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We investigate a scheme that makes a quantum nondemdl@NiD) measurement of the excitation level

of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two beam bending modes.
The nonlinear coupling between the two modes shifts the resonant frequency of the readout oscillator in
proportion to the excitation level of the system oscillator. This frequency shift may be detected as a phase shift
of the readout oscillation when driven on resonance. We derive an equation for the reduced density matrix of
the system oscillator, and use this to study the conditions under which discrete jumps in the excitation level
occur. The appearance of jumps in the actual quantity measured is also studied using the method of quantum
trajectories. We consider the feasibility of the scheme for experimentally accessible parameters.
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I. INTRODUCTION jugate observable of the system. This backaction noise on the

Quantum mechanics tells us that the energy of an oscillaonjugate observable is an inevitable result of the very inter-

tor is quantized. However, an observation of quantum-aCtion that allows the measurement to take place. It has long

limited mechanical motion in macroscopic objects has nofP€en rlelc_:ognizedr;[hat such back?ctri]on_nolise places aéll;unda-
been possible because the energy associated with individua]enta 'm'; O”l the ?ensmvny orp yksma measurements.
phonons is typically much smaller than the thermal enéfgy. HOWever, the class of measurements known as quantum non-

Advances in nanotechnology have enabled experimenter‘i‘?mOlition (QND) measurements partially pircumyents this
to build ever smaller mechanical oscillators with high reso-ProPlém by guaranteeing that the backaction noise does not

nance frequencies and quality factds an individual pho- affect the results of future measurements of the same quan-

tity. The idea of a QND measurement is widely discussed in
non energy becomes comparable to or greater tn the literature(for example, see Refs. 43%8n a QND mea-

quaptum effects begin to appear and it should be possible t§’urement, the interaction Hamiltonian between system and
realize various quant_um phenomena. _— . _meter commutes with the internal Hamiltonian of the system:
In this paper, we investigate the possibility of observing, jgeal QND measurement iispeatablesince the backac-
transitions amongst the Fock states of a mesoscopic Mgn noise does not affect the dynamics of the measured ob-
chanical oscillator. To do this requires the coupling of thesepyaple. In this paper, we are interested in a QND measure-
system oscillator to a measurement device that sensitiveljhent of a phonon number. The conjugate observable of the
detects the phonon number of the system oscillator but doasumber is phase, thus the measurement backaction in our
not itself change the excitation level of the oscillator. In thecase will result in diffusion of the phase of the mechanical
quantum regime, it becomes very important to model thepscillations. However, the scheme allows the complete deter-
precise way that a quantum system interacts with any meanination of the oscillator excitation level and thus projects
suring apparatus, as well as with the environment. Specifithe system onto a number state in an idealized limit.
cally, it is necessary to take into account the measurement The scheme for the QND measurement of a phonon num-
backaction and to design the system-readout interaction so &gr that we consider uses two anharmonically coupled modes
to allow the best possible measurement of the desired olsf oscillation of a mesoscopic elastic structure. The resonant
servable. We will show that it is possible in principle to take frequencies of these two modes are different. The higher-
advantage of the nonlinear interaction between modes of o$requency mode is the system to be measured, while the
cillation of an elastic beam or beams to track the state of théower-frequency oscillator serves as the mdige refer to
oscillator as it jumps between number states due to its couhis oscillator as an ancillaThe key idea of the scheme is
pling to the surrounding thermal environment. that, from the point of view of the readout oscillator, the
The laws of quantum mechanics tell us that, even in thenteraction with the system constitutes a shift in resonance
absence of instrumental or thermal noise, a measurement witequency that is proportional to the time-averaged excitation
tend to disturb the state of the measured system. The inteof the system oscillator. This frequency shift may be detected
action between the system and the measurement apparats a change in the phase of the ancilla oscillations when
means that while information about the measured observablriven on resonance. We show that this scheme realizes an
may be read out from the state of the meter after interactingdeal QND measurement of a phonon number in an appro-
with the system, the quantum-mechanical uncertainty in th@riate limit. To measure the phase of the ancilla oscillator, we
initial state of the meter leads to random changes in the corimagine a magnetomotive detection scheme so that the actual
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physical quantity measured is an electric current that couples ~ thermal noise thermal noise

to the ancilla displacement. Thus our task is to understand l

how the strong measurement of the current, represented by

the von Neumann projection scheme on the current operator, - mochanicy] | - driving
yields information on the system phonon number, and in turn gl;fu:fgﬁzl NN

affects the dynamics of the system via the indirect coupling Aoy 1§ X -D_

through the ancilla oscillator, and in the presence of the in- l readout
evitable coupling of the ancilla and system oscillators to the

environment. This QND measurement scheme where a non-
linear potential provides a phase shift to one oscillator that FIG. 1. Schematic of a QND measurement using two coupled
reflects the excitation of the other is analogous to the eXperirhechaﬁicél oscillators

ment of Peil and Gabrielsewhich demonstrated a QND ’

measurement of the excitation of a single trapped electron.

Theoretical discussions of such approximate QND measurestates. A reader not interested in the details of the derivation
ments of the excitation of an oscillator date back at least t¢ould read Sec. V and the following sections after the de-
Unruh8 scription of the model in Sec. Il. Finally, in Sec. VI we

In Sec. Il, we introduce our model and construct theconclude with a discussion of the feasibility of the scheme
Hamiltonian describing the two oscillators, the magnetomobased on current technology and future enhancements.
tive coupling, and the coupling to the environment repre-
sented by baths of harmonic oscillators. For the ancilla os-
cillator displacement to directly indicate the system phonon Il. CONSTRUCTING THE HAMILTONIAN
number, the time scale of the ancilla dynamics must be much
shorter than that of the system. This actually allows us to
adiabatically eliminate the ancilla operators to obtain dy- In this section, we introduce the model system and show
namical equations for the system alone. Thus, in Sec. Ill, wéow the coupling between the system and ancilla approxi-
obtain a reduced master equation for the density matrix ofmates a QND coupling in an appropriate limit. We then de-
the system oscillator, which allows us to focus on the physicsive equations of motion that take into account the couplings
of the system dynamics. This adiabatic elimination of ancillato the environment and the interactions that drive and moni-
degrees of freedom is often considered in quantum opticgor the oscillations of the ancilla.

However, the adiabatic elimination used in quantum optics is Consider a mesoscopic beam with rectangular cross sec-
at temperature zero, and we need to reformulate the methdibn. There are two orthogonal flexing modes that are not
for finite temperatures. coupled in the linear elasticity theory, but are coupled anhar-

