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The properties of LiHof are believed to be well described by a long-range dipolar Ising model. We go
beyond mean-field theory and calculate the phase diagram of the Ising model in a transverse field using a
guantum Monte Carlo method. The relevant Ising degrees of freedom are obtained using a nonperturbative
projection onto the low-lying crystal-field eigenstates. We explicitly take the domain structure into account, and
the strength of the near-neighbor exchange interaction is obtained as a fitting parameter. The on-site hyperfine
interaction is approximately taken into account through a renormalization of the transverse applied magnetic
field. Finally, we propose a spectroscopy experiment to precisely measure the most important parameter
controlling the location of the phase boundary.
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I. INTRODUCTION 1 r2 - 32?
=ppobtssezs o
In the last decade, the rare-earth compound LiHb&s 1) 1 :

been found to display an array of interesting magnetic phe-

nomena. At high temperatures LiHpFs a paramagnet, but whereJ is the coupling constant;; the interspin distance,
there is a second-order transition to a ferromagnetic state aind z; the component of the interspin distance along the
1.53 K1 This Ising magnetic transition is driven by the weak Ising axis. The effective transverse field paramét&is a
magnetic dipole interaction, with a strength of order 1 K, andmeasure of théhigher ordey mixing effects introduced by
not the more usual Coulomb exchange interaction. The critithe physical transverse magnetic field. The summation is
cal temperature can be lowered by application of a magnetidone over all H&* ions, which sit on a tetragonal Bravais
field transverse to the easy-axis direction of ferromagnetidattice with four H3* ions per unit celft

ordering. The magnetic field introduces quantum fluctuations The goal of the present study is to determine the quanti-
of the spins and beyond a critical value o#.9 T, destroys tative phase diagram of pure LiHgfrom (quas) first prin-
long-range ordering even at zero temperature. LiHtifis  ciples, starting from a crystal-field Hamiltonian that has been
represents a model magnet for studying quantum phadit to spectroscopic data. Bitket al? successfully fit their
transitions® Since the rate of quantum tunneling betweenphase diagram data using a mean-field theory with two free
different spin configurations can be carefully controlled with parameters, a transverse susceptibiity=0.74 to replace
the transverse magnetic field, this material constitutes a goadithe Landég factor g, =1.25 which thus rescales the trans-
testing ground for the efficiency of quantum anneafi®y  verse field, and an effective dipole coupling strength
substituting the magnetic Hbions with nonmagnetic ¥  which rescales the temperature. This calculation also did not
ions, disorder can be introduced, and spin-glass behavior hagke into account the domain structure of the ferromagnetic
been observed when the magnetic ions are sufficientlgtate. In another calculation, Rennat al® have recently
dilute? On further dilution the range of dynamic time scalesused an RPA method to find the collective mode softening
displays a remarkable narrowing in what has been called theeen in their neutron scattering measurements and obtain an
“antiglass” phaseé. estimate of the phase diagram.

The magnetic properties of LiHgForiginate in the H&" The advancements reported in the present study over ear-
ions. The ground state of the Bfdon in the crystal field is a lier attempts are twofold. We develop an effective low-
doublet, and the first excited state i811 K above the energy Hamiltoniariderived nonperturbatively by projection
ground state. The crystal-field states of the’Hon are such  from the full 17 state crystal-field Hamiltoniathat acts on
that there are no matrix elements of the transverse angul&pin-% Ising degrees of freedom, and we go beyond simple
momentum(J,,Jy) within the ground-state doublet. Hence mean-field theory by using extensive quantum Monte Carlo
the transverse susceptibility vanish@s lowest order in the simulations. An earlier classical Monte Carlo study found a
the applied fielgl giving rise to strong Ising anisotropy. critical temperature of 1.89 K by extrapolation from rather
Therefore LiHoR in a transverse magnetic field, and at tem-limited system size§.However, they did not take into ac-
peratures lower thar-11 K, is believed to be a very good count a near-neighbor exchange interaction among th& Ho
realization of a dipolar Ising model ions and the structure of domains observed in Liioret
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another Monte Carlo study finds a transition temperature ofg)) can be chosen such thdt|J?| a)=—(8|J*B) and
1.51 K, but only by adjusting the strength of the dipolar(a|J?|B)=0. It turns out that the transverse angular momen-
interaction to reproduce the experimentally determinedum operators) andJ¥ have no nonzero matrix elements in
ground-state enerdyHere we explicitly take the domain the degenerate ground-state subspace. This is the source of
structure of LiHof into account and use a much improved the strong Ising anisotropy which causes the linear suscepti-
method which vastly reduces finite-size corrections. We alsjlity to vanish in the transverse directions. We thus identify
use a recently introduced cluster algoritfrim this manner  the two degenerate states |d9 and||), and it can be ex-
we can determine both the critical temperature and Criticabected that the |0W_temperature physics will be described by
field of the effective Ising model with high precision. This gy, effective Ising model with spié-degrees of freedom.
precision is high enough that tiieonsiderableuncertainties The S, symmetry of the crystal defines an easy axis for
in the crystal field parametetdescribed beloyare now the ferromagnetic ordering in the pure LiHgRErystal? In the
limiting factors contrqlling uncertain.ties in .the predicted gpsence of any externally applied magnetic field, the mag-
phase diagram. We will propose a simple microwave specpetic dipole interaction among the Efomagnetic moments
troscopy experiment to eliminate these experimental uncefayses them to align along tieeaxis of the unit cellthe z
tainties. direction in this analysjsbelow 1.53 K and the dipolar Ising
model serves as an adequate effective model for the system.
Il. THE CRYSTAL FIELD HAMILTONIAN The situation becomes more subtle when the crystal is
subjected to an external magnetic field perpendicular to the
filled outermost shell #° and the ground-state electronic ;bct)r:/sr?rgwsu\)/gfgei?esl(}jl ?ﬁijgi Q:]Zg;itécmr;ﬁ wﬁgrt;c;gl;plge_
configuration of the H' ion is °lg as dictated by Hund's stricted within the ground-state configuratiai=8, thé

rules. The lowest excited electronic configuration of the ion,, . . _5
5I7 lies approximately 7400 K above the ground-state CO:_\Mgner Eckert theorem yields a Langdactorg, = and the

) . : . . Zeeman term in the Hamiltonian can be written as
figuration, as seen in spectroscopic experiments on

i 10 ; i ; .
LiHoF,.*” In the range of temperatures of interest in this H, = —g B - J, ()

article, any configuration mixing of the ground configuration

with the excited ones can thus be safely neglected. The CoRyith 4;=0.6717 K/T being the Bohr magneton aril
figuration mixing due to the crystal field is also assumed to= BxéX' Because the Zeeman term has no maitrix elements
be small. within the two-dimensional subspace, it cannot flip a spin to

Considering only the spin-orbit interaction and the Hund Sfirst order inB. Thus to see any effect of the transverse field

