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The properties of LiHoF4 are believed to be well described by a long-range dipolar Ising model. We go
beyond mean-field theory and calculate the phase diagram of the Ising model in a transverse field using a
quantum Monte Carlo method. The relevant Ising degrees of freedom are obtained using a nonperturbative
projection onto the low-lying crystal-field eigenstates. We explicitly take the domain structure into account, and
the strength of the near-neighbor exchange interaction is obtained as a fitting parameter. The on-site hyperfine
interaction is approximately taken into account through a renormalization of the transverse applied magnetic
field. Finally, we propose a spectroscopy experiment to precisely measure the most important parameter
controlling the location of the phase boundary.

DOI: 10.1103/PhysRevB.70.144411 PACS number(s): 75.10.Jm, 75.40.Mg, 75.70.Ak, 75.30.Gw

I. INTRODUCTION

In the last decade, the rare-earth compound LiHoF4 has
been found to display an array of interesting magnetic phe-
nomena. At high temperatures LiHoF4 is a paramagnet, but
there is a second-order transition to a ferromagnetic state at
1.53 K.1 This Ising magnetic transition is driven by the weak
magnetic dipole interaction, with a strength of order 1 K, and
not the more usual Coulomb exchange interaction. The criti-
cal temperature can be lowered by application of a magnetic
field transverse to the easy-axis direction of ferromagnetic
ordering. The magnetic field introduces quantum fluctuations
of the spins and beyond a critical value of,4.9 T, destroys
long-range ordering even at zero temperature. LiHoF4 thus
represents a model magnet for studying quantum phase
transitions.2 Since the rate of quantum tunneling between
different spin configurations can be carefully controlled with
the transverse magnetic field, this material constitutes a good
testing ground for the efficiency of quantum annealing.3 By
substituting the magnetic Ho3+ ions with nonmagnetic Y3+

ions, disorder can be introduced, and spin-glass behavior has
been observed when the magnetic ions are sufficiently
dilute.4 On further dilution the range of dynamic time scales
displays a remarkable narrowing in what has been called the
“antiglass” phase.5

The magnetic properties of LiHoF4 originate in the Ho3+

ions. The ground state of the Ho3+ ion in the crystal field is a
doublet, and the first excited state is,11 K above the
ground state. The crystal-field states of the Ho3+ ion are such
that there are no matrix elements of the transverse angular
momentumsJx,Jyd within the ground-state doublet. Hence
the transverse susceptibility vanishes(to lowest order in the
the applied field) giving rise to strong Ising anisotropy.
Therefore LiHoF4 in a transverse magnetic field, and at tem-
peratures lower than,11 K, is believed to be a very good
realization of a dipolar Ising model

H =
1

2o
iÞ j

J
r ij

2 − 3zij
2

r ij
5 Si

zSj
z − hxo

i

Si
x, s1d

whereJ is the coupling constant,r ij the interspin distance,
and zij the component of the interspin distance along the
Ising axis. The effective transverse field parameterhx is a
measure of the(higher order) mixing effects introduced by
the physical transverse magnetic field. The summation is
done over all Ho3+ ions, which sit on a tetragonal Bravais
lattice with four Ho3+ ions per unit cell.4

The goal of the present study is to determine the quanti-
tative phase diagram of pure LiHoF4 from (quasi) first prin-
ciples, starting from a crystal-field Hamiltonian that has been
fit to spectroscopic data. Bitkoet al.2 successfully fit their
phase diagram data using a mean-field theory with two free
parameters, a transverse susceptibilityg'<0.74 to replace
the Landég factor gL =1.25 which thus rescales the trans-
verse field, and an effective dipole coupling strengthJ0
which rescales the temperature. This calculation also did not
take into account the domain structure of the ferromagnetic
state. In another calculation, Rønnowet al.6 have recently
used an RPA method to find the collective mode softening
seen in their neutron scattering measurements and obtain an
estimate of the phase diagram.

The advancements reported in the present study over ear-
lier attempts are twofold. We develop an effective low-
energy Hamiltonian(derived nonperturbatively by projection
from the full 17 state crystal-field Hamiltonian) that acts on
spin-12 Ising degrees of freedom, and we go beyond simple
mean-field theory by using extensive quantum Monte Carlo
simulations. An earlier classical Monte Carlo study found a
critical temperature of 1.89 K by extrapolation from rather
limited system sizes.7 However, they did not take into ac-
count a near-neighbor exchange interaction among the Ho3+

ions and the structure of domains observed in LiHoF4. Yet
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another Monte Carlo study finds a transition temperature of
1.51 K, but only by adjusting the strength of the dipolar
interaction to reproduce the experimentally determined
ground-state energy.8 Here we explicitly take the domain
structure of LiHoF4 into account and use a much improved
method which vastly reduces finite-size corrections. We also
use a recently introduced cluster algorithm.9 In this manner
we can determine both the critical temperature and critical
field of the effective Ising model with high precision. This
precision is high enough that the(considerable) uncertainties
in the crystal field parameters(described below) are now the
limiting factors controlling uncertainties in the predicted
phase diagram. We will propose a simple microwave spec-
troscopy experiment to eliminate these experimental uncer-
tainties.

II. THE CRYSTAL FIELD HAMILTONIAN

A single Ho3+ ion in the crystal LiHoF4 has a partially
filled outermost shell 4f10, and the ground-state electronic
configuration of the Ho3+ ion is 5I8 as dictated by Hund’s
rules. The lowest excited electronic configuration of the ion
5I7 lies approximately 7400 K above the ground-state con-
figuration, as seen in spectroscopic experiments on
LiHoF4.

10 In the range of temperatures of interest in this
article, any configuration mixing of the ground configuration
with the excited ones can thus be safely neglected. The con-
figuration mixing due to the crystal field is also assumed to
be small.

Considering only the spin-orbit interaction and the Hund’s
Rules, the ground-state configuration of the Ho3+ ion in
LiHoF4 will be s2J+1=d17-fold degenerate. But the interac-
tion of Ho3+ with the Li+ and F− ions can be captured con-
cisely in a crystal-field HamiltoniansVCd that lifts the degen-
eracy while taking into account the symmetry of the crystal.
The LiHoF4 crystal has S4 symmetry, which partially splits
the 17-fold degeneracy. In S4 symmetry, the states of a con-
figuration with an even number of electrons transform ac-
cording to four one-dimensional representations, two of
which are related by time-reversal symmetry. The ground
state of the crystal-field Hamiltonian is thus a doublet, be-
longing to the two related representations mentioned above,
giving rise to a non-Kramers degenerate ground state. The
crystal-field Hamiltonian depends in a complicated way on
the positions of the various ions inside a unit cell, but it turns
out that one can expressVC in terms of the total angular

momentumsJWd operators of the Ho3+ ions by using a set of
Steven’s equivalent operators and corresponding phenom-
enological constants called crystal-field parameters(CFP)
which are determined by fitting to experimental spectro-
scopic and susceptibility data.10,11 (See the Appendix for de-
tails on the crystal-field Hamiltonian.)