Once we know the system dynamics, we next focus ormonically. This coupling exists in nature between the two
obtaining the experimental outcome. Quantum mechanics aprthogonal flexing modes of a single mechanical beam.
lows us to determine the state of the systeonditionedon  However, the coupling can also be controlled and engi-
the measured currehtt). The von Neumann projection pos- neered: a similar coupling of bending modes in two elastic
tulate says that after a measurement, a quantum system fgams has been proposed by Yutkén this scheme, two
some possibly mixed initial state is projected onto the eigenmesoscopic elastic beams with a rectangular cross section are
state corresponding to the measurement outcome. The cofonnected by a series of mechanical coupling devices. These
tinual measurement and projection of the currit pro-  devices have the effect of allowing only one type of strain
vides accumulating information on the system phonor(the longitudinal stretchto pass to the other beam. In this
number, and correspondingly a projection onto phonon numPaper, we focus on the extent to which such mechanical de-
ber states. The theory of quantum trajectdri€shas been Vices are able to realize a QND measurement and the con-
developed to deal with such continuous measurements. IBiraints this places on the specifications of the device, and the
Sec. IV we discuss such quantum trajectory equations for otemperature at which the experiment is performed.
system. The method leads to a stochastic master equation for FOr convenience, we refer to the system of interest as
the system density matrix, where the stochastic componer@scillator 0 and the ancilla as oscillator 1, and the corre-
comes from the particular value of the measured current &ponding resonant frequencies of the two modes@and
each time, which itself is a stochastic variable since it is thew1, respectively. The ancilla is driven at its resonant fre-
outcome of a quantum measurement. These equations of m@uency, and a measurement apparatus is attached to the an-
tion for the system conditioned on a particular sequence ofilla. The whole structure is kept at a low temperafliguch
measurement results allow us to investigate the possibility ofhat7iwo~ KgT, wherefi=h/2m is Planck’s constant arkg is
tracking the evolution of the system as it jumps betweerBoltzmann’s constant. The oscillators are weakly coupled to
number states due to its interaction with the thermal baththe environment. Figure 1 shows a schematic of our model.
Some details of the formulation of the operators describing
the measurement current that are needed to derive the sto-
chastic master equation are given in the Appendix.

The main discussion of the physical implications of the Converting the schematic model in the preceding section
model is in Sec. V, where we consider the parameters that aigto a tractable mathematical model and obtaining the system
necessary to observe the oscillator jump between numbeatynamics requires some assumptions and simplifications.

damping damping

A. The model

B. System Hamiltonian
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First, we focus on the anharmonic coupling and the limitwg—w;>Ay; and w; >\, then the time-dependent terms in
in which it satisfies the QND condition. In linear elasticity V,,{t) lead to rapid, small-amplitude oscillations af that
theory, the two flexing modes, which are perpendicular toessentially average to zero over the time scales for which the
each other, propagate independently without interacting. Benonlinearity Ao; is relevant. If we admit a time coarse-
yond the linear approximation, these modes are coupled. Exgraining over times longer than the mechanical oscillation
pansion of the elastic energy with respect to the strain tensqgseriod, we may ignore the rapidly oscillating terms, an ap-
is taken up to second order in the harmonic approximationproximation known as the rotating-wave approximation
By symmetry, the coupling between the modes first occurs atRWA). Another intuitive explanation for the rotating-wave
fourth order, proportional to((z)x'f. So we expand the anhar- approximation is that the conditiong—w,>\y; means that

monic terms up to quartic order to give the differences in energy are so large that the energy noncon-
~ 4= 4= oo serving transitions are strongly suppressed.
Hanh=7(NooXo + N1aXy) + AikoaXoXT, D Disregarding the energy nonconserving terms in the

Hamiltonian and then absorbing constant corrections to the
system and ancilla oscillation frequency into the definition of
wp and w4, we obtain

wherexij give the strengths of the nonlinear terms. The first
two terms in Eq.(1) are internal anharmonic terms. Under
the rotating-wave approximatiotsee below, these terms
cause a shift in the oscillator resonant frequencies and a non- RWA 1\ — Ty af

: X ) . . V =h .

linear phase shift that depends on intengiyKerr nonlin- anh (1) =7ikosBo0;2 ®

earity) resulting in rotational shear of the state in the phaserne constant term has been disregarded since it merely pro-
space of the two oscillators. For the system oscillator, thg;jes an overall phase. Note that having made the rotating-
small shifts in the energy-level spacings are not importanty,,ye approximation, the anharmonic coupling term com-
and can be ignored. The ancilla oscillator is externallyy, tes with the observabh%ao, and so a QND measurement
driven, and so the nonlinearity of this oscillator may become.gn pe achieved under the conditiog- w, > \g;. 3 Return-

Iarge, for example Ieao!ing to multistability for_ large enoughing to the Schrédinger picture, the Hamiltonishnow can
drive strengths. We will assume that the drive strength iyo \vritten as

kept smaller than this range, so that again Xﬁelonlinear-

ity does not play an essential role. However, #3e] cou- HRWA = i woalag + Awjala, + Ailgalagala;. 7)
pling plays an essential role in coupling the system and an-

cilla. Therefore, in the interests of a straightforward presenin the above rotating-wave Hamiltonian, an excitation of the
tation, we retain the nonlinear coupling given hy; and  system oscillator leads to a frequency shift of the ancilla
disregard the nonlinearities of the system and ancilla internadscillator. To detect the system excitation level, the ancilla is
Hamiltonians. A detailed analysis including noninteractingdriven on resonance and the phase shift of the oscillations is
nonlinearities and detuning in Ref. 14 has shown that in theneasured. The driving of the ancilla may be written in terms

regime of strong damping of the ancilla that we will mostly of the term in the Hamiltonian in the Schrédinger picture,
consider, the effect of these anharmonic terms will be negli-

gible for small detuning. Harive = 2%E(a; + al)cos wt, (8
In terms of creation and annihilation operators, the Hamil-
tonian is nowH=H,+V,,, with Hy the harmonic part, where the parametét is used to characterize the strength of
Hozﬁwoa$a0+ﬁw1a1al, 2 the drive. In the interaction picture using the RWA for

w1>E, we get
andV,,, the anharmonic coupling,
HRWA = fiE(a, +al). (9)

1
Vann= Zﬁk()l(ag +ag)(aj +ay?. 3) Now we add the coupling of thermal baths to the system
and ancilla. We employ a standard technique and model the
We have defined the standard raising and lowering operatoifiermal bathgthe surrounding environmengas an infinite
for the oscillators, number of harmonic oscillators. The thermal baths are lin-
early coupled to the system or ancilla by coordinate-
coordinate coupling, i.eX; A;jXX;, wherex; is the system or
and a;r is the Hermitian conjugate of;. So far we have ancilla coordinate ang is the coordinate of an oscillator in
ignored any coupling of the two oscillators to the environ-the bath, with the inde) corresponding to different bath
ment so as to focus on the interaction of the two oscillatorsoscillators. We will again use the rotating-wave approxima-
In order to perform a QND measurement aﬁao, the  tion for the coupling since the couplings are weak.
Hamiltonian of the oscillatorkl should satisfy the QND con- The nature of the coupling with the measurement instru-
dition ment depends on the measurement scheme. Here we adopt a
+ _ magnetomotive detection scheme suggested by Ywake
(3020, Ho * Vanr] = 0. ®) al.lg‘”A metallized conducting surfacegogn the ancyilla oscil-
To show that this condition is satisfied in an appropriatelator develops an electromotive force across it due to a per-
limit, it is useful to move into an interaction picture with pendicular magnetic field and the oscillation of the beam.
respect tdH,,. If the frequencies of the two oscillators satisfy The voltage developed depends on

a,- = \e”miwi/ZﬁXi + | v’l/Zﬁmiwipi, (4)
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dxg
V=IB— 1
at (10

whereV is the voltageB is the magnetic field, the conductor
is of lengthl, andx; is the displacement of the beam from its

PHYSICAL REVIEW B0, 144301(2004

Ill. DYNAMICS OF THE SYSTEM

We use the dynamics described by EtR) to understand
the measurement process. In this section, we first find a mas-
ter equation that describes the evolution of the system and
ancilla alone without explicitly describing the state of the

equilibrium position. Depending on the resistarRef the
conducting strip and the remainder of the circuit, this will
result in a current that is then measured.

