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The effective resistivity and conductivity of two media that meet at a randomly rough interface are computed
in the quasistatic limit. The results are presented in the spectral density representations of the Bergman-Milton
formulation for the properties of two-component composite materials. The spectral densities are extracted from
computer simulations of resistor networks in which the random interface separates two regions containing
different types of resistors. In the limit that the bond lengths in the resistor network are small compared to
parameters characterizing the surface roughness, the resistor network simulation approximates the continuum
limit of the two-component composite. The Bergman-Milton formulation is used to obtain a set of exact sum
rules in the continuum limit for the spectral densities in terms of parameters describing the surface roughness
and the simulation results are found to agree with these limiting forms. Perturbation theory results of the
composite in the continuum limit for weakly rough random interfaces are also presented. An expansion of the
spectral density is determined to second order in the surface profile function of the random interface and
compared with the Bergman-Milton sum rules and computer simulation results. The formalism is applied to
surface plasmons, electron energy loss, and light scattering from rough surfaces. Layered structures are dis-
cussed briefly.

DOI: 10.1103/PhysRevB.70.144205 PACS nuni®er41.20.Cv, 71.36tc, 77.55+f, 02.70.HmM

I. INTRODUCTION possible values of the resistivities and conductivities of the

The theory of the conductivity and resistivity of compos- two components forming the system. The spectral densi'ty is
ite materials has a long history. Earliest consideratises, difficult in general to compute and has only been determined

e.g., the book by Sihvolawere based on simple analytical exactly for restricted geometries. Some analytical and nu-

methods. These emphasized exactly solvable models pertlmerical results are also available in perturbation theory and

; ; 10,13,14,17-23 |
bation treatments, and effective medium approximationstmhgumgehmtﬁé(p;nesétorgls gggsﬁ?; ?r?%%%?ﬁ?nnot be ¢ fﬁ(lzulate d
Modern theories have focused on more sophisticated analytb-y analytical means, developments in computer simulation

cal ;reatmgnt’slz and on computer Sim}JlatiOﬁS%o'ls_lgof technique$2—3%now allow for the numerical determination
particular interest to us in th|s.paper_ is the formulation ofof the spectral densiy:181924-2835pectral density methods
Bergman and Milton, first published in Refs. 3 and 4, andyre found to be of great generality and have been applied to
later in greater detail in a lecture notes VO'”‘F’"‘W calcu- 5 wide variety of different systems. These include randomly
lating the conductivity and resistivity properties of two- disordered materiafs;10.13.14,18-20.24-28 31neriodically  or-
component composite materials. This method is based on gered material§;1%2-23and those with isolated impurities of
formal solution of Gauss’s Law and has yielded a number of regular geometry8-10.2425

exact inequalities, limiting forms, and sum rules for two-  Resistor network simulations can greatly facilitate the
component composites. In this “spectral treatment,” the forstudy of spectral densities of  two-component
mal solution for the average conductivity and resistivity of composites81°320ne of the earliest many-body problems
the composite system are expressed as functions of the cotreated by means of computer simulations is the resistor net-
ductivities or resistivities of its two-components in terms of work problem!® This involves the numerical determination
an integral(Hilbert) transform involving a spectral density of the resistivity of a mixed network of resistors, and is of
and a simple pole, or an entire sequence of simple poles imterest as a model for random alloys, particularly when the
the case of a periodic microstructure. The physics of thdength of a resistor in the network is small compared to typi-
solution is in the spectral density which depends on the geeal length scales in the alloy. The resistor network problem
ometry of the constituent materials of the composite. Oncénas interesting transport and phase transition properties,
the spectral density is known the effective conductivity andwhich have led to the development of a number of efficient
resistivity properties of the system are determined for allalgorithms for the quick solution of large arrays of mixed
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resistors. These algorithms are now finding application within Sec. IV. In Sec. V, applications are made to surface plas-
the Bergman-Milton formulatio®-2831:32The first use of mons, electron energy, and light scattering from rough sur-
resistors arrays to extract the spectral density of twofaces. Generalizations of the theory to treat multiple layered
component alloys was in the paper of Day and Théfde.  media are in Sec. VI. A general discussion of the results is
this paper a general two-dimensional alloy was treated angiven in Sec. VII.
the features of the spectral density determined for a wide
variety of disorderd®1%32 This spectral density approach
was also used to model the optical properties of a two-
component materigf Consider a quasistatic system between two parallel plates.
Here the Day and Thorpe method is used to determine th&he upperz=L/2 plate is at a potentia¥,, and the lowerz
continuum limit of the spectral density in the Bergman-=—[ /2 plate is at zero potential. Between the parallel plates
Milton formulation for the resistivity and conductivity of two  are two media of conductivities; and o (resistivities p;
media that meet at a randomly rough buried interface. Fopnd ) separated by &two-dimensional interface that is
simplicity, the interface between the two different resistive orrqgh 'in one of its two dimensions. Two geometries are

conducting media is described by a one-dimensional Gausgreated: In the first, the average of the rough surface separat-
ian random profile function so that the interface retains transl-ng the two media is the-z plane. For this geometry the

. o 7 N

lt?c?r?sn?tl) ?%gg}%gnglggg”chuaﬂssbqugﬁsé%aﬁ'%leﬁgéz b ffective conductivity of the medium between the parallel

require much more com yutatignal offétThe treatment o,f lates is calculated. In the second, the average of the rough
9 P : sdJrface separating the two media is thg plane. For this

?nodrethgeer]ciglt::ucr)ffa(c:sealrj(:)si?ahnneri ds(;ﬁ'sstl(;is'zcsstrgggitsfglrjvsvgr ometry the effective resistivity of the medium between the
rallel plates is calculated.

Iatgr in the text. The.calculatlpr!s.ar{e for Fhe low f_requencyp In both geometries the average electric field is defined
limit of the conductivity or resistivity in which the displace- | ¢
ment current is ignored, and are done by using a combination

of resistor network simulations and analytical techniques. - 1 -

Comparison of the spectral density results from simulation Eo= \—/J E(F)d’r, (1)
data is made with a variety of analytical limiting forms.

face in a two-component composite are obtained from resis=g \/ /L, andV is the volume between the plates. The effec-

tor network simulations involving systems with bond disor- e conductivity o' of the medium between the parallel
der. The coordinates of a Gaussian randomly disorderegkﬂes is then defined by

interface are generated and are then used to separate two
regions of different resistor types. In the limit that the param-
eters characterizing the rough interface between the two re-
gions of different resistor bonds are large compared to the
bond lengths, the continuum limit is well approximated. Thewith the effective resistivity related to*" by p*'=1/0°".
spectral density in the continuum limit is extracted from

computer simulation results. The Bergman-Milton theory is A. Average interface in they-z plane

used to generate a number of sum rules obeyed by the con- | this geometry the position-dependent conductivity of

tinuum limit of the spectral density for the interfaddt is  the medium between the parallel plates is given by
important to note, in regard to the Bergman-Milton theory,

that the exact sum rules usually apply away from the con- 1
tinuum limit as well. We believe that this is true for the 0(6202{1_g91m]' (3)
resistor networks studied herd hese results, which are of
interest in themselves, are used to check the simulation dat@heres=o/(o,~01). Here

Perturbation theory results for the continuum limit of the {1 X< &2)
interface problem are generated in the limit of weak rough- AGERIN ] (4)
ness. The expansion parameter is the surface profile function, 0, otherwise,

¥Vhich is represented by afset r?f Gaussialn random stationafyherex=¢(z) defines the one-dimensionally rough interface
unctions. An expression for the spectral density to second giie (Note: the surface is translationally invariant in e

order in the surface profile function is obtained and found toy; . ; ; ;

t F flat interf, Eq. (3 laced b

agree with the Bergman-Milton sum rules and the results Oglr%:)lgz?m:(; E;y atinterfacefy(1) in Eq. (3) is replaced by
10

the computer simulation.

II. SPECTRAL FORMULATION

- - 1 -
JozaeffEO:\—/ J Jdr, (2)

The order of the paper is: In Sec. IlI, the continuum model 1, x<0
is presented and discussed, using a spectral formulation of 610(1) = {O otherwise %)
the Bergman-Milton type, and a number of sum rules are ' '
derived. In Sec. Ill, the computer simulation is discussedIn the following, systems with both random and flat inter-

Results for the spectral densities are presented, and a corfaces are considered. In both systems, the volume fraction of
parison is made with the limiting forms obtained in Sec. Il. material with conductivityo; is p; and the volume fraction
Perturbation theory for weakly rough interfaces is presentedf material with conductivityo, is p..
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SPECTRAL DENSITIES OF EMBEDDED INTERFACES

The one-dimensionally randomly rough interface in Eq.

(4) is defined byx=£&(z), where&(z) is from a set of Gaussian

random functiond&(z)}. This set is chosen to have specific
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L 1.
¢:z+§+gr‘(5)¢, (12

statistical properties that are ultimately correlated with the\Nheref‘(s)¢:fd3r’03(re’)V’G(F F’|s) -V’g{)(re’).
average physical properties of the random system. The aver- ;qing an alternative formulation developed for general

age physical properties of the random system are determin

by averaging these properties computed as functionals
&(2) over the set of function§&(z)}.
The set of Gaussian random functiofg$z)} satisfy?3-34

(§(2))=0, (6)
(£)E@) = & expl(-[z-Z'|%18%), )

where( ) indicates an average ovéf(2)}, J is the rms de-
viation from a flat surface, and is the correlation length of

ggndom two-component composite’;10:14.18.19.35-3% can
|

so be written as

Lo fis
¢'Z+2+2is—s¢" (13)

Here f,=(1/V) [ d® 6,(F)V () -V[z+(L/2)] and ¢; are the
solutions of the Hermitian eigenvalue problem

1Aﬂod’i =5, (14)

the surface roughness. Higher order correlation functions of
the Gaussian surface roughness are expressed in the usudlere

way2334in terms of those in Eqg6) and(7) as the sum of

all possible pair and singlet contracted averages. For ex-

ample (§(2)£(z')£(2'))=0 and
(§(2&(Z)6(2)&(2") = (E(2)£(Z))E(Z) (Z")) +(£(2)&(Z))
X(&(Z')é(Z") +(E(2EZ"))
X(&(z')¢€(2)).

Lo =f &' 6,7V GolT 1) V' (), (15)

for V2Gy(r,r)=-89(F-f"). Equation(13) is found to be
useful below as it explicitly exhibits the pole structure of the
dependence of ons.