Ising system at low temperatures.DiagonalizingVC shows
that the lowest excited state in the spectrum is a singlet, lying
,11 K above the ground state doublet. At temperatures
much lower than this gap, only the ground-state doublet can
be expected to be significantly populated, and the low-
temperature physics can be captured by considering a two-
state system. The two degenerate states(denoted byual and

ubl) can be chosen such thatka uJzual=−kb uJzubl and
ka uJzubl=0. It turns out that the transverse angular momen-
tum operatorsJx andJy have no nonzero matrix elements in
the degenerate ground-state subspace. This is the source of
the strong Ising anisotropy which causes the linear suscepti-
bility to vanish in the transverse directions. We thus identify
the two degenerate states asu↑ l and u↓ l, and it can be ex-
pected that the low-temperature physics will be described by
an effective Ising model with spin-1

2 degrees of freedom.
The S4 symmetry of the crystal defines an easy axis for

ferromagnetic ordering in the pure LiHoF4 crystal.2 In the
absence of any externally applied magnetic field, the mag-
netic dipole interaction among the Ho3+ magnetic moments
causes them to align along thec axis of the unit cell(the z
direction in this analysis) below 1.53 K and the dipolar Ising
model serves as an adequate effective model for the system.

The situation becomes more subtle when the crystal is
subjected to an external magnetic field perpendicular to the
abovementioned easy axis.2 The magnetic moments couple
to the transverse field through the Zeeman interaction. Re-
stricted within the ground-state configurationJ=8, the
Wigner-Eckert theorem yields a Landég factorgL= 5

4 and the
Zeeman term in the Hamiltonian can be written as

HZ = − gLmBBW ·JW , s2d

with mB=0.6717 K/T being the Bohr magneton andBW

=Bxêx. Because the Zeeman term has no matrix elements
within the two-dimensional subspace, it cannot flip a spin to

first order inBW . Thus to see any effect of the transverse field
one must resort to second-order perturbation theory. Denot-
ing the singlet excited state atD=11 K by ugl, one can ex-
cept to see an effect,sgLmBd2sBx

2/Dd u kg uJxua ,blu2 on the
energies of the ground states. A naive application of degen-
erate second-order perturbation theory thus suggests that the
effect of the transverse field should be proportional toBx

2.
This perturbation theory scenario breaks down in the

quantum critical regime as can be seen in a comparison of
the energies. If we assume that the magnetic moment is fully
polarized in the transverse directionskJxl=J=8d at the quan-
tum critical point ofBx

c=4.9 T atT=0,2 a simple estimate of
the Zeeman energy is given by

EZ = gLmBBx
ckJxl = 32.91 K, s3d

significantly larger thanD. This demonstrates that the mixing
of the ground-state doublet with all the higher-lying states
must be considered at large transverse fields and second-
order perturbation theory is not sufficient to incorporate the

effect ofBW in the quantum critical regime. We describe below
a nonperturbative scheme to capture this physics.

III. MAPPING TO THE ISING SYSTEM

The magnetic properties of LiHoF4 are determined by
three kinds of interactions: a long-range magnetic dipole in-
teraction among the Ho3+ magnetic moments, a near-
neighbor exchange interaction which we assume to be small
and isotropic, and an isotropic hyperfine interaction between

P. B. CHAKRABORTYet al. PHYSICAL REVIEW B 70, 144411(2004)

144411-2



the electronic and nuclear magnetic moments on the same
site. Therefore, the complete Hamiltonian of a LiHoF4 crys-
tal in a transverse magnetic field can be written as

H = o
i

VCsJW id − gLmBo
i

BxJi
x +

1

2
sgLmBd2o

iÞ j

Li j
mnJi

mJj
n

+
1

2
sgLmBd2Jex

a3 o
i,nn

JW i ·JWNN + Ao
i

sIWi ·JW id, s4d

wherem, n=x,y,z. Li j
mn contains the position dependence of

the magnetic dipole interaction so that

Li j
mn =

dmnurWi j u2 − 3srWi jdmsrWi jdn

urWi j u5
. s5d

Jex is the dimensionless strength of the antiferromagnetic ex-
change interaction(whose strength is unknown at this point),
NN signifies that the sum is to be carried out over nearest
neighbors only andas=5.175 Åd is the length of the unit cell
in the x−y plane. A is the strength of the hyperfine interac-

tion (0.039 K) andIWi is the total angular momentum vector of
the Ho nucleus at thei th site I = 7

2.
To reduce the Hamiltonian that acts on as2J+1d3 s2I

+1d=136-dimensional Hilbert space to an effective Ising
model with spin-12 degrees of freedom, we neglect the rela-
tively weak hyperfine interaction in a first approximation. If
A=0, the only relevant degrees of freedom are the electronic

angular momentaJW and, for J=8, the single-site Hilbert
space is 17-dimensional. The transverse field splits the de-
generacy in the ground-state subspace and also mixes the 15
higher-lying crystal-field states with the two lowest states.
The single-site Hamiltonian(neglecting the hyperfine inter-
action)

HT = VCsJWd − gLmBBxJ
x s6d

is diagonalized numerically for all values of the transverse
field. For a givenBx, let the two lowest states be denoted by
uasBxdl and ubsBxdl and their energies be denoted byEasBxd
andEbsBxd. Then in a two-dimensional Hilbert space which
is spanned byuasBxdl and ubsBxdl (identified asu→ l and u
← l, respectively) HT can be written as

HT = ECMsBxd −
1

2
DsBxdsx, s7d

where ECMsBxd= 1
2fEasBxd+EbsBxdg and DsBxd=EbsBxd

−EasBxd. Thus we see that the energy difference between the
degenerate states caused by the transverse field can already
be interpreted as an effective magnetic field acting on spin-1

2

degrees of freedom at each site. Figure 1 demonstrates how
the transverse field continuously splits the degeneracy be-
tween the two ground states.

To generate the complete first-principles Hamiltonian in

Eq. (4) in terms of the Ising spins, one must project theJW

operators onto the two-dimensional subspace. Recognizing
the fact that every two-dimensional Hermitian matrix can be
uniquely expanded in terms of the two-dimensional unit ma-
trix and the three Pauli matrices, we evaluate the matrix el-

ements of theJW operators within the two-dimensional sub-
space for each value of the magnetic field and obtain their
representations in terms of spin-1

2 operators. Every operator
Jm sm=x, y, zd can be written as

Jm = Cm + o
n=x,y,z

CmnsBxdsn. s8d

The Pauli matricessn requires the choice of a basisu↑ l and
u↓ l in terms of the statesual and ubl. We choose the basis
vectors such thatu↑ l=s1/Î2dfual+expsiud ublg and u↓ l
=s1/Î2dfual−expsiud ublg. The phaseu is chosen such that
the matrix elements of the operatorJz are real. In this basis,
we have

Ji
z = Czzsi

z. s9d

The operatorsJx and Jy are also projected into this basis.
Table I presents the values of the various parametersCm and
Cmn, for Bx=4.9 T, which is the experimentally observed
critical transverse field in the limit of vanishing temperature.

We replace theJW operators by their corresponding repre-
sentations in the two-dimensional basis in the Hamiltonian in
Eq. (4). (The hyperfine interaction is neglected at this stage.)

FIG. 1. Lifting of ground-state degeneracy by the transverse
field.

TABLE I. The strengths of various coefficientsCmn for Bx=4.9 T.