In order to quantize this measuring device, we follow the
standard practice in quantum electronics and model this r
sistance by a semi-infinite transmission l#§eThis model
has been used in the context of mechanical measuremerit
(see Refs. 19 and 2@nd is in fact mathematically the same
as the “Rubin model?2?? This is certainly a simplified
model of an actual detection circuit which essentially as-

sumes that the noise in the circuit is broadband and Gaus'tar;| We develop a magter equgtlon for the density operafor of
. Lo . X e system alone by integrating out the bath degrees of free-
ian. The transmission line will be considered to be at a tem-

perature corresponding to the effective noise temperature (gfg T'Ig’;fg?s: t\;v;[hzisrevcr;tzﬁstlid grr;gt:i}scil\ll?:\)/;s;veilgzma_
the detection circuit and this noise will affect both the sensi P ’ ploy 9 pp

i S .
tivity and the heating of the ancilla and system oscillators.tlon and the Markov approximation that the memory time
More realistic quantum-mechanical models of amplifier cir-

cuits can be found in Ref. 23, for example. Our final model

scale of the bath is short. In this regime, the rotating-wave
master equation accurately describes the dynamics on time
for the QND setup will be fairly robust to the precise detec-
tion circuit. The resulting current operator is

scales longer than an oscillation period, and the resulting
| % > byn+ bl
n

environment. Secondly, we further simplify this equation by

making use of the difference in time scales between the sys-
tem and ancilla to obtain a master equation for the system
oscillator alone by means of adiabatic elimination. This al-

Qows us to study the effect of the QND measurement cou-
gng on the system.

A. Master equation

master equation preserves the positivity of the density ma-
trix. The derivation of such master equations is widely dis-
cussed in the literature; see, for example, CarmicHael,
Walls and Milburn® and Caldeira and Leggett.Note that
Caldeira and Leggett do not make the rotating-wave approxi-
whereby, are the lowering operators for the modes of themation(which we adopt from the quantum optics literafure
transmission line, and the proportionality constant, which iout instead make a high-temperature approximation; the two
not important for our results, depends on the circuit paramequations agree in the overlap of their domain of validity
eters. For a linearly coupled system-bath measuremerihigh temperature and weak coupling to the habpbwever,
within the rotating-wave approximation, the Hamiltonian de-the Caldeira-Leggett master equation can only be guaranteed
scribing the coupling between each measurement currei® preserve the positivity of the density operator in the limit
mode and the ancilla is proportional i ;a,+bynal. The  of high temperature.
coupling to the thermal bath modes has the same mathemati- Assuming that the environment and measurement baths
cal structure. In the rotating-wave approximation, the differ-are in thermal equilibrium, the master equation for the re-
ence between a coordinate-coordinate coupling and duced density operatgr describing the state of the system
momentum-coordinate coupling can be absorbed into thand ancilla in the interaction picture takes what is known as
definition of the phase of the various raising and loweringLindblad form,
operators. As is usually done, for later convenience we will d i
include a phase factor off/2 so that the coupling to the =P - —[#E(a] + a;) + ilg;adagalay, pl+ v(Ng + 1)Daglp
baths and measurement current takes the latter form. dt f

The final Hamiltonian for our model is then

(11)

+wNgD[af]p + k(N; + DDla]p+ «N;Dlallp, (13

“ where
H = hwgalae + HE(ag +al) + 12, 2 wsnbl sy

s n D[x]p = 2xpx" = x"xp — px'x,
+hilgadacalay + ih(0'ay— @al) +i#i(Ia, - 'al)

+i#[D'a; - D(t)al], (12

andN; are the Bose-Einstein factors at frequengyfor Ng

and wq for N;. The first term in Eq(13) involving the com-
mutator describes the coherent driving of the ancilla oscilla-
whereT',D,® have the form=7gy(w,)bs,,, and the index s tor and the nonlinear coupling between the two oscillators in
denotes the three different baths: the thermal bath coupled #§€ rotating-wave approximation. The remaining terms de-
the system(), the thermal bath coupled to the ancilth), scnbg .the d|§3|pat|ve interactions with the various baths. The
and the measurement bath coupled to the an¢ilaThe  coefficienty is
strength of the coupling to the bath modes is given by the
coefficientsgs(w,). Later, we will derive the relationship be-

tween these coefficients and the corresponding oscillatovheregpo(wg) is the density of states of the bath coupled to
damping rates or quality factors. the system at frequencyy. It can be experimentally ob-

v = 7Qpo(wo)|Gho( o) |%,
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tained from the quality factor of the system oscilla@y as  the oscillators, i.e.wy—w;> v, k. This condition can be un-
v=wy/ 2Qqy. The coefficientk is the corresponding damping derstood as not allowing non-energy-conserving transfers of
rate of the ancilla, with contributions from the coupling to  a phonon between the two oscillators.
the environment angk from the measurement bath. Both
these rates can be expressed in terms of the bath density of
states at frequency, in exactly the same way as fet and B. Adiabatic elimination
k=mn+u. The terms containing a fact¢N;+1) describe the . . .
spontaneous and stimulated emission of phonons into the FO @ strongly damped ancillac> »), the driven ancilla
thermal bath while the ones witk correspond to absorption rapldly relaxes to a state that oscillates with a phasg deter-
of phonons. mined by the current system phonon number. In the interac-
The master equatiofl3) can in principle be numerically tion picture, this is a displaced thermal state, i.e., a state with
integrated. However, we will make some further approxima-variance of position and momentum equal to those of a ther-
tions in order to derive a master equation for the Systenﬁﬂ&' state but with nonzero expectation values of pOSitiOﬂ and
dynamics alone and show that in some limit the readout sysmomentum consistent with the driving and damping of the
tem coupling results in the phase diffusion that is required agscillator. It will be useful to transform the equations of mo-
the backaction for the QND measurement, with no extrdion in such a way as to make a perturbative expansion
noise above this quantum limit. To do this, we assume tha@round this steady state. The basic idea is to transform the
the ancilla is strongly damped. In this limit, the ancilla re- origin of phase space such that the ancilla steady state for the
laxes rapidly to a state consistent with the instantaneous sy§-ansformed master equation is a thermal state. This transfor-
tem state. As a result, its dynamics are slaved to the systeffiation will essentially remove the driving term in the master
oscillator and can in fact be eliminated from the equations ofquation. This is the approach of Wiseman and Milliimn,
motion. Experimentally, this is the limit in which the dis- Who study adiabatic elimination in a similar model. While
placement of the ancilla directly reflects the system behaviothey assume zero temperature and therefore end up with a
This adiabatic eliminatioris described in the following sub- Perturbation expansion about the displaced ancilla ground
section. The final result of this analysis is E85) below. state, we must generalize their techniques to finite tempera-
Note thatv, x are the widths of the oscillator resonances,ture.
and these should be taken into account when assessing the Following Wiseman and Milburn, we use the displace-
validity of the rotating-wave approximation. In the presencement operatorD(e)=exfaal-«a'a;], with a=-iE/«. The
of the coupling to the baths, the rotating-wave approximatioriransformed system state Js=D(a)pD(e)", and we may
is only valid if wg—w, is much greater than the linewidth of write the master equation fgr as

7=D()pD(a)" = ~i|a|\of alao,B] — iINod adacalas, Bl — iNof alag(eal + a'ay), pl+ «(Ny + 1)(2apal - alasp - pajay)