Rules, the ground-state configuration of theHdon in ;
. C N . one must resort to second-order perturbation theory. Denot-
LiHoF, will be (2J+1=)17-fold degenerate. But the interac- ing the singlet excited state at=11 K by |y), one can ex-

tion of Ho** with the Li* and F ions can be captured con- 2(R2 X 2

cept to see an effect Bi/A I a, on the
cisely in a crystal-field Hamiltoniafl/) that lifts the degen- .~ (0p26)*(B/A)[(y| F| . B)
eracy while taking into account the symmetry of the crystal
The LiHoF, crystal has $symmetry, which partially splits ) ;
the 17-fold degeneracy. In,Symmetry, the states of a con- effect of the transverse field should be proportlonaBio

figuration with an even number of electrons transform ac This perturbation theory scenario breaks down in the
9 Ciuantum critical regime as can be seen in a comparison of

A single H@** ion in the crystal LiHog has a partially

energies of the ground states. A naive application of degen-
‘erate second-order perturbation theory thus suggests that the

cor_dlng to four one-d|_men3|0nal representations, two Oy, energies. If we assume that the magnetic moment is fully
which are related by time-reversal symmetry. The groun olarized in the transverse directiéf?®)=J=8) at the quan-

state of the crystal-field Hamiltonian is thus a doublet, be—um critical point ofB=4.9 T atT=02 a simple estimate of
longing to the two related representations mentioned abov&%1 P X S P
e Zeeman energy is given by

giving rise to a non-Kramers degenerate ground state. Th
crystal-field Hamiltonian depends in a complicated way on E; =g ugBY(J) = 32.91 K, (3)
the positions of the various ions inside a unit cell, but it turns ) o
out that one can expresé in terms of the total angular Significantly larger tham. This demonstrates that the mixing

momentum(j) operators of the H ions by using a set of of the ground-state doublet with all the higher-lying states

; : . must be considered at large transverse fields and second-
Steven’s equivalent operators and corresponding phenom-

enological constants called crystal-field paramet@sP) order perturbation theory is not sufficient to incorporate the

which are determined by fitting to experimental spectro-eﬁec'[ ofBin the_ quantum critical regime._We describe below
scopic and susceptibility dat&!! (See the Appendix for de- @ nonperturbative scheme to capture this physics.
tails on the crystal-field Hamiltonian.

Ising system at low temperaturé3iagonalizingV shows
that the lowest excited state in the spectrum is a singlet, lying
~11 K above the ground state doublet. At temperatures The magnetic properties of LiHgFare determined by
much lower than this gap, only the ground-state doublet cathree kinds of interactions: a long-range magnetic dipole in-
be expected to be significantly populated, and the lowteraction among the H6 magnetic moments, a near-
temperature physics can be captured by considering a twaeighbor exchange interaction which we assume to be small
state system. The two degenerate statiesioted byle) and  and isotropic, and an isotropic hyperfine interaction between

IIl. MAPPING TO THE ISING SYSTEM
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the electronic and nuclear magnetic moments on the same K e
site. Therefore, the complete Hamiltonian of a LiHadfys- I
tal in a transverse magnetic field can be written as 20 =
> 1 10F o—o Ground state energy
H= 2 VC('Ji) - gLMBE BxJiX + E(gLﬂB)ZE ﬁﬁy\]iﬂJjV .t =—a Energy of first excited state
i i i1#] 4 Ob—s oo Energy of second excited state
m
1 J > = - = -
+ _(QLMB)Z_E;E J I+ A (1), (4) 10k
2 a i,nn i |
whereu, v=x,y,z. L” contains the position dependence of 201
the magnetic dipole interaction so that I
| | | | | 1. 1 | |
T2 3 4 s 6 7 8 9 10

B (T)

3W|Fij|2‘ 3(rij)“(r;;)”

I7°
) ) ] : ) ) FIG. 1. Lifting of ground-state degeneracy by the transverse
Jex IS the dimensionless strength of the antiferromagnetic eXgg|q.

change interactiofwhose strength is unknown at this pgint
NN signifies that the sum is to be carried out over nearesj

pe|ghbors only ana(:5.175 A is the length of thg un-|t cell the transverse field continuously splits the degeneracy be-
in the x—y plane. A is the strength of the hyperfine interac- . oon the two ground states

tion (0.039 K) andl; is the total angular momentum vector of T generate the complete first-principles Hamiltonian in

the Ho nucleus at theth sitel =7 Eq. (4) in terms of the Ising spins, one must project the

To reduce the Hamiltonian that acts on(20+1)X (2l oherators onto the two-dimensional subspace. Recognizing
+1)=136-dimensional Hilbert space to an effective Isingihe fact that every two-dimensional Hermitian matrix can be
model with spin degrees of freedom, we neglect the rela-yniquely expanded in terms of the two-dimensional unit ma-
tively weak hyperfine interaction in a first approximation. If trix and the three Pauli matrices, we evaluate the matrix el-
A=0, the only releyant degrees of freedom are the eIectronigmentS of theJ operators within the two-dimensional sub-
angular momental and, for J=8, the single-site Hilbert space for each value of the magnetic field and obtain their
space is 17-dimensional. The transverse field splits the dggpresentations in terms of sp%neperators. Every operator
generacy in the ground-state subspace and also mixes the b (,=x, v, 2) can be written as
higher-lying crystal-field states with the two lowest states.

LY —

©)

egrees of freedom at each site. Figure 1 demonstrates how

Th(_a single-site Hamiltonianeglecting the hyperfine inter- J=C,+ > C,.(Byo". (8)
action V=XY,Z
Ho= Vc(j) — g ueB ¥ (6) The Pauli matricesr” requires the choice of a bagis) and

|| ) in terms of the stateky) and|B). We choose the basis
is diagonalized numerically for all values of the transversevectors such that|1)=(1/y2)[|a)+expi6)| )] and ||)
field. For a giverB,, let the two lowest states be denoted by =(1/,2)[|a)-expi6)| 8)]. The phases is chosen such that

|a(BY) and|B(B,)) and their energies be denoted BY(B.)  the matrix elements of the operatfrare real. In this basis,
andEg(B,). Then in a two-dimensional Hilbert space which e have

is spanned by«(B,)) and |3(B,)) (identified as|—) and|
), respectively Hy can be written as J=Cof. (9

1 The operators)* and JY are also projected into this basis.
Hr=Ecm(By) - EA(BX)OX, (7) Table | presents the values of the various parameZgrand
C,., for B,=4.9T, which is the experimentally observed
where ECM(BX):%[EQ(BXHEﬁ(BX)] and A(B,)=E4B, critical transverse field in the limit of vanishing temperature.
—-E,(By). Thus we see that the energy difference between the We replace the) operators by their corresponding repre-
degenerate states caused by the transverse field can alrea@jntations in the two-dimensional basis in the Hamiltonian in
be interpreted as an effective magnetic field acting on %pin- Eq. (4). (The hyperfine interaction is neglected at this stpge.

TABLE I. The strengths of various coefficien®,, for B,=4.9 T.