The effective conductivity of the system is computed by

Areason that Gaussian random functions have become popusing the formal solution of [either Eq.(12) or (13)] in
lar in the study of disordered systems is that they give rise t&gs. (1) and (2). The average electric field is along tlze
perturbation treatments which have a Wick’s Theorem. Thiglirection, so that

allows for a simple diagrammatic treatment.
To determine the effective conductivity from Eg$) and

(2), the electric field of the disordered medium is written as

E=-E,V¢, whereE0=|I§0| andEy¢ is the electric potential.
From the current continuity, the functiafi is a solution of

V-[o(NVe¢]=0, 8

subject to the boundary conditiong(z=L/2)=¢y=L,
¢(z=-L/2)=0. Using Eqgs(3)—(5) in Eq. (8) gives

1 1
V'{(l‘gelo)vﬁb]—gV'(93V¢): (9

whered;(r) = 6,(r) — 6,4(F). A formal solution of Eq(9) for ¢
is

W =zes- f @G 19V [V )]

=z+ % + éj d3r’03(r9’)V’G(F,re’|s) V().
(10
Here the Green’s functioG(F,F’|s) satisfies
V. [1 - éalo(r”)]ve(r*, re=-8F-r) (11
in V, subject to the boundary condition th&=0 on the

surface ofV. Equation(10) can be written in a compact
operator notation as

PAE é J d¥r(~k- o), (16)
and from Eqgs(3) and(16)
1 | R
eff = i—éo{f d3r(1 —g@o)(‘ k-E)- gf d’ro5(—k - E)} .
(17)

The electric field in the first integral in E¢17) can be re-
placed byE, so that from Eqs(12) and(17),

eff
I =p, %y pz—s%<z+ 5‘P<s)¢>, (18)

(o) () 2
where(f|g)=(1/V) [ & 65(F)Vf-Vg. We note that, in spite of
the similar notation, the expressi¢fig) is not a scalar prod-
uct, sincefs(r) takes on the negative value -1 as well as the
positive values +1: It has to, because its volume average
vanishes. This separate$’ into two contributions: the re-
sults for a flat surface and a component arising from the
disorder. Alternatively, from Eqg13) and(16), we find that

eff
F.
—=1-3 (19
02 i STS
whereF;=|f;|2. This expresses®'" in terms of the eigenval-
ues{¢;} and eigenvectorfs} of Eq. (14).
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Following the formulation used to study the effective con- 1

ductivity of a general three-dimensional, two-component p(N) =py 1~ ?91(5 (25)
composité>®’ we define the functiofF(s) by

eff for t=p,/(p~p,) and

F(s=1-—. (20 (
(o) 1, z<é&X)
. _ B o 6:(F) ={ L (26)

Here o®'"" is the effective conductivity of the medium in the 0, otherwise

presence of a randomly rough interface. For the flat surface ] . o
Eq. (20) becomes Here{&(x)} are a set of Gaussian random functions defining

the interface profile. For a flat interfacé,(r) in Eq. (25) is

oa" py replaced byd,(F), which is defined as in Eq26), but with
Fo(s)=1 _72 g 2D thez< &(x) condition replaced by < 0. For these two sys-

tems, the volume fraction gf; is p; and the volume fraction
where o§"'=p, o, +p,0, is the effective conductivity in this  of p, is p,.

limit. To study the effects of the rough interface, it is most  From the current continuity equatioﬁ.j:(), it follows
useful to determine the difference of these two fUnCtionS, |ethat the current density can be written in terms of a vector

oo — geff potential, i.e. J=VXAS The quasistatic limit of Faraday’s
F(s) = Fo(s) = OT- (22)  law VX E=0 then gives
2
In the formulation of Egs(12), (16), and (18), this be- V X [p(fV X ,&] =0, (27)
comes
1 L. which definesA in V. This equation is solved fok subject to
F(S)—Fo(S):? z+ E‘T(Sﬁﬁ the boundary condition that on the surface \6f Ax A

:%[ﬁx (jOZx r)] wherefi is a unit normal out of/.

L Equation(27) can be rewritten as

T'(s)
zZ+ E . (23)

S— f(s)

1 L
=—\ z+—
S 2

1 1 n
In the formulation of Eqs(13), (16), and(19), Eq. (22) be- VX {(1 - Y‘91°>V ~ A} e (DY X A}, (28)

comes
where 65(1) = 6,() - 6,4(F). Defining a Green’s function ten-

1 o U5 .
F(s) = Fy(s) = %E ;_% = f duﬁ’ (24)  Sor, G(r,r'|s,k), in V by
i 0

1 - - - -
whereg,(u) is the spectral density. The second equality of —V X Hl —;910(0]V X G(F,rflt,k)} +K2G(,r'|t, k)
Eqg. (24) is a generalization of the first equality: It includes
the first equality as a special case, but is also applicable when = - 537 - F’)l, (29)
the pole spectrum ceases to be discrete. That enables us to
apply this formalism also to spectral functioRss), which
are obtained by averaging over an ensemble of similar sy
tems. Equation(24) shows that the functioifr(s)—F(s) is
determined by a set of simple polessnThese poles appear R ) 1 o
at the eigenvalues of E¢l4), and are weighted by the spec- A, k) = A%() + —J d*r’'G(f,r") -V’
tral densityF;s or g,(u). The spectral density then deter- t
mines the properties of the system as a functiors @fnd SN~ R
contains the essential physics of the system. The goal of our X{B(r) (V! X A K}
computer simulation studies will be the determination of this
spectral density for random rough interfaces and the deter-
mination of how the general features of the spectral density o
are influenced by the nature of the disorder of the randomly VXA (r' k)], (30
rough interface.

subject tofi X G=0 on the surface oV, we can form the
Sunction

= A(F) + % f o 05(r )V’ X G(F,r)]

where,&O(F):(jOZx r)/2 is the solution for a smooth inter-
B. Average interface in thex-y plane face. Taking thek— O limit of the right-hand side of the

In this geometry, the resistivity of the medium betweens’ecOnd equality in Eq30) gives a formal solution of Eq.

the parallel plates in the presence of a randomly rough inter28) for A(f). Care must be taken in treating tke- 0 limit
face is given by in Eq. (30) as in this limit G(r,r’[t,k) does not exist even
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thoughV’ ><G(r r 'It,k) does eX|st This is not a problem as Here, from Eqs(31) and (32), B= [1/(t1- ]ﬁ&o. Alterna-

we will only need V’><G(r r 'It,k) in the results below. tively, from the form forA given in Eq.(35), it can be shown
Equation(30) can be rewritten in operator notation as that

e e les
A:A°+¥FA, (31) —=1->—, (39)
i

so that whereH; = (1/33)|hy|2.
By analogy with resistivity studies of composite materi-

- -

A=A+ - (32 als, we define a functiohi(t) for the rough interface Iy
tl-T
peff
Using the standard form of the general two-composite Ht)=1-—, (40
P2

theory? an alternative expression fércan be given in terms
of the solutions of a Hermitian eigenvalue problem. From theand for the flat interface a functia,(t) by

Hermitian eigenvalue problem
eff

o P
FOAi = tiAil (33) HO(t) =1- i (41)
where For the interface problem it is useful to study the differ-
ence of these two functions, i.¢4(t)—Hg(t). From the for-
FOA: =f d3r’91(F’)[V’ % é’o(f’ﬁ)] V' X ,&i(ff)] mulation in Eqs(31) and(32) it is found that
(34) F(t)
H(t) — Ho(t) = —<A°| |A°> (42
for Go(F,r")=lim_o Gy(f,r") with (-VX V+k3)Gy(F,r') -
3)(f— pe 2 - .
=-80(F-r"), it follows that where (flg)=(1/Vdy) for 65(F) (V X ) -(V X §). This form of
o ht - H(t)—Hy(t) is used below to obtain an asymptotic limit.
A=A+ ﬁAi, (35)  From Eqgs.(33)«35) we find
i =0
. . Hiti _ o)
where h;=(1/V) [ d® 6,(")(V X A) -(V X A%. From Eq.(35) H(t) = Ho(t) = ‘2 P dvt(t —o)’ (43)
it is seen thatA as a function oft is composed of simple
poles. . S The second equality of E¢43) introduces the spectral den-
The effective resistivity is given by sity g,(v). This equality is a generalization of the first equal-
ity of that equation, in the same way and for the same rea-
peff= 1 d3rpjo . (36) sons that were explained for the second equality of(E4).
VJS As with the conductivity problem, the essential physics of
) ] ] the effective resistivity of the composite is contained in
The integral in Eq(36) can be rewritten as 9,(v). The functionH(t)—Ho(t) has a structure that is very
similar to that ofF(s)—Fg(s). As a function of t, it is deter-
f d3rp30 J= pzf d3r (1 - _910)30 j_ B2 o3 9330 J mined as a sum of simple poles which occur at the eigenval-
ues{t;} of the operatof(t). The spectral densiti;t; or g,(v)
off2 3 will be determined numerically below for a variety of ran-
=Vpy Jo - Prosdy-J, (37 domly rough interfaces.
Wherepeff is the effective resistivity of the flat surface. Writ- C. Sum rules

ing J= ‘]0+(‘] ‘]0) and using the fact tha; averages to zero To obtain a first sum rule for the effective conductivity in
over the surface, from Eqe31), (32), (36), and(37) we find g heection A, consideF(s)-Fq(s) in Egs. (23) and (24).

that Multiplying Eq. (24) by s? and taking the limit thas— o
— __K/? dr03J0'(J_J0)
P2 P2 C(8,a) = lim s{F(s) = Fo(9)] — E Fis. (44)
eff S—0
11 _ -
=P == o,V xAY) (VX B).  (39) . | o
p2 V3 Multiplying Eq. (23) by 2, we find that in this limit
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L~ L !
SZ[F(S)‘FO(S)]H<Z+E‘F(°°) Z+E> wp:—z H;=Hy- pi1, (49
|
:lf d3rf d3r’93(F)63(r9’)ii,GO(F,r9’) where the prime notation in E@46) is again used for the
\ dzdz sum in Eq.(49) and H, denotes the residue of the pole at
1 tp=0 in Eg.(39).
&y f | 63()| = O(po), (45)
. COMPUTER RESULTS

where p; is the (smal) volume fraction occupied by the  Following the treatment of Day and Thorffe!?3132the
rough interface: It would have an accurately defined value ikpectral densities defined in Eq82)—(24) and(40)~(43) are

the roughness were defined by a sharp interface, but its valugxtracted from computer simulation studies of two-
can also be defined, in the case of a Gaussian-distributed sgiinensional resistor networks. In this extraction, a square
of interface functionsé(r) [see Egs.(6) and (7)]. For a lattice network of resistor bonds between two perfectly con-
Gaussian-distributed sharp interface two limiting behaviorsducting plates is considered. The vertices at which the resis-
of p; are observed. Fas/a<1, ps is expected to be propor- tors meet are labeled kix,z) space coordinates and the con-
tional to °/(La). This arises from the fact thak should go  ducting plates are parallel to they plane. The random

to zero aséd goes to zero and as or a become infinite. interface separating regions of two different resistor types is
(Note: Whena— o, the Gaussian random surface tends to agiven by specifyind &(z) ,z] for the consideration of the sys-
flat surface). For 6/a> 1, p3 is expected to be proportional to tem defined in Sec. Il A, or specifyirix, £&(x)] for consider-
S/L: In this limit, a feature of length& on the surface con- ation of the system defined in Sec. Il B.