Cz 0 Cx 3.12 Cy 0.01

Czx 0 Cxx 0.60 Cyx 20.09

Czy 0 Cxy 0.01 Cyy 1.05

Czz 5.14 Cxz 0 Cyz 0
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This leads to an extremely complicated Hamiltonian that acts
on the Ising subspace. The projection generates various new
kinds of interactions among the effective Ising spins. For
example, the term

Hzx=
1

2
sgLmBd2o

iÞ j

Li j
zxJi

zJj
x

in Eq. (4) gives rise to a set of complicated interactions in the
Ising subspace that are written as

Hzx=
1

2
sgLmBd2o

iÞ j

Li j
zxsCzzsi

zdsCx + Cxxs j
x + Cxys j

yd

=
1

2
sgLmBd2o

i

so
jÞ0

L j0
zxdCzzCxsi

z

+
1

2
sgLmBd2o

iÞ j

Li j
zxCzzCxxsi

zs j
x

+
1

2
sgLmBd2o

iÞ j

Li j
zxCzzCxysi

zs j
y. s10d

In Eq. (10), the quantitiesCzz, etc., depend on the transverse
magnetic fieldBx. The strength of the effective interactions
generated by the Ising projection is determined not only by
the parametersCmn, but also by the parametersLi j

ab, that
depend on the interspin vectorrWi j . Thus we can compare the
strengths of the various effective interactions, and we find
that the largest effective interaction isJi

zJj
z~ sCzzd2si

zs j
z. This

interaction is larger than the other interaction terms by two
orders of magnitude for the entire range of magnetic fields in
question(except for some constant terms that just serves to
define a new zero of energy). Therefore, to an accuracy of
,1%, the effective Ising model for LiHoF4 can now be writ-
ten as

HIsing = o
i

ECM,isBxd −
1

2
DsBxdo

i

si
x

+
1

2
sgLmBCzzd2o

iÞ j

Li j
zzsi

zs j
z

+
1

2
sgLmBCzzd2Jex

a3 o
i,nn

si
zsNN

z . s11d

The Ising Hamiltonian of Eq.(11) acts on effective spin-1
2

objects(“pseudospins”) located at the lattice sites of Ho3+

ions in the pure crystal LiHoF4, and the interaction strengths
and the effective transverse field depend on the physical
transverse fieldBx implicitly through the parametersCzz and
D. The parameterECM provides aBx-dependent zero of en-
ergy and will be ignored for the purpose of computing the
magnetic phase diagram.

IV. COMPUTING THE PHASE DIAGRAM

Equation(11) is a particular example of a general class of
Hamiltonians in which the various terms in the Hamiltonian
do not commute with each other, and in the interesting pa-

rameter regime around the quantum critical point, they are
comparable in strength. Therefore, quantum fluctuations can
become strong enough in the system to destroy long-range
order even atT=0. An Ising model of spin-12 objects on a
three dimensional lattice placed in a magnetic field trans-
verse to the Ising direction is a very good prototype of such
a Hamiltonian. We utilize Eq.(11) as a starting point to com-
pute the phase diagram of LiHoF4 in various ways, notably
using mean-field theory and quantum Monte Carlo simula-
tions. As a spin-off, we are able to calculate the strength of
the exchange interactionJex. Finally, we compare our results
with existing experimental data,2 which were obtained from
magnetic susceptibility measurements.

A. The effective Hamiltonian

An unusual feature of the Ising Hamiltonian in Eq.(11) is
that the strength of the dipole interaction itself seems to de-
pend explicitly on the strength of the physical transverse
field through the parameterCzz. Ordinarily, the interaction
term in an Ising model is free of any dependence on external
magnetic fields. The popular Hamiltonian governing the
quantum Ising model is generically written as

Hgen=
1

2o
iÞ j

Jijsi
zs j

z − hxo
i

si
x, s12d

whereJij is the pairwise interaction term(dipole interaction,
near-neighbor exchange,…) which usually depends on the
difference in spatial positions of the spins, andhx is the mag-
netic field that acts as the source of the quantum fluctuations.
With some appropriate definitions, we are able to define an
effective modelHeff that is of the same general form as Eq.
(12).

The reduction to a two dimensional Hilbert space from a
17-dimensional Hilbert space gives rise to renormalized
Landég factor gi, defined as

gi = 2gLkasBx = 0duJzuasBx = 0dl = 13.8. s13d

The factor 2gLCzzsBxd can be interpreted as a renormalization
of the individual magnetic moments due to the presence of
the transverse magnetic field. To extract this renormalization
factor, we define a dimensionless ratioesBxd such that

esBxd =
2gLCzzsBxd

gi

. s14d

In the classical limitBx=0, esBxd=1 by definition. This
makes it possible to define an effective HamiltonianHeff,
which is essentially identical to Eq.(12).

HIsing = fesBxdg2Heff, s15d

where

Heff =
1

2o
iÞ j

SgimB

2
D2

Li j
zzsi

zs j
z +

1

2o
i,nn

SgimB

2
D2Jex

a3 si
zsnn

z

−
DsBxd

2fesBxdg2o
i

si
x. s16d

We define every length in the system in units ofa
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=5.175 Å, such thatr̃ i j
m=r ij

m /a. Then the spatial dependence
of the dipole interactions can be expressed in the terms of
dimensionless quantitiesLij

mn, defined asLi j
mn=Lij

mn /a3. Re-
placing the constants in Eq.(16), we see that
sgimB/2d21/a3=0.214 K, andsgimB/2d=4.635 K/T. These
constants specific to LiHoF4 are substituted in Eq.(16), and
we obtain

Heff =
1

2
3 0.214o

iÞ j

L i j
zzsi

zs j
z +

1

2
3 0.214o

i,NN

Jexsi
zs j

z

− 4.635Beff
x o

i

si
x. s17d

A comparison of Eqs.(16) and (17) immediately yields the
crucial correspondence between the effective transverse
magnetic fieldBeff

x (expressed in T) and the physical trans-
verse fieldBx (also expressed in T):

Beff
x =

DsBxd
2 3 4.6353 fesBxdg2 . s18d

We note that the dependence ofBeff
x on Bx in Fig. 2 is

indeed quadratic for small values ofBx, as dictated by
second-order perturbation theory, but the dependence be-
comes increasingly weaker asBx increases. This demon-
strates that in the quantum critical regime of large transverse
fields and vanishing temperature, perturbation theory argu-
ments are not adequate.

At this point, a subtlety in the definition of “temperature”
needs to be mentioned. All our further calculations useHeff
as in Eq.(17), but the physical Hamiltonian isHIsing, which
modifies the energy scale by a factorfesBxdg2 [see Eq.(15)].
In both mean-field theory and quantum Monte Carlo calcu-
lations, the temperature enters only in the definition of the
Boltzmann weight of a configuration or a state vector in the
form skB=1d

r = expS−
HIsing

T
D = expS−

fesBxdg2Heff

T
D = expS−

Heff

Teff
D ,

s19d

where the physical temperatureT is related to the effective
temperatureTeff by

T = fesBxdg2Teff. s20d

B. A possible three-state description of the effective Ising
model

In this section, we digress from the discussion a bit to
show that it is also possible to capture the degeneracy split-
ting DsBxd using a simple three-state model of the system,
but it leaves out the effect of the matrix elements of the
ground state doublet with the higher-lying states. If we con-
sider the statesual, ubl and ugl at Bx=0 as the basis states,
then the crystal field HamiltonianVC is simply diagonal in
this basis, and looks similar to

VC = 10.0 0 0

0 0.0 0

0 0 D
2 , s21d

whereD=10.8 K.
The operatorJx has only two nonzero matrix elements

restricted within the three states in the absence of a trans-
verse field. By choosing the phase of the wave functions
properly, it is possible to make both of them real. These
matrix elements are

kauJxugl = kbuJxugl = r, s22d

wherer=2.4. Then the Hamiltonian in Eq.(6) can be written
in the three-state basis as