C, 0 Cy 3.12 c, 0.01
Cyx 0 C 0.60 Cox —0.09
Cyy 0 Cyy 0.01 Cyy 1.05
C,, 5.14 Cor 0 Cy 0
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This leads to an extremely complicated Hamiltonian that actsameter regime around the quantum critical point, they are
on the Ising subspace. The projection generates various nesomparable in strength. Therefore, quantum fluctuations can
kinds of interactions among the effective Ising spins. Forbecome strong enough in the system to destroy long-range

example, the term order even aff=0. An Ising model of spirs objects on a
1 three dimensional lattice placed in a magnetic field trans-
H,y = = (g ue)’> £iZjXJiZJ}( verse to the Ising direction is a very good prototype of such

2 i#] a Hamiltonian. We utilize Eq11) as a starting point to com-

pute the phase diagram of LiHgkh various ways, notably
using mean-field theory and quantum Monte Carlo simula-
tions. As a spin-off, we are able to calculate the strength of

in Eq.(4) gives rise to a set of complicated interactions in the
Ising subspace that are written as

1 ) , the exchange interactial,. Finally, we compare our results
Hax= E(gLMB) E Li(C,0o1)(Cy+ Cieof + Cyya)) with existing experimental dafawhich were obtained from
1#] magnetic susceptibility measurements.
1 . -
= E(gLMB)ZE (% ﬁjZS()szCXO'iZ A. The effective Hamiltonian
I |F

An unusual feature of the Ising Hamiltonian in Edl) is
1 that the strength of the dipole interaction itself seems to de-
2
+§(9L'“B) zﬁizi)tzzcxxaiz")j( pend explicitly on the strength of the physical transverse
7 field through the paramete®,, Ordinarily, the interaction
1 term in an Ising model is free of any dependence on external
- 2 z z Yy . . . . .
* Z(QLMB) g Eiixczzcxy"i oy (10 magnetic fields. The popular Hamiltonian governing the
! quantum Ising model is generically written as
In Eqg. (10), the quantitiesC,,, etc., depend on the transverse
magnetic fieldB,. The strength of the effective interactions Hgen= }2 Jjotot- > o, (12)
generated by the Ising projection is determined not only by 2 i
the parameter<,,, but also by the parameterz&i‘j"g, that . o . . . .
depend on the interspin vectdy. Thus we can compare the whereJii is the pairwise mterapuon teriidipole interaction,
strengths of the various effective interactions, and we find'€ar-neighbor exchange) which usually depends on the

that the largest effective interaction &)« (C,)?07d?. This difference in spatial positions of the spins, drids the mag-
J J netic field that acts as the source of the quantum fluctuations.

interaction is larger than the other interaction terms by tWC\Nith some appronriate definitions. we are able to define an
orders of magnitude for the entire range of magnetic fields in ; Pprop . ’
ffective modeH that is of the same general form as Eq.

question(except for some constant terms that just serves t 12

define a new zero of energyTherefore, to an accuracy of ). . . . .

~1%, the effective Ising model for LiHofcan now be writ- The rEd.UCt'OH tq a two d|men§|onal I_—||Ibert space ffOT“ a
’ 17-dimensional Hilbert space gives rise to renormalized

i#]

ten as Landég factor g;, defined as
1
Hising= 2 Ecm,i(By) — EA(BX)E ol gy = 29, {a(B,= 0)|J|a(B,=0)) = 13.8. (13
' ' The factor 3, C,/B,) can be interpreted as a renormalization
+ l(ngu“BCZZ)ZZ Eﬁzo_izo_jz of the individual magnetic moments due to the presence of
i#]

the transverse magnetic field. To extract this renormalization
factor, we define a dimensionless raé®,) such that

1 J

+2(0018C20* 3 2 ol (11)
2 LMBY-z asi,nn i “NN G(BX):%ABX)_ (14
Il

The Ising Hamiltonian of Eq(11) acts on effective spig- . . _— .
objects (“pseudospinsf’ located at the lattice sites of F?b In the classical limitB,=0, (B,)=1 by definition. This
ions in the pure crystal LiHof and the interaction strengths Makes it possible to define an effective Hamiltonieg,
and the effective transverse field depend on the physica¥hich is essentially identical to Eq12).

transverse field, implicitly through the parameterS,, and Hising = [€(B)1PHegs, (15)
A. The parameteEcy, provides aB,-dependent zero of en-

ergy and will be ignored for the purpose of computing thewhere

magnetic phase diagram. 1 2 2
_ gIMB) 2z 1 (9|MB> Jex
He = — LFofa?+ = =—| ooy,
eff 2%- ( 2 ij“i%j 2% 2 as i¥nn

IV. COMPUTING THE PHASE DIAGRAM

A(By)
Equation(11) is a particular example of a general class of B Z[e(Bx)]ZEi" ar. (16)

Hamiltonians in which the various terms in the Hamiltonian
do not commute with each other, and in the interesting pawe define every length in the system in units af
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2T T T T T T " L T:[f(Bx)]zTeff' (20)

B. A possible three-state description of the effective Ising
model

In this section, we digress from the discussion a bit to
show that it is also possible to capture the degeneracy split-
ting A(B,) using a simple three-state model of the system,
but it leaves out the effect of the matrix elements of the
ground state doublet with the higher-lying states. If we con-
sider the statefw), |8) and|y) at B,=0 as the basis states,
then the crystal field Hamiltoniak; is simply diagonal in

B(T) this basis, and looks similar to
FIG. 2. The effective magnetic field. 00 0 O
Ve=( O 0.0 0], (21
=5.175 A, such tha’f{j‘:rﬁ/a. Then the spatial dependence 0O 0 A

of the dipole interactions can be expressed in the terms of

dimensionless quantities/;”, defined asC{"=L4"/a°. Re- whereA=10.8 K. _
placing the constants in Eq.(16), we see that The operatorJ* has only two nonzero matrix elements

(gue/2)?1/a3=0.214 K, and(g,us/2)=4.635 K/T. These restricted within the three states in the absence of a trans-
verse field. By choosing the phase of the wave functions

constants specific to LiHgFare substituted in Eq16), and - _
properly, it is possible to make both of them real. These

we obtain :
matrix elements are
1 1
Hefr =2 % 0.214>) Lo’ + 5 0.214>) Je,070f () = (B =p, (22)
i#] i,NN
wherep=2.4. Then the Hamiltonian in E¢6) can be written
- 4.63B>, 0. (17)  in the three-state basis as
i
0 0 - B
A comparison of Eqs(16) and (17) immediately yields the B Ik
crucial correspondence between the effective transverse Hr= 0 0 ~OuusBe | (23
magnetic fieldB%; (expressed in Jand the physical trans- — O meByp — O ueByp A
verse fieldB, (also expressed in)T This Hamiltonian can be exactly diagonalized, and defining
x _ A(By) (18 B.=0, ugB,p, the eigenvalues are
™ 2 % 4.635% [e(B) ]2’ A1 \/_
— 2 _Z\A2.aR2
We note that the dependence Bj; on B, in Fig. 2 is Eo= 2 2 A%+ 8B,

indeed quadratic for small values @&,, as dictated by
second-order perturbation theory, but the dependence be- E, =0,
comes increasingly weaker &, increases. This demon-
strates that in the quantum critical regime of large transverse A 1 -
fields and vanishing temperature, perturbation theory argu- E,=—+=-VA%+ 885. (24)
ments are not adequate. 2 2
At this point, a subtlety in the definition of “temperature” 1o eigenstates can be schematically written as
needs to be mentioned. All our further calculations Hisg
as in Eq.(17), but the physical Hamiltonian ilgj,g, Which 1
modifies the energy scale by a facfetB,)]? [see Eq(15)]. %) = Eq“) *18) + o),
In both mean-field theory and quantum Monte Carlo calcu-
lations, the temperature enters only in the definition of the