tributes an area td'dxdy6;(r)|, which is of order 2|4|. The details of the algorithm used to extract the spectral
There arel /2a such lengths along the interface, so that thedensity from resistor network data are discussed
total area along the random interfaceds and p; goes as  elsewheré?181931.32Consequently, only a brief outline of
6/L. A possible form that would interpolate between thesethe workings of the code will be given here. This will be
two limits would be, e.g.pze 6°/[(La)(1+céd/a)] for some  followed by a detailed description of the resistor networks, a
positive constant. In Eq. (45) Gy(r, r')is thes— limit of  discussion of the generation of the random interface, and the
the Green function defined in E¢l1). presentation of the numerical results for the spectral density

A second sum rule orF(s) is the well known rulg®  of the buried interfaces.
SFi=p,. This is used in Eq(24) to relate the residue of the ~_The spectral densities are extracted from E@d) and
pole ats=0 to those fors # 0. Denoting the residue at zero (43) using the analytical properties &i(s) andH(t) in the
in Eq. (24) by w,,, we find that complexs or t plane.F(s) andH(t) are real fors andt real
and, except for a set of simple poles that occur on the real
/ axis in the interval @=s<1 or O<t<1, are analytic in the

w,=-> F,=Fy—py, (46)  general complex plane. By numerically computifgs) and
i H(t) for values ofs andt slightly off the real axis, the rela-
tionship
where the prime in Eq46) indicates that thé=0 term[i.e.,
the residud- of the polesy,=0 of Eq.(19)] is not included in "mf dx f(x) - Pf dx@ —ixf(b) (50)
the sum. €0 X—b+ie x—-b

Similar results forH(t) -Hy(t) can be obtained from Egs.
(42) and (43). Multiplying Eq. (43) by t? gives in thet—
limit

can be used to extract the spectral density from the imagi-
nary parts of the numerical data(s) andH(t) are related to
the effective resistivity and conductivity, so that one of the
. many algorithms available to compute the effective resistiv-
R(5,a) = lim t7[H(t) - Ho(t)] — 2 Hiti, (47) ity and conductivity of a network of complex valued resistors
e ! can be used for their determination. In particular, the algo-
rithm of Ref. 14 was used for the results presented below.
We have considered a square lattice resistor array of
L 2 5 128x 128 resistor bonds. The functiof$s) and H(t) were
2 1 3 3, N A computed for a net o andt values given bys,=nAs+ie
IR ~Ho(®] = - vf d rf ULy )<ax2 * 3y2) andt,=nAt+ie, whereAs=0.005,At=0.005, ande=0.003.
To generate spectral densities 500 realizations of the Gauss-
XGO(F,F’) o 1 f dr|64(7)|. (48) ian random interface with statistical properties characterized
Y, by the parameters and a defined in Eqs(6) and(7) were
used. The coordinates of the Gaussian random interface—
A second sum rule om(t) is given from Eqgs.(43),° and [&(2),z] for the F(s) calculation andx, &(x)] for the H(t)
relates the residue &t 0 (denoted byw,) to the sum of the calculations—were computed using the algorithm described
residues of the nonzero poles by in Ref. 34. In order to approximate the continuum limit of

and doing the same to E¢2) gives
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the two-component composite system by the resistor netelatively large widths. Fob/a<1 the spectral density con-
work, a series of runs were generated for consitat As & tinues to narrow reducing to a large peak centereskgtin
anda were increased for fixed/a, the spectral density di- the extremes/a<1 limit. In the perturbation theory discus-
vided by ~C(9,8)=lims_.. SF(9-Fo(s9)] or R(8,a)  sion given in Sec. IV, it will be shown that fof/a—0 the
=lim;_.. *[H(t) ~Ho(t)] was found to approach a limiting gensity of states is a single pole 2. All of the results
form. For fixedd/a, the volume fraction of material between presented in Fig. 1 are symmetric abast. This comes
the random rough surface and thiez (or x-y) plane scales fom F(s)-F(s) in Eq. (22) and the corresponding expres-
with &°/(La), so that the continuum limit of the spectral sion for H(t)—Hy(t). Both o€/ 6" and p¢'~ pe'" for large
density divided byC(§,a) andR(68,a) should be a constant. . SO 0 WPo —P .
7 . . sized samplesi.e., L—») are determined by the properties
T4h4e Ilmgmglorm of the %p]?ctral gensny normallzei by Elq. of the systems in the vicinity of their random interfaces.
(44) or Eq.(47) generated from the resistor network resu tsConsequemlyﬂgff_(feff and pgff_peff should be invariant

should agree with the continuum limit result when the . ;
lengths characterizing the interface roughness are large conl1'-nder the interchange of, and 0. For F(s)=F(s) this

pared to those of the resistor bonds. implies that
As a check on the numerically generated data, the sum 1w Fs 1 Fis
rules of Sec. Il C were evaluated. The polesa0 (t=0) in === 1' : (51
F(s)[H(t)] were obtained from the numerical data by fitting a sTs-s s s=(1-s)
Lorentzian form in the neighborhood &0 (t=0) to the  Similarly, from H(t)—Hy(t) it follows that
numerically generated data. Equatiqd$) and(49) relating
the residues as=0 ort=0 to the spectral densities summed }E Hiti _ }E Hit; (52)
over the nonzerg; or t; were found to hold to a fraction of a tSt-t tSt-(1-t)
percent, i.e., running the simulation for a fixed valuepgf o ]
generated=, andw,, satisfying Eqs(46) and(49) to a frac- Both lof these indicate symmetry under reflection throggh
tion of a percent. The limiting forms in Eq&l4) and(45) for ~ Or t=5.
FIF(s)-Fo(9) ] (1/V) [ d®| 65(F)| and Eqs(47) and(48) for The data from the finite network simulations leading to
t2[H(t) —Ho(t) ] (1/V) [ d3r|65(F)| were also examined. For F(s) are displayed in Table I. The sum ruf,-w,=p;
fixed &/a the constants of proportionality are shown to agree=0.5 of Eqg. (46) is evidently satisfied to a few parts per
to within a few percent provided tha<L. For a=L the thousand. This provides a nontrivial evaluation of the accu-
statistical correlations along the interface are affected by théacy of our simulations and of the errors introduced by the
finite width of the sample. In this limit the agreement of the finiteness of the networkL=128 and its discrete nature.
constant of proportionality is less satisfactory. The values found fo€(5,a) =lim,_.. SF(s) ~Fo(s)] of Eq.
In Fig. 1 the spectral density frofi(s) data is plotted as (44) satisfy the expectation that this quantity is proportional
a function ofs=o,/(o,— ). The effective conductivity data to 6%/(La) for §<a and to /L for 5>a, which followed
is obtained for systems with 50%, and 50%a, for inter- ~ from Eq.(45) (see Sec. Il &
faces that average to tlyez plane. The results are labeled by ~ In Fig. 2, corresponding results for the spectral density
5 and a characterizing the statistical properties in E¢®.  from H(t) of the effective resistivity with an interface which
and (7) of the set of Gaussian random functions. In eachon average gives the-y plane are presented. The spectral
figure two curves are presented representing results at fixedensity is plotted as a function of p,(p,—p,) for the same
Sl a for two different sets of §,a). This gives an indication range ofé anda values used to generate the data in Fig. 1.
of the convergence of the numerically generated resistor neffhe same general features as found in the regpltsted
work data to the continuum limit results. Units féranda  versuss) in Fig. 1 are found for thoséplotted versud) in
are in resistor bond lengths, i.e8=1 represents & of one  Fig. 2.(It should be noted that although the results in Figs. 1
bond length. In the plots presented, the ratia starts from and 2 exhibit general similarities if=s, in fact t#s are
a high value and decreases through one to a low value. Thiifferently defined variables and the geometries of the two
displays the behavior of the spectral density as one goeSystems in Figs. 1 and 2 are quite different. Evenh were
from the limit of surfaces that have high peaks falling equal tos, the resulting figures are not the same, they are
quickly to narrow valley(é/a>1) to the limit of surfaces only similar in overall appearance and represent results for
having smooth tapered hill$/a<1). As expected, the spec- differently defined sets of spectral densitjgSnce again the
tral densities generated by the computer simulation are infesults should be symmetric abaut; and, in thes/a<1
sensitive to the parallel shifting of the mean interface to thdimit, the perturbation theory discussed in Sec. IV gives a
right or left of thex-y plane and to the corresponding per- spectral density with a single pole at% It is interesting
centage changes i, and o, of the system. The rough in- that the results in Figs.(&) and 2e) are very similar in their
terfaces generated by the simulation, however, must remairespective dependences sandt. This comes from the fact
well contained within the finite volume of the resistor net- that in this limit the simple poles a&=1/2 ort=1/2 are

work treated by the simulation. dominating the respective behaviors of these systems in the
In general, fors/a>1 the spectral density is a broad flat weak perturbative limit.
function of s over the interval Gss<1. The flat region, The data from the finite network simulations leading to

which tends to narrow aéd/a=1 is approached, is not fea- H(t) are displayed in Table II. As was the case in Table I, the
tureless. It is composed of three rather low maxima withsum ruleH,—w,=p;=0.5 of Eq.(49) is usually satisfied to a
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FIG. 1. A plot of the spectral density &(s) —F(s) divided byC(4,a) versus s foa) §/a=4.00 curves shown fai5,a)=(8,2) (dashed
line) and (16,4 (solid line); (b) 8/a=1.33 with curves shown fofs,a)=(8,6) (dashed lingand (12,9 (solid line); (c) 5/a=1.00 with
curves shown fo(8,a)=(12,12 (dashed linpand(16, 16 (solid line); (d) §/a=0.75 with curves shown fdi$,a)=(9,12 (dashed lingand
(12,16 (solid line); and(e) 6/a=0.25 with curves shown fors,a)=(12,48 (dashed lingand (16,64 (solid line).

few parts per thousand. Again, this provides a nontrivialresistor array, the correlations along the random interface
evaluation of the accuracy of our simulations and of the erwill be disrupted. This occurs on the interface within a cor-
rors introduced by the finiteness of the netw@rk=128 and  relation length of the edges of the array, even with the appli-
its discrete nature. Again, as was the case in Table I, theation of periodic boundary conditions. As a consequence,
values found foiR(8,a) =lim_.. t][H(t)—H(t)] of Eq.(47)  the effective correlation length of the generated data should
satisfy the expectation that this quantity is proportional tobe a little less than that for data that would be generated in an
&/ (La) for §<aand tod/L for > a, which followed from infinite system. These correlation length differences will be
EqQ. (48) (see Sec. I ¢ small (at most of ordea/L) in the cases presented in Figs. 1
A consideration for both Figs. 1 and 2 is the effect of theand 2. The spectral functions in Figs. 1 and 2, however,
size of the resistor array on the data. At the edges of thexhibit only small differences for changes in the correlation
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TABLE |. Results forF(s) from network simulations.

