only atT=0 in the 3D Heisenberg SG. Reference 29
maintains, however, that the SG order occurs at a tempera-
ture lower than the chiral-glass transition temperature, i.e.,
TCG.TSGù0, and the controversy remains.

Recently, the present authors performed the first extensive
MC simulation of the 3D Heisenberg SG in magnetic fields,
and have observed that the chiral-glass transition, essentially
of the same character as in the zero-field one, occurs at a
finite temperature even in magnetic fields.30,31 The chiral-
glass transition line in the temperature-magnetic field phase
diagram turned out to have a striking resemblance to the GT
line observed experimentally, although the nature of the tran-
sition is entirely different from the mean-field GT line. Note
that the fully isotropic Heisenberg SG in fields possesses the
global Z23SOs2d symmetry, the chiralZ2 referring to the
global spin reflection with respect to the plane containing the
magnetic-field axis, and the SO(2) referring to the global
spin rotation around the magnetic-field axis.

In the more realistic case of the weakly anisotropic
Heisenberg SG, by contrast, there no longer remains any
global symmetry in fields. Hence, from symmetry, the situa-
tion is the same as that of the well-studied Ising SG. Mean-
while, in view of the fact that the Heisenberg SG possesses
the nontrivial chiral degree of freedom which is totally ab-
sent in the Ising SG, the question of whether the ordering
properties of the weakly anisotropic Heisenberg SG in fields
are essentially the same as those of the Ising SG in fields
seems not so trivial. This question is further promoted by the
apparently contradicting experimental observations on the
Ising-type and weakly anisotropic Heisenberg-type SGs.2–4

In the present paper, we study both the spin-glass and the
chiral-glass orderings of the weakly anisotropic Heisenberg
SG in magnetic fields by extensive equilibrium Monte Carlo
(MC) simulations.32 We find a clear numerical evidence that
a finite-temperature RSB transition occurs in the chiral sec-
tor, which also accompanies the simultaneous SG order.
Thus, in spite of the similarity in the symmetry properties,
the ordering properties of the weakly anisotropic Heisenberg
SG model turn out to be quite different from those of the
standard Ising SG. This highlights the importance of the
chirality.

The paper is organized as follows. In Sec. II, we introduce
our model and explain the details of the MC simulation.
Various physical quantities calculated in the simulation are
defined in Sec. III, and the results of our numerical simula-
tion are presented in Sec. IV. In Sec. V, we perform the
scaling analysis of the critical properties of the transition,
and construct a phase diagram of the model in the
temperature—magnetic field plane. Section VI is devoted to
summary and discussion.

II. THE MODEL AND THE METHOD

In this section, we introduce our model and explain some
of the details of our numerical method. The model we con-
sider is the isotropic classical Heisenberg model on a 3D
simple cubic lattice defined by the Hamiltonian,

H = − o
ki j l

SJijSi ·Sj + o
m,n=x,y,z

Dij
mnSimSjnD − Ho

i=1

N

Siz, s1d

whereSi =sSix ,Siy ,Sizd is a three-component unit vector, and
H is the intensity of magnetic field applied along thez direc-
tion. The isotropic nearest-neighbor exchange couplingJij is
assumed to take either the valueJ or −J with equal probabil-
ity, while the nearest-neighbor random exchange anisotropy
Dij

mn’s (m, n=x,y,z are spin-component indices) are assumed
to be uniformly distributed in the rangef−D :Dg, whereD is
the typical intensity of the anisotropy. We impose the relation
Dij

mn=Dji
mn=Dij

nm.
We perform equilibrium MC simulations on this model. In

the present simulation, we fixD /J=0.05, which is a typical
value of D of real Heisenberg-type SG materials. Simula-
tions are then performed for a variety of field intensities in
the rangeH /J=0.02–3.0. The lattices studied are simple-
cubic lattices withN=L3 sites withL=4, 6, 8, 10, 12, and 16
with periodic boundary conditions. Sample average is taken
over 64–800 independent bond realizations, depending on
the system sizeL and the field intensityH. Limited amount
of data are also taken forL=20 in some cases(32 samples)
to check the size dependence of physical quantities.

To facilitate efficient thermalization, we combine the stan-
dard heat-bath method with the temperature-exchange
technique.37 The temperature-exchange trial is performed ev-
ery heat-bath sweep. Typically, for the sizeL=16 sL=20d,
we discard initial 83105 s133105d heat-bath sweeps and
the temperature-exchange trials for equilibration, and use
subsequent 83105 s133105d heat-bath sweeps and the
temperature-exchange trials in calculating various physical
quantities. Care is taken to be sure that the system is fully
equilibrated. Equilibration is checked by the following pro-
cedures: First, we monitor the system to travel back and forth
many times during the the temperature-exchange process
(typically more than 10 times) between the maximum and
minimum temperature points, and at the same time check
that the relaxation due to the standard heat-bath updating is
reasonably fast at the highest temperature, whose relaxation
time is of order 102 Monte Carlo steps per spin(MCS). This
guarantees that different parts of the phase space are sampled
in each “cycle” of the temperature-exchange run. Second, we
check the stability of the results against at least three times
longer runs for a subset of samples. Error bars of physical
quantities are estimated by the sample-to-sample statistical
fluctuation over the bond realizations. Further details of our
MC simulations are given in Table I.

III. PHYSICAL QUANTITIES

In this section, we define various physical quantities cal-
culated in our simulations.

A. Chirality-related quantities

We begin with the definition of the chirality. The local
chirality at theith site and in themth direction,xim, is defined
for three neighboring Heisenberg spins by the scalar
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xim = Si+em
· sSi 3 Si−em

d, s2d

where em sm=x,y,zd denotes a unit vector along themth
axis. By this definition, there are in total 3N local chiral
variables in the system. The local chirality amplitude is then
defined by

x̄ =Î 1

3N
o
i=1

N

o
m=x,y,z

fkxim
2 lg, s3d

where k¯l represents the thermal average and[¯] repre-
sents the average over the bond disorder. The local chirality
amplitude gives us the information of the extent of the non-
coplanarity of local spin structures.