+ kNy(2agpay - ayajp — pagay) + 1(No + 1)(2agpal — ahagh — pagao) + YNo(2a5pag — pagay — apadp) (14)
[
In this master equation, the excitation of the ancilla oscilla- Noda| v
tions leads to a frequency shift of the system oscillator de- Tk ' x =<1. (15

scribed by the first three terms on the right-hand side of this
equation. The first term is due to the classical mean value dfVe are assuming that the ancilla oscillator relaxes faster than
the ancilla oscillator energy and is just a constant shift in thehe system oscillator as well as that the nonlinear dynamics
system oscillation frequency. We may move to an interactiorire weak compared to the damping of the ancilla oscillator.
picture at this shifted frequency, the most convenient interfor the consistency of the following treatment, it will also be
action picture in which to perform the adiabatic elimination. necessary to havaq,N;/ k= €2 This requirement follows
The next two terms describe the effect of the fluctuations irffrom the second ternithe nonlinear coupling terjron the
the ancilla excitation. The thermal bath coupling teritie  right-hand-side of the master equation. This constraint can be
last four groups of termsare the same as before. achieved consistent with E¢L5), for example, by leaving

The adiabatic elimination will hold when the terms pro- finite and choosindN;,\g1/ k=€, a regime of low tempera-
portional tok in Eq. (14) dominate in the ancilla dynamics. ture and moderate nonlinearity. The approximations are also
Thus, the adiabatic elimination is valid in a strongly dampedvalid at arbitrary temperature in the limit of strong driving
regime such that and weak nonlinearity such thaty,/k=¢> and a=¢"*
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hold 37 Here the scaling of the driving strength is chosen to o i Ny _ Ny 4
preserve the measurement sensitivity which will scale with P2= ~1ho18g80| @py + & N+ 171 +ikog vy + 1
Mo/ k. In this regime, the frequency shift of the system ! !
oscillator becomes large. x o . Np - 4 3
As mentioned above, in this displaced frame the state of Ta pl] 393~ 2Kp2 I)\°1N1+ 1[a0a°’p°] +k0(e),
the readout oscillator is close to a thermal state and we ex- (23)

pandp in the form

where Lypg refers to the damping of the system oscillator
described by the last two terms in §44). Whenk is large,
the equation fop is strongly damped and quickly decays to

~_ t t t
P=po® pn, T P1® 1N, + Py @ pn @1t P2 ® 3pn A1 T P

® aIZle + p; ® leaf +0(e). (16)  the steady state. So we perform adiabatic elimination by set-
ting p;=0 and obtaining an expression foy,
Here thep;, 1i=0,1,2... act on theystem oscillator and the Nor| + N, N
subscripts indicate orders of magnitudeeinThe scalings of py= 1= 71 a@Bopo = N+ P00 | * O(é). (24)

the different parameters witthave been chosen to guaran-
tee the consistency of the expansion. The quarp;i,tlyis the  Substituting Eq(24) into Egs.(21) and (23) and using the
thermal density matrix for the ancilla, which in terms of the definition of the reduced density matrix EQO0), we find, up

average excitation numbé\; is to second order ire, the master equation for the reduced
density matrix,
L (N )T N2 |af2(2N; + 1)
= N . 0 1
PNy E’O N, + 1(N1+ 1) Imm. (7 ps=— - [adao.[aja0, ps]]

o : . = i{wo + N1 a]? + N} ajao, pe] + v(Ng + 1)(2a0pea))
This is the steady state of the master equation for an oscilla- Hoo + Aol + Nollagao el + #(No + 1)(2a0p2s

tor coupled to a thermal bath with temperature giverNgy - agaops— psagao) + vNo(ZagpsaO— psaoag— aoa;gps).

We have restricted Eq16) to normal ordered terms using (25)

the following identities, which can be proved from this ex-

pression forle; This is the main result of this section. Note that the effect of

the adiabatic elimination has essentially been to reptce
by \oilelalay/ «, an indication that by measuring the ancilla

PN aI: Ny aIPN , (18) oscillations it will be possible to obtain information about the
PEONg+1 7 system phonon number.
Ny
apn, = P A1. (19) IV. QUANTUM TRAJECTORIES

N, +1
! Equation(25) describes the statistical behavior of the sys-
tem due to the coupling to the thermal bath and the indirect
%oupling to the ancilla thermal bath and the measurement
bath, but does not tell us how the measured current reflects
the system state, or about the correlations of the system dy-
Hamics with particular measurement outcomes. In this sec-
tion, we derive an equation of motion for the state of the
system conditioned on a particular sequence of measurement
ps=Tr{p} = po+ (N + 1)p,. (200 outcomes. This equation is termedjaantum trajectory*?
. . . and results from continually projecting onto eigenstates of
o e oo i 0 plhe et Since he cuen efectvel measures phonon
operatorsy, retaining term's in the evolution g andp, up number, this measurement process will _tend to_force th'e sys-
o secondlbrder i 2 tem towards a pure number_state that is consistent with t_he
' measurement current. The time scale for this to occur will
depend on the coupling of the system to the measurement
po=—iNgll @ alagp: — aplajag] + 2k(Ny + 1)p, + Lopo apparatus, which is in turn connected to the sensitivity of the
+ kO(E) (21) measurement. On t'he othgr hand, the coupling of the system
' to a thermal bath will lead it to absorb and emit energy from
the bath. Thus, in order to determine which number state the
N system is in and track its evolution, it must be possible to
p1=- i)\01a$a0apo+ i)\ma—lpoagao— kpy + kO(€?), distinguish between one number state and the next in a time
Ny +1 that is short compared to the time scale over which phonons
(22 are absorbed from and emitted into the thermal bath.

These normal ordering identities are the key to generalizin
the arguments of Wiseman and Milburn to the finite-
temperature case. Using ;{py,)=1 and Tg(aIleal):N1
+1, it can be seen that the system density matrix after tracin
out the ancilla state is
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~ Aquantum trajectory is constructed as follows. Over each HL (8 =- ih\r’ZTL(BtaI -Blay) (29)
infinitesimal time interval, the system and the measurement

bath states become weakly entangled via the interactioWith «=meq(w1)|g4(w)* the ancilla damping rate coming
Hamiltonian. As a consequence, at each time instant, th#om the measurement bath coupling as before.

state of the system influences the distribution of the possible The idea of the calculation is to consider the interaction of
values of the currentt that may be obtained in the measure- the ancilla with the bath at timie represented by the operator
ment. In turn, von Neumann projections of the entangledB, over a small time intervalt. It is supposed that each
states allow us to calculate the effect of the measurement 6glement” in the time sequence of the ba is initially

the current on the system state. The appropriate projection gescribed by a thermal state. Over the intetvglthe ancilla

onto the current eigenvector corresponding to the measurednd bath states become weakly entangled. Measurement of
current value. This results in a stochastic master equation féhe currenti.e., the bath operatds,+B[) then finds a value

the state evolution. To implement the quantum-trajectory apof the current equal to an eigenvaluef the current opera-
proach, we perform a simulation by picking the measurezor, with the corresponding eigenstatg, with a probability
mentsl(t) from the correct probability distribution and fol- distributionP(l) given by the density matrix of the entangled
lowing the corresponding evolution of the system state. Thétate in the usual way,

[(t) curve produced by such a simulation is representative of _

a single experimental run, and is a useful predictor of what P =(llp(t+AD]I). (30)
the experimentalist might see. There will be a signal contri-The measurement also projects the density matrix onto the
bution that reflects the system state, as well as a white noissigenstatdl ),

background arising from both thermal and quantum noise.
(1 p(t+ AD|1XI

A. Description of the measurement <||P(t + At)||>

While quantum trajectories are discussed in general apince the value of the current measured is a stochastic vari-
zero temperature in the quantum optics literature, Wisemaable, this projection adds a stochastic component to the evo-
has discussed the quantum-trajectory equations for homdution of the density matrix.