Boltzmann weight of a configuration or a state vector in the lyn) = %(|a> -8,
form (kg=1) V2
. 2
p:exp<- H'%m!):ex;{-%) :exp(- M) 102) =)+ exlla) + |8, (25
eff where the symbolgg ande, signify small admixtures.
(19) It is readily seen that the transverse field splits the degen-

where the physical temperatufeis related to the effective €racy by an amounA(B,)=E,; ~E,. The gap is quadratic in
temperaturel ¢ by B, whenB, <A, but it is, in fact, linear whei,> A. How-

144411-5



P. B. CHAKRABORTY et al. PHYSICAL REVIEW B 70, 144411(2004

ever, we see that the lowest excited state has an eigenval®&,, and the susceptibilityy of the domain can be found
of zero for all B,, unlike the real system, where it bends from the relation

downwards with increasin®,. Thus the three state model

cannot capture the repulsion from the higher-lying states. M?= yBZ,,. (26)
Even then, it explicitly shows that the physics near the quan-

tum critical point is ill-described by second-order perturba-
tion theory.

On the other hand, if we consider the small imaginary
sphere deep inside the domain, the susceptibyity, of the
sphere can be found from the equation relating the magneti-
zation inside the sphergsince the sphere is a part of the
C. Domains in LiHoF, and the mean-field solution domain, the magnetization inside it i4?) and the magnetic
The magnetic dipole interaction is long range, falling off field acting on the sphergg,,
as 1t3, wherer is the distance between two spins. A dipole-
coupled Ising ferromagnet is expected to be well explained MZ:XSpl‘Béph' (27)
by mean-field theory fod=3. As we shall see, mean-field
theory does capture the qualitative behavior in the phase di%—a
gram, but is not very reliable for making quantitative predic-
tions.
Our starting point is Eq(17). The individual spin% de-

Apart from the external fiel®;,, a spin inside the spheri-

| cavity also experiences two magnetic fields, one from the
magnetic surface charge density at the surface of the sphere,
and the other from the magnetic surface charge density at the
) . . surface of the long needle-shaped domain. There is no con-
grees of freedom sit on a tetragonal unit cell of dimensiongyip tion from the spins in the bulk of the domain, since the
(a,a,c)=(1,1,2.077 in units ofa=5.175 A. Each unit cell magnetization is uniform, and only the surfadeargescon-

has four spins, at the positions we denote [68,0,0.  tribute. Then the magnetic fiele,, can be related to these

positions in the unit cell are measured from the Bravais lat-

tice vector denoted biR+(0,0,0. 2 _pz
The long-range nature and angular dependence of the di- sph™ “ext
pole interaction create a complex model in which the actual
shape and lattice of the sample influences the ground stat&he second term on the right-hand side of the equation above
Spins that lie in the samab plane want to antialign, while is the contribution from the spins at the surface of the sphere,
spins along the sameaxis want to order ferromagnetically. while the third term is the contribution from the spins at the
This angular dependence tends to favor ferromagnetism iaurface of the domain. By substituting E@8) in Egs.(26)
long thin samples, while it prohibits a ferromagnetic state inand(27) leads to the following relation:
spherical samples. Luttinger and Ti$Zzéound, for example,
a ferromagnetic ground state for the face-centered lattice in : 1
the shape of a prolate spheroidal sample of axis ratio larger X=7"3 _4an- (29
than 6. However, in experiments on LiHpFpherical Asph™ 3
cubic? and rectanguldrshapes have been used with no ap- Equation (29) above is the magnetic version of the
parent dependence of the results on the shape of the sampf@ausius-Mosotti relatioh! which relates the macroscopic
The reason for this sample-shape independence lies in thadectric susceptibility of a system with the microscopic mo-
domain structure of LiHofE Experimentally, there is lecular polarizability. In fact, it is in some ways easier to
evidencé®'* that LiHoF, forms long needle-shaped do- derive from the analogy with electric dipoles. In that case,
mains, with the long direction being along thexis. Theo- the field produced by theharge densityt the surface of the
retically, this agrees with the work of GriffitH§,where a  spherical cavity ig4s/3)M? while there is no contribution
proof is given that the free energy of a dipolar system isfrom the surface of the domain.
independent of the shape of the sample in the absence of an We emphasize that this relation is obtained from a single
externally applied field. Since this is an Ising system, theassumption that the spirsutsidethe sphere are treated in
magnetization alternates in sign between adjacent domaingjean-field fashion. The microscopic varialig,can be cal-
which minimizes the global energy stored in the macroscopiculated approximately, using mean-field theory, or exactly,
fields outside the sample. Thus it would be incorrect, in theusing quantum Monte CarlgQMC) simulations over a
context of mean-field theory, to assume that the magnetizesphere. The next part of this section explores how the do-
tion is uniform over the entire sample, since in fact, it is onlymain structure can be incorporated in the mean-field sce-

8
N7 + 4mM2, (28)
3

uniform over a single domain. nario, while the following section contains the results from
To incorporate the effect of domains, we assume that aQMC simulations.
imaginary sphere sits deep inside a single dort&Msingle At this point, a comment on the effect of the transverse

spin at the center of this sphere now experiences an effectivmagnetic field on the domain formation is necessary. From
field from the orientation of the magnetic dipoles both insidethe mapping to the Ising model, it is seen that the contribu-
and outside the sphere. In the ferromagnetically orderetion of the transverse dipole interactiob}* is negligible
state, the magnetization of the domain in question can beompared to the longitudinal dipole interactihff. There-
assumed to be uniform, denoted now l¢. The magnetic fore, we may assume that the transverse magnetic field po-
field acting on the domain as a whole is the external fieldarizes the Ising spins along the direction uniformly
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throughout the sample. In other words, theomponent of 16% smaller than the experimentally observed value of 4.9 T.
the magnetizatiorM* is unaware of the domain structure However, we have entirely neglected the on-site hyperfine
formation in LiHoOF,. interaction between the electronic cloud and the Ho nucleus.
At low temperatures, this interaction affects the phase
boundary significantly. Therefore, at this point, we cannot

yet compare our results for the quantum limit with experi-

Let us now calculate the mean-field critical temperaturement.

for a long, needle-shaped domain. We therefore place the As a consistency check to our mean-field treatment of the
sphere deep inside a single domain. The mean-field criticalomain structure, we perform the lattice sum directly over a
temperature is given by the local field, which is given by thelong cylinder. The summation is done by considering a series
sum over all dipoles within the sphere. In the presence obf long cylinders with increasing base area. For each cylinder
domains, this field must be augmented by the field acting owith a fixed base area, the length is increased until conver-

D. Mean-field theory

the sphereBgph gence is obtained. The series converges quite rapidly and as
With no domains a single spin at the center of the sphera final result we have
therefore experiences an effective longitudinal mean-field cylinder 1> _
. r:— 3z
given by - > (JTL) =11.272=3.205 +8.067, (36)
sphere j#0 r].
m?
z E LZ-Z % | — (30) . . . .
MF <= 0j a3/ in perfect agreement with the mean-field approach described
Iz above. We note that the mean-field theory calculation in Ref.
wheren¥ is the magnetic moment of a single dipole 2 does not take into account the physics of domain formation
but rather simply rescales the effective couplings to force a
= (%)(01% (31 fit to the observed¢ andB,c.