By considering two independent systems(“replicas”) de-
scribed by the same Hamiltonian, one can define an overlap
of the chiral variable via the relation,

qx =
1

3N
o
i=1

N

o
m=x,y,z

xim
sadxim

sbd, s4d

wherexim
sad andxim

sbd represent the chiral variables of the rep-
licas “a” and “b,” respectively. In our simulations, we pre-
pare the two replicasa and b by running two independent

sequences of systems in parallel with different spin initial
conditions and different sequences of random numbers.

Since the present model does not possess any global sym-
metry, an odd quantityfkqxlg is generally nonzero even in the
hight-temperature phase. Taking this effect into consider-
ation, the chiral-glass order parameter may be defined by

q̃x
s2d = fksqx − fkqxlgd2lg. s5d

The associated chiral-glass susceptibility, normalized by the
local amplitudex̄, is defined by

x̃x = 3N
q̃x

s2d

x̄4 . s6d

The Binder ratio of the chirality is defined by

gx8 =
1

2
S3 −

q̃x
s4d

sq̃x
s2dd2D , s7d

where

q̃x
s4d = fksqx − fkqxlgd4lg. s8d

Here,gx8 is normalized so that, in the thermodynamic limit, it
vanishes in the high-temperature phase and gives unity in the
ordered phase if the ordered state is nondegenerate. The dis-
tribution function of the chiral overlapqx is defined by

Pxsqx8d = fkdsqx8 − qxdlg. s9d

We consider the Fourier-transformed two-point chiral-
glass correlation functionCCG

mn skd between the two local chi-
ral variables in themth and in thenth directions. While one
can define various types of correlation functions depending
on the relative directions of the chiral variablessm ,nd and
the direction ofk, we consider here the parallel component
CCG

i skd wherem andn are both parallel withk. Here, we set
k parallel with thex direction,k =sk,0 ,0d, so thatm=n=x.
Then, CCG

i skd can be written in terms of thek-dependent
chiral overlapqxskd,

CCG
i skd = fkuqxskdu2lg, s10d

qxskd =
1

N
o
i=1

N

xix
sadxix

sbd expsik · r id, s11d

wherer i =sxi ,yi ,zid denotes the position vector of the chiral
variable at theith site. The associated chiral correlation
length,jx, is defined by

jx =
1

2 sinskm/2d
Î CCG

i s0d

CCG
i skmd

− 1, s12d

where km=s2p /L ,0 ,0d is a wave vector of the minimum
magnitude.

In order to study the equilibrium dynamics of the model,
we compute the equilibrium autocorrelation function of the
chirality defined by

TABLE I. Details of our MC simulations.H /J represents the
magnetic-field intensity,L the lattice size,Ns the total number of
samples,NT the total number of temperature points used in the
temperature-exchange run,Tmax/J and Tmin/J the maximum and
minimum temperatures in the temperature-exchange run.

H /J L Ns NT Tmax/J Tmin/J

4 800 26 0.475 0.085

6 800 26 0.475 0.085

8 600 26 0.475 0.113

0.05 10 384 42 0.40 0.115

12 256 52 0.40 0.115

16 180 50 0.35 0.12

20 32 50 0.35 0.1775

4 400 26 0.475 0.085

6 400 26 0.475 0.085

0.5 8 400 26 0.475 0.113

10 300 42 0.40 0.115

12 256 52 0.40 0.115

16 64 50 0.35 0.12

20 32 50 0.35 0.1775

4 400 26 0.475 0.085

6 400 26 0.475 0.085

3.0 8 400 26 0.475 0.113

10 300 42 0.40 0.115

12 256 52 0.40 0.115

16 64 50 0.35 0.125
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C̃x8std = FK 1

3N
o
i=1

N

o
m=x,y,z

ximst0dximst + t0dLG − fkqxlg,

s13d

where the “time”t is measured in units of MCS. This chiral
autocorrelation function is an “odd” quantity not invariant
under the global flipping of the chirality. The corresponding
“even” time correlation functions which is invariant under
the global flipping of the chirality, may be defined by

q̃x
s2d8std = FKS 1

3N
o
i=1

N

o
m=x,y,z

ximst0dximst + t0dD2LG − fkqx
2lg.

s14d

In displaying the data, we normalize these time correlation
functions by their values at a unit timet=1, i.e., we set

Cxstd = Cx8std/Cx8s1d, q̃x
s2dstd = q̃x

s2d8std/q̃x
s2d8s1d. s15d

Note that in the above definitions of the time-correlation
functions(13) and (14), the second terms,fkqxlg and fkqx

2lg,
have been subtracted, which are nonzero even in the high-
temperature phase in theL→` limit due to the absence of
any global symmetry. This subtraction guarantees that both

C̃xstd and q̃x
s2dstd decay to zero ast→` in the high-

temperature phase. In the possible ordered phase, by con-

trast, bothC̃xstd andq̃x
s2dstd decay to zero if the ordered state

does not accompany the RSB, but tend to finite positive val-
ues if the ordered state accompanies the RSB. The latter
property arises because, in the presence of RSB, thet→`
limits of the first terms of Eqs.(13) and (14) are generally
greater than the second terms,fkqxlg and fkqx

2lg.
In computing the first terms of Eqs.(13) and (14), the

simulation is performed according to the standard heat-bath
updating without the temperature-exchange procedure, while
the starting spin configuration att= t0 is taken from the equi-
librium spin configurations generated in our temperature-
exchange MC runs. The second terms of Eqs.(13) and (14)
are evaluated from the temperature-exchange MC runs.

B. Spin-related quantities

As in the case of the chirality, it is convenient to define an
overlap variable for the Heisenberg spin. In this case, the
overlap might naturally be defined as atensorvariableqmn

between them and n componentssm ,n=x,y,zd of the
Heisenberg spin,

qmn =
1

N
o
i=1

N

Sim
sadSin

sbd sm = x,y,zd, s16d

whereSi
sad andSi

sbd are theith Heisenberg spins of the repli-
casa andb, respectively.