HT = 1 0 0 − gLmBBxr

0 0 − gLmBBxr

− gLmBBxr − gLmBBxr D
2 . s23d

This Hamiltonian can be exactly diagonalized, and defining

B̃x=gLmBBxr, the eigenvalues are

E0 =
D

2
−

1

2
ÎD2 + 8B̃x

2,

E1 = 0,

E2 =
D

2
+

1

2
ÎD2 + 8B̃x

2. s24d

The eigenstates can be schematically written as

uc0l =
1
Î2

sual + ubld + «0ugl,

uc1l =
1
Î2

sual − ubld,

uc2l = ugl + «2sual + ubld, s25d

where the symbols«0 and«2 signify small admixtures.
It is readily seen that the transverse field splits the degen-

eracy by an amountDsBxd=E1−E0. The gap is quadratic in

Bx when B̃x!D, but it is, in fact, linear whenB̃x@D. How-

FIG. 2. The effective magnetic field.
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ever, we see that the lowest excited state has an eigenvalue
of zero for all Bx, unlike the real system, where it bends
downwards with increasingBx. Thus the three state model
cannot capture the repulsion from the higher-lying states.
Even then, it explicitly shows that the physics near the quan-
tum critical point is ill-described by second-order perturba-
tion theory.

C. Domains in LiHoF4 and the mean-field solution

The magnetic dipole interaction is long range, falling off
as 1/r3, wherer is the distance between two spins. A dipole-
coupled Ising ferromagnet is expected to be well explained
by mean-field theory fordù3. As we shall see, mean-field
theory does capture the qualitative behavior in the phase dia-
gram, but is not very reliable for making quantitative predic-
tions.

Our starting point is Eq.(17). The individual spin-12 de-
grees of freedom sit on a tetragonal unit cell of dimensions
sa,a,cd=s1,1,2.077d in units of a=5.175 Å. Each unit cell
has four spins, at the positions we denote as[s0,0,0d,
s0,a/2 ,c/4d, sa/2 ,a/2 ,−c/2d and sa/2 ,0 ,−c/4d]. All the
positions in the unit cell are measured from the Bravais lat-

tice vector denoted byRW +s0,0,0d.
The long-range nature and angular dependence of the di-

pole interaction create a complex model in which the actual
shape and lattice of the sample influences the ground state.
Spins that lie in the sameab plane want to antialign, while
spins along the samec axis want to order ferromagnetically.
This angular dependence tends to favor ferromagnetism in
long thin samples, while it prohibits a ferromagnetic state in
spherical samples. Luttinger and Tisza12 found, for example,
a ferromagnetic ground state for the face-centered lattice in
the shape of a prolate spheroidal sample of axis ratio larger
than 6. However, in experiments on LiHoF4 spherical,2

cubic,4 and rectangular1 shapes have been used with no ap-
parent dependence of the results on the shape of the sample.

The reason for this sample-shape independence lies in the
domain structure of LiHoF4. Experimentally, there is
evidence13,14 that LiHoF4 forms long needle-shaped do-
mains, with the long direction being along thec axis. Theo-
retically, this agrees with the work of Griffiths,15 where a
proof is given that the free energy of a dipolar system is
independent of the shape of the sample in the absence of an
externally applied field. Since this is an Ising system, the
magnetization alternates in sign between adjacent domains,
which minimizes the global energy stored in the macroscopic
fields outside the sample. Thus it would be incorrect, in the
context of mean-field theory, to assume that the magnetiza-
tion is uniform over the entire sample, since in fact, it is only
uniform over a single domain.

To incorporate the effect of domains, we assume that an
imaginary sphere sits deep inside a single domain.16 A single
spin at the center of this sphere now experiences an effective
field from the orientation of the magnetic dipoles both inside
and outside the sphere. In the ferromagnetically ordered
state, the magnetization of the domain in question can be
assumed to be uniform, denoted now byMz. The magnetic
field acting on the domain as a whole is the external field

Bext
z , and the susceptibilityx of the domain can be found

from the relation

Mz = xBext
z . s26d

On the other hand, if we consider the small imaginary
sphere deep inside the domain, the susceptibilityxsph of the
sphere can be found from the equation relating the magneti-
zation inside the sphere(since the sphere is a part of the
domain, the magnetization inside it isMz) and the magnetic
field acting on the sphereBsph

z

Mz = xsphBsph
z . s27d

Apart from the external fieldBext
z , a spin inside the spheri-

cal cavity also experiences two magnetic fields, one from the
magnetic surface charge density at the surface of the sphere,
and the other from the magnetic surface charge density at the
surface of the long needle-shaped domain. There is no con-
tribution from the spins in the bulk of the domain, since the
magnetization is uniform, and only the surfacechargescon-
tribute. Then the magnetic fieldBsph

z can be related to these
macroscopic fields17

Bsph
z = Bext

z −
8p

3
Mz + 4pMz. s28d

The second term on the right-hand side of the equation above
is the contribution from the spins at the surface of the sphere,
while the third term is the contribution from the spins at the
surface of the domain. By substituting Eq.(28) in Eqs.(26)
and (27) leads to the following relation:

x =
1

xsph
−1 − 4p

3

. s29d

Equation (29) above is the magnetic version of the
Clausius-Mosotti relation,17 which relates the macroscopic
electric susceptibility of a system with the microscopic mo-
lecular polarizability. In fact, it is in some ways easier to
derive from the analogy with electric dipoles. In that case,
the field produced by thecharge densityat the surface of the
spherical cavity iss4p /3dMz while there is no contribution
from the surface of the domain.

We emphasize that this relation is obtained from a single
assumption that the spinsoutside the sphere are treated in
mean-field fashion. The microscopic variablexsphcan be cal-
culated approximately, using mean-field theory, or exactly,
using quantum Monte Carlo(QMC) simulations over a
sphere. The next part of this section explores how the do-
main structure can be incorporated in the mean-field sce-
nario, while the following section contains the results from
QMC simulations.

At this point, a comment on the effect of the transverse
magnetic field on the domain formation is necessary. From
the mapping to the Ising model, it is seen that the contribu-
tion of the transverse dipole interaction,Lij

xx is negligible
compared to the longitudinal dipole interactionLij

zz. There-
fore, we may assume that the transverse magnetic field po-
larizes the Ising spins along thex direction uniformly
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throughout the sample. In other words, thex component of
the magnetizationMx is unaware of the domain structure
formation in LiHoF4.

D. Mean-field theory

Let us now calculate the mean-field critical temperature
for a long, needle-shaped domain. We therefore place the
sphere deep inside a single domain. The mean-field critical
temperature is given by the local field, which is given by the
sum over all dipoles within the sphere. In the presence of
domains, this field must be augmented by the field acting on
the sphereBsph

z .
With no domains a single spin at the center of the sphere

therefore experiences an effective longitudinal mean-field
given by

BMF
z = S o

jÞ0

sphere

L0j
zzD 3 Smz

a3D , s30d

wheremz is the magnetic moment of a single dipole

mz = SgimB

2
Dkszl. s31d

The value of the lattice sum in Eq.(30) can be easily ob-
tained by summing over larger and larger spheres, and the
convergence is found to be very rapid. The value for LiHoF4
is

o
jÞ0

sphere

L0j
zz= 3.205. s32d

In order to take the domain into account we combine Eqs.
(28) and(30). Since the macroscopic magnetization is given
by

Mz = N0m
z, s33d

whereN0 is the number density of dipoles, we simply have to
augment the value of the lattice sum in Eq.(32) by the value
s4p /3dN0a

3. Since N0=4/aac and c/a=2.077, it follows
that s4p /3dN0a

3=8.067.
This leads to the value of the critical temperature at the

classical limit.