) a —-W, Fo Fo—w C(5,a) 2 i

7 7 ' 2L 2La
8 2 0.093 0.406 0.499 0.0326 0.03125 0.125
16 4 0.180 0.318 0.498 0.0620 0.0625 0.25
8 6 0.064 0.436 0.500 0.0262 0.03125 0.04167
12 9 0.091 0.408 0.499 0.0376 0.046 875 0.0625
12 12 0.080 0.420 0.500 0.0339 0.046 875 0.046 875
16 16 0.104 0.395 0.499 0.0441 0.0625 0.0625
9 12 0.053 0.446 0.499 0.0233 0.035 156 0.026 367 2
12 16 0.069 0.431 0.500 0.0300 0.046 875 0.035 156 3
12 48 0.034 0.465 0.499 0.0143 0.046 875 0.011 7188
16 64 0.044 0.453 0.497 0.0177 0.0625 0.0156250

length that are of the order of magnitude of those discussedn expansion in the surface profile function. This is done
above. On pages 10 and 11 of Ref. 38, a discussion of theeparately for each of the cases treated in subsections Il A
formal treatment of finite size scaling effects arising in nu-and Il B.
merical simulations in terms of the dependence of the com-

puted root mean square deviation of a property on the sample

size is given. For the spectral densities of the systems treated

in Figs. 1 and 2, such a discussion would be extremely com- For this geometry, start from the current continuity equa-
putationally intensive and would not lead to new insight intotion V- J=0 and wr|teJ-—o(F)V¢ The scalar functiorb(i)

the physics of these systems. It will not be pursued here. then satisfies

A. Average interface in they-z plane

Another type of interface that can readily be treated by the 2 )
simulation technique and is of considerable interest is that of KAl -

_ ! ad 2% 5 |[#(0=0 (59
periodic interfaces. For this case the operalggsand Iy in x4

Egs.(14) and(15) and Eqs(33) and(34), respectively, ex- on eijther side of the interface. The boundary conditions for
hibit the same periodicity as their buried mterfaces This fol-| o on ¢(f) are p(z=-L/2)=0, ¢(z=L/2)= éo, and (),

lows from the complete translational symmetry®, Go, V. and the normal component d) are continuous at the ran-
VX, and the periodicity of theg;(r)’s. Consequently, the dom interface.

eigenvalues and eigenvectors of E@$4) and (33) obey The solution forg(7) can be written in the form
Bloch’s theorem: They form bands that are characterized by

a Bloch g-vector that lies in the two-dimensional subspace 1 27\ = onw

(i.e., plang of three-dimensional space, which embodies the ~ #(F) = §¢o<1 + f) +2 Dl(n)sin<Tz>e(2””’L)X
periodic nature of the interface. These bands have gaps and n=0

other typical features, similar to those found in other physi- o (2n+ 1)

cal systems that are characterized by spatial periodicity. + > Dﬂn)co{—z} @ hmiLlx - (54)
However, only thegq=0 state from any Bloch band can con- = L

tribute a nonzero weigl; or H; in the spectral expansion of
F(s) or H(t). This statement, which is an exact theorem for
continuum composites of infinite volume or periodic bound-

ary conditions# can be violated to some extent when we  #R(F) = —qbo(l + —) + 2 Cl(n)sm( )e (@naiL)x
deal with finite sized discrete networks. For this reason, we L

for x<min &(z), and

includedall the eigenstates/henever we calculated the spec- o @2n+ 1)
tral weight functionsg,(u), g,(v). Results of some of those + > Cz(n)cos[—z} gl@mallix - (55)
calculations, using interfaces with periodic roughness, are n=0 L

reported below. A detailed treatment of the banding proper;
ties of the eigenstates for periodic interfaces will be pre-
sented in a future publication.

for x>max &(z). Here account is made of the boundary con-
ditions atz=+L/2. In the application of the boundary con-
ditions at the randomly rough interface, the Rayleigh
hypothesi& is assumed to be valid. This assumption is that
x<min &(z) in Eq. (54) can be replaced by< &(z), and that
x>max &(z) in Eq. (55) can be replaced byx>&(z). The

Perturbation theory can be used to obtain the effectivdRayleigh hypothesis is generally found to be valid for Gauss-
conductivity (resistivity) of the buried interface problem as ian random systems in whicf/a<0.1.

IV. PERTURBATION THEORY RESULTS
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FIG. 2. A plot of the spectral density ¢1(t) —Hg(t) divided byR(8,a) versus t for(a) §/a=4.00 with curves shown fo{s,a)=(8,2)
(dashed ling and (16,4 (solid line); (b) 8/a=1.33 with curves shown fo¢s,a)=(8,6) (dashed ling and (12,9 (solid line); (c) d/a
=1.00 with curves shown fofs,a)=(12,12 (dashed ling and (16,16 (solid line); (d) §/a=0.75 with curves shown fofs,a)=(9,12
(dashed lingand (12,16 (solid line); and(e) §/a=0.25 with curves shown fafs,a)=(12,48 (dashed lingand (16,64 (solid line).

The first terms on the right-hand sides of E¢s4) and To match the interface boundary conditions, the coeffi-
(55) are the solutions fog- and ¢R in the case of a flat cientsC,(n) andD_(n) for a=1, 2 are written as series in
interface. The remaining terms give the change from the flapowers of&(z), so that
interface results due to the random disorder in the interface.

Consequently, the coefficient®,(n), D,(n), Cy(n), and o

C,(n) depend on the surface roughness profile functia@ C,(n) =2 Cyi(n) (56)
and vanish wheré(z)=0. In the following, a perturbation i=1

expansion is generated by matching the interface boundary

conditions in powers of the surface profile functié(z). and
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TABLE Il. Results from network simulations fd#(t).

) a -w Ho Ho-w, R(5,a) 2 i
b b ' 2L 2La
8 2 0.086 0.409 0.495 0.0310 0.03125 0.125
16 4 0.168 0.323 0.491 0.0606 0.0625 0.25
8 6 0.060 0.439 0.469 0.0246 0.03125 0.04167
12 9 0.087 0.412 0.499 0.0359 0.046 875 0.0625
12 12 0.075 0.424 0.499 0.0323 0.046 875 0.046 875
16 16 0.099 0.400 0.499 0.0424 0.0625 0.0625
9 12 0.050 0.450 0.500 0.0218 0.035 156 0.026 367 2
12 16 0.064 0.435 0.499 0.0284 0.046 875 0.035 156 3
12 48 0.028 0.470 0.498 0.0132 0.046 875 0.011 7188
16 64 0.035 0.463 0.498 0.0165 0.0625 0.0156250
s -0 2 L/2
D.(n) = % D). (57) Coalm) = o+ 0'2 (2n+ 1)77? L2 @
HereC,;(n) andD,;(n) represent all contributions to these xCos(Mz>d§—(z)_ (63)
coefficients of order in powers ofé. Using Egs.(56) and dz

(57) in Egs.(54) and(55), a system of equations f@r,; and
C,,; are determined at the interface. These equations are us
below to obtain the solutions fap to first order in&(z).

g’ge z component of current density is then

The continuity of ¢(f) at x=£(2) gives ¢(Mly=o) J(Zl)— o1 %o _ 01_2 [n COSZﬂTZCl L(m)e L
= ¢R()|egrn- It then follows from Egs(54) and(55) that L L n=o '
2n+1  (2n+1
Caa(mM) =D,,1(M) =0, (58) - sin( ] )WZQ,l(n)e[(Z”ﬂ)”’L]X] (64)
wherea=1 or 2. The continuity of the normal component of
the current density at the random interface gives for x<¢(2), and
d d -
0'1(1 0 5) V¢L - 0_2(1 O g) V¢R (59) \](22) - — O-Zﬁ) — 0.22_77-2 [n COSZﬂTZQ 1(n)e—(2n7r/L)x
dz d L I— L ’
for x=£(z). From this and Eqs54) and(55) it follows that _ (2n2+ l)sin(2n+Ll)7T 2Gy (1) _[(2n+1),r,|_]x] (65

_ )
75C12(M) + 01D 4(M) = 0 = 7y (Eon + gm)f' 60 for x> &(2). The average current density for a given surface

profile &(2) is

and
1 L/2 §2) 1
J dx
oy 2 %flz el +éz>f K
. . d 2| b
0,C; (M) + 04D, o(M) = 1+02(2n+ DL J_p ‘ L2
+o J(Z)dx} dz, (66)
(2n+1)7rz) di(zz_), (61) -2 J gy

wherel; andL,— < are the lengths of the; and o, mate-
rials in thex directions. Averaging Eq66) over £&(2) gives

the average current densi([ﬁ).

The average current densi(ﬁ) is computed from Eqgs.

62)—(66) usin
Rt ) G2 VSN

\/_
g (nti =

where &(2) =3 ,&,%P™b).
Solving Egs.(58), (60), and(61) givesC, ;(m)=Dy 4(m),
C,,1(m)=Dj 1(m),

Cy, 1(m) =

mma)?
- T 5n+m,0: (67)
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J—

/ 2
(e £ = " exp —(”—”"") (2+8.m0% B0,

L
(68)
and

> fen+1) ~
n=0

dnf(2n+1). (69

)
Equation(69) has been used for functiorfé2n+1) which
depend orC,(n). We find

_Lioy+Laoady

J)=
2) L+L, L

4 (0= 01D o V’?Tﬂ'aézg n exp _( 71-na)2
L1+L2 O'1+0'2 L L2 n=0
(70)

[Note: The general form ofl,) in Eq. (70) for the casel;

=L, can be checked using a rough argument, originally given
by Landau and Lifshitz for a bulk disordered medium. This

is presented in the Append]or equal concentrations of;
and o, in the L— oo limit for Ly=L,=L/2,

(71)

Here we use the definition oF(s) and Fy(s) in Egs.

(20)~(24).

The above expression has two simple poles= and

PHYSICAL REVIEW B 70, 144205(2004)

&)= E & CO@Z"' E b sin@z, (73
n=0 a n=1 a
S O O Y] °°<§_ﬁ gﬁ)
F(s) FO(S)_ZSS—%lzLa+§1 2t s . (74)

B. Average interface in thex-y plane

For this geometry, the same formulation as that given in
the first paragraph of Sec. IV A is used. The difference here,
however, is that the average interface is in xhe plane, not
they-z plane.