In terms of these tensor overlaps, the “longitudinal”(par-
allel to the applied field) and the “transverse”(perpendicular
to the applied field) SG order parameters may be defined by

q̃L
s2d = fksqL − fkqLlgd2lg, qL = qzz, s17d

q̃T
s2d = fksqT − fkqTlgd2lg, qT = o

m=x,y
qmm = qxx + qyy. s18d

Note that as in the case of the chirality, the expectation value
of the first moment has been subtracted. We also consider the
spin-glass susceptibility for the transverse spin component
defined by

x̃T = Nq̃T
s2d. s19d

The longitudinal and the transverse Binder ratios are defined,
respectively, by

gL8 =
1

2
S3 −

q̃L
s4d

sq̃L
s2dd2D , s20d

gT8 =
1

2
S3 −

q̃T
s4d

sq̃T
s2dd2D , s21d

where

q̃L
s4d = fksqL − fkqLlgd4lg, s22d

q̃T
s4d = fksqT − fkqTlgd4lg. s23d

Here, gL8 and gT8 are normalized so that, in the thermody-
namic limit, they vanish in the high-temperature phase and
give unity in the ordered state if the ordered state is nonde-
generate.

The full spin-overlap distribution function may be defined
in the tensor space with 333=9 components. Here, we con-
sider the spin-overlap distribution function for the longitudi-
nal and the transverse components, each defined by

PssqL8d = fkdsqL8 − qLdlg, s24d

PssqT8d = fkdsqT8 − qTdlg, s25d

whereqL andqT are defined by Eqs.(17) and (18), respec-
tively. In the possible SG ordered state of theisotropic sys-
tem, PssqTd develops a nontrivial shape in the thermody-
namic limit due to the fact that the transverse-spin-overlapqT
transforms nontrivially under the global spin rotation: See
Refs. 38 and 39 for details. But here, the system is aniso-
tropic so that no nontrivial structure arising from the uniform
global spin-rotation is expected to arise inPssqTd in the ther-
modynamic limit.

We consider the Fourier-transformed spin-glass correla-
tion functions both for the longitudinal and the transverse
components,CLskd andCTskd, which can be written in terms
of thek-dependent longitudinal and transverse spin overlaps,
qLskd andqTskd, as

CLskd = fkuqLskdu2lg, CTskd = fkuqTskdu2lg, s26d

with
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qLskd =
1

N
o
i=1

N

Siz
sadSiz

sbd expsik · r id,

qTskd =
1

N
o
i=1

N

SiT
sad ·SiT

sbd expsik · r id, s27d

where SiT=sSix ,Siyd represents the transversesxyd compo-
nent of the Heisenberg spin. The associated longitudinal and
the transverse spin correlation lengths,jL andjT, are defined
by

jL =
1

2 sinskm/2d
Î CLs0d

CLskmd
− 1, s28d

jT =
1

2 sinskm/2d
Î CTs0d

CTskmd
− 1, s29d

respectively.
The spin autocorrelation functions are defined both for the

longitudinal and the transverse components by

C̃Lstd = C̃L8std/C̃L8s1d,

C̃L8std =
1

N
o
i=1

N

fkSizst0dSizst + t0dlg − fkqLlg, s30d

C̃Tstd = C̃T8std/C̃T8s1d,

C̃T8std =
1

N
o
i=1

N

fkSiTst0d ·SiTst + t0dlg − fkqTlg. s31d

The second terms,fkqLlg andfkqTlg, have been subtracted in

the same context as in the definition ofC̃xstd for the chirality.
These spin autocorrelation functions are computed in the
same way as the chiral autocorrelation functions, and are
normalized at their values at a unit timet=1. The corre-
sponding “even” time correlation functions can also be de-
fined, though we skip their definitions here.

IV. NUMERICAL RESULTS

In this section, we show the results of our MC simulations
on the anisotropic Heisenberg SG withD /J=0.05.

FIG. 1. (Color online) Temporal decay of the autocorrelation function of the chiralityC̃xstd defined by Eqs.(13) and(15), for the fields
(a) H /J=0.05,(b) H /J=0.5, and(c) H /J=3.0. The lattice size isL=16. The data atT=Tg are given in red(by filled symbols). In (a), in order
to check the finite-size effect, the data ofL=20 are plotted with lines at temperaturesT/J=0.18–0.24 with an interval of 0.01. The estimated
transition temperature isTg/J.0.21 both forH /J=0.05 andH /J=0.5.
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A. Time correlation functions of the chirality

In Fig. 1, we show the MC time dependence of the chiral

autocorrelation functionC̃xstd for the sizeL=16 on log-log
plots, for the fields(a) H /J=0.05, (b) H /J=0.5, and (c)
H /J=3.0, respectively. In the caseH /J=0.05, we have
checked that, in the time range shown, the data can be re-
garded as those of the bulk, since no appreciable size effect
is discernible between the data ofL=16 andL=20, the latter
data being shown with lines in the figure. In Fig. 2, we show
the MC time dependence of the corresponding even quanti-
ties,q̃x

s2dstd, for the fields(a) H /J=0.05,(b) H /J=0.5, and(c)
H /J=3.0, respectively. As can clearly be seen from these
figures, in the investigated time range, the observed behavior

of C̃xstd is essentially the same as that ofq̃x
s2dstd.

For the fieldH /J=0.05, as can be seen from Figs. 1(a)
and 2(a), C̃xstd and q̃x

s2dstd exhibit either a down-bending or
an up-bending behavior depending on whether the tempera-
ture is higher or lower than a borderline valueT/J.0.21,
while just at this borderline temperature a straight-line be-
havior corresponding to a power-law decay is observed. This
indicates that the chirality exhibits a phase transition into the
low-temperature ordered phase where the replica symmetry

is spontaneously broken. In the case ofH /J=0.5, as can be
seen from Figs. 1(b) and 2(b), the data atT/J&0.24 show a
slight up-bending tendency at a short timet.102 while the
data atT/J*0.21 show a gradual down-bending tendency at
longer timest.103, and the chiral transition temperature
appears to lie somewhere betweenT/J.0.21 and 0.24. The
transverse spin autocorrelation, which is to be shown in Fig.
3(c) below, however, suggests the transition temperatureTg
.0.20–0.21. Then, we finally estimate the transition tem-
peratureTg/J=0.21±0.02 forH /J=0.5 (see below). In the

caseH /J=3.0, by contrast,C̃xstd and q̃x
s2dstd always exhibits

a down-bending behavior in the temperature range studied,
suggesting the absence of a phase transition, at least in the
temperature rangeT/Jù0.125.

