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The effective resistivity and conductivity of two media that meet at a randomly rough interface are computed
in the quasistatic limit. The results are presented in the spectral density representations of the Bergman-Milton
formulation for the properties of two-component composite materials. The spectral densities are extracted from
computer simulations of resistor networks in which the random interface separates two regions containing
different types of resistors. In the limit that the bond lengths in the resistor network are small compared to
parameters characterizing the surface roughness, the resistor network simulation approximates the continuum
limit of the two-component composite. The Bergman-Milton formulation is used to obtain a set of exact sum
rules in the continuum limit for the spectral densities in terms of parameters describing the surface roughness
and the simulation results are found to agree with these limiting forms. Perturbation theory results of the
composite in the continuum limit for weakly rough random interfaces are also presented. An expansion of the
spectral density is determined to second order in the surface profile function of the random interface and
compared with the Bergman-Milton sum rules and computer simulation results. The formalism is applied to
surface plasmons, electron energy loss, and light scattering from rough surfaces. Layered structures are dis-
cussed briefly.
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I. INTRODUCTION

The theory of the conductivity and resistivity of compos-
ite materials has a long history. Earliest considerations(see,
e.g., the book by Sihvola1) were based on simple analytical
methods. These emphasized exactly solvable models, pertur-
bation treatments, and effective medium approximations.
Modern theories have focused on more sophisticated analyti-
cal treatments2–12 and on computer simulations.6–10,13–19Of
particular interest to us in this paper is the formulation of
Bergman and Milton, first published in Refs. 3 and 4, and
later in greater detail in a lecture notes volume,5 for calcu-
lating the conductivity and resistivity properties of two-
component composite materials. This method is based on a
formal solution of Gauss’s Law and has yielded a number of
exact inequalities, limiting forms, and sum rules for two-
component composites. In this “spectral treatment,” the for-
mal solution for the average conductivity and resistivity of
the composite system are expressed as functions of the con-
ductivities or resistivities of its two-components in terms of
an integral(Hilbert) transform involving a spectral density
and a simple pole, or an entire sequence of simple poles in
the case of a periodic microstructure. The physics of the
solution is in the spectral density which depends on the ge-
ometry of the constituent materials of the composite. Once
the spectral density is known the effective conductivity and
resistivity properties of the system are determined for all

possible values of the resistivities and conductivities of the
two components forming the system. The spectral density is
difficult in general to compute and has only been determined
exactly for restricted geometries. Some analytical and nu-
merical results are also available in perturbation theory and
moment expansions and for special cases.3,4,6–10,13,14,17–23Al-
though the spectral density in general cannot be calculated
by analytical means, developments in computer simulation
techniques7,24–30now allow for the numerical determination
of the spectral density.14,18,19,24–28,31Spectral density methods
are found to be of great generality and have been applied to
a wide variety of different systems. These include randomly
disordered materials,8–10,13,14,18–20,24–28,31periodically or-
dered materials,6–10,21–23and those with isolated impurities of
a regular geometry.1,8–10,24,25

Resistor network simulations can greatly facilitate the
study of spectral densities of two-component
composites.18,19,32 One of the earliest many-body problems
treated by means of computer simulations is the resistor net-
work problem.13 This involves the numerical determination
of the resistivity of a mixed network of resistors, and is of
interest as a model for random alloys, particularly when the
length of a resistor in the network is small compared to typi-
cal length scales in the alloy. The resistor network problem
has interesting transport and phase transition properties,
which have led to the development of a number of efficient
algorithms for the quick solution of large arrays of mixed
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resistors. These algorithms are now finding application with
the Bergman-Milton formulation.18–28,31,32The first use of
resistors arrays to extract the spectral density of two-
component alloys was in the paper of Day and Thorpe.18 In
this paper a general two-dimensional alloy was treated and
the features of the spectral density determined for a wide
variety of disorders.18,19,32 This spectral density approach
was also used to model the optical properties of a two-
component material.32

Here the Day and Thorpe method is used to determine the
continuum limit of the spectral density in the Bergman-
Milton formulation for the resistivity and conductivity of two
media that meet at a randomly rough buried interface. For
simplicity, the interface between the two different resistive or
conducting media is described by a one-dimensional Gauss-
ian random profile function so that the interface retains trans-
lational symmetry along one axis in space.33,34 Generaliza-
tions to two-dimensionally rough surfaces can be made, but
require much more computational effort.34 The treatment of
more general surface roughness statistics is straightforward
and the choice of Gaussian random statistics is discussed
later in the text. The calculations are for the low frequency
limit of the conductivity or resistivity in which the displace-
ment current is ignored, and are done by using a combination
of resistor network simulations and analytical techniques.
Comparison of the spectral density results from simulation
data is made with a variety of analytical limiting forms.

The bulk of the results in this paper for the random inter-
face in a two-component composite are obtained from resis-
tor network simulations involving systems with bond disor-
der. The coordinates of a Gaussian randomly disordered
interface are generated and are then used to separate two
regions of different resistor types. In the limit that the param-
eters characterizing the rough interface between the two re-
gions of different resistor bonds are large compared to the
bond lengths, the continuum limit is well approximated. The
spectral density in the continuum limit is extracted from
computer simulation results. The Bergman-Milton theory is
used to generate a number of sum rules obeyed by the con-
tinuum limit of the spectral density for the interface.(It is
important to note, in regard to the Bergman-Milton theory,
that the exact sum rules usually apply away from the con-
tinuum limit as well. We believe that this is true for the
resistor networks studied here.) These results, which are of
interest in themselves, are used to check the simulation data.