As the interface between the two components of the com-
posite is not bounded in they plane, the solution of Eq.
(53) for ¢() can now be written in the form

¢~ (N=A"+B"z+ f %é"x[@(k)e‘kz+ D~ (k)e],
(79

wherez> &(x), and

¢<(I:>) =A<+ B<Z+f %eikx[c<(k)e—kz+ D<(k)ekz],
(76)

where z< &(x). From the condition thatp(z=-L/2)=0, it
follows that

s=1/2. Wenote that the singularities at these two values of A< = EB< a7
are generic features of the functiiis) that appear for quite 2
arbitrary microstructures: The pole st0 is a result of the
fact that the subvolume of the; constituent percolates in the and
microstructure of Sec. Il A, i.e., a continuous path through
P 9 D<(K) = - C=(K)e-. (78)

that constituent exists between the top and bottom equipo-
tential pIat_e§.The pole as=1/2 is aresult .of the following  pere again the Rayleigh hypothed¥,e., the representation
mathemauca] property: Although the details of the pole specys the  solutions for z>¢x) by the form valid for
trum of F(s) (i.e., positions and residuedepend on the pre- 2>max &(x) and the solutions foz< £(x) by the form valid

cise microstructure, that spectrum usually has an accumulq(—)r z<min &) is assumed. From the condition thatz
tion point ats=1/2, even if all the interfaces are smooth and =L/2)=, it follows that '
= = o,

regular and have no singular poift3hus, in generalF(s)
will have an essential singularity at that point. The simple
pole which we found as=1/2, using perturbation theory, is
the remnant of that essential singularity.

In the L—oo limit for Ly=L,=L/2, Egs.(54)—«66) and
(69) can be used to obtaif(s)—Fy(s) for a general surface
profile correlator &(z)£(0)). We find that

L
Go=A"+ EB> (79)

and

D~ (k) = —C™(k)e™ . (80)

111

F(9) - Fo(9) :‘ng__;Pf dz%d%(f(z)g(O)). (72 Equations(77)—«80) are used to eliminat8~, B~, D~ (k),
2

andD<(k) from Eqgs.(75) and(76), so that

Here the principal part @/7)P[dz(1/z)(d/d2){&(z)&(0))
=[(dk/2m)|klg(k), where in theL—« limit (&2)&0))
=[(dk/2m)g(k)e*?. Equationg54)—(66) and(69) can also be
used to determin&(s)—Fq(s) for interfaces that are nonran-
dom and periodic. For a periodic profile function of the form and

¢>(f’) =A"+ §(¢O _A>)Z+f (Zj_:eikxc>(k)[e_kz_ —kLek2]

(81)
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¢=() =A<<1+§z> +f g_:_eika<(k)[e_kZ eklek].
(82

The coefficientA~, A=, C~(k), andC=(k) are determined as

PHYSICAL REVIEW B 70, 144205(2004
2 2
(dy=- 027 200, o [(0'2 01)] (é)g
optoy L (op+0y) | \L/ L

NSy
27 -1 L2

(90)

functions of £(x) by matching boundary conditions at the |n the §=0 limit this correctly reduces to the effective con-

random interface.

The continuity of¢(r) and the component oi(F) normal
to the interface ar=¢&(x) gives

¢7[z=E&x)]= ¢~ [z= €] (83
and
Uz[—di—(x) 0, 1} Vo (=0 [—di—(x) 0, 1} Vo< (D).
(84)
Expanding in powers of(x), we write
Cl(k) =2 Ci(k), (85)
n=0

wherei=> or <, andCin(k) represents terms of order n én
Substituting Eqs(81) and (82) into Eqgs.(83) and (84) and
using Eq.(85) gives

Co (k) =0, (86)
> _0'1(0'2 a1 1 2¢0
Ci(k) = (gt o)? 1-6 L - &k, (87)
- o1(oy—0q) 1 20
Co (k= (22_2“71); |<|__e—kLTO{(0'1‘lJ'z)(ekL+ 1)
f —q L §(k—q)%(q)+21rz(e“—1)
dg -~ -

<[ S q)f(q)] (89
for the first three C. (k) coefficients. Here &Xx)

= [(dk/2m)e ®gK). In the same way, th€ (k) coefficients

are determined and found to be closely related to the

{C. (k)}. The{C; (k)} are obtained from théC, (k)} by not-
ing that -C;; (k) is given from the expression fa2, (k) by
replacingL with —L and interchanging; ando,. From Eqgs.
(83) and(84), the leading order terms i&(x) give

02

— o

0'2+0'1

A" =A"= (89)

The effective conductivity is determined from the averagencyyally

current(J)=—(a( NV ¢(r)). Using Eqs(81), (82), and(85)—

(88), the average component of the current density is found

to be

ductivity of the flat surface system. Using the relationship
peT'=1/0°" the differenceH(t)—Hy(t), defined in Eqs(40)
and(43), to leading order ind is

L (ofaf o g, v
tt-2\L/ L) 27 e -1 L2/

H(t) — Ho(t) = 2vmr
(91

In the L — <o limit

H(t) —Ho(t) = —=——7——. (92
7T

This has the same functional form as thatFg) —F(s) in
Eq. (7).

Like Eq. (71), this expansion also has two simple poles at
t=0 andt=1/2. These are generic features of the function
H(t): The pole att=0 expresses the fact that the subvolume
of the o, constituent does not percolate between the top and
bottom plates of the structure of Sec. I1fBn general, the
pointt=1/2 is anaccumulation point of the pole spectrum of
H(t), and thus this function usually has an essential singular-
ity at that point The simple pole that we obtained using
perturbation theory is, again, the remnant of that essential
singularity.

In addition, for a general surface profile correlator

() &(0)),

111 1d
it f - (E0EO)),

H(t) = Ho(t) = - it

which is the same form as Eq72) for F(s)—Fq(s). For the
nonrandom periodic surface given by

éx) = Egn cos—x+2 bn 2y, (93)
n=0 a a
we get
I O Y- (f_ z)
H(t) Ho(t)-Ztt_%lzl_a+n§:‘,l S tia) | 98

C. Perturbation theory results

In the limit that s<a<L, the perturbation theory for
F(s)—Fy(s) and H(t)—Hg(t) is very similar. The functional
form of F(s)—Fq(s) [H(t)—Hy(t)] exhibits simple poles a&
=0(t=0) ands=3(t=3). These two poles are observed in the
o<a limit of the s> 0(t>0) data plotted in Fig. XFig. 2.
ats=1/2 ort=1/2 there should be an essential
singularity, as explained above.

An interesting feature of the perturbation theory results is
that both F(s)—Fy(s) and H(t)—Hy(t) are proportional to
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0.7 . . . . rately treat lengths less than the lattice constant and lengths
06 L+ greater than the lattice size. The continuum solutions, how-
® e ] ever, contain all length scales, although with varying degrees
05 L° ] of importance. The limiy/a— 0 is represented in the lattice
by é/a=(lattice constant(length of a side of the total lat-
= 04 - % . tice). This may differ form theé/a— 0 limit of the con-
4 K% tinuum model] The general decrease of the Pade form re-
= 03 § ] sults in Fig. 3a) with increasingd/a is consistent with the
oo L zs ] discussions given below E¢5) for the dependence @k on
' A S, a, andL. We remind the reader, however, that our com-
01 M SN puter data are limited by the discrete nature and finite size of
the lattice.
0 o 1' é é :1 5 In Fig. 3(b) a similar plot to that in Fig. @) is given, but
(@) ratio for periodic interface4’ For these results the interfaces are
given by &(z) =6 cog2w/a)z for the geometry of Sec. Il A or
2 ' T T T by &x)=6 coq2n/a)x for the geometry of Sec. Il B. The
181 7 data in Fig. 8b) are scaled in the same manner as that in Fig.
16 oy . 3(a). The horizontal line gives the perturbation-limiting
14, J form, and the dashed line is a Pade fit with
gt i =[1.571-0.1375/a)]/[1+2.4146/a)] wherey is the verti-
£ R cal axis, andy at 6/a=0 is fixed on the valuer/2 obtained
2 'r ‘ ] from perturbation theory. The data fall on a universal curve
08 - g 7 given by the Pade form, and the discrepancies between the
06 F . numerically generated data and the Pade form again seem to
04 b Y i come from the effects of a discrete lattice. Again a decrease
02 L N i in the Pade form is observed with increasi®f@, and this is
' e PO consistent with out discussions of the dependenqgs oh &,
0 ' . . ' a, andL.
0 1 2 3 4 5 ' " » L
(b) ratio An additional condition that*'" and p®f must satisfy is

) _ ) the reciprocity relatiod? This is a relation betweea®'f and

FIG. 3. Plot of the zwe'ght defined as lim. sTF(s)  peff gefined on dual lattices. A good discussion of this rela-
~Fo(9)1/(8#/La) or lime_. P[H(®-Ho(0]/(8*/La) versusratio  tion can be found in Sec. 3.2 of Ref. 18. Since the square
:5/_adf_or (@ the Ga;Jssw;m randomly rough interface al the |4yice is self-dual, the reciprocity relation relates the pertur-
periodic cosine interface. bation theory results forF(s) and H(t), so that
. . . 0*"(a1,02,p) /05 = 01/ 0°"(0,01,p1) =p*" (05, 01, P1) [ p1.
&°l(La). This sugggsts a scaling relatllon_fﬁ_(s)—Fo(s), This relation is satisfied by the perturbation results in Egs.
H(t)—HO(t),_and their sum rules. To see if this is the case, W&71) and (92) since interchangingr; and o, in t=p,/(p,
have conadgred plots of the sum rules k) —Fq(s) and —py) givest' =py/(pr-p,) = oyl (ap— 0y =5. As the perturba-
H(U)—Ho(v) displaying such scaling. tion theory gives expressions fBfs) andH(t) that map into

In Fig. 3@ plots of the sum rules in Eqé44) and(47) for 56 another under interchangisgndt, the reciprocity re-
Gaussian randomly rough interfaces are presented for variziion is satisfied.

ous é anda. The results are plotted so that the vertical scale
shows lim_.., s7F(s)—Fq(s)]/(8*/La) or lim,_., tqIH(t)

_ 2 ;
Ho(t)]/(6°/La) and the horizontal scale show#a. The V. SURFACE PLASMONS AT A RANDOMLY ROUGH

horizontal line indicates the perturbation theory limit and the INTERFACE
dashed line is a Pade fit to the data. The Pade form used is
y=[1-0.82605/a)]/[ V7+0.917965/a)], wherey is on the In this section the long wavelength dispersion relation of

vertical axis. This form forces the Pade form to a fit to thesurface plasmons on a one-dimensionally randomly rough
perturbation theory resultl/\#) in the §/a=0 limit. The  dielectric interface is related to the functioRés)—Fq(s) and
numerically generated data lies on a universal curve given byl (t) —Ho(t). Two cases of surface plasmon propagation along
the Pade form when plotted as described above. At sfiall  the rough interface are treate@d) propagation parallel to the
the numerically generated points closest to the Pade resulggooves of the one-dimensional roughness éndoropaga-

are the ones with large$ anda. This suggests that the dis- tion perpendicular to the grooves of the one-dimensional
crepancy between the numerically generated data and tlieughness. Applications of the relationship are given.