TC = 0.214 K3 s3.205 + 8.067d < 2.41 K. s34d

On the other hand, the new critical effective field at the
quantum limit is given by

Beff,C
x =

2.41 K

4.635 K/T
< 0.52 T, s35d

which corresponds to a physical critical transverse field of
Bx,C<4.11 T.

We note that the critical temperature at the classical limit
2.41 K is 57% larger than the experimentally observed value
of 1.53 K. This behavior is encouraging, in the sense that
mean-field theory should always overestimate the ordered
region. As far as the quantum limit is concerned, it may seem
that the mean-field estimate is wrong, since 4.11 T is about

16% smaller than the experimentally observed value of 4.9 T.
However, we have entirely neglected the on-site hyperfine
interaction between the electronic cloud and the Ho nucleus.
At low temperatures, this interaction affects the phase
boundary significantly.2 Therefore, at this point, we cannot
yet compare our results for the quantum limit with experi-
ment.

As a consistency check to our mean-field treatment of the
domain structure, we perform the lattice sum directly over a
long cylinder. The summation is done by considering a series
of long cylinders with increasing base area. For each cylinder
with a fixed base area, the length is increased until conver-
gence is obtained. The series converges quite rapidly and as
a final result we have

− o
jÞ0

cylinderS r̃ j
2 − 3z̃j

2

r̃ j
5 D = 11.272 = 3.205 + 8.067, s36d

in perfect agreement with the mean-field approach described
above. We note that the mean-field theory calculation in Ref.
2 does not take into account the physics of domain formation
but rather simply rescales the effective couplings to force a
fit to the observedTC andBx,C.

V. QUANTUM MONTE CARLO SIMULATIONS ON LiHoF 4

We perform extensive QMC simulations of the dipole-
coupled quantum Ising model, described by the Hamiltonian
in Eq. (17). We use a recently introduced9 stochastic series
expansion(SSE) cluster quantum Monte Carlo method for
which computational time scales asN lnsNd, where the num-
ber of spins is given byN. In traditional single-spin-flip
simulations of long-range models the computational time
typically scales asN2, due to the summation over interactions
between all pairs of spins. The improved scaling enables us
to increase the precision and reach large system sizes.

Our starting point is again Eq.(29), which relates a mi-
croscopic quantityxsph to a macroscopic quantityx. From
Eq. (29), we find thatx can diverge, even whenBext

z van-
ishes, when

xsph=
3

4p
. s37d

We proceed to evaluatexsph exactly using QMC simulations
as a function ofTeff andBeff

x . At the point where the condition
in Eq. (37) is met,x, the macroscopic susceptibility, diverges
and the system is critical.

Truncating the sum in the Hamiltonian at the boundary of
the sphere and treating the dipoles outside the sphere in
mean-field fashion can be considered a boundary condition
in the Monte Carlo simulation. This so-called reaction-field
method18 is not the only way to incorporate the long-range
interaction in an efficient way. An alternative is to consider a
large number of periodic images of the simulation volume.
Performing the necessary sums over all dipoles in the simu-
lation volume and the image volumes is very time consum-
ing, but the sums can often be efficiently performed using the
Ewald summation technique.19 In this work we have not at-
tempted to compare the relative advantages of the methods,
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but we have found the reaction-field method very conve-
nient. An earlier comparison20 found the Ewald summation
method also quite reliable.

Operationally, the susceptibilityxsph is defined as the
spin-spin correlation function in imaginary time, averaged
over all spins inside the sphere.

xsph=
a

N
o
i j
E

0

b

dtksi
zstds j

zs0dl. s38d

The prefactora is given by

a = N0SgimB

2
D2

. s39d

The imaginary time integral in Eq.(38) can be evaluated
directly by the SSE method.21 The condition for criticality
can be now be written as

1

N
o
i j
E

0

b

dtksi
zstds j

zs0dl =
3

4pN0
S 2

gimB
D2

= 0.579 K−1.

s40d

The simulation is done over a sequence of spheres with
increasing radius. We find that the critical curve given by the
above condition converges fairly quickly as the radius is in-
creased. In the QMC calculation the fluctuations within the
sphere are fully included, and we stress that although we use
a mean-field result for the part of the domain exterior to the
sphere, the final result has converged and should not, in any
way, be considered a mean-field result. One could also argue
that the field originating from dipoles in other domains may
affect the critical temperature in LiHoF4. However, the ma-
terial forms domains in order to minimize the energy density
of the magnetic field, so this field should be very small. The
same arguments hold also for the case of a transverse field,
and the same condition is used in the presence of a transverse
field. Figure 3 shows the phase diagram for the mean-field
solution as well as for the Monte Carlo simulation.

The results of Fig. 3 seem reasonable in the sense that the
QMC solution yields a lower critical temperature than the
mean-field solution. The mean-field solution is within 20%
of the QMC solution, and it does therefore not suffice to
describe the system at a more precise quantitative level, even
for the present case of a long-range interaction in three di-
mensions. This is interesting since the upper critical dimen-
sion for a uniaxial dipolar interaction is expected to be 3, and
the critical behavior should be described by mean-field
theory with logarithmic corrections.22,23 The finite-size ef-
fects in Fig. 3 are quite small already for moderate system
sizes and the result for the largest system sizesN
=295dipolesd is Tc=2.03 K atBx=0 and sBeff

x dC=0.47 T at
the quantum limit. The critical temperature is still signifi-
cantly above the experimental value of 1.53 K, but this dis-
crepancy may be attributed to an additional exchange inter-
action, which we discuss shortly. The effective transverse
field of 0.47 T corresponds to a physical transverse field of
approximately 3.77 T. But, as stated earlier, comparison of
the critical field with experimental value at the quantum limit
is possible only when the hyperfine interaction is included in
the model.

Exchange interaction.A major question at this point is
why the critical temperature of the model is about half a K
higher than the experimental value. One factor that lowers
the critical temperature is the antiferromagnetic Heisenberg
exchange interaction. Since there has been no direct obser-
vation of the strength of the interaction, we treat it as a free
parameterJex as in Eq.(17). First we consider the mean-field
solution with the domain structure. If we assume an ex-
change interaction of strengthJex=1.03 the mean-field criti-
cal temperature is obtained asTc=0.2140K3 s11.271−4
31.03d=1.53 K, since every spin has four nearest neighbors.

Next we perform Monte Carlo simulations, where we tune
the value of the exchange interaction to obtain a critical tem-
perature of 1.53 K. This is done for a sequence of spheres
with increasing radius, and the required exchange parameters
are shown in Fig. 4. The corresponding phase diagram is
shown in Fig. 5. There is still a strong(and nonmonotone)
size dependence in the exchange parameter due to fluctua-
tions in the number of surface bonds as the radius of the
sphere increases, but the phase diagram shows very little size
dependence. The exchange parameter itself has not con-

FIG. 3. The phase diagram as a function of effective tempera-
ture and effective magnetic field obtained from quantum Monte
Carlo simulations on different lattice sizes. The upper curve is the
mean-field solution.