Since very much similar behaviors are observed inC̃xstd
and in q̃x

s2dstd, we shall show in the following sections the

data of the autocorrelation functionC̃std only.

B. Time correlation functions of the spin

In Fig. 3, we show for the fieldsH /J=0.05 and 0.5 the
MC time dependence of the autocorrelation functions of the

transverse component of the spinC̃Tstd, Figs. 3(a) and 3(c),

FIG. 2. (Color online) Temporal decay of the time-correlation function of the chiralityq̃x
s2dstd defined by Eqs.(14) and(15), for the fields

(a) H /J=0.05,(b) H /J=0.5, and(c) H /J=3.0. The lattice size isL=16. The data atT=Tg are given in red(by filled symbols). In (a), in order
to check the finite-size effect, the data ofL=20 are plotted with lines at temperaturesT/J=0.18–0.24 with an interval of 0.01. The estimated
transition temperature isTg/J.0.21 both forH /J=0.05 andH /J=0.5.
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and those of the longitudinal component of the spinC̃L, Figs.
3(b) and 3(d). Finite-size effect evaluated from the difference
between theL=16 andL=20 data turns out to be rather small
(but not completely negligible) in the longitudinal compo-
nent, whereas it is more appreciable in the transverse com-
ponent. Although a finite-size effect is not completely negli-
gible here, the autocorrelation functions of the spin for
H /J=0.05 turn out to behave quite similarly to those of the

chirality. Namely, bothC̃Lstd andC̃Tstd exhibit either a down-
bending or an up-bending behavior depending on whether
the temperature is higher or lower than the borderline value
T/J.0.21, while just at this borderline temperature a
straight-line behavior corresponding a power-law decay is
observed. This indicates that the spin exhibits an RSB tran-
sition at the same temperature where the chirality exhibits an
RSB transition. The simultaneous occurrence of the spin and
the chirality orderings is quite natural in the presence of the
random anisotropy.

For the fieldH /J=0.5, the transverse componentC̃Tstd
shown in Fig. 3(c) exhibits a rather clear up-bending/down-
bending behavior with the borderline temperatureT/J
.0.20–0.21, which might be compared with the less clear

behavior ofC̃xstd where the transition temperature appears to
lie somewhere betweenT/J.0.21–0.24. Since the transi-
tion here is expected to be a simultaneous spin and chiral
transition, we now estimate the transition temperature of the
field H /J=0.5 to beTg=0.21±0.02. Meanwhile, the longitu-
dinal autocorrelation functionC̃Lstd for H /J=0.5 exhibits a
much noisier behavior as shown in Fig. 3(d). This is because,
in large fields, the second term of Eq.(30), fkqLlg, becomes
large, while the longitudinal spin correlation function itself
becomes small in magnitude which is obtained as a differ-
ence between the two large numbers. Note that the up-
bending behavior is discernible at a short timet.102, which
is also observed in the chiral autocorrelation in a less pro-
nounced manner. In any case, due to the noisiness, it seems
not possible to identify the transition point from Fig. 3(d).

From the behaviors of the chiral and the spin autocorre-
lation functions shown above, we conclude that the spin and
the chirality exhibit an RSB transition simultaneously at a
finite temperatureTg/J=0.21±0.02 for both the fieldsH /J
=0.05 and 0.5. The estimated transition temperatureTg/J
=0.21s2d is lower than the transition temperature of the cor-
responding zero-field model with the same magnitude of an-
isotropy, i.e.,Tg/J.0.24,28,29 indicating that applied mag-

FIG. 3. (Color online) Temporal decay of the spin autocorrelation functions:(a) the transverse oneC̃Tstd for H /J=0.05, (b) the

longitudinal oneC̃Lstd for H /J=0.05, (c) the transverse one forH /J=0.5, and(d) the longitudinal one forH /J=0.5. The lattice size isL
=16. The data atT=Tg are given in red(by filled symbols). In the figures, in order to check the finite size effect, the data ofL=20 are plotted
with lines at temperaturesT/J=0.18–0.24 with an interval of 0.01. The estimated transition temperatures isTg/J.0.21 both forH /J
=0.05 andH /J=0.5.
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netic fields suppress the spin-glass(chiral-glass) ordering for
weaker fields. Indeed, this is exactly the feature expected for
the experimental AT line. Interestingly, the estimated transi-
tion temperature under fields,Tg/J.0.21, comes very close
to the chiral-glass transition temperature of the fully isotro-
pic model in zero field, which was estimated to beTCG/J
.0.20.29 This is exactly the feature expected for the experi-
mental GT line. Hence, the suppression ofTgsHd due to
weaker fields(AT line) as well as the robustness of it with
respect to stronger fields(GT line) are consistent with the
experimental observation for the weakly anisotropic
Heisenberg-type SGs.1,3,4

C. Comparison with the autocorrelation functions of the 3D
Ising SG in fields

For comparison, we also calculate the autocorrelation

function of the spinC̃Lstd defined by Eq.(30) for the 3D
Ising SG with the ±J coupling for the fieldH /J=0.05. Note
that the Ising SG in fields shares the same symmetry prop-
erty as the anisotropic Heisenberg SG in fields, i.e., the ab-
sence of any global symmetry. Nevertheless,the Ising SG
does not possess any chiral degree of freedom. Thus, the
question of whether the 3D Ising SG behaves either similarly
or differently from the weakly anisotropic Heisenberg SG
would be of special interest.

The data ofC̃Lstd of the Ising SG are shown in Fig. 4 for
the sizeL=20. As can be seen from figure, the behavior of

C̃Lstd of the Ising SG differs significantly from that of the
weakly anisotropic Heisenberg SG. Although the tempera-
ture range studied is as low as about 60% of the zero-field
transition temperatureTgsH=0d /J.1.1, which is expected
to be deep in the ordered state according to a tentative esti-
mate of Ref. 18, no clear up-bending behavior as observed in
the weakly anisotropic Heisenberg SG is observed here. In-

stead,q̃L
s2dstd and C̃Lstd persistently exhibit an almost linear

behavior even at the lowest temperature studiedT/J=0.6.