Pade form is mainly due to the discrete nature of the resistor The propagation of surface plasmons along the random
network. [By this we mean that in modeling a continuum interfaces is considered for the geometries given in Secs.
system by a discrete finite sized lattice, not all length scale§ A and Il B. For the surface plasmon considerations, how-
are treated correctlgsee a discussion of aliasing in Ref.)39 ever, the material with conductivity; in Secs. Il A and 11 B
The numerical simulation of the lattice model does not accuis replaced by a material with dielectric constafé) and
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the material with conductivityo, is replaced by vacuum. minesA, A;, B, andB;. (Notice that the charge density for a
Results for the resistor network can be used in the treatmemiasmon propagating in thedirection has nox dependence

of these two dielectric geometries, as in the continuum limitin the approximation used heyé&rom these coefficients it is

the conductivity problems studied in Secs. Il and IV are iso-found that

morphic to the dielectric media problems. Replacingby
€1, 0, by €, anda®' by €' maps the two different problems AVo(y, @) = 4WM{L + 1] tanh(kL/2), (100
onto one another so that results for one can be used to de- k (w

scribe the other. so that the difference in potential between the plates depends

] ] ] ) only ony.
A. Dispersion relation: propagation parallel to the grooves Substituting Eq(100) into Eq. (97) for largeL gives
To relate H(t)—Hy(t) to the surface plasmon dispersion 1 1 1 1
relation for propagation parallel to the grooves of the one- AV(y,w) = 4mqqy, w)—- {— + 1] + k'—(Tff - Tﬁ) .
dimensionally rough interface, consider the parallel plate ge- k(L e(w) € €
ometry of Sec. Il B. The region above the random interface (101

is vacuum and the region below the interface is filled with an N o

homogeneous isotropic dielectric characterizedt(ay). The The condition for a surface plasnjon.mode to exist is that

potential difference between the plates in the following con2V(Y,@)=0 for nonzerog(y, ). This gives

siderations is not fixed, but the system operates as a capacitor 1 1

containing a quasistatic electric field. The surface plasmon 0=——-+1 +kL<Tff - Tﬁ>

modes treated in this geometry propagate inytitdrection. e(w) €0
The upper plate has a quasistatic surface charge density, 1

as(x,y,w) of frequencyw, and the lower plate has a surface = «@) + 1 —KL[H(t) = Ho(1)], (102

charge density &(Xx,y,w). The spatial variations of

as(X,y,w) are considered to be on length scales much largewheret=e(w)/[ e(w) - 1] as the equation determining the sur-

than those characterizing the roughness of the randomlface plasmon dispersion relation on the random interface in

rough interfacdi.e., 5, a). Consequently, the response of the the L — o limit. In the perturbation theory limit discussed in

system togg(X, Y, ») is determined by the effective dielectric Sec. IV B, we find from Eqs(92) and(102) that

properties of the random media, so that 2 [ew) - 12 &

O w12 109

qs(xvva)

AV(X,Y,w) =47l T
€

(95

determines the surface plasmon dispersion relation at long
whereAV(x,y, w) is the potential between the platesaty)  wavelengths. The dispersion relation on the weakly random
and eff is the effective dielectric constant. For a flat inter- rough surface of Sec. IV B can also be computed from re-
face, Eq.(95) becomes sults of a Green’s function scattering theory developed in
Refs. 41 and 42. It is found that the dispersion relation from

, (96) Refs. 41 and 42 is determined by

2(1 + cog6) [e(w) — 1)? &
7 derifac 199

qS(X1 y1 w)

AVy(X,y, ) =47l off
€

where the subscripts 0 indicate flat interface quantities. Here 0=1

the charge densitiegy(x,y,w) driving the systems in Egs.
(95) and(96) are the same. From Eq@5) and(96) it then ~ Here# is the angle between the surface plasmon wave vector

follows that in the plane of the mean surface and the direction perpen-
1 1 dicular to the grooves of the one-dimensionally randomly
- rough interface. Equationd03) and(104) are in agreement.
AV(x,y,w) = AVy(X,y, 0) = 47TL<€TH - gff>qs(x,y, ). 9 quation@03) and(104) 9
(97)

B. Dispersion relation: Propagation perpendicular to the
The flat surface surface-plasmon of quasistatic frequency grooves
w propagating in they direction has an electric potential of To relateF(s)—Fo(s) andH(t)—Ho(t) to the surface plas-

the form mon dispersion relation for propagation perpendicular to the
d(y,z,w) = (Ae ¥+ A, eZL2)gky (98)  grooves of the one-dimensionally rough interface, consider
) the parallel plate geometry of Sec. Il A. The plasmon now
above the interface, and travels in thez direction. (Note that the discussions in this
B(y,2,0) = (BeZ + B,e @2 gy (99) section are quite separate from those made in Sec. V A. Sec-

tion V A treated the system described by the geometry in
below the interface. Matching the boundary conditions at theSec. 1l B, whereas the discussion in this section is for a sys-
interface and the surface charge denditg., 1y, w)] tem described by the geometry in Sec. Il A. These figures
boundary conditions at the upper and lower plates deterepresent two distinct and different physical systgniie
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region to the left of the random interface is filled with an  Equations(109—(111) then give(settingL’=L)
homogeneous isotropic dielectric characterizedefay) and

the region to the right of the random interface is vacuum. e(w) +1=—ew) kaf —KLe (112
The potential difference between the upper and lower plates €®
is zero.

Wi ider th i which th | h of th as the condition for a plasmon to exist on the rough interface.
e consider the case in which the wavelength of the sur, 1arms of H(t)-Ho(t) for t=e(w)/[e(w)-1] and F(s)

face plasmon is much greater than the parameiesiad 6 _ _

characterizing the surface roughness. In this limit the re- Fols) for s=1/[1~€(w)] Eq. (112) becomes
sponse of the system to fields and charges far from the sur- 0 =[e(w) + 1] - kL{e(w)[H(t) = Ho(t)] + F(S) - Fo()}
face can be described in terms of an effective dielectric con-

stant. The scalar potential of the surface plasmons with (113
quasistatic frequency is then taken to be of the form for kL<1. In the perturbation theory limit discussed in Sec.
IV, Eq. (113) yields
$(x,2,0) = (kD dolx, ), (109 o-(i3y
. _ _ 4 [e(w) - 1]%6°

where f(kz) =sin kz for kL/2=nr or f(kz)=coskz for kL/2 0=1-——"—"7—k (114)
=(2n+1)7/2 with n=0,1,2,... and Vrle(w) + 1] a

do(X, w) = Ag**L2) (106) as the condition determining the surface plasmon dispersion
, ) ) ) relation. This agrees with the results in E#j04), which was
in the region to the left of the interface, with obtained by another methd&#2

Bolx, ) = Be L2 (107

C. Effective boundary conditions for one-dimensionally rough

in the region to the right of the interface. interfaces

From the discussion given in Sec. V A for plasmons mov-

ing in a system with the geometry of Sec. Il B, it is expected It is interesting to note that the above results for surface
from Eq.(95) that forL’> 6, a plasmon propagation on a one-dimensionally randomly

L D.(x=L"/2.2.0) rough interface, in the limit of long wavelength, can be ob-
i _ — _ x\X= 40 tained by representing the effects of the interface roughness
Px=L122,0) = plx=-L122,0)= eff ' by a set of effective boundary conditions defined over the
(109 plane of the mean random interface.

Consider a random dielectric-vacuum interface described
Here D,(x=L/2,z,w) is viewed as being proportional to a by the surface profile functiom=&(x). Let us replace the
surface charge density on a fictitious set of capacitor plates abugh interface and its boundary conditions by a smooth sur-
x=L'/2 andx=-L’/2. The charge densities on the plates areface atz=0 supporting a position-dependent effective surface
equal in magnitude and opposite in sign. From Egspolarizations'® This polarization is chosen so as to reproduce

(105—(108) it then follows that the results in Eq102) and(113). To do this, the effective
KL/ surface polarization is taken to be a vector field witandz
A= B{l + Tﬁ] ) (1090  components defined by
€

Po(X) = X EJ[X, EX) 1], 11
A second relationship betweek and B can be obtained _ X0 = 0BT o (115
from [*_dxD,(x,z=-L/2,w)=0. This is a statement that Where Ps,(x) is the x component of polarization per area
there is no net charge on the platezat-L/2 and follows located at(x,z=0), x«(x) is the susceptibility ai(x,z=0),

from the boundary conditions¢(x,z=L/2,w)-¢(x,z= EJX,&x)*] is the x component of the electric field in the
-L/2,w)=0. From Eqs(105—(107) we find that vacuum above the surface, and by
- df Po,(X) = xEJ X, EX)* 116
o:J dxD,(x,~ L/2,0) = - [e(w)A+B] —— 200 = XeEAX.E00'] (116
- dr{ =2 for the corresponding components of the quantities occur-
L2 ring in Eq.(115). There is no roughness in tlyairection, so
- f dxD,(x,— L/2,w), (110 that they component of effective surface polarization is zero,
-L'12 i.e., x,(x)=0. The susceptibilities for determining the aver-
fields above and below the interface are then written in
and for kL'<1 from (D,(x,-L/2,0))=€*E,x, 29¢
112, )=~ *KB(dF/dN)|, - that terms of F(s)—Fq(s) andH(t)—Hq(t) as
fL’/z Dy 2.0 et df 4mx,=—L[F(s) - Fo(9)] (117
XD,(X,— L/2,w) = —ke'®"'BL’ — .
-L'12 ’ o[ P— and
(111 dary, = L[H(t) = Hy(t)]. (118
In the abovee'¢'fis found by replacing®/ by 1/¢'¢f p; by  Heret=€(w)/(e(w)-1), s=1/[1-€(w)], e(w) is the dielec-
1/e(w), andp, by 1 in Eq.(40). tric constant of the medium below the random interface, and
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L — o is the separation of the two parallel plates used in theof F(s)—Fy(s) andH(t)—Hy(t) for electron motions parallel
determination of=(s)—F(s) andH(t) —Hy(t). and perpendicular to the grooves of the one-dimensionally

The boundary conditions at the=&(x) interface are re- rough interface. Given these expressions, Egjsand(7) of
placed by effective boundary conditions on tireO plane  Ref. 44 can be used to compute the probability per unit path
which are written in terms of the effective surface polariza-length, per unit energy, of the electron scattering with energy
tions defined in Eqs.115—(118). The new boundary condi- lossE=hw.

tions atz=0 are fromV X E=0 given by To compute¢"(p,z; w) the effective boundary condi-
tions of Sec. V C are used. The electric quasistatic potential
0=E'(X) - EX(x) + 4 9 Ps4(X) (119 in the presence of the surface roughness is given throughout
CX X T ax space by
WhereE:(x) andE;(x) are the average electric fields imme- ) f G Ciot 124
diately above and below the=0 interface, and fronV-D P20 = (2m) (mp® P2e 0=Qup (124
=0 given by Y
PP where
-D* - I FsxX)
0=D}(x) - D;(x) + 4 pat (120 H(2) = Ae¥? (125

whereD}(x) and D, (x) are the average displacement fieldsfor z>0, and

immediately above and below tlze0 interface respectively. — R Q7 Qz+z0)