FIG. 4. Exchange energy needed to tune the critical
temperature.
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verged for the system sizes we study, but the results for the
largest system sizes averages to about 0.75. This is about
25% smaller than the mean-field value, which seems reason-
able. A value ofJex=0.75 corresponds to an antiferromag-
netic exchange interaction of strength 0.16 K between neigh-
boring spins. This can be compared to the dipolar interaction
between nearest neighbors, which is ferromagnetic and of
strength 0.31 K, or about twice the exchange interaction. If
we instead sum over all bonds connected to a given site in an
ordered domain, the dipolar interaction is of strength 0.214
311.271 K=2.4 K, while the exchange energy is of order
0.2143430.75 K=0.64 K. It is difficult to know if this is a
reasonable value for the exchange, and a more stringent test
comes when the whole phase diagram in can be compared to
the experimental result. In the next section, we consider in-
cluding the hyperfine interaction, which enables us to com-
pare the phase diagram to experimental data.

The reason for the strong finite-size effect in the exchange
parameter is that the exchange interaction for all broken
bonds at the surface of the sphere is neglected in this calcu-
lation. If a spin is located close to the boundary of the sphere
then one, two or three of its four nearest neighbors may be
located outside the sphere. Even for the largest system size
sN=3491d in Fig. 4, only 80% of the spins have all four
nearest neighbors inside the sphere. The fraction of spins that
have only one, two or three nearest neighbors inside the
sphere fluctuates very rapidly as the size of the sphere is
increased. However, this is a boundary effect and should dis-
appear as the system size is increased further.

VI. THE HYPERFINE INTERACTION

The dynamics of LiHoF4 at low temperatures is compli-
cated by the hyperfine interaction between the electrons in
the Ho3+ ion and the Ho nucleus.2 This interaction is as-
sumed to be on site, and its strength is characterized by the
hyperfine constantA, which is equal to 0.039 K for
LiHoF4.

24–26 At low temperatures, the hyperfine interaction
prefers ordering and the final phase boundary is a result of
the competition between the transverse field, which tries to
destroy the ferromagnetic ordering, and the hyperfine inter-
action.

Consider the truncated Hamiltonian in Eq.(6). Since the
value of the total nuclear angular momentumI in
LiHoF4 is 7

2, the actual Hilbert space of the electron-nucleus
system for a given site is, in reality, 1738=136 dimen-
sional. With the inclusion of the hyperfine coupling, the trun-
cated Hamiltonian in Eq.(6) should be written as

Hhyp = fVCsJWd − gLmBBxJ
xg^1N + A o

m=x,y,z
Jm

^ Im, s41d

where 1N is the eight-dimensional unit matrix in the nuclear
sector of the Hilbert space.

The Hamiltonian in Eq.(41) is a 136-dimensional matrix,
and in the absence of the hyper-fine interaction, each elec-
tronic crystal-field wave function is eightfold degenerate.
The hyperfine interaction breaks this degeneracy to the order
of the strength ofA. We adopt the viewpoint that the trans-
verse magnetic field is renormalized because of the hyperfine
interaction, in a fashion controlled by the temperature. This
renormalization can be extracted by matching the longitudi-
nal susceptibility of a single Ho3+ ion without the presence of
the hyperfine interaction as described below.

The susceptibilityxzz for a single ion is easy to define in
the 136-dimensional Hilbert space. We diagonalize the
Hamiltonian in Eq.(41) with A=0 andA=0.039 K. Let the
eigenstates in the 136-dimensional Hilbert space be denoted
by ucm

0 l when A=0 and ucm
1 l when A is nonzero, and the

corresponding energy eigenvalues asEm
0 and Em

1 , m
=1, . . . ,136 in both cases. For a temperatureT=1/b, the
longitudinal susceptibility can be defined as

xzz
i =

b

Zi
o

m,n=1,. . .,136

8
ukcm

i uJz
^ 1Nucn

i lu2

3e−bEm
i − 2

Zi
o

m,n=1,. . .,136

9 ukcm
i uJz

^ 1Nucn
i lu2e−bEm

i

Em
i − En

i ,

s42d

where i =0,1. Theprimed sum is over states degenerate in
energy, while the double-primed sum is over states nonde-
generate in energy. Figure 6 shows how the susceptibilities at
the typical temperatureT=0.444 K differ for a range of val-
ues of the transverse field depending on whether the hyper-
fine interaction is turned on or not.

From the plot of the susceptibilities, it is clear that the
hyperfine interaction renormalizes the magnetic field. This
effect is temperature dependent, and the shift in susceptibil-
ity decreases as the temperature is increased. For instance,
the Ising mapping and quantum Monte Carlo simulations
yield a typical point on the phase boundary assTC,Bx,Cd
=s0.444 K,2.949 Td. In Fig. 6 we see thatxe

zzsA=0,T
=0.444 K,Bx=2.949 Td equals xe

zzsA=0.039 K,T
=0.444 K,Bx=3.282 Td. Thus, we conclude that the critical
transverse field of 2.949 T is renormalized to the critical
transverse field of 3.282 T in the presence of the hyperfine
interaction. This simple renormalization program can be car-
ried out for all the points on the quantum Monte Carlo phase

FIG. 5. Critical temperature as a function of effective transverse
field, with an exchange interaction.
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boundary. This procedure yields a phase diagram that shows
how the hyperfine interaction affects the phase boundary sig-
nificantly in the quantum regime.

A. Magnetic phase diagram from quantum Monte Carlo and
hyperfine interaction

Figure 7 shows a comparison of the theoretically obtained
phase diagram with the experimental phase diagram obtained
through susceptibility experiments.2 We get a quantum criti-
cal point ofBx,C=4.66 T, which is approximately 6% smaller
than the experimental value. However, serious deviations
also occur at temperatures higher thanT,1 K, where the
effect of the nuclear interaction is negligible. This leads us to
conclude that the deviation really stems from the mapping to
the Ising model. The Ising model mapping is strongly deter-
mined by the strength of the degeneracy splitting in the
ground-state doublet as the transverse magnetic field is
turned on, which in turn strongly depends upon the values of
the crystal-field parameters. In a subsequent section, the un-
certainties in the crystal-field parameters and their effect on
the physics are discussed.

B. Hyperfine interaction and the Ising model

The actual computation of the longitudinal susceptibility
of the ion-nucleus system in the presence of a hyperfine in-
teraction requires the knowledge of all the eigenstates of the
136-dimensional Hilbert space. However, the physics of why
the hyperfine interaction enhances the longitudinal suscepti-
bility can be understood by considering a toy system consist-
ing of a single spin-12 electron coupled to a spin-1

2 nucleus
through a hyperfine interaction. It shall be seen that the en-
hancement of susceptibility is really a subtle effect captured
in second-order perturbation theory.

Let us consider a single spin-1
2 electron placed in a trans-

verse magnetic fieldhx (we assume that the nucleus does not
couple to the magnetic field: this is a reasonable assumption
since the nuclearg factor in LiHoF4 is approximately 1000
times smaller than the electronic Landég factor). Then the
Hamiltonian is

H = − hxse
x

^ 1N. s43d

.
The subscriptse andN refer to the electronic and nuclear

degrees of freedom, respectively. The Hilbert space isfs2
3

1
2 +1ds23

1
2 +1d=g4 dimensional, and the transverse field

splits the Hilbert space in two multiplets, each of which is
twofold degenerate. The ground electronic multiplet consists
of the statesu→ le^ u↑ lN and u→ le^ u↓ lN, while the excited
electronic multiplet consists of the statesu← le^ u↑ lN and u
← le^ u↓ lN, the difference in energy between the two mul-
tiplets being 2hx. The longitudinal susceptibility can be eas-
ily evaluated using the expression in Eq.(42) (with suitable
modifications for the toy system), and we find

xzz=
1

hx
s44d

at T=0.
If the hyperfine interaction is turned on, the degeneracies

between the states in the nuclear sector is lifted in each mul-
tiplet, and this changes the susceptibilities. Let the perturbing
hyperfine interaction be written as

Vhyp = Aise
zsN

z + A'se
xsN

x . s45d

.
Even though the hyperfine strengths are isotropic in the

physical system, introducing anisotropy helps us to under-
stand the roles played by the longitudinal and transverse
components of the hyperfine interaction transparently. The
special case of isotropy,Ai=A', will be considered at the
end.