This is illustrated in Fig. 4(b) where theC̃Lstd data at the two
lowest temperatures studied are shown. A comparison of the
L=20 data with theL=16 data indicates that some amount of
finite-size effect still remains. Nevertheless, an almost linear
behavior without any discernible up-bending tendency is ro-
bustly observed in common both forL=16 andL=20, sug-
gesting that this feature is a bulk property.

D. The Binder ratio of the chirality

In Fig. 5, we show the temperature and size dependence
of the chiral Binder ratiogx8 for the fieldH /J=0.05. The data
of gx8 has a negative dip at a size-dependent temperatureT
=TdipsLd, which, with increasingL, tends to deepen and shift
to lower temperatures. The existence of a persistent negative
dip with increasing depth, is a sign of a phase transition
occurring atT=TdipsL=`d. By extrapolatingTdipsLd to L
=`, as shown in the inset of Fig. 5, the bulk chiral-glass
transition temperature is estimated to beTg/J=0.22s2d. The
estimated transition temperature agrees well with the corre-

sponding estimate based on the autocorrelation functions
given above.

As argued in Refs. 27, 31, and 40 for the isotropic case,
the existence of a persistent negative dip is a sign of a one-
step-like RSB transition. In the present anisotropic model
under fields, there no longer exists a global spin-reflection
symmetry in contrast to the isotropic model under fields.
Hence, the behavior expected forgx8 here might be the one
for the one-step RSB systemwithout a reflection symmetry.
Such a system was theoretically analyzed in Ref. 41, where
the behavior of the Binder ratiogx8 in the thermodynamic
limit was reported as shown in Fig. 6.41 Indeed, the overall
behavior of our presentgx8 shown in Fig. 6 seems consistent
with such a behavior.

E. The Binder ratio of the spin

In Fig. 7(a), we show the temperature and size depen-
dence of the Binder ratio of the longitudinal component of
the spingL8 for the fieldH /J=0.05. AlthoughgL8 for smaller

FIG. 4. Temporal decay of the spin autocorrelation function,
defined by Eq.(30), of the ±J 3D Ising SG in a magnetic field of
H /J=0.05. The system size isL=20 averaged over 100 samples. In
(a), the data are plotted in the temperature rangeT/J=0.60–1.3
with an interval of 0.1. The data of the two lowest temperatures
T/J=0.60 and 0.70 are shown in(b), together with the fitted straight
lines. Even at the lowest temperature studied, no up-bending behav-
ior is observed.
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sizesLø12 does not show any characteristic feature sugges-
tive of a phase transition, the one for larger sizesLù16
tends to exhibit a negative dip similar to the one as observed
in the chiral Binder ratiogx8. Then, for large enoughL, the
overall shape ofgL8 would be similar to that ofgx8, although
the one for smallerL is very different.

In Fig. 7(b), we show the temperature and size depen-
dence of the Binder ratio of the transverse component of the
spingT8 for the fieldH /J=0.05. AlthoughgT8 for smaller sizes
Lø12 exhibits a single maximum with a crossing point oc-
curring aroundT/J.0.28, the one for larger sizesLù16
exhibits double maxima. The apparent crossing point ob-
served for smaller sizes atT/J.0.28 disappears for larger
lattices, indicating that it does not correspond to a true phase
transition point. Among the two maxima ofgT8 observed for
Lù16, the one at a higher temperature is gradually sup-
pressed with increasingL, while the one at a lower tempera-
ture tends to be enhanced. Presumably, in theL→` limit,
the peak at a higher temperature will disappear, while the

peak at a lower temperature will survive. Then, for large
enoughL, the overall shape ofgT8 would be similar to that of
gx8 and gL8, although the one for smallerL is very different.
Our observation here that the Binder ratio of the chirality,gx8,
and those of the spin,gL8 andgT8, asymptotically show mutu-
ally similar behavior, which resembles the one depicted in
Fig. 6, seems consistent with the spin-chirality decoupling-
recoupling scenario. Indeed, the recoupling length-scale es-
timated in Refs. 29 and 38,L3.20, is consistent with the
observed behavior.

F. Overlap distribution function of the chirality

We show in Fig. 8 the size dependence of the overlap
distribution function of the chirality,Pxsqxd, for several
cases, i.e.,(a) H /J=0.05 andT/J=0.18, (b) H /J=0.5 and
T/J=0.19,(c) H /J=0.5 andT/J=0.12, and(d) H /J=3.0 and
T/J=0.13.

In the caseH /J=0.05, in addition to a primary peak cor-
responding toqx=qx

EA.0, which grows and sharpens with
increasingL, there appears a second peak at aroundqx=0,
which also grows and sharpens with increasingL. The exis-
tence of two distinct peaks, both growing and sharpening
with increasingL, is a clear indication of the occurrence of
RSB. As reported in Ref. 27,Pxsqxd in zero field exhibits a
feature of a one-step-like RSB, i.e., a central peak atqx=0

FIG. 5. (Color online) The temperature and size dependence of
the Binder ratio of the chiralitygx8 for a field H /J=0.05. In the
inset, we show the reciprocal size dependence of the dip tempera-
ture of gx8. Dashed line represents a linear fit of the data. The bulk
chiral-glass transition temperature is estimated to beTg/J
=0.22s2d.

FIG. 6. A sketch of the typical temperature dependence of the
Binder ratiog8 in the thermodynamic limit, which is expected in a
system without a reflection symmetry exhibiting a one-step RSB
transition.

FIG. 7. (Color online) The temperature and size dependence of
the Binder ratio of(a) the longitudinal component of the spingL8 ,
and of (b) the transverse component of the spingT8 , for a field
H /J=0.05.
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coexisting with self-overlap peaks atqx= ±qx
EA. The Pxsqxd

observed here may be regarded as the in-field counterpart of
the zero-fieldPxsqxd with a feature of such a one-step-like
RSB. Indeed, if one closely looks atPxsqxd shown in Fig.
8(a), one sees that a broad peak, which is a remnant of the
qx=−qx

EA peak of the zero-field model, is discernible for
smaller sizesLø8, whereas, for larger sizes, thisqx=−qx

EA

peak disappears and theqx.0 peak begins to grow. Interest-
ingly, for the sizeL=8, Pxsqxd possesses three broad peaks,
at aroundqx= ±qx

EA andqx=0. Such a three-peak structure is
rarely seen in a system exhibiting the full RSB, and gives a
further indication that the RSB occurring here is the in-field
counterpart of the one-step-like RSB.