(31

dyne detection at finite temperatuiRef. 12, Sec. 4.4)1The ~ To follow the evolution over a timelt, it is useful to
demodulated current that reflects changes in the phase of tfi@troduce the normalized operator

ancilla oscillation in our setup is mathematically analogous At o

to homodyne detection at finite temperature, and so we can AB = {f Btdt} VAt = Bt\yﬁ, (32
adopt these results here. 0

The measurement bath is described by the boson opera- . - .
. : which satisfies the commutation rule
torsby,. Since the measurement bath is assumed to be large,
the finely spaced modes with a smooth density of states lead [AB(t),ABT(t)] = 1. (33)

to a short memory time, a result known as the Markov limit. ) ] ) )
To exploit this, it is useful to introduce a global bath operatorAt time t, the density matrix representing the ancilla and the

which captures the combination of bath modes that interaciégment of the measurement bath representedlBiy) can
with the ancilla oscillating at frequenay; at timet (see the b€ written as a direct product of the system plus angilta
Appendix for the derivation of these resylts and bathp,,(t) density matrices,

1 . p1) = p(t) ® py(t), (34
R 2 gd(wn)bd,ne (e wl)t' (26) . .
V2mpg(w1)dg(w1) n and p,(t) is a thermal state. To lowest order, the evolution

and has time-local commutation rules in the Markov ap_under the interaction Eq29) gives

proximation, p(t+dt) =p(t) ® py(t)
[B.B!]=at-t). (27) + 2 At[AB'a, - alAB, p(t) ® pp(t)] + O(AL).

The operatoB; should be considered to be a linear combi- (39
nation of Schrodinger picture operators, with the phase facThe second term on the right-hand side of this equation is the
tors of the coefficients depending on the paran®@tén  |eading-order term in the weak entangling of the state, and
quantum optics, this is termed the input field operator andwill lead, after projection, to the stochastic part of the
roughly speaking, describes the combination of bath modegensity-matrix evolution. Using thAB notation has made
interacting with the system at time In terms of these op-  the O(\/At) size of this term explicit. To derive the determin-
erators, the current Eql1) (appropriately scaled to remove stic part of the evolution equation, we would need to keep
proportionality constanjsis the O(At) terms, but since these are already knaihe mas-
I(t) =B, + B/ (28) ter equation in Lindblad formwe will not do this here.
— D¢ t s . . . . .

The scheme is now to project this density matrix onto an
and the interaction Hamiltonian between the ancilla and theigenstate ofAB+AB" chosen with a probability given by
measurement bath in the interaction picture is p(t+dt). Because of the weak coupling of the bath with the
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system, this will give a small additional contributigactu-  the measurement on the system density matrix.

ally proportional to\At) to the system density matrix de- Since the current i%/ VAt, the first important result is that
pending on the value of the current measured. Since the conthe measured current integrated over tifxteis

bination of operatordB+ABT is just the displacement of

the harmonic oscillator represented by the operaty this I(t)At = \"7M<31 +al)At + 2N, + 1dW, (37)
projection is most easily done by first transforming the state

of the bath into a Wigner function representati@ee, for
example, Ref. 2)/ At time t, the bath oscillator described by
AB(t) is in a thermal state and the distribution Xfis a
Gaussian centered aX=0 and with width 2;+1
=coth(hw,/2kgT). Following the evolution of the state
shows that at timé+ At and toO(\s“E), the distribution ofX
after the evolution corresponding to the operation E§%)

or in differential form
1(t) = \2u(ay + af)(t) + V2N, + L&), (38)

where &(t)=dW/ dt represents white noise with correlations

and(35) remains Gaussian and with the same width, but now (€(1) =0, (39

centered around 2,uTI’p(t {a;+ al}At This means that the

variable VAtX is a Gaussian random variable given by (EMEL)) = 8t—t'). (40)
VAtX = \'2M<a1 +al)At+ V2N, + 2N, + 1dW, (36)

The second result is for the increment of the system density
with dW a Wiener increment wittdWP=At. These results matrix after evolution througit and projection by the mea-
give us expressions for the measured current and the effect efiremen{cf. (Ref. 12 Eq. (4.113],

_
- — 2
dp®(t) = (X[t + AD|X)/p(X)=VAX /:l[(Nl +1)(agp™+ p¥a]) — Ny(ap™'+ p™a]) - Tr{ayp™'+ p¥al}p™] + O(AD). (41)

Replacing the stochastic variab¥eby the expression Eq36) and retaining only th®©(yAt) term gives

2u
A=\ T3 o, (Na D(agp™+ pa)) — Ny(ajp™ + pay) = (ay +ap)p™dW+ O(A). (42)

Equation(42) is the stochastic term that must be added to the density-matrix evolution ¢LBdo give us the stochastic
master equation for the density matrix conditioned on the measurement outcome. Note that the nal¥éappearing in Eq.
(42) is the same as that appearing in [E8j7), so that it is related to the actual current measutedby Eq. (37),

dW=[1(t) - v2ula; + al)JAUVL + 2N, (43)

B. Adiabatic elimination on the stochastic master equation

Just as we did for the master equation, it is possible to adiabatically eliminate the ancilla coordinates and find a stochastic
master equation for the system alone. Using the same expansion for the conditioned density métf) #e.can determine
stochastic equations fq:iSt from Eq.(42). We obtain the set of differential equations,

2u

dpg =\ oy, 5 11 Na* D3+ piN(pE + pDhpold W+ O(d), (44)
1

dpi'= | o (Nt D@63+ p3) = (o + pihpiav, (45)
1

dp3'= - Py ostdW. 46

P> o, +1{<p 10P3) (46)

We have written only the stochastic contributions; the terms proportior@t dce the same as in the adiabatic elimination on
the ordinary master equation.

Now we will do the adiabatic elimination as we did for the deterministic master equation. As before, we wishi} wet
zero. However, sincdp$'is stochastically driven, this will not be precisely true even in the steady state. In order to rgplace
by its mean value at long times, it is necessary to estimate the size of the fluctuations resulting fdWhténen. Following
the analysis of Doherty and Jacal§sye integrate the stochastic term over the decay time of the ancilla oscillator and compare
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its root-mean-square magnitude with the deterministic terms. Consider the full equatidm for

2p
2N; +1

. N
dp3'=- l7\01a{a$aop3t— N i 198‘6330]dt— Kkpydt+ {(NL+1)(205, + p)= (p3'+ pp33dW+ kO()dt.  (47)
1

We integrate this over a tim&t~ 1/« and use the fact that the mean valuep@fp, must be slowly varying over this time
to obtain

At
Apy= f dpy (48)
0

2p
2N; +1

Ny
Ny +1

At
== i>\01a[a$aopo - Poagao}m — kpiAt+ {(Ny+ 1)(2p2: + po)={p1+ pat)pa} f dWt') +0O(e’). (49

0
The random numbeAW_:fétdW(t’) is Gaussian distributed with mean zero and variafite 1/«,2° thus the root-mean-
square size oAW is 1/Vk. As a result, the stochastic term in the updatgo$cales likee>? and is negligible in comparison
to the deterministic terms, which scale like As a result, Eq(24) holds exactly as before. Using E(O) andia=—-ia’
=|a|, we finally obtain the stochastic master equaiSBME) for the system,