Using these conditions to compute the dispersion relations of $(2) =Bqe *Boe (126
the surface plasmons reproduces the results in Sec. V A arfdr 0> z> -z, (here theB, term is the induced potential seen
V B. by the electrop and

D. Electron energy loss for motion parallel to a surface P(2) = Ce¥#) (127)

Recently Mendozat al** (see also Refs. 45-#have for z<-z, The boundary conditions for the determination of
developed a theory for determining the small energy losses, B,, B,, and C are (a) at z=-z,, d¢p*/dz—d¢~ [ dz=4me,
of electrons with energies of order of 100 KeV moving par- ¢*=¢", (b) at z=0 Egs.(119) and(120), and(c) at z—
allel to a dielectric surface. The mean dielectric surface ighe fields are zero.
taken at the=0 plane with the dielectric in the region above  Solving the boundary value problem gives
the plane and vacuum below the plane, and the electron
moves Wi_'[h posit.ion coordinatég=0,y=vt,z=-7y). (Ngte: . ¢ex‘((5,—zo;w) _- 2me (128)
This is slightly different from the other treatments given in Q
this paper which have taken the dielectric to be below the
surface. To facilitate the discussions here, we shall use th@"
geometry and notation in Mendoz al** in this subsec- ind
tion.) The losses arise from the polarization of the dielectric Q- 2;0) =By, (129
medium, and are related to the surface response functiog,nere
9(Q, -7y, w), defined by

- s _2me_e(w) ~1+4nQle(w)x,+ G/ Q]
d) d(QI_ Zo,(x)) == g(QI_ Zo,(x))(,ls t(Q,Zo,(,()) (121) Bz - Q E((l)) + 1 + 47TQ[_ E(w)XZ+ Q)Z(Xx/Qz]e ZQZO’

Here qﬁex‘(@,—zo,w) is the spectral component of the electric (130
potential from the electron in the case that no dielectric me-
dium is present, and in position-frequency space we have and

¢™p,z,w) = f 2 )2¢6X‘(Q éQP+QZ (122 9(Q, w)——B—l- (131

where p=(x,y) is a two-dimensional vector parallel to the In the limit w/v— 0 for motion parallel to the grooves,
interface. The potentialy™(Q, -z, w), which in position-

frequency space is given by &%9(Q, w)
_ €l@) — 1 +LQ{e(w)[H(t) — Ho(t)] — F(s) + Fo(9)}
$"p,z;0) = f 2m? Qe (123 e(w) + 1~ LQ{e(@)[H(t) — Ho(t)] + F(s) — Fo(9)}’

(132
is the induced electric potential in tlze -z, plane due to the

interaction of the electron with the dielectric medium abovewhere t=e(w)/[e(w)-1] and s=1/[1-€(w)]. In the same
the interface. In the following, the surface response functiordimit for motion perpendicular to the grooves, a solution
for a rough interfaceg(Q, -z, w), will be expressed in terms similar to that outlined above gives
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€(w) — 1 +LQe(w)[H(t) — Hp(t)] G(pw) = LA[Go(pw)]™ = M(p)}. (136
€(w) + 1 - LQe(w)[H(t) = Ho(t)]
(133

?%g(Q,w) =

Here Gy(pw)=ie(w)/[e(w)ag(pw)+a(pw)] is the surface

plasmon Green’s function for propagation on a flat surface.
Using M(k) from Eqgs.(18) and (19) of Ref. 42 and Eq.

) _ ) (135) evaluated at normal incidence gives
E. Reflection of p-polarized electromagnetic waves from a

one-dimensionally randomly rough surface near e(w) — e(w)? +ie(w)(wlc)M,
L =0)= )
normal incidence R(p=0) e(w) + e(w)?— ie(w)(wlc)Mg

(137

It has been important to us in our discussionsFg$)
—Fo(s) andH(t)—Hq(t) to show that these functions are not Where
just mathematical curiosities, but that they are related to a
number of physically measurable and important properties of ~\\ _ _ 2 1 [ew)-1Fd? __ F(9-Fos)
surfaces. In this section, the functioR§s)—F(s) and H(t) 07 rew)? ew+l a e(w)?
—Ho(t) are also related to the reflectivity pfpolarized light
near normal incidence from one-dimensionally randomly

rough interfaces. This is a very basic optical property ofrhe correctionM, due to surface roughness scattering is
rough surfaces. _ _ seen to be divergent aw)=0 ande=-1. These singulari-

In these considerations, we treat electromagnetic waves Qf.g gre prominent in determining the effects of surface
quasistatic frequency incident from vacuum onto a dielec- \4hness on the reflectance at normal incidence. The results
tric medium that is uniform, isotropic, and characterized by g, Eqs. (137) and (138) agree in the limit that— -1 with
dielectric constané(w). The plane ofincidence is taken o be e efieciivity results to leading order in the surface rough-

either parallel or perpendicular to the grooves of the oneyegs calculated using the boundary conditions in Sec. V C.
dimensionally random interface. We assume that the wave-

lengthA > §,a and only calculate the specular reflection, but
not diffuse scattering.

(138

2. Plane of incidence parallel to the grooves of the one-
dimensional surface

1. Plane of incidence perpendicular to the grooves of the one- 10 obtain the Fresnel coefficient for light incident in an
dimensional surface arbitrary plane of incidence perpendicular to the one-
. . ) ] dimensionally rough interface, E¢L35 and results in Ref.
In the considerations given here thg plane is the mean 41 can be used. Reference 41 contains expressions for the

plane of the vacuum-dielectric interface. _Green’s function describing the propagation of surface plas-
_ On a flat vacuum-dielectric interface, the Fresnel coeffirmons along the interface at an arbitrary angle to the grooves
cient for the reflection op-polarized light ig" of the one-dimensionally rough interface. These expressions

give the self-energ, in the limit of weak roughness. The

€(w) ap(pw) — a(pw) resulting Fresnel coefficient is obtained from E437) with

Ro(p) - e(w)ao(pa)) + a(pw) ' (134) Mg of the form
Here p is the component of the wave vector of the incident M= — 2 1 [eo)- 17 i f
planewave of electromagnetic radiation in tkey plane, 0~ \;’7_7 e(w)? ew)+1 b a
ag(pw) =[0?/?-p?]M2, and a(pw)=[ew?/c?—p?]¥? with
Re a(pw), Im a(pw)>0. For the rough interface scattering __ LF(t) - FO(t)sin2¢>- (139
geometry of this section, Eq), (13b), and(17) of Ref. 42 e(w)? g

give an average Fresnel coefficient of the form
Here ¢, is the angle between the magnetic field of the inci-
e(w)ag(pw) — a(pw) +ie(w)M(p) dent electromagnetic wave and the direction perpendicular to
" do)a () + alpe) — ic@M(p)” (135  the grooves of the grating. A =/2 the results in Egs.
0 (138 and (139 are found to agree, to leading order in the
interface roughness, with the reflectivity computed using the
oundary conditions of Sec. V C.

R.(p)

Here the average Fresnel coefficient of the rough interface i
defined from Eq.(8) of Ref. 42 by (R(p|k))=2md(p
-k)R.(p) andM(p) (Given in the pole approximation in Eq.
(17) of Ref. 42) is the self-energy correction of the average
single particle Green’s function for surface plasmon propa- In this subsection Eqg137)—(139) are evaluated for a
gation on the rough interfacéThe Green’s function is aver- vacuum-CdS interface at normal incidence of light. Results
aged over the random roughness of the interjatike aver- are presented for magnetic field polarizations parallel and
age Greens function for the propagation of a surface plasmaoperpendicular to the grooves of a one-dimensionally random
of wavevectorp and frequencyw on the random interface, rough surface. In these evaluations the dielectric function of
G(pw), is given in terms oM(p) by CdS is given by the forf§

3. Evaluation of reflectivity for ion crystals
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FIG. 4. Plot of the reflectance versus frequeteyw,) for CdS.
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decreased by interface roughness. The effective interface
conductanceo?!, defined byof!'=0°"-0S", is seen to be
negative, and for weakly rough surfackg| is small. A
useful way of viewing the system in terms of an equivalent
electrical circuit is to think of the layer of conductanag,

the layer of conductance,, and the interface with interface
conductancer?!’ as a set of three parallel resistors across
which a constant potential is applied. For smaff| (i.e.,
large interface resistancethe resistance of the system is
dominated by the layers af, and o,. Only when|otH| be-
comes large does it significantly affect the properties of the
system. A drawback of this equivalent circuit representation
is that the effective interface resistance is negative. It is ex-
pected that the equivalent circuit representation is easily gen-
eralizable to a system of multiple interfaces that are on mean
parallel to they-z plane and that in this case the multiple

Results are shown for the case in which the magnetic field of thenterfaces at sufficient interface separations add like parallel

incident light is parallelsolid) and perpendiculafdashegl to the
grooves of the one-dimensionally rough interface.

o — 0? — iww
E(w)_EO 2 2 .
o~ 0~ o

, (140

where €=5.4, ©,=232.0 cm!, »=298.0 cm?!, and w,
=6.9 cnTt.*®

resistors.

An explanation of the decrease in the effective conductiv-
ity of the system with a rough interface from the smooth
surface case comes from an examination of the region along
the x axis that bounds the random interfasee Fig. $a)].

For the smooth interface, this region consists of a layer of
high conductivity and a layer of low conductivity. The cur-
rent flow is set by the layer of high conductivity. For the

Results are presented in Fig. 4 for the reflectivity versug@ndom interface all linear paths between the plateg at
frequency. The one-dimensionally rough surface is Gaussianl/2 andz=-L/2 intersect materials of both high and low
random characterized hy,c=0.1 andwa=1.0. For the case conductivity. This reduces the net conductivity in this region.
in which the magnetic field is parallel to the grooves of the For H(t) =Ho(t) we note from Eq(43) that if bothp, and
one-dimensionally rough surface a dip in the reflectance ag2 are real and positive, the(t)—H(t) >0 for t<0 and
ol w;=1.243 is observed. This arises from the singularity int>0. The resistance of two slabs connected in series is, con-
Eq.(138) at e(w)=—-1. Aside from this feature the reflectance sequently, always decreased by interface roughness, and
is little changed from the unperturbed reflectance. For thérom Egs. (40) and (41) the effective interface resistivity
case in which the magnetic field is perpendicular to thesir=p°"—p'" is found to be negative. An equivalent circuit
grooves of the one-dimensionally rough surfgge0 in Eqs.  representation for this slab geometry is that of three resistors