For H /J=0.5,Pxsqxd shows a similar behavior as that for
H /J=0.05. Namely, for largerL, it exhibits two distinct
peaks, both growing and sharpening with increasingL,
whereas it exhibits three broad peaks for an intermediateL.
As compared with theH /J=0.05 case, the second peak is
located slightly offqx=0, reflecting the fact that the higher
field breaks theqx↔−qx symmetry more strongly. Anyway,
our data shown in Figs. 8(a)–8(c) give a strong numerical
support that there indeed occurs a chiral-glass transition at a
finite temperature and that the chiral-glass ordered state ac-
companies a one-step-like RSB.

For the still higher fieldH /J=3.0, in contrast to the cases
of H /J=0.05 and 0.5, the double-peak behavior ofPxsqxd is

not observed even at the lowest temperature studiedT/J
=0.13. Thus, forH /J=3.0, no sign of RSB transition is ob-
served down to this low temperature.

G. Overlap distribution function of the spin

We show in Fig. 9 the size dependence of the overlap
distribution function of(a) the longitudinal component of the
spin PssqLd, and of(b) the transverse component of the spin
PssqTd, for the field H /J=0.05 and at a temperatureT/J
=0.18. The longitudinal spin-overlap distribution function
PssqLd for smaller sizesLø16 possesses only a single grow-
ing peak at aroundqL .0.2, in apparent contrast to the
double-peak structure observed in the chiral-overlap distribu-
tion. Quite interestingly, however, for the largest size studied
L=20, one sees that the second peak just begins to emerge at
around qL .0.1 [see the arrow in Fig. 9(a)]. This second
peak is reminiscent to the one observed in the chiral-overlap
distribution function of Fig. 8, though it appears here only
for the largest size in a less pronounced manner: It appears to
be an echo of the strongly divergingqx.0 peak observed in
the chiral-overlap distribution. Our observation that the one-
step RSB-like structure of the overlap distribution appears in
the chiral sector from smaller sizes, while it appears in the
spin sector in a less pronounced manner only for larger sizes,
suggests that the order parameter of the present one-step-

FIG. 8. (Color online) The chiral-overlap distribution functions for the field and the temperature,(a) H /J=0.05 andT/J=0.18, (b)
H /J=0.5 andT/J=0.19, (c) H /J=0.5 andT/J=0.12, and(d) H /J=3.0 andT/J=0.13. The transition temperature isTg/J.0.21 for both
cases ofH /J=0.05 and 0.5, while it is lower than 0.13 forH /J=3.
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RSB transition might be the chirality, rather than the spin.
Again, this observation is fully consistent with the spin-
chirality decoupling-recoupling scenario.24,25

As shown in Fig. 9(b), the behavior of the transverse-
spin-overlap distribution functionPssqTd is more complex.
Such a behavior is certainly consistent with the occurrence of
an RSB transition.

H. Correlation lengths

We show in Fig. 10 the temperature and size dependence
of the normalized correlation lengths of(a) the chirality
jx /L, of (b) the longitudinal component of the spinjL /L, and
of (c) the transverse component of the spinjT/L, for the field
H /J=0.05. The location ofTgsHd obtained from the autocor-
relation functions are displayed with arrows in the figures.

Concerning the chirality, as can be seen from the inset of
Fig. 10(a), a clear crossing behavior is observed atT/J
.0.22 for larger sizesLù12. The crossing temperature
T/J.0.21 observed for larger sizes turns out to be close to
our previous estimate ofTg.

Concerning the longitudinal and the transverse compo-
nents of the spin, a crossing is observed atTg/J.0.21 for

smaller sizesLø8. ForLù10, however,j /L decreases with
L at any temperature studied, no longer exhibiting a crossing
at Tg/J.0.21. For even larger sizesL=16 andL=20, a ten-
dency of crossing reappears at aroundTg/J.0.21, but now
at a lower value ofj /L.

Such a complex size dependence of the spin correlation
lengths may naturally be interpreted by the spin-chirality
decoupling-recoupling scenario in the following way: For
smaller sizes, i.e., at shorter length scales, the spin and the
chirality are trivially coupled in correlations irrespective of
the anisotropy, so that the crossing in the sizesLø8 may
reflect this trivial coupling at short length scales. For larger
sizes, i.e., at long length scales, the spin is “recoupled” to the
chirality via the anisotropy in a way different from the trivial
coupling at short length scales. Thus, the two different types
of crossing is expected in the normalized correlation lengths
for smaller and for larger sizes, which is exactly the behavior
observed in Figs. 10(b) and 10(c). The characteristic length
scale separating the coupling and the recoupling regimes was
estimated to be about 20 lattice spacings.29,38 Therefore, al-
though we cannot simulate here the sizes larger thanL=20
due to the lack of our computational capability, we do expect
that a clear crossing behavior will eventually set in for
L.20.

V. THE CRITICAL PROPERTIES AND THE PHASE
DIAGRAM

In this section, we further analyze the nature of the chiral-
glass(spin-glass) transition observed in the preceding section
by means of a scaling analysis, and construct a magnetic
phase diagram of the model in the temperature-magnetic
field plane.

We apply a dynamical scaling analysis to the chiral auto-
correlation functions in order to estimate the critical expo-
nents of the transition. The standard bulk dynamical scaling

form is assumed for the autocorrelation functions,C̃xstd,
C̃Lstd, andC̃Tstd,

C̃std < usT − Tgd/JubfstusT − Tgd/Juznd, s32d

whereTg is the transition temperature determined in the pre-
ceding section, whileb, n, andz refer to the order parameter,
the correlation length and the dynamical exponents, respec-
tively. The exponentsb andzn are to be determined so that a
good data collapse is obtained in the scaling plot. The quality
of the scaling plot is judged by eyes.