The value of the lattice sum in Eg30) can be easily ob- V- QUANTUM MONTE CARLO SIMULATIONS ON LiHoF 4

tained by summing over larger and_ larger spheres, a_md the e perform extensive QMC simulations of the dipole-
convergence is found to be very rapid. The value for LiHOF o pled quantum Ising model, described by the Hamiltonian

IS in Eq. (17). We use a recently introductdtochastic series
sphere expansion(SSH cluster quantum Monte Carlo method for
> éJ.Z: 3.205. (32)  which computgtiopal time scales Eald.nl(N), Where the_num-
j#0 ber of spins is given byN. In traditional single-spin-flip

simulations of long-range models the computational time
typically scales adl?, due to the summation over interactions
between all pairs of spins. The improved scaling enables us
to increase the precision and reach large system sizes.
MZ = Non?, (33 Our starting point is again Eq29), which relates a mi-
croscopic quantityysp, to @ macroscopic quantity. From

whereN, is the number density of dipoles, we simply have to Eqg. (29), we find thaty can diverge, even wheBZ,, van-
augment the value of the lattice sum in E82) by the value  jshes when

(4m/3)Nyas. Since Np=4/aac and c¢/a=2.077, it follows
that (47/3)Nya3=8.067. 3

This leads to the value of the critical temperature at the Xsph™= A (87
classical limit.

In order to take the domain into account we combine Eqs
(28) and(30). Since the macroscopic magnetization is given

by

We proceed to evaluate,, exactly using QMC simulations
Tc=0.214 KX (3.205+8.06Y~2.41 K.  (34)  as afunction off oy andB}. At the point where the condition
in Eq. (37) is met, x, the macroscopic susceptibility, diverges
and the system is critical.
Truncating the sum in the Hamiltonian at the boundary of
. 241K the sphere and treating the dipoles outside the sphere in
efC= 1 635 K/T 052T, (35  mean-field fashion can be considered a boundary condition
in the Monte Carlo simulation. This so-called reaction-field
which corresponds to a physical critical transverse field oinethod?® is not the only way to incorporate the long-range
Byc=4.11T. interaction in an efficient way. An alternative is to consider a
We note that the critical temperature at the classical limitarge number of periodic images of the simulation volume.
2.41 K is 57% larger than the experimentally observed valué®erforming the necessary sums over all dipoles in the simu-
of 1.53 K. This behavior is encouraging, in the sense thatation volume and the image volumes is very time consum-
mean-field theory should always overestimate the ordereihg, but the sums can often be efficiently performed using the
region. As far as the quantum limit is concerned, it may seenEwald summation techniqu€.In this work we have not at-
that the mean-field estimate is wrong, since 4.11 T is abouempted to compare the relative advantages of the methods,

On the other hand, the new critical effective field at the
quantum limit is given by
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FIG. 3. The phase diagram as a function of effective tempera- FIG. 4. Exchange energy needed to tune the critical
ture and effective magnetic field obtained from quantum Montetemperature.

Carlo simulations on different lattice sizes. The upper curve is the ] )
mean-field solution. The results of Fig. 3 seem reasonable in the sense that the

QMC solution yields a lower critical temperature than the
. , mean-field solution. The mean-field solution is within 20%
b_Ut we have _found the_reactlon-ﬂeld method very CONVeGLt the QMC solution, and it does therefore not suffice to
nient. An earlier compariséfifound the Ewald summation geseripe the system at a more precise quantitative level, even
method also quite reliable. _ , for the present case of a long-range interaction in three di-
Operationally, the susceptibilityy, is defined as the mensions. This is interesting since the upper critical dimen-
spin-spin correlation function in imaginary time, averagedsjon for a uniaxial dipolar interaction is expected to be 3, and
over all spins inside the sphere. the critical behavior should be described by mean-field
theory with logarithmic correction®:?2 The finite-size ef-
fects in Fig. 3 are quite small already for moderate system
sizes and the result for the largest system sidé
=295dipoleg is T,.=2.03 K atB,=0 and(B}4)c=0.47 T at
The prefactor is given by the quantum limit. The critical temperature is still signifi-
cantly above the experimental value of 1.53 K, but this dis-
Qs |2 crepancy may be attributed to an additional exchange inter-
a= NO(T) (39 action, which we discuss shortly. The effective transverse
field of 0.47 T corresponds to a physical transverse field of
approximately 3.77 T. But, as stated earlier, comparison of
the critical field with experimental value at the quantum limit
is possible only when the hyperfine interaction is included in

@ B
Xsph= NE, i dr(of(7)a7(0)). (39)

The imaginary time integral in Eq.38) can be evaluated
directly by the SSE methot. The condition for criticality
can be now be written as

the model.
B ) Exchange interactionA major question at this point is
12 dro?(1)oX0)) = (L) =0.579 K. why the critical temperature of the model is about half a K
N5 Jo e 47Ny \ g, g higher than the experimental value. One factor that lowers

(40) the critical temperature is the antiferromagnetic Heisenberg
exchange interaction. Since there has been no direct obser-
The simulation is done over a sequence of spheres withation of the strength of the interaction, we treat it as a free
increasing radius. We find that the critical curve given by theparameted,, as in Eq.(17). First we consider the mean-field
above condition converges fairly quickly as the radius is in-solution with the domain structure. If we assume an ex-
creased. In the QMC calculation the fluctuations within thechange interaction of strength,=1.03 the mean-field criti-
sphere are fully included, and we stress that although we usgal temperature is obtained a&=0.2140KX (11.271-4
a mean-field result for the part of the domain exterior to thex 1.03 =1.53 K, since every spin has four nearest neighbors.
sphere, the final result has converged and should not, in any Next we perform Monte Carlo simulations, where we tune
way, be considered a mean-field result. One could also argute value of the exchange interaction to obtain a critical tem-
that the field originating from dipoles in other domains mayperature of 1.53 K. This is done for a sequence of spheres
affect the critical temperature in LiHgFHowever, the ma-  with increasing radius, and the required exchange parameters
terial forms domains in order to minimize the energy densityare shown in Fig. 4. The corresponding phase diagram is
of the magnetic field, so this field should be very small. Theshown in Fig. 5. There is still a stron@nd nonmonotone
same arguments hold also for the case of a transverse fieldize dependence in the exchange parameter due to fluctua-
and the same condition is used in the presence of a transvergens in the number of surface bonds as the radius of the
field. Figure 3 shows the phase diagram for the mean-fieldphere increases, but the phase diagram shows very little size
solution as well as for the Monte Carlo simulation. dependence. The exchange parameter itself has not con-
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04 ' . ' . ' . Consider the truncated Hamiltonian in E6). Since the
value of the total nuclear angular momentuin in
LiHoF, is % the actual Hilbert space of the electron-nucleus

0.3r ] system for a given site is, in reality, X78=136 dimen-
_ sional. With the inclusion of the hyperfine coupling, the trun-
2 oak i cated Hamiltonian in Eq6) should be written as
o oo N=045 (J_=0.993)

=8 N=087 (J, =1.005)

oo N=147 (1 =0.902) Hhyp= [Vc(J) - QLMBBXJX]® Iv+A X I, (4))

01r -8 N=295 (J_ =0.866) XYz
X Tcexp ‘
where 1} is the eight-dimensional unit matrix in the nuclear
% ' 03 ' I sector of the Hilbert space.