_ INaPeNg - 2 t t_ ot t
dps=-— [aga0.[apa0, ps]] [ dt — i{wg + Nos(|a|* + Np)Hagao, psldt+ v(Ng + 1)(2a0psag — 8g0ps — psBgo)dt

+ UNo(2adp<a0 — p<doal - agadps dt- V2K afagps + psalao — 2(ajag)p dW, (50)
[
where arbitrary (not necessarily diagonainitial state p(0).
K= ,U«7\(2)1|01|2/(2N1+ . (51) Equation(53) is our central result for analyzing the be-

havior of the measurement protocol. The first two terms of
Again, the noisedW is related to the measured current, Eq. (53) containingdt describe emission into and absorption
which using Eq.(24) can be written in terms of the system from the thermal bath coupled to the system. We will see that

phonon number, the second, stochastic, term tends to concentrate the distribu-
— tion p(n) onto a single value ofi. The two effects are char-
I(t)At = V2N; + 1(2v2k(agag)At + dW). (52)  acterized by the two time scales; andk™%, and the result-

ing behavior depends on the ratio of these two times. We will
discuss the competition by calculating the occupation num-
ber of the system(ajag)(t), which is given in terms o,

To further understand the consequences of the stochastitom numerical simulations of Eq53) by
density-matrix equatiori50), we consider a case in which
the initial state is a mixture of number statepg
=3 .p.n¥n|. (A thermal state is an example of such a state. T _
The solution of the stochastic master equation, &), re- (2020)(1) _En Ph(0)-
mains a mixture of number states if the initial state is a ) )
mixture of number states. For such an initial state, the sto- First, we turn off the stochastic component and consider
chastic master equation can be reduced to an equation for thge solutions given by the deterministic part of E&3).

V. RESULTS

(54)

weightsp,,, which takes the form Figure 2 is a plot fok=0 starting from two different initial
stated1) and|2) and for a bath temperature corresponding to
dp, == 2v(Ng + 1)[np, — (N + 1)p,sa]dt=20Ng[(n + 1)p, an average occupation numbéy=1.62. The plot shows that
— the deterministic terms in E@53) drive the system towards
— Np,_Jdt— 2v2k(n - >, n’py) pdW. (53 w®3 y

a mixed (therma) state, so that the ensemble average of
(aga(,)(t) gradually reaches the thermal average at the bath
Since mixtures of number states are invariant under changeemperature. This is true regardless of the initial state. Note
of phase and the number states are eigenstates of the Hantihat the deterministic part of E¢53) also describes the av-
tonian, neither the phase-diffusion term nor the Hamiltoniarerage over all measurement outcomes even for nonkgero
terms in the stochastic master equation contribute to the evaince the stochastic term averages to zero. We can define the
lution of the phonon-number distribution. It can also becharacteristic time the system resides in a given number
shown that this system of equations also describes the evatate, which we call the dwell timig,, ¢, as the reciprocal of
lution of the phonon-number distribution,=(n|p|n) for an  the initial transition rate given by E@53) with k=0,

n
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FIG. 2. Plot of the solution of Eq53) without the stochastic 0.8
component,k=0, with the initial state|1) (solid line) and |2)
(dashed ling 06
o
) 1 0.4
Pn
1= e | e 2N+ D+ (No+ D] > 02
Note that the dwell time depends on the initial stafeand % 1. 2 3
also on the temperature of the bath throdd ]
We turn now to the dynamics resulting from the measure-
ment process in the absence of coupling to the thermal bath. 0.8
Figure 3 shows results f(:(laga(,)(t) for a simulation of Eqg.
(53) with »=0 and an initial condition of a thermal state. 06
Figure 4 shows the individual probabilitigg for n=0,1,2,3, o™
for the same simulation. All number states are present ini- 0.4
tially, but eventually the system is projected onto stajen 02
this simulation. In other runs, with different random numbers ’
for the stochastic term, different final states result, as ex- 0
pected. The plots show that the stochastic term tends to 0 Tk 2 8
project the system state onto a pure number state on a time 1
scale of ordek™. We call this time the collapse timig,.
Since no coupling to the thermal bath is present in these 08
simulations, once projected onto a number state, the state is
) 0.5
stationary. The collapse onto a number state can actually be o®
shown analytically using the solution of the system of Eq. 04
(53) due to Jacobs and KnigF.
For the phonon numbe(aga())(t) to take on discrete val- 0.2
ues with both the thermalization by the coupling to the bath
and the projection by the measurement process present, we % 1T g 2 3
needtyyen=teor- This is illustrated in Fig. 5, which shows
results for the cases,,ei> teon aNdtgyer<teon With the fixed FIG. 4. Plot ofp,(t) for a simulation of Eq(53) with »=0 for

the states$0),|1),]2),|3). The initial state is a thermal state with the

3, t) >

+
<ao

3 average occupation number 1.63. The figure is for the same simu-
lation as in Fig. 3.

value of Nyg=1.62. We use values ok/v=250 giving

2 tdwe||/t00||:153 for Statd0> andtdwe||/tco||:42.4 for Staté1>,

and k/v=5 giving tguer/teconi=3.06 for state |0) and
tqwen/ teon=0.85 for state|1l). The jumps in the occupation

1 number are clearly evident in the former case, but are not
seen in the latter case. The discreteness in the phonon
number is shown more clearly by plotting histograms
of (aga0>(t), Fig. 6, again using a fixed value ®f;=1.62

0 1 2 3 but with different values ok/v equal to 150 and 15A bin

kt

width A(alag)=0.1 is used. The clustering of theajag)(t)

FIG. 3. A plot of a solution to E¢53) with »=0 with an initial ~ values around integral values is clearly evident fdw
state that is thermal. =150, is still identifiable fokk/v=15, and is completely ab-
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FIG. 5. The evolution of the phonon numb(eéao)(t) given by
Eq. (53) usingNp=1.62 andk/ v=250(first pane) andk/v=5 (sec-
ond panel.

N
<aa, t) >

sent fork/v=3. The increasing sharpness of the jumps with

larger k/ v can be seen in a more quantitative manner by

plotting the standard deviation of the phonon number from_,

integer values, the time and ensemble averagEaé%)(t)

- Int(agag) ()% as a function ok/» (see Fig. 7. it difficult to recognize the discrete jumps when the system
Sincetg,e is dependent on the temperature, the conditionstate is at highen.

tawen=teon effectively places a limit on the temperature of  \ve have so far considered the possibility of observing

the system oscillator even for larde Settingn=N, in EQ.  djiscrete occupation numbers in terms of the behavior of the

(59) for tawen, this inequality gives the condition on the tem- yariable(alag)(t). In actual practice, the occupation number

FIG. 6. Histogram of<a(§ao>(t) for a long simulation withk/ v
50 andNy=1.62(first pane) andk/v»=15 (second pangl

perature for jumps in the number to be seen, must be inferred from the measured currétt, and is ob-
scured by the noise in this variable. A simple scheme to
Ng(Ng+ 1)/2k < 1. (56)  reduce the effect of the noise is to average the signal over a
0.1
In order to keep the same resolution for observing clear
jumps as at low temperaturk/ » must be increased as tem- oL OOBE
perature increases. This is not an easy task for the experi- &£ '
menters: for example, for an oscillator with 1 GHz resonant s
frequency, which is the highest frequency currently reported Yo%
for a mesoscopic oscillatérat T=0.1 K the average occu- —CI
pation number ifNy=1.62. When the temperature is raised to A 0.04F hd
T=1 K, the value rises tt&N,=20. Thus if we demand the +ch ®
same resolution for jumping in both cases, the sensitivity of T o0zt * °
the measurement at the higher temperature must be increased X i
by a large factor. This is illustrated by Fig. 8, which shows

(a;gaO)(t) over time for different temperatures corresponding 0 50 kv 100 150

to Ng=1.62 for k/»=150 andNy=20 for k/v=1850. The

product¥Ny/k has been kept constant at 0.0108 in order to FIG. 7. The deviation of(alag)(t) from integral values
provide the same resolution for the jumps. Also notice fromas a function ofk/v. The deviation is defined as the average
Eq. (55) thatty,e decreases with the system statenaking  of |(ajag)(t) - In(alag)(t)[2.
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FIG. 8. Evolution of<a2;ao>(t) at a temperature corresponding to
No=1.62 (first pane} and Ny=20 (second pangl with »Ngy/k
=0.0108 and from an initial stal@).