A. Dynamical scaling analysis of the chiral autocorrelation
function

In Fig. 11, we show the scaling plots of the chiral auto-

correlation functionC̃xstd for the fields(a) H /J=0.05 and(b)
H /J=0.5. The transition temperature is fixed to beTCG/J
=0.21 both forH /J=0.05 andH /J=0.5, as determined in the
preceding section.

As can be seen from the figures, the chiral autocorrelation
function scales well both above and belowTg, with bCG
=0.8 andzCGnCG=5.0 for H /J=0.05, and withbCG=0.7 and

FIG. 9. (Color online) The overlap distribution functions of(a)
the longitudinal component of the spin, and of(b) the transverse
component of the spin, for a fieldH /J=0.05 at a temperatureT/J
=0.18. The transition temperature isTg/J.0.21. In (a), a sign of
the second peak just begins to emerge for the largest sizeL=20 at
the arrow position.

MONTE CARLO STUDY OF THE ORDERING OF THE… PHYSICAL REVIEW B 70, 144412(2004)

144412-11



zCGnCG=5.5 for H /J=0.5. Examining by eyes the quality of
the scaling plots with varying the assumed exponents values,
we finally quote bCG=0.8±0.2 andzCGnCG=5.0±1.0 for
H /J=0.05, and bCG=0.7±0.2 and zCGnCG=5.5±1.0 for
H /J=0.5. The estimated chiral-glass exponents are not far
from the corresponding zero-field valuesbCG.1.1 (Ref 25)
andzCGnCG.4.5.28

B. Dynamical scaling analysis of the spin autocorrelation
functions

Next, we apply a dynamical scaling analysis to the spin
autocorrelation functions. In Fig. 12, we show the scaling
plots both for(a) the longitudinal and for(b) the transverse
components of the spin for the fieldH /J=0.05. The transi-
tion temperature is fixed to beTg/J=0.21. In Ref. 32, we
observed that the quality of the scaling plot of the spin time-
correlation functionqL

s2d was not as good as its chiral coun-
terpartqx

s2d. As argued in Ref. 32, if the chirality, rather than
the spin, is the order parameter of the transition, in the time
regime shorter than the recoupling time scale(estimated to
be 105–106 MCS), the spin time-correlation might not reach
an asymptotic scaling regime even when the chiral time-
correlation reaches an asymptotic scaling regime. Hence, al-

though the scaling ofC̃Lstd and C̃Tstd turns out to be fairly

good as shown in Fig. 12, caution might be required here in
regarding the fitted values ofbSG and zSGnSG as true
asymptotic spin exponents, since our observation time win-
dow is shorter than the expected recoupling time scale.

C. Chiral-glass and spin-glass susceptibilities

In order to estimate the chiral-glass and the spin-glass
susceptibility exponentsgCG and gSG, we plot in Fig. 13(a)
the reduced chiral-glass susceptibilityx̃x, and (b) the trans-
verse spin-glass susceptibilityx̃T, as a function of the re-
duced temperaturesT−Tgd /Tg for the field H /J=0.05 on a
log-log plot. The chiral-glass and the spin-glass susceptibili-
ties in the thermodynamic limit are expected to behave as

x̃x < uT − Tgu−gCG, x̃T < uT − Tgu−gSG. s33d

The Tg value is fixed to beTg/J=0.21. From the asymptotic
slope of the data, the exponentsgCG andgSG are estimated to
be gCG=2.1s2d and gSG=2.4s2d, respectively. Here, the ob-
tained values ofgSG and gCG turn out to be rather close.
Indeed, the spin-chirality decoupling-recoupling scenario
predicts an equalitygSG=gCG.

FIG. 10. (Color online) The temperature and size dependence of the normalized correlation lengths of(a) the chirality, of (b) the
longitudinal component of the spin, and of(c) the transverse component of the spin, for a fieldH /J=0.05. In(a), a magnified figure is given
in the inset for the three largest sizes,L=12, 16, and 20. The arrows in the figures indicate the locations ofTgsHd, i.e., Tg/J=0.21.
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D. H-T phase diagram

Finally, we show in Fig. 14 a phase diagram of the present
model with D /J=0.05 in the temperature-magnetic field
plane. The obtained phase diagram has two noticeable fea-
tures. First, for weaker fieldsH /J&0.05=D /J, the transition
line TgsHd exhibits an AT-like behavior, i.e., the spin-glass
(chiral-glass) transition temperature is suppressed rapidly un-
der weak applied fields. In sharp contrast to this, for stronger
fields of H /J*0.05=D /J, the spin-glass(chiral-glass) tran-
sition temperature turns out to be rather insensitive to the
field intensity, indicating that the spin-glass(chiral-glass) or-
dered state is robust against applied fields. The estimated
TgsHd value stays almost unchanged between the field values
H /J=0.05 and 0.5, the latter value is already more than
twice the zero-field transition temperature. Indeed, theTgsHd
value in this field range is very close to the zero-field chiral-
glass transition temperature of the fullyisotropicmodel. This
is exactly the feature of the GT line.

Overall, the obtained phase diagram is consistent with the
experimental phase diagram of Heisenberg-type SG
magnets.1,3,4 In order to make a more quantitative compari-
son, however, we have to determine the phase boundary in

the lower field regimeH /Jø0.05 more precisely, and to map
out a phase diagram with varying the anisotropy strengthD.
This is a computationally demanding task, and is left as a
future task.

VI. SUMMARY AND DISCUSSION

In summary, we performed a large-scale equilibrium
Monte Carlo simulation of the weakly anisotropic 3D
Heisenberg SG in magnetic fields, paying attention both to
the spin and to the chirality. The model is expected to be a
reasonably realistic model of many real Heisenberg-type SG
magnets. Due to the presence of both the random anisotropy
and the magnetic field, the model lacks in any global sym-
metry so that the transition, if any, is expected to be a pure
RSB one. Among other things, we have found a clear nu-
merical evidence that such a pure RSB transition indeed oc-
curs at a finite temperature simultaneously in the spin and in
the chiral sectors. The temporal decay of the time correlation
functions of the chirality and of the spin, as well as the
overlap distribution function of the chirality and the spin,
gave a strong numerical evidence of the occurrence of a ther-
modynamic RSB transition in applied fields. We feel this
finding for the weakly anisotropic Heisenberg SG to be
rather remarkable, in view of the long controversy in the
community concerning the in-field ordering properties of the
Ising SG, which apparently looks much simpler.