T (K) The Hamiltonian in Eq(41) is a 136-dimensional matrix,
. . . and in the absence of the hyper-fine interaction, each elec-
_ FIG._5. Critical tempgrature asafunctlon of effective transverseqpijc crystal-field wave function is eightfold degenerate.
field, with an exchange interaction. The hyperfine interaction breaks this degeneracy to the order
of the strength ofA. We adopt the viewpoint that the trans-
verged for the system sizes we study, but the results for thgerse magnetic field is renormalized because of the hyperfine
largest system sizes averages to about 0.75. This is abopteraction, in a fashion controlled by the temperature. This
25% smaller than the mean-field value, which seems reasomenormalization can be extracted by matching the longitudi-
able. A value 0fJ.,=0.75 corresponds to an antiferromag- nal susceptibility of a single Hd ion without the presence of
netic exchange interaction of strength 0.16 K between neighthe hyperfine interaction as described below.
boring spins. This can be compared to the dipolar interaction The susceptibilityy,, for a single ion is easy to define in
between nearest neighbors, which is ferromagnetic and ahe 136-dimensional Hilbert space. We diagonalize the
strength 0.31 K, or about twice the exchange interaction. lHamiltonian in Eq.(41) with A=0 andA=0.039 K. Let the
we instead sum over all bonds connected to a given site in asigenstates in the 136-dimensional Hilbert space be denoted
ordered domain, the dipolar interaction is of strength 0.214y |4%) when A=0 and|}) when A is nonzero, and the
X11.271 K=2.4 K, while the exchange energy is of ordercorresponding energy eigenvalues & and E., m
0.214x4x0.75 K=0.64 K. Itis difficult to know if thisisa =1,...,136 in both cases. For a temperatlirel/B, the
reasonable value for the exchange, and a more stringent teghgitudinal susceptibility can be defined as
comes when the whole phase diagram in can be compared to
the experimental result. In the next section, we consider in- /
cluding the hyperfine interaction, which enables us to com- i = B > KT e 12
36

pare the phase diagram to experimental data. Zimn=1....1

The reason for the strong finite-size effect in the exchange " T i\ (20 BE.
parameter is that the exchange interaction for all broken Xe—ﬁEim__Z D [l ®_1N|'/’n>| e’
bonds at the surface of the sphere is neglected in this calcu- Zi mn=1....136 E,-E, ’

lation. If a spin is located close to the boundary of the sphere
then one, two or three of its four nearest neighbors may be
located outside the sphere. Even for the largest system size . . . .
(N=349) in Fig. 4, only 80% of the spins have all four wherei=0,1. Theprimed sum is over states degenerate in

nearest neighbors inside the sphere. The fraction of spins th&feroy; vv_h|Ie the dogble-pnmed sum s over states _n_o_nde-
have only one, two or three nearest neighbors inside th enerate in energy. Figure 6 shows how the susceptibilities at

sphere fluctuates very rapidly as the size of the sphere i € typical temperatur@_:0.444 K di_ffer for a range of val-
increased. However, this is a boundary effect and should di 1es of the transverse field depending on whether the hyper-

appear as the system size is increased further. ine interaction is turned on or hot. ~
PP 4 From the plot of the susceptibilities, it is clear that the

hyperfine interaction renormalizes the magnetic field. This
V1. THE HYPERFINE INTERACTION effect is temperature dependent, and the shift in susceptibil-
The dynamics of LiHoF at low temperatures is compli- 1ty dec_:reases as the temperature is increased. For ins_tance,
cated by the hyperfine interaction between the electrons i€ 1sing mapping and quantum Monte Carlo simulations
the H&* ion and the Ho nucleidThis interaction is as- Yield a typical point on the phase boundary @%,B,c)
sumed to be on site, and its strength is characterized by the(0.444 K,2.949 7. In Fig. 6 we see thatz{A=0,T
hyperfine constantA, which is equal to 0.039 K for =0.444 KB,=2.949 T equals X{A=0.039 KT
LiHoF,.24-26 At low temperatures, the hyperfine interaction =0.444 K B,=3.282 T). Thus, we conclude that the critical
prefers ordering and the final phase boundary is a result dfansverse field of 2.949 T is renormalized to the critical
the competition between the transverse field, which tries taransverse field of 3.282 T in the presence of the hyperfine
destroy the ferromagnetic ordering, and the hyperfine interinteraction. This simple renormalization program can be car-
action. ried out for all the points on the quantum Monte Carlo phase

(42)
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L B. Hyperfine interaction and the Ising model
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The actual computation of the longitudinal susceptibility
of the ion-nucleus system in the presence of a hyperfine in-

h | teraction requires the knowledge of all the eigenstates of the
i 136-dimensional Hilbert space. However, the physics of why
_\‘\‘\K | the hyperfine interaction enhances the longitudinal suscepti-

(98]
N
[
|

Longitudinal susceptibilities (arb. units)

30
250 \\\ \ 4 bility can be understood by considering a toy system consist-
. ing of a single spin%— electron coupled to a spiil-nucleus
201 g through a hyperfine interaction. It shall be seen that the en-
. 1 hancement of susceptibility is really a subtle effect captured
N N in second-order perturbation theory.
25 26 27 28 29 3 31 32 33 34 35 Let us consider a single spéwlectron placed in a trans-
B.(T) verse magnetic fieltl, (we assume that the nucleus does not

_ ) _ o ~ couple to the magnetic field: this is a reasonable assumption
FIG. 6. Comparlson of the Slngle'|0n |0ngltudlna| Suscep“bmeSSince the nucleag factor |n L|H0F4 |S apprOleately 1000

with and without the hyperfine interaction. We make the approXi-times smaller than the electronic Langdacton. Then the
mation of assuming that the increase in longitudinal susceptibiIity|_|am"wnian is

caused by the nuclei can be modeled by simply renormalizing the
transverse field downwards by the appropriate amount. H=-hos® 1y. (43

boundary. This procedure yields a phase diagram that shows

how the hyperfine interaction affects the phase boundary sig- | "¢ Subscripte andN refer to the electronic and nuclear
nificantly in the quantum regime. degrees of freedom, respectively. The Hilbert spack(s

x $+1)(2x 2+1)=1]4 dimensional, and the transverse field
A. Magnetic phase diagram from quantum Monte Carlo and splits the Hilbert space in two multiplets, each of which is

hyperfine interaction twofold degenerate. The ground electronic multiplet consists
§f the states—).® | 1)y and|—)e®|| )y, while the excited

Figure 7 shows a comparison of the theoretically obtaine ! ; .
g P y &lectronic multiplet consists of the states ).® | 1)y and|

hase diagram with the experimental phase diagram obtain ) ;
b g P P g —)®| | )\ the difference in energy between the two mul-

through susceptibility experimentdVe get a quantum criti- ! o e
cal point ofB, =4.66 T, which is approximately 6% smaller _t|plets being &,. The longitudinal susceptibility can be eas-

than the experimental value. However, serious deviationgy e\_/z_ilua_ted using the expression in Eq_Z) (with suitable
also occur at temperatures higher thEs 1 K, where the modifications for the toy systemand we find

effect of the nuclear interaction is negligible. This leads us to 1

conclude that the deviation really stems from the mapping to Xz2= — (44
the Ising model. The Ising model mapping is strongly deter-

mined by the strength of the degeneracy splitting in thegt T=0.