Filtered current

sliding window. We can define the measurement tipes

the averaging time required to give the unit signal-to-noise 1

ratio. Thus we equate the sign@l given by averaging the 0 50 4 100
current for unit phonon numbeéaja,) =1, over the measure- 3

ment time,

tm - ) —
S= f dQ ) = 22N, + 12kt (57)
0

with the noiseN over this averaging time,

Filtered current

m —_—
— - — . 1/2
N= dQ@? ) = V2N, + 1t°. (58) -1 = o
0 kt
SettingS/N=1 gives the measurement time FIG. 9. Filtered current using a running average over various

1 window sizes, for parameteld v=250 andNy=1.62. The dotted

t=—. (59) line is_(aga{,)(t) given by the _stochastic density matrix._ The current
8k was first averaged over a time interval kkt=0.15. First panel:

current observed; second panel: window dia¢=4.5; third panel:

For jumps in the measured phonon number to be detected Window sizekAt=7.5; fourth panel: window sizkAt=10.5.

the current, we would neety, ¢ =t,. Notice that the mea-

surement time and the collapse time are comparable. This

means that if the experimenter can infer the system numbep USe the stochastic master equation to reconstruct the dy-
famics of the system given the initial ensemflé,) and the

state through the measurement current, then the system i q (D). Thi b dily if
actually projected to that state on the same time scale. Th@easured curre (t). This can be seen more readily if we

results for different averaging timest are shown in Fig. 9. ewrite Eq.(52) as
For kAt equal to 4.5 or 7.5, the averaging is sufficient to 1 =
display the steps iialag)(t) without too much rounding of dw= mﬂ(t) — 2\/2k(agag)(t)}dt. (60)
the transitions. Ve

The simple averaging is not actually the optimal way toln our simulations we drav(t) at random from the appro-
extract(aga())(t) from I(t). In principle, a better approach is priate distribution and find the stochastic density magrix
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However, usingl(t) from experimental data, the experi- Roukes3! A demonstration of such frequency shift detection,
menter can in principle propagate E&3) using Eq.(60)  and direct measurement &f; between two coupled beams,
and then can estimate the phonon number at each time frofrave recently been reporté8iThe longitudinal strain pro-
Eq. (54). This procedure is itself a low pass filtering that duced by a single quantum in the fundamental flexing motion
reduces the noise on the measurement current, correspondiisg
to the optimal filtering for our model of the systefs* —_—
X= ey
VI. PARAMETERS AND CONSTRAINTS Moo Lo

The results of the previous section show that a large valu¥/N€re Mo is the mass and,, is the length of the system
of the ratiok/v is crucial. To analyze the interplay of the _beam. Then the ancilla frequency shift caused by this strain

parameters of an experimental realization, we simplify theS

(63

expression fok/v by assuming that most of the damping of ¢ L2
the ancilla comes from the necessary coupling to the mea- No1= W15 X g2 (64)
surement device, rather than from the extra thermal bath, i.e., 2mdy

w=«. Then using the expression kffrom Eq.(51) andv  \yhere( is a geometric factofz=3 for clamped beam bound-

= wp/ 2Qo, We get ary condition$ andL,,d, are the length and thickness of the

FAVAY: ancilla beam, respectively. Introducing a dimensionless
(i

k
= = 4(2N; + 1)7'QeQ, (61)  quantity,
14

W \ W1

2
Equation(61) shows that the success of the measurement R= ﬁ—zi
procedure is favored by large oscillator quality factors, large mydi iy
driven responséal, and a large value of the anharmonicity yhen the scaled coupling coefficient can be expressed as
coupling factor\y;/ ;. In addition, as we have seen, detect-
ing individual jumps becomes harder as the temperature in- N1 myw;L2
creases. Increasing the quality factors of mesoscopic oscilla- w_l - ZlmowoLéR' (66)
tors is an active area of research. Currently, values of order
10°-~10" seem possible. If these could be raised to the value§ince the factor of the ratio of the two-mode parameters will
characteristic of more macroscopic oscillators of the sam@ot be too large or small, the most important quantity deter-
material, of order 1Dor even higher, the detection of indi- mining the anharmonicity factor, which must not be too
vidual phonons would become correspondingly easier. Thémall for the success of the measurement scheme, is the di-
frequency ratiow,/ w, appearing in Eq(61) must be less mensionless rati®. This will typically be a small number.
than unity for our detection scheme, but will probably not beThe need for small devices is seen from the scaling of this
too small because of geometry constraints. Thus the maiparameter with the dimensions.
parameters available to optimize the experimental geometry
are the anharmonicity factory;/ w; and the dimensionless B. Driving strength
measure of the driven displacement of the ancjd? (the
number of phonons in the driven stat&e now consider

these factors in more detail.

(65)

The detection scheme we have considered is to measure
the phase of the driven response of the ancilla oscillator.
Since the detection scheme is magnetomotive, it is natural to
consider the use of magnetic driving in estimating the size of

A. Anharmonicity coefficient the displacement paramete. For magnetic driving using a
The interaction Hamiltonian for the system and ancillacurrentlgre in @ magnetic fieldB, the dimensionless dis-
oscillators Eq(7) can be written placement can be estimated as
RWA _— T T . —
H™ = fowgagao + il + NoaNolagay (62 |a| = QlB'd#elel VR. (67)
Vehwq

with ny the system phonon number. This equation implies
that)o; can be estimated as the frequency shift of the ancillaagain, the important role oR in limiting the size of|a| in
oscillator for a single quanturfny=1) of the system oscilla-  this analysis is apparent.

tor. We must also recognize that the size|@f might be lim-

For the prototype geometries using the two orthogonalted by other physical constraints, rather than by the avail-
flexing modes of a single beam, or parallel flexing modes o&ble drive strength. One constraint might be to avoid unde-
two longitudinally coupled beams, the nonlinear couplingsired nonlinear effects in the driven beam itself. For a clas-
arises from geometrical effects. At second order, the transsical oscillator, at sufficiently large drive amplitudes, nonlin-
verse displacement in one mode gives a longitudinal strairgar frequency pulling leads to a multiplicity of solutions and
which then changes the frequency of the second mode. Thastability. This occurs when the nonlinear frequency shift is
strain generated by the flexing motion and the frequencyomparable with the width of the resonaneg/Q;. Using
shift associated with this strain can be derived using elasticthe same type of estimate for the nonlinear frequency shift as
ity theory, and have been calculated by Harrington andn Eq. (64) shows that this occurs for
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1 oscillator. This frequency shift may be detected as a phase
la| = \'fQ R’ (68) shift of the ancilla oscillation when driven on resonance. In
N1

principle, a QND measurement is possible if the coupling
A more detailed, guantum-mechanical analysis of the driverconstant between the two oscillatorg is much smaller than
nonlinear oscillator will be presented elsewh&te. the resonance frequencies of the oscillators, as will usually
be the case. We have derived the master equation for the
system density matrix first integrating out the environment
and measurement degrees of freedom, and then by removing
As a first estimate of the order of magnitude of the quanthe ancilla operator using the fact that the time scale of the
tities introduced above, we will construct an example con-system and ancilla dynamics are quite different. The master
figuration using parameters that seem plausible with currerdquation has three components: phase diffusion as a result of
technology. the measurement backaction, a constant energy shift due to