Indeed, a comparison with the 3D Ising SG in fields have
revealed that the weakly anisotropic Heisenberg SG in fields
behaves differently from the Ising SG in fields, a sign of the
RSB transition being much clearer in the weakly anisotropic
Heisenberg SG than in the Ising SG. The observed stronger
sign of the RSB transition is closely connected to the one-
step-like nature of its RSB pattern, which is certainly not the
case in the Ising SG. Such a difference in the ordering prop-
erties of the two models might at first sound surprising, since
the Ising SG in fields and the weakly anisotropic Heisenberg
SG in fields share the same symmetry property. However, in
spite of the similarity in symmetry, a significant difference
exists in the two models in that the Ising SG does not possess
any chirality degree of freedom in contrast to the weakly
anisotropic Heisenberg SG. Then, our observation highlights
the possible importance of the chirality in realizing the RSB
transition in the weakly anisotropic Heisenberg SG. This
gives a strong support to the chirality scenario of the SG
transition of Heisenberg-type SGs.24,25

We also have found that the sign of the RSB transition is
often observed more strongly in the chirality-related quanti-
ties than in the spin-related quantities. For example, the sec-
ond peak of the overlap distribution function shows up
clearly even from smaller lattices for the chirality, but more
weakly and only for larger lattices for the spin: Compare Fig.
8(a) and Fig. 9(a). This observation seems consistent with
the chirality scenario that the order parameter of the transi-
tion is the chirality whereas the spin is recoupled to the
chirality beyond a certain crossover(recoupling) length scale
of about 20 lattice spacings. We have also observed that the
behaviors of certain spin-related quantities, e.g., the Binder
ratio or the normalized correlation length, differ between in

FIG. 11. (Color online) Dynamical scaling plots of the chiral

autocorrelation functionC̃xstd, for fields (a) H /J=0.05 and (b)
H /J=0.5.
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smaller and in larger lattices, the borderline size being
aroundL.20. Again, these behaviors could naturally be ex-
plicable on the basis of the spin-chirality decoupling-
recoupling scenario.24,25

We also have constructed a roughH-T phase diagram of
the model. It has turned out thatTgsHd is rapidly suppressed
by weak applied fields,H&D, but is then kept almost un-
changed up to rather higher fields ofH /J=0.5<2Tgs0d. The
phase boundary in the weak field regime resembles the AT
line, while that in the high field regime resembles the GT
line, although its nature is very different from the mean-field
AT or GT line.5–7 These features of the phase diagram are
consistent with the experimental result of the weakly aniso-
tropic Heisenberg SG.3,4 The obtained phase diagram is also
fully consistent with the one expected from the chirality
scenario.24,25,30,32Indeed, the chirality scenario predicts that,
in the low-field regime where the anisotropy is important, the
change in the broken symmetry from the zero-field case
causes a crossover, accompanied with a rapid suppression of
the transition temperature, while in the high-field regime
where the anisotropy is negligible relative to the applied
magnetic field, the SG transition line should essentially be
given by the chiral-glass transition line of the fully

FIG. 12. (Color online) Dynamical scaling plots of the autocor-

relation functions of(a) the longitudinal component of the spinC̃L,

and of (b) the transverse component of the spinC̃L, for a field
H /J=0.05.

FIG. 13. (Color online) Temperature and size dependence of(a)
the chiral-glass susceptibility, and of(b) the transverse spin-glass
susceptibility, for a fieldH /J=0.05. The transition temperatures is
set to beTg/J=0.21.

FIG. 14. (Color online) The phase diagram of the anisotropic
Heisenberg SG with the random anisotropy ofD /J=0.05 in the
temperature-magnetic field plane. “CG”, “SG,” and “PM” stand for
the “chiral-glass,” “spin-glass,” and “paramagnetic” phase,
respectively.
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isotropic system.30

Another remarkable feature of the present phase diagram
is that the GT-like phase boundary is quite robust against
magnetic fields, extending without much reduction to the
field at least as twice large as the zero-field transition tem-
perature. Such a robustness of the SG ordered phase under
fields is also in accord with the chirality scenario, since the
chirality, regarded as a hidden order parameter of the SG
transition, is only weakly coupled to the magnetic field. Note
that the magnetic field couples directly to the spin via the
Zeeman term in the Hamiltonian, not to the chirality, while
the effective coupling between the field and the chirality is
rather weak.

Thus, overall, our observations on the weakly anisotropic
Heisenberg SG gives a strong support to the spin-chirality
decoupling-recoupling scenario.24,25 In other words, it would
be difficult to interpret all of our present observations based
on the more conventional view that the spin is the order
parameter of the transition and the chirality is just a compos-
ite (secondary).

A decisive test of the spin-chirality decoupling-recouping
scenario would be to directly probe the chiral-glass order.
Recently, a proposal was made concerning the way to mea-
sure the linear and the nonlinear chiral susceptibilities of
canonical SGs by using the Hall probe, together with the
scaling prediction from the spin-chirality decoupling-

recoupling scenario.42,43 Interestingly, very recent experi-
ments have given support to these predictions from the
chirality scenario.44–46

In concluding this paper, we wish to emphasize again that,
even if one sets aside the question of the detailed mechanism
of the SG transition or the validity of the chirality scenario,
the present numerical results have demonstrated beyond rea-
sonable doubt that the weakly anisotropic Heisenberg SG
exhibits a thermodynamic RSB transition in applied mag-
netic fields. In view of the fact that the property of the ap-
parently simpler, strongly anisotropic Ising SG still remains
unclear in spite of the long controversy, this finding seems
surprising and somewhat ironical. Clarifying the relation be-
tween the weakly anisotropic Heisenberg SG possessing the
chiral degree of freedom and the strongly anisotropic Ising
SG not possessing the chiral degree of freedom is still open,
and is left for future studies.
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