ground-state doublet as the transverse magnetic field is |f the hyperfine interaction is turned on, the degeneracies
turned on, which in turn strongly depends upon the values opetween the states in the nuclear sector is lifted in each mul-

the crystal-field parameters. In a subsequent section, the ugpet, and this changes the susceptibilities. Let the perturbing
certainties in the crystal-field parameters and their effect omyperfine interaction be written as

the physics are discussed.
Viyp= Aoeon + A ooy (45)

A ok | Even though the hyperfine strengths are isotropic in the

+— Experiment physical system, introducing anisotropy helps us to under-
stand the roles played by the longitudinal and transverse
components of the hyperfine interaction transparently. The
special case of isotropyy=A,, will be considered at the
end.

In first order degenerate perturbation theory, the electronic
states are all polarized in thedirection, and onlyA, has
7 any nonzero matrix element within the same degenerate elec-
tronic multiplet. ThusA; drops out of the physics in first-
order perturbation theory.

In Fig. 8, the states in the four-dimensional Hilbert space

Oy 0y 0y —

are [Y7)=|—)e® [N, [¥2)=[—=)e®| =N |¥)=|—)e®|

FIG. 7. The complete phase diagram of LiHoExperimental — )n, and|¢/3)=|«)e® |« )x. The zero temperature suscep-
data is from Ref. 2. tibility is now given by

Paramagnet

Ferromagnet

. | . I . I .
00 0.5 1 1.5 2

T(K)

144411-10



THEORY OF THE MAGNETIC PHASE DIAGRAM OF LiHokg PHYSICAL REVIEW B 70, 144411(2004

E,=h +A 0 »
) . v, Es= +h+A + 2h (48)

This gives rise to a nonzero matrix elementcff between
|yn) and|s), and this term serves to cancel the decrease in
susceptibility because of first-order contribution frof .

E~h +A \IIO The exact expression for the longitudinal susceptibilityl at
0 z =0 is given by
v, ~ .
BEA (-G, A (49)
+
FIG. 8. lon energy spectrurgfor a spin-1/2 nucleyswith the 2= hy+A, + % 2hA |

hyperfine interaction treated in first order perturbation theory.
The denominator in the first term in the right-hand side of
1 Eq. (49) can be easily expanded in terms of the ra#igd h,
m- (46) andAf/th, and the susceptibility expression turns out to be
(he>AA))

Xzz=

Thus it is obvious that the longitudinal susceptibility al-
ways decreases in first-order perturbation theory. The trans- 1 AH2 1
verse component of the hyperfine interaction always acts as Xzz= h_x + /_\_L AL ﬁ +0 h3
an extra transverse field, which implies that the hyperfine
interaction should lower the critical field, at least in first-  The crux of the increase in susceptibility lies in the fact
order perturbation theory. that the term proportional to bf is positive wherA =A .
However, if we consider second-order perturbation theoryThe increase in susceptibility is not a generic feature of the
we can show that, when the hyperfine interactioisdgropic, ion-nuclearinteraction for all values oA, and A, but is
the net effect is actually an increase in the longitudinal suspresent when the interaction is isotropic, as in LijoFhe
ceptibility at T=0. In second order, only, contributes to transverse component always drives the susceptibility lower,
further splitting of the energy spectrum. More importantly, but the longitudinal component can compete and win for a
the ground staté— ).® |+« )y is mixed with the stat¢— ),  certain range of values, and the change in susceptibility is
®| =)\, and the staté— )e®|— )y is mixed with the state quadratic inA;. We emphasize that this positive contribution
|« )e® |+ )y both with an amplitude given by=A/h,.  arises from the nonzero matrix element between two states
Thus, up to second-order perturbation theory we have théhat were degenerate in the absence of the hyperfine interac-
following spectrum: tion.
ThIS schematic problem of a spbelectron coupled to a
) = |¢2> - ﬂ|¢g> spin-; L hucleus through a hyper-fine interaction serves nicely
to illustrate the physics behind an increase in the longitudinal
susceptibility of the electrons due to the hyperfine interac-
0 ] tion. In LiHoF,, every electronic state is split into eight
|42 = |¢2>_h_|¢4>v nuclear states when the hyperfine interaction is turned on.
X There is no matrix element @k within the same electronic
A multiplet whenA;=0. WhenA,;#0, a nonzero matrix ele-
AL |¢g> + —”|¢fl’>, ment ofJ, develops between two lowest nuclear states in the
ground electronic multiplet, the square of the matrix element
varying quadratically ag,. Exactly as outlined in the sche-
0 matic problem, this matrix element causes an increase in the
) = |ya) + h_x|‘/’2>' (47) longitudinal susceptibility of the electron.

(50)

The energies of the states up to second-order in perturbation

theory are given by C. Projecting the hyperfine interaction

The hyperfine interaction involves the electronic angular

—h,-A, - A momentumJ*. Following the mapping to the Ising subspace
2h in the previous sections, we can map these degrees of free-
dom to effective Ising degrees of freedom. This gives rise to
Aw a hyperfine interaction term that operates in an effectively
-hy+AL - 2h’ 16(=2 X% 8)-dimensional Hilbert space. However, this gives
rise to a hyperfine interaction whose strength depends on the
2 magnetic field. Using the mapping in ET), Eq.(8) and the
Es= +h,—A, + Al , hyperfine interaction in Eq(41), the effective single-site
2hx Hamiltonian now becomes
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A(B,) VIl. SUMMARY AND CONCLUSIONS
_ X

H= 5 05 ® 1y +AC,4(By) 0" ® I, (51)

It has been postulated that LiHpks an example of an
Ising-like system, and when the sample is placed in a mag-
netic field transverse to the Ising direction, it is an example
perfine interaction wins over the transverse one. The Iongi9f a quantum Is_ing system with magnetic dipole interacti_on
tudinal component s proportional 1€(B, which is a8 L BeEC EE e e i phyical resus
significantly larger than all the other components at the magz ) "o system. We derive the physical Ising model by a

netic field regime of interest. The analysis of the previous . : .
section rema?ns valid in a 16-dimension)z/il Hilbert ssz)ice, an&onperturbatlve mapping to the Hilbert space spanned by the

the susceptibility is always enhanced due to the contributiOts?.ro'“'mj's'["]lte doublet. We then do a quantum Monte Carlo

from the longitudinal component of the hyperfine interactions'mUIat'on. to obtain the phase d|agram,_ al_so Incorporating
A=AC,(B,). the domain structure in the process. This is a step beyond

mean-field theory and the calculation is sufficiently accurate
that uncertainty in the predicted phase diagram is now lim-
ited by uncertainties in the crystal-field parameters. As a spin
off, we are able to compute the phenomenological exchange
interaction parameter that modifies the phase diagram con-
siderably in the classical regime. The hyperfine interaction
poses considerable problems in comparing the phase diagram
obtained from the quantum Monte Carlo simulations to the
experimental data. We have made the approximation that the

the value of the critical transverse fiel| . varies by as A .
large as 25% when the CHB? is varied by 10%. However effects of the hyperfine Interaction can be CO”T'p'e.te'y recov-
2 ' -ered through a renormalization of the magnetic field.