In first order degenerate perturbation theory, the electronic
states are all polarized in thex direction, and onlyA' has
any nonzero matrix element within the same degenerate elec-
tronic multiplet. ThusAi drops out of the physics in first-
order perturbation theory.

In Fig. 8, the states in the four-dimensional Hilbert space
are uc1

0l= u→ le^ u← lN, uc2
0l= u→ le^ u→ lN, uc3

0l= u← le^ u
→ lN, and uc4

0l= u← le^ u← lN. The zero temperature suscep-
tibility is now given by

FIG. 6. Comparison of the single-ion longitudinal susceptibilies
with and without the hyperfine interaction. We make the approxi-
mation of assuming that the increase in longitudinal susceptibility
caused by the nuclei can be modeled by simply renormalizing the
transverse field downwards by the appropriate amount.

FIG. 7. The complete phase diagram of LiHoF4. Experimental
data is from Ref. 2.
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xzz=
1

hx + uA'u
. s46d

Thus it is obvious that the longitudinal susceptibility al-
ways decreases in first-order perturbation theory. The trans-
verse component of the hyperfine interaction always acts as
an extra transverse field, which implies that the hyperfine
interaction should lower the critical field, at least in first-
order perturbation theory.

However, if we consider second-order perturbation theory,
we can show that, when the hyperfine interaction isisotropic,
the net effect is actually an increase in the longitudinal sus-
ceptibility at T=0. In second order, onlyAi contributes to
further splitting of the energy spectrum. More importantly,
the ground stateu→ le^ u← lN is mixed with the stateu← le
^ u→ lN, and the stateu→ le^ u→ lN is mixed with the state
u← le^ u← lN both with an amplitude given by«=Ai /hx.
Thus, up to second-order perturbation theory we have the
following spectrum:

uc1l = uc1
0l −

Ai

hx
uc3

0l,

uc2l = uc2
0l −

Ai

hx
uc4

0l,

uc3l = uc3
0l +

Ai

hx
uc1

0l,

uc4l = uc4
0l +

Ai

hx
uc2

0l. s47d

The energies of the states up to second-order in perturbation
theory are given by

E1 = − hx − A' −
Ai

2

2hx
,

E2 = − hx + A' −
Ai

2

2hx
,

E3 = + hx − A' +
Ai

2

2hx
,

E4 = + hx + A' +
Ai

2

2hx
. s48d

This gives rise to a nonzero matrix element ofse
z between

uc1l and uc2l, and this term serves to cancel the decrease in
susceptibility because of first-order contribution fromA'.
The exact expression for the longitudinal susceptibility atT
=0 is given by

xzz=
f1 − s

Ai

2hx
d2g2

hx + A' +
Ai

2

2hx

+
Ai

2

2hxA'

. s49d

The denominator in the first term in the right-hand side of
Eq. (49) can be easily expanded in terms of the ratiosA' /hx
andAi

2/2hx
2, and the susceptibility expression turns out to be

shx@Ai ,A'd

xzz=
1

hx
+ S Ai

2

A'

− A'D 1

hx
2 + OS 1

hx
3D + ¯ . s50d

The crux of the increase in susceptibility lies in the fact
that the term proportional to 1/hx

2 is positive whenAi ùA'.
The increase in susceptibility is not a generic feature of the
ion-nuclear interaction for all values ofAi and A', but is
present when the interaction is isotropic, as in LiHoF4. The
transverse component always drives the susceptibility lower,
but the longitudinal component can compete and win for a
certain range of values, and the change in susceptibility is
quadratic inAi. We emphasize that this positive contribution
arises from the nonzero matrix element between two states
that were degenerate in the absence of the hyperfine interac-
tion.

This schematic problem of a spin-1
2 electron coupled to a

spin-12 nucleus through a hyper-fine interaction serves nicely
to illustrate the physics behind an increase in the longitudinal
susceptibility of the electrons due to the hyperfine interac-
tion. In LiHoF4, every electronic state is split into eight
nuclear states when the hyperfine interaction is turned on.
There is no matrix element ofJz within the same electronic
multiplet whenAi=0. WhenAiÞ0, a nonzero matrix ele-
ment ofJz develops between two lowest nuclear states in the
ground electronic multiplet, the square of the matrix element
varying quadratically asAi. Exactly as outlined in the sche-
matic problem, this matrix element causes an increase in the
longitudinal susceptibility of the electron.

C. Projecting the hyperfine interaction

The hyperfine interaction involves the electronic angular
momentumJm. Following the mapping to the Ising subspace
in the previous sections, we can map these degrees of free-
dom to effective Ising degrees of freedom. This gives rise to
a hyperfine interaction term that operates in an effectively
16s=238d-dimensional Hilbert space. However, this gives
rise to a hyperfine interaction whose strength depends on the
magnetic field. Using the mapping in Eq.(7), Eq. (8) and the
hyperfine interaction in Eq.(41), the effective single-site
Hamiltonian now becomes

FIG. 8. Ion energy spectrum(for a spin-1/2 nucleus) with the
hyperfine interaction treated in first order perturbation theory.
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H = −
DsBxd

2
se

x
^ 1N + ACabsBxdsa

^ Ib. s51d

Using the projected Hamiltonian in Eq.(51), we can natu-
rally understand why the longitudinal component of the hy-
perfine interaction wins over the transverse one. The longi-
tudinal component is proportional toCzzsBxd, which is
significantly larger than all the other components at the mag-
netic field regime of interest. The analysis of the previous
section remains valid in a 16-dimensional Hilbert space, and
the susceptibility is always enhanced due to the contribution
from the longitudinal component of the hyperfine interaction
Ai=ACzzsBxd.

D. Uncertainties in the crystal-field parameters

The quantitative details of the LiHoF4 depend sensitively
on the values of the various crystal-field parameters(CFP)
used in constructing the crystal field Hamiltonian(please see
the Appendix for details). For example, we have found that
the value of the critical transverse fieldBx,C varies by as
large as 25% when the CFPB2

0 is varied by 10%. However,
the parameters cannot be determined directly by experi-
ments, but are used as fitting parameters to fit theoretical
calculations to experimental data. There have been attempts
to determine the CFP’s by fitting to spectroscopic data10 or to
susceptibility measurements.11 However, we have found that
the results of theoretical calculations become more and more
sensitive to the values of CFP’s as the transverse field is
increased. As we have shown in earlier sections, the most
important physical quantity that determines the phase dia-
gram is the splitting between the two lowest statesDsBxd,
that smoothly and monotonically increases with the trans-
verse field. Thus we propose a spectroscopic experiment in
the presence of a transverse field to determineDsBxd. How-
ever, the quantum regime of the phase diagram is compli-
cated due to the presence of hyperfine interaction. The effect
of the hyperfine interaction is also extremely sensitive to the
values of the CFP’s, and this effect is very difficult to calcu-
late theoretically. Thus we propose the experiment be carried
out in a regime of the phase diagram where the quantum
fluctuations due to the hyperfine interaction are negligible,
but the fluctuations caused by the transverse magnetic field
are still significant. Thus we propose an experiment to deter-
mine DsBxd in the magnetic field range 2.0–3.0 T. In this
regime, our theoretical calculations show that the splitting
energy varies between,1.6–3.0 K. This corresponds to a
microwave frequency range of,20–70 GHz. A spectro-
scopic experiment that determinesDsBxd accurately is the
most important ingredient needed to determine the phase dia-
gram accurately. Even though a single spectroscopic experi-
ment is not enough to determine the values of all the crystal
field parameters uniquely, we have found that the only other
important parameter in the effective Ising Hamiltonian
CzzsBxd is extremely robust even to large changes in the crys-
tal field parameters. Thus, an accurate determination of
DsBxd is enough to compute the phase diagram from the
effective Ising model.