Perturbation theory results for the continuum limit of the
interface problem are generated in the limit of weak rough-
ness. The expansion parameter is the surface profile function,
which is represented by a set of Gaussian random stationary
functions. An expression for the spectral density to second
order in the surface profile function is obtained and found to
agree with the Bergman-Milton sum rules and the results of
the computer simulation.

The order of the paper is: In Sec. II, the continuum model
is presented and discussed, using a spectral formulation of
the Bergman-Milton type, and a number of sum rules are
derived. In Sec. III, the computer simulation is discussed.
Results for the spectral densities are presented, and a com-
parison is made with the limiting forms obtained in Sec. II.
Perturbation theory for weakly rough interfaces is presented

in Sec. IV. In Sec. V, applications are made to surface plas-
mons, electron energy, and light scattering from rough sur-
faces. Generalizations of the theory to treat multiple layered
media are in Sec. VI. A general discussion of the results is
given in Sec. VII.

II. SPECTRAL FORMULATION

Consider a quasistatic system between two parallel plates.
The upperz=L /2 plate is at a potentialV0, and the lowerz
=−L /2 plate is at zero potential. Between the parallel plates
are two media of conductivitiess1 and s2 (resistivitiesr1
and r2) separated by a(two-dimensional) interface that is
rough in one of its two dimensions. Two geometries are
treated: In the first, the average of the rough surface separat-
ing the two media is they-z plane. For this geometry the
effective conductivity of the medium between the parallel
plates is calculated. In the second, the average of the rough
surface separating the two media is thex-y plane. For this
geometry the effective resistivity of the medium between the
parallel plates is calculated.

In both geometries the average electric field is defined
by2,6

EW 0 =
1

V
E EW srWdd3r , s1d

where EW srWd is the field between the parallel plates,EW 0

=ezV0/L, andV is the volume between the plates. The effec-
tive conductivity sef f of the medium between the parallel
plates is then defined by

JW0 = sef fEW 0 =
1

V
E JWd3r , s2d

with the effective resistivity related tosef f by ref f=1/sef f.

A. Average interface in they-z plane

In this geometry the position-dependent conductivity of
the medium between the parallel plates is given by

ssrWd = s2F1 −
1

s
u1srWdG , s3d

wheres=s2/ ss2−s1d. Here

u1srWd = H1, x , jszd
0, otherwise,

s4d

wherex=jszd defines the one-dimensionally rough interface
profile. (Note: the surface is translationally invariant in they
direction.) For a flat interface,u1srWd in Eq. (3) is replaced by
u10srWd defined by

u10srWd = H1, x , 0

0, otherwise.
s5d

In the following, systems with both random and flat inter-
faces are considered. In both systems, the volume fraction of
material with conductivitys1 is p1 and the volume fraction
of material with conductivitys2 is p2.
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The one-dimensionally randomly rough interface in Eq.
(4) is defined byx=jszd, wherejszd is from a set of Gaussian
random functionshjszdj. This set is chosen to have specific
statistical properties that are ultimately correlated with the
average physical properties of the random system. The aver-
age physical properties of the random system are determined
by averaging these properties computed as functionals of
jszd over the set of functionshjszdj.

The set of Gaussian random functionshjszdj satisfy33,34

kjszdl = 0, s6d

kjszdjsz8dl = d2 exps− uz− z8u2/a2d, s7d

wherek l indicates an average overhjszdj, d is the rms de-
viation from a flat surface, anda is the correlation length of
the surface roughness. Higher order correlation functions of
the Gaussian surface roughness are expressed in the usual
way,33,34 in terms of those in Eqs.(6) and (7) as the sum of
all possible pair and singlet contracted averages. For ex-
ample,kjszdjsz8djsz9dl=0 and

kjszdjsz8djsz9djsz-dl = kjszdjsz8dlkjsz9djsz-dl + kjszdjsz9dl

3kjsz8djsz-dl + kjszdjsz-dl

3kjsz8djsz9dl.

A reason that Gaussian random functions have become popu-
lar in the study of disordered systems is that they give rise to
perturbation treatments which have a Wick’s Theorem. This
allows for a simple diagrammatic treatment.

To determine the effective conductivity from Eqs.(1) and
(2), the electric field of the disordered medium is written as

EW =−E0¹f, whereE0= uEW 0u andE0f is the electric potential.
From the current continuity, the functionf is a solution of

¹ · fssrWd¹fg = 0, s8d

subject to the boundary conditionsfsz=L /2d=f0=L,
fsz=−L /2d=0. Using Eqs.(3)–(5) in Eq. (8) gives

¹ ·FS1 −
1

s
u10D¹fG =

1

s
¹ · su3¹fd, s9d

whereu3srWd=u1srWd−u10srWd. A formal solution of Eq.(9) for f
is

fsrWd = z+
L

2
−E d3r8GsrW,r8W usd

1

s
¹8 · fu3sr8W d¹8fsr8W dg

= z+
L

2
+

1

s
E d3r8u3sr8W d¹8GsrW,r8W usd ·¹8fsr8W d.

s10d

Here the Green’s functionGsrW ,r8W usd satisfies

¹ ·F1 −
1

s
u10srWdG¹GsrW,r8W usd = − ds3dsrW − r8W d s11d

in V, subject to the boundary condition thatG=0 on the
surface ofV. Equation (10) can be written in a compact
operator notation as

f = z+
L

2
+

1

s
Ĝssdf, s12d

whereĜssdf=ed3r8u3sr8W d¹8GsrW ,r8W usd ·¹8fsr8W d.
Using an alternative formulation developed for general

random two-component composites,2,6–10,14,18,19,35–37f can
also be written as

f = z+
L

2
+ o

i

f isi

s− si
fi . s13d

Here f i =s1/Vded3ru1srWd¹fisrWd ·¹fz+sL /2dg and fi are the
solutions of the Hermitian eigenvalue problem