the parameters cannot be determined directly by experi='=" ) o . :
b y Dy exp | LiHOF,is a material in which the magnetic quantum and

ments, but are used as fitting parameters to fit theoretical ical bh i i b trolled with t
calculations to experimental data. There have been attemp?éass'ca phase transitions can be controlied with great pre-

to determine the CFP’s by fitting to spectroscopic #aba to cision. Neutron s_cattering stu_die_s ha\_/e been done on LjHoF
susceptibility measurementsHowever, we have found that to obtain the spin-wave excitations in the system. By ran-

the results of theoretical calculations become more and moﬁgOmly rgplacmg the ”?agne“c Howith nonmagnetic Y‘“
sensitive to the values of CFP’s as the transverse field iP"'S: SPin-glass behavior has been observed. We believe that

increased. As we have shown in earlier sections. the mope existence of an Ising model that faithfully reproduces the
' ’ physics in both the classical and the quantum regimes, will

important physical quantity that determines the phase diat 7 ) e , . .
gram is the splitting between the two lowest state8,), asz?gg'?teC;rr:;(;r;\rlzslt)l/gatlons of the interesting properties of
4 .

that smoothly and monotonically increases with the trans-
verse field. Thus we propose a spectroscopic experiment in
the presence of a transverse field to deterndin®,). How- ACKNOWLEDGMENTS

ever, the quantum regime of the phase diagram is compli- \yg thank Jens Jensen for many helpful discussions and
cated due to the presence of hyperfine interaction. The effeg, supplying us with a copy of Ref. 6. We also thank M. J.

of the hyperfine interaction is also extremely sensitive to thg> Gingras for many helpful discussions. P.H. acknowledges
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out in a regime of the phase diagram where the quanturgs;ant No. NSF DMR-0342157. A.W.S. was supported by the
fluctuations due to the hyperfine interaction are negligibIeAcademy of Finland, Project No. 26175.

but the fluctuations caused by the transverse magnetic field
are still significant. Thus we propose an experiment to deter-
mine A(B,) in the magnetic field range 2.0-3.0 T. In this
regime, our theoretical calculations show that the splitting In LiHoF,, the HG" ions have an unfilled shellf4vith 10
energy varies betweerr1.6-3.0 K. This corresponds to a electrons. The Hunds’ rules dictate that the ground configu-
microwave frequency range of-20-70 GHz. A spectro- ration of a single H&" ion should be’ly(S=2,L=6,J=8). If
scopic experiment that determiné¢B,) accurately is the there were no interactions with the neighboring ions, the
most important ingredient needed to determine the phase diground state of a single ion will be 17-fold degenerate. How-
gram accurately. Even though a single spectroscopic experéver, the Coulomb interactions with the neighboring ions
ment is not enough to determine the values of all the crystagjives rise to an electric field that lifts this degeneracy. In
field parameters uniquely, we have found that the only othegeneral, this electric field depends strongly on the spatial
important parameter in the effective Ising Hamiltonian symmetry of the crystals. In the simplest scenario, each ion
C,{B,) is extremely robust even to large changes in the crysis regarded as a point charge, and the spatial overlap of the
tal field parameters. Thus, an accurate determination ofvave function of an ion with its neighboring ion is neglected.
A(B,) is enough to compute the phase diagram from theThis is the point-charge model for calculating crystal fields.
effective Ising model. The derivation of the crystal-field electrostatic potential takes

Using the projected Hamiltonian in E@1), we can natu-
rally understand why the longitudinal component of the hy-

D. Uncertainties in the crystal-field parameters
The quantitative details of the LiHgFlepend sensitively
on the values of the various crystal-field paramet&sP)

used in constructing the crystal field Hamiltonigolease see
the Appendix for details For example, we have found that

APPENDIX: THE CRYSTAL-FIELD HAMILTONIAN
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into account the lattice symmetry, and is most simply ex- Using these operators, the crystal-field Hamilton\gn
pressed in terms of operators called “operator equivalents£an be written as

We shall not discuss the details of the derivation here, but 00 . 00 . 00 . od 4 4 4
instead refer the reader to the article by Hutchiffgand Ve = B0z + B0, + BgOg + B4(C)O4(C) + Bg(C)Og(C)
references therein. . + Bg(S)Og(S). (A2)

The operator equivalents are operators built out of the
operators that act on th@J+1)-dimensional space deter-
mined by the value ofl. However, they act only on the
angular part of the wave function of the coupled system, an
the matrix elements of the radial part of the wave function
are usually incorporated as fitting parameters.

The number of operators needed to completely determin
the crystal field HamiltoniarVc, and the rules for deriving
them, depend on the symmetry of the crystal and the grounJ11
state configuration of the ion. These rules are clearly ex
plained by Stever8 and Stevens and BleangyHere we

The radial matrix elements of the crystal field is extremely
difficult to compute accurately even in a point-charge model.
hey are, therefore, incorporated within the constasjts
nown as crystal-field paramete(€FP’s. The CFP’s are
generally used as fitting parameters. In LiHpfor example,
they are used to fit the crystal-field spectrum to observed
Spectroscopic dafd;?>3031  and to  susceptibility
easurements.

In all our calculations, we use the CFP’s proposed by
Rennowet al® Their values(in K) are listed below:

shall just list the operators that have nonzero matrix elements BY=-0.696,
in the configurationr’l8 of the H&* ion in LiHOF,.
In case of LiHoR, the relevant crystal field operators are BZ: 4.06% 1073,

05=33-JJ+1),
B=4.64x 107,
0§ = 3537 - 3Q0(J + 1)J2 + 2502 - 6J(J + 1) + 3J%(J + 1)?,
B3(C) = 0.0418,

1
4~ — =14 14
04(C) =53+ 1), Bg(C) =8.12x 107,

02= 23118 - 315)(J + 1)J% + 73502 + 10513(J + 1)202 B&(S) =1.137x 1074, (A3)
- 525)(J + 1)J2 + 294)2 - 533(J + 1)° + 4Q0%(J + 1)2 These values of CFP’s were obtaifigny fitting the re-
_6QI(I+ 1) sults of RPA spin-wave dynamics calculations to observed

neutron scattering data, as well as to the two lowest energy
1 levels of the crystal-field spectrum, as observed in spectro-
0a(C) == (It +IH[112-JJ+1)-38/+H.c., scopic measurement$However, there are no estimates of
4 the accuracies to which these parameters are known. There
. was an earlier attempt to determine the CFP’s by fitting to
e Lo 2 susceptibility datd! but there were very large error bars.
Os(S) = E(‘L -1, - JJ+1) =38+ H.c., Another attempt was made to determine the CFP’s by fitting
(A1) to spectroscopic measuremetftfut an incorrect symmetry
(Dyg) of the crystal was used in the theoretical calculations,
whereJ, =J,+iJ, andJ_=J,~iJ,. instead of the correct ong,.
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