VII. SUMMARY AND CONCLUSIONS

It has been postulated that LiHoF4 is an example of an
Ising-like system, and when the sample is placed in a mag-
netic field transverse to the Ising direction, it is an example
of a quantum Ising system with magnetic dipole interaction
being the ordering interaction. However, the quantum Ising
model, Eq.(1), has never been used to obtain physical results
for the system. We derive the physical Ising model by a
nonperturbative mapping to the Hilbert space spanned by the
ground-state doublet. We then do a quantum Monte Carlo
simulation to obtain the phase diagram, also incorporating
the domain structure in the process. This is a step beyond
mean-field theory and the calculation is sufficiently accurate
that uncertainty in the predicted phase diagram is now lim-
ited by uncertainties in the crystal-field parameters. As a spin
off, we are able to compute the phenomenological exchange
interaction parameter that modifies the phase diagram con-
siderably in the classical regime. The hyperfine interaction
poses considerable problems in comparing the phase diagram
obtained from the quantum Monte Carlo simulations to the
experimental data. We have made the approximation that the
effects of the hyperfine interaction can be completely recov-
ered through a renormalization of the magnetic field.

LiHoF4 is a material in which the magnetic quantum and
classical phase transitions can be controlled with great pre-
cision. Neutron scattering studies have been done on LiHoF4
to obtain the spin-wave excitations in the system. By ran-
domly replacing the magnetic Ho3+ with nonmagnetic Y3+

ions, spin-glass behavior has been observed. We believe that
the existence of an Ising model that faithfully reproduces the
physics in both the classical and the quantum regimes, will
facilitate the investigations of the interesting properties of
LiHoF4 considerably.

ACKNOWLEDGMENTS

We thank Jens Jensen for many helpful discussions and
for supplying us with a copy of Ref. 6. We also thank M. J.
P. Gingras for many helpful discussions. P.H. acknowledges
support by the Swedish Research Council and the Göran
Gustafsson foundation. S.M.G. and P.B.C. were supported by
Grant No. NSF DMR-0342157. A.W.S. was supported by the
Academy of Finland, Project No. 26175.

APPENDIX: THE CRYSTAL-FIELD HAMILTONIAN

In LiHoF4, the Ho3+ ions have an unfilled shell 4f with 10
electrons. The Hunds’ rules dictate that the ground configu-
ration of a single Ho3+ ion should be5I8sS=2,L=6,J=8d. If
there were no interactions with the neighboring ions, the
ground state of a single ion will be 17-fold degenerate. How-
ever, the Coulomb interactions with the neighboring ions
gives rise to an electric field that lifts this degeneracy. In
general, this electric field depends strongly on the spatial
symmetry of the crystals. In the simplest scenario, each ion
is regarded as a point charge, and the spatial overlap of the
wave function of an ion with its neighboring ion is neglected.
This is the point-charge model for calculating crystal fields.
The derivation of the crystal-field electrostatic potential takes
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into account the lattice symmetry, and is most simply ex-
pressed in terms of operators called “operator equivalents.”
We shall not discuss the details of the derivation here, but
instead refer the reader to the article by Hutchings,27 and
references therein.

The operator equivalents are operators built out of theJW

operators that act on thes2J+1d-dimensional space deter-
mined by the value ofJ. However, they act only on the
angular part of the wave function of the coupled system, and
the matrix elements of the radial part of the wave function
are usually incorporated as fitting parameters.

The number of operators needed to completely determine
the crystal field HamiltonianVC, and the rules for deriving
them, depend on the symmetry of the crystal and the ground-
state configuration of the ion. These rules are clearly ex-
plained by Stevens28 and Stevens and Bleaney.29 Here we
shall just list the operators that have nonzero matrix elements
in the configuration5I8 of the Ho3+ ion in LiHoF4.

In case of LiHoF4, the relevant crystal field operators are

O2
0 = 3Jz

2 − JsJ + 1d,

O4
0 = 35Jz

4 − 30JsJ + 1dJz
2 + 25Jz

2 − 6JsJ + 1d + 3J2sJ + 1d2,

O4
4sCd =

1

2
sJ+

4 + J−
4d,

O6
0 = 231Jz

6 − 315JsJ + 1dJz
4 + 735Jz

4 + 105J2sJ + 1d2Jz
2

− 525JsJ + 1dJz
2 + 294Jz

2 − 5J3sJ + 1d3 + 40J2sJ + 1d2

− 60JsJ + 1d,

O6
4sCd =

1

4
sJ+

4 + J−
4df11Jz

2 − JsJ + 1d − 38g + H . c . ,

O6
4sSd =

1

4i
sJ+

4 − J−
4df11Jz

2 − JsJ + 1d − 38g + H . c . ,

sA1d

whereJ+=Jx+ iJy andJ−=Jx− iJy.

Using these operators, the crystal-field HamiltonianVC
can be written as

VC = B2
0O2

0 + B4
0O4

0 + B6
0O6

0 + B4
4sCdO4

4sCd + B6
4sCdO6

4sCd

+ B6
4sSdO6

4sSd. sA2d

The radial matrix elements of the crystal field is extremely
difficult to compute accurately even in a point-charge model.
They are, therefore, incorporated within the constantsBl

m,
known as crystal-field parameters(CFP’s). The CFP’s are
generally used as fitting parameters. In LiHoF4, for example,
they are used to fit the crystal-field spectrum to observed
spectroscopic data,10,25,30,31 and to susceptibility
measurements.11

In all our calculations, we use the CFP’s proposed by
Rønnowet al.6 Their values(in K) are listed below:

B2
0 = − 0.696,

B4
0 = 4.063 10−3,

B6
0 = 4.643 10−6,

B4
4sCd = 0.0418,

B6
4sCd = 8.123 10−4,

B6
4sSd = 1.1373 10−4. sA3d

These values of CFP’s were obtained6 by fitting the re-
sults of RPA spin-wave dynamics calculations to observed
neutron scattering data, as well as to the two lowest energy
levels of the crystal-field spectrum, as observed in spectro-
scopic measurements.32 However, there are no estimates of
the accuracies to which these parameters are known. There
was an earlier attempt to determine the CFP’s by fitting to
susceptibility data,11 but there were very large error bars.
Another attempt was made to determine the CFP’s by fitting
to spectroscopic measurements,10 but an incorrect symmetry
sD2dd of the crystal was used in the theoretical calculations,
instead of the correct oneS4.
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