(139 and the reflectance is given by the unperturbed reflecin series. These represent the layer of resistipitythe layer
tance. of resistivity p,, and the resistivity of the interface layer. A

drawback in this equivalent circuit representation is that the
effective resistivity of the interface layer is negative, but the
equivalent series resistor representation should be directly
generalizable to a system of multiple interfaces that are on
In certain instances the results presented above for singi@ean parallel to thec-y plane and at sufficient interface
interfaces should generalize to systems of multiple interfaceseparations form one another.
that on average are parallel to one another. For interfaces that |n these systems the effective resistivity is decreased from
are at separations far from each other, it is expected that eaghe smooth surface results due to surface roughness. This
interface can be separately viewed as interacting with an efarises due to the tongues of low resistivity media that pro-
fective medium which accounts for the average effects of theérude into the regions which would otherwise, in the smooth
other interfaces on the system. This should be the case whejirface system, contain high resistivity materisée Fig.
the average separation between the interfaces is much greagb)]. These tongues provide low resistivity paths that lower
than the parameters characterizing the surface roughness. tife effective resistivity of the system with a random inter-
this limit a given interface in the system sees only an averaggce.
effect of the electric field fluctuations created by the presence The limiting factor on the equivalent circuit representa-
of its neighboring random interfaces. To facilitate this picturetion is the effects of surface roughness fluctuations at one
of multiple random interfaces we will develop below an ef- surface on the potential seen at another surface. An estimate
fective circuit representation for single interfaces and therpf the importance of fluctuations in the interface roughness

VI. LAYERED INTERFACES

suggest a generalization to multiple interfaces.
It is interesting to note from Eq24) that if both oy, and
o, are real and positive, thes<0 or s>1 and F(s)

on the interaction between interfaces can be made by consid-
ering the potential at the mean surface of an interface due to
a small localized fluctuation on a neighboring interface. We

—Fo(s)>0. From Eq(22) this indicates that the conductance consider how a cylindrical fluctuation that maintains the av-

of the system with an average interface in the plane is

erage surface field and profile on one interface affects the
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polar coordinates witt¥ measured relative tk. This poten-

tial form generalizes in the limit of far fields for a cylinder of
arbitrary bounded cross sectional shape of area S. Next con-
sider two adjacent interfaces in a layered medium. The po-
tential difference between the two inner interfaces in the ge-
ometry of Fig. %c) is A¢ocd,E, whereE is the average field

at the mean interface. A fluctuation on the lower interface
can be modeled as a set of two cylinder dipoles of cross-
sectional areasa (heres anda define the Gaussian random

& surface profile statistigsthat are oppositely directed along

(a) the k direction. One dipole cylinder is located dk
=-al/2,z=6/2) relative to a coordinate system whose origin
lies on the mean surface of the lower interface and the other
is located at(x=a/2,z=-6/2). The intensity of the dipole
moment on each of the two cylinders is taken to be propor-
tional to saE. The electrostatic potential on the upper inter-
W face at a point adjacent to the a surface fluctuation on the
lower interface is then approximatel dgipole™ 52aE/d§.
The ratio Adgipoie! A= 82a/d§ must be small for the inter-
faces to be treated in an equivalent resistor scheme that ig-
nores the detailed effects of surface fluctuations on adjacent
ch interfaces. A similar argument can be applied to the geometry

in Fig. 5d). Here two dipoles oppositely directed along the
direction are located afx=6/2,z=a/2) and (x=-6/2,z
=-a/2) relative to a coordinate system whose origin lies on
the mean surface of the left hand interface. On the right-hand
interface, separated by a distartzeform the left-hand inter-
face, the potential adjacent to this fluctuation Aghgipee

o 5a2E/d§. The change in electrostatic potential observed in

moving a distance comparable t§ in the k direction is
A¢xd,E. For the effects of the fluctuations to be small,
againA dipoie/ A= a2/ d5 must be small.

Another way of arriving at an estimate of the effects of
© surface fluctuations on the interaction between adjacent in-
terfaces is to treat the surface roughness on an interface as a
position dependent dipole distribution on the mean plane of
the interface. The total dipole moment averages to zero over
the interface. For the case in Figch let the lower of the
two embedded interfaces have a dipole density givep(ky
with Gaussian random statistics, i.e{p(x))=0 and
(p(X)p(x"))=(p)? exd —(x—x")?/a?], where() indicates an
average over the surface. If the separation between the two
interfaces isd, and the mean plane of the lower interface is
at z=0, then in thed,>a limit it follows that (E*(x,z

ch

ch =d,))/(E%(x,z=0))=[a/d,]>. This agrees with the power law
@ dependence obtained in the previous paragraph.
FIG. 5. Schematic plots for a single random interfaegverti-
cal and(b) horizontal. The horizontal is th& direction and the VIl. CONCLUSION
vertical is thez direction. Schematic plot for two interfaces. The
horizontal is thex direction and the vertical is the direction. (c) A study has been presented of the spectral densities of

Two horizontal interfaces separated 8y (d) Two vertical inter-  two-component composites with buried random interfaces
faces separated lm. In both figures the applied potential is across for both effective conductivity and resistivity systems. Ana-
the horizontal upper most and lower most plates. lytical limiting forms and perturbation theory results have

) ) o ) been used in conjunction with numerical results from resistor
potential on a neighboring interface. It is well known that theyetyork studies to determine the dependence of the spectral
potential from a dielectric cylinder of radiwsin a uniform  gensities on the statistical properties of the buried interface.
applied electric fieldEK is Vipoe™ (S/T)E cos 6, where S It is found in both effective conductivityresistivity) sys-
=ma’ is the cross-sectional area of the cylinder and)) are  tems that for6/a=1 the spectral density is a broad plateau
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function of s (t) in the region 0<s<1(0<t<1). Three low Astronomy, Michigan State University, where this project
broad maxima are observed over the plateau and/asp-  was initiated.

proaches 1 the plateau narrows. Bda<1 the spectral den-

sities in both effective conductivity and resistivity systems

for 0<s<1(0<t<1) approach a single isolated pole st APPENDIX: GENERAL FORM OF EQ. (70)

1 1 . . .
=3(t=3), Data generated from numerical simulation are A rgygh check on the form in Eq70) for the current can
found to exh|b|t_ the analytical limiting forms predicted by be made using a treatment based on a discussion given by
the Bergman-Milton theory. Landau and Lifshit® of the effective permittivity of bulk

_ The spectral densities numerically generated for periOdiEielectric mixtures. The arguments in Ref. 51 for a bulk me-
interfaces are found to exhibit features distinct from those OHia are closely followed in the discussion given below of

the densities generated for randomly rough interfaces. EVig iarfaces.
dence of a band structure is seen in the numerical data which, Consider the geometry in Sec. Il A used for the derivation

L?Crsf_irr:]i‘tjes‘i)zoﬁgssystems, appears to be given by a clusterings £(q) in Sec. IV A. Define the current in the system by
i . - - o - - .

Both the effective conductivity and resistivity systems candX:2=Jo+ 8J(x,2), where Jo=J d*rJ(x,2)/V is the volume
be modeled in terms of effective circuits of resistors. In theaverage ofJ(x,z) and 8J(x,2) is the fluctuation from the
effective conductivity system the equivalent circuit is that ofvolume average current. Likewise, the electric field is
parallel resistors, while the effective resistivity system has arﬁ(x,z):|§0+ 5é(x,z) and the conductivity iso(x,2)=0q
equivalent circuit of series resistors. ThIS.SIm-ple modelmg_ls+ So(x,2). Ohm’s law then readﬁ(x,2)=[00+ 50'(X,Z)][éo
expected to generalize to systems of buried interfaces which "~ _

are parallel upon interface averaging, and the simulation ret E(X,2)], so that upon averaging,

sults for the effective surface resistivity and conductivities - - -

are expected to be of use in studying more complicated bur- Jo = 0oEq +[ 30 5E]j, (A1)

ied interface geometries than those used for their computagnerel---], indicates a volume average. An approximation

tion. - .
The functionsF(s)—Fy(s) and H(t)—Hy(t) are shown to for [éoéE]on now obtained.

be related to a number of problems in surface physics. These FromV-J=0 it follows that
include the determination of the renormalization of the sur- .-
face plasmon dispersion due to interface roughness, the en- ooV - SE+Ey-Véor=0, (A2)

ergy losses of moving charged particles due to surface polajyhere only terms of first order in the small parameter are

|zat|on., and the. reflectivity of electromagnetlc waves at.retained. Noting thaﬁé:(6E1,0,6E3) and assuming a local
rough interfaces in the weak roughness limit. Recent experi-

ments on the electron-energy 16%and the reflectivit§® of average of a specific realization of a random surface, Eq.
silver particles deposited on a substrate have identified fea@‘z) gives

tures related to surface plasmon-polaritons. These results Eao
seem to be consistent with the gross features expected from OBz =~— m&ﬂ
the theory presented in Sec.(Me., anomalies in these func- 0
tions associated with plasmon-polaritpnbut are for sys- whereEgz,=[E3]y and« is a constant arising from the aniso-
tems that are two-dimensionally random and composed frontropy of the interface geometry. It follows that

three different dielectric components. Our theories are for

one-dimensionally random surfaces composed from two dif- [606Es]y= - 30
ferent dielectric components. Nonetheless, we hope that fu- oo(l+a)
ture experimental efforts can be directed to one- that the effecti quctivity is ai b
dimensionally rough surfaces of a type that will allow for g S0 that the eflective conductivity 1S given by

quantitative comparison with the results presented in this pa- ot [(60)%]o

per. o =0g— —00(1 ta) (A5)

(A3)

[(60)?]o, (A4)

The spatial averaged value of the conductivity appearing in
ACKNOWLEDGMENTS Eq.(A5) is given byog=(o1+07)/2. An estimate of (60)?]o
in Eqg. (A5) can be obtained in thé/a<1 limit using the
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for support during the work on this project. Partial supportdisorder. This, however, is not the case with the correlation
for the research of D.J.B. was provided by grants from thdength of the statistical fluctuations of the random surface,
US-Israel Binational Science Foundation and the Israel Sciwhich must always be positive. The effective conductivity
ence Foundation. D.J.B. would also like to acknowledge theshould then display terms linear in a. Taking these consider-
hospitality and support of the Department of Physics andations together, along with the fact that the effective conduc-
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tivity equals oy when =0 or a=0 or oy=05, we find that
[(60)%]o=B(aé’/L3)(0,—0,)?, whereL is the length of the
interface andB is a constant. From E@A5) then

as® (01— 0p°

eff_ 01t 0y 8070 (017097
L} (1+a)(o1+ o)’

A6
> (AB)
This agrees with the form a#*'f obtained from Eq(70) in
the 6/a<1, L;=L, limit.

PHYSICAL REVIEW B 70, 144205(2004)

It is interesting to note that in the case of a two-

dimensionally randomly rough surfacéE=(5E,, 6E,, 5Ej),
which leads to a change in the denominator on the left-hand
side of EqQ.(A6), replacing 1+ by 1+2a. If, as with the
homogeneous on average medial, this would give a fac-

tor of 1/2 in Eqg.(A6) for the one-dimensionally rough sur-
face and a factor of 1/3 in Eq(A6) for the two-
dimensionally rough surface. The arguments above should
give a rough indication of the behavior of the conductivity of
the system in the perturbation limit.
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