Recently, oscillators with resonant frequencies as high agne excitation of the ancilla oscillator, and number state tran-
1 GHz have been fabricatédsing silicon carbide. Thus we sjtions due to the interaction with the thermal baie en-

consider two flexing modes with resonant frequencies ofjironmeny.

wp=2.3 GHz andw;=0.36 GHz so thatwy—w;>\gy, v, k The measurement process introduces a stochastic compo-
are satisfied. For this value of the system oscillator frement into the system dynamics, and we have obtained the
quency,fiwg/ kgT is unity at a temperature of about 0.1 K. stochastic master equation corresponding to our measure-
The oscillators in Ref. 3 were not very small, but it is ex- ment scheme. From the stochastic master equation, we iden-
pected that the structure can be scaled down while maintaiq'rfy two competing tendencies that can be characterized by
ing the high oscillation frequency. We therefore suppos&wo parameters. One is the coupling strengif the system
smaller dimensions consistent with these frequenciesand thermal bath, which is associated with the dwell time
namely dimensions are 046m < 0.04 umXx0.07 um forthe ¢, . between transitions. The other is the coefficiknas-
system beam and 06m X 0.04 umXx0.01 um for the an-  sociated with measurements, which includes not only the
cilla beam. With these parameters, we obtain coupling strength of the system to the measurement bath but
_ 9 also the anharmonic coupling strength between the oscilla-
R=4.26x10°. (69) tors, the driving amplitude. This coefficient is related to the
The factorR occurs squared ik/ v [via Eq.(66)], which  measurement timg, that is needed for a measurement to be
is required to be large, and so this small factor must beble to produce an outcome with certainty. To observe clear
mitigated by the other quantities in E§6), i.e., large values quantum jumps, we would neég,;> t,. If this condition is
of Q and a large driven amplitude|. Suppose th€ of the  not satisfied, then the experimenter cannot infer the energy
system oscillator i€y=10 000 andl;=1000. For the size of eigenstate of the system from the observed current.
|al, first consider the magnetic driving. A magnetic fiedd Although our simple estimates based on plausible litho-
=10 T andl ;=1 xA can raise the driven response|tg graphically prepared oscillators yield values for the ratio
~10°. To reachk/v~ 1, the nonlinear couplingd g,/ w; that  tg,e/t, too small for the observation of individual phonons,
is required is then enhancements to the geometry and the trend to smaller de-
_ 8 vice sizes should improve the outlook. The basic scheme and
Ao/ wy =4.9X 10°°. (70 theoretical techniques developed here are fairly general, and
With the given beam dimensions and the geometric nonlinin particular are not restricted to zero temperature, and so can
earity, the anharmonic coupling coefficient is actuallybe also used for other applications such as single spin detec-
Aoa/ 0;=1.3x 107, about three orders of magnitude tion and noise analysis for a solid-state-based quantum com-
smaller. One possible way to increase this value might be t@uter. Such possibilities might open up a new stage for ob-
engineer the geometry of the oscillator so that the anharserving quantum dynamics in mesoscopic systems.
monic coupling is larger than in the simple geometric non-
linearity we have considereéfi Another way to increask/ v
is to increaséal| using a different driving scheme, although
for the value oR in Eq. (69) the limit in Eq.(68) is already We thank Michael Roukes for providing information
exceeded fota| = 10°, so that engineering the geometry to about the experimental progress in his group. D.H.S. is grate-
reduce the self-nonlinearity might be necessary. An obviousul to Gerard Milburn and Tony Leggett for insightful dis-
way to increasek/v to values greater than unity is to use cussions and thanks the Institute for Quantum Informaion at
oscillators with smaller dimensions, for example carbonCaltech for their hospitality. This work was supported by
nanotubes. DARPA DSO/MOSAIC through Grant No. N00014-02-1-
0602 and NSF through Grant No. DMR-9873573. D.H.S.’s
VII. CONCLUSION WOI’!( is also supportgd by the NSF through a grant fo_r the
Institute for Theoretical Atomic, Molecular and Optical
We have analyzed a scheme to observe quantum trandihysics at Harvard University and Smithsonian Astrophysi-
tions of a mesoscopic mechanical oscillator. The nonlineacal Observatory. D.H.S. also acknowledges the Weitzman
coupling shifts the frequency of a secogancilla) oscillator  fund for a travel grant. Work by A.C.D. was supported by the
proportionally to the excitation level of the firgsystem NSF through Grant No. EIA-0086083 as part of the Institute
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-00-1- B(t),B'(t")] = X
Quantum Network§DAAD19-00-1-0374. [B(1),B'(t")] 2mpaadlga o ), w py(w)
APPENDIX: BATH FIELD OPERATORS X[ gy w)]2ei(@meDt=t), (A5)

In this appendix, we describe more fully the time-local Since p4(w) andgy(w) are slowly varying functions around
measurement bath operatdsintroduced in Sec. IV A. The  the ancilla oscillation frequency=w;, we can approximate
description in terms of finely spaced modes of the bath withhese agy(w) = py(wy), gq(w) =gq(w;), and pull them out-
a smooth density of states leads to the short memory or Mak;jge of the integral. Then introducings w—w, and extend-

kov property of the bath,. which can be express_ed in terms %g the lower range of the integration overto - leads to
the time-local commutation rules f@. In the main text, we  the desired result

introduced the global bath operator as E2p),

1 )
B = ?E Qa(wn)bg e et (A1)
\2mpg(w1)9g(wr) n

2]

[B(t),BT(t’)]:%T f dee ) = 5t-t').  (A6)

—00

The interaction Hamiltonian for the ancilla oscillator and

We first derive the commutation rule E@7). Substitut- 1o measurement bath is, from E42),

ing Eq.(Al) in the commutator gives

1 Hine = 172 gl @n)[bn(Day(t) —bgna(Haj®], (A7)
[B(H),B'(t")]= 52 Gd(wn)de(wp) n
2mpg(w1)[Ga(w)]7, 7, : . . .
' where we have moved to the interaction picture vatft)
X[by bl ] X elerentgrilon-ont’ (A2)  =aye“r andby(t)=by e the ancilla and bath operators
’ in this picture, andyy(w,) is the coupling strength. The in-
and using[bd,n,b;n,]:énln/ we obtain teraction Hamiltonian can be written in terms of the bath
1 operatorsB; as
T+ = —
[BO.BI)1= 2pg(w1)[gq(@1)]? Hilm(t) = iﬁV’zM(BtTal - Btabn (A8)
> E [gq( wn)]Ze—i(w—wl)(t—t’)_ (A3) where the coefficienu is
’ p= 10d(wy)|gu(wy)? (A9)
Changing the sum to integral form o
as before, and we have used the fact that the ancilla interacts
S fm e py(w) (A4) predominantly with bath modeg near frequemqyand again
. 0 Pd have assumed a smooth variation of the density of states and
coupling constant so that we can make the replacements
gives pa(®) = py(w) andgy(w) =gg(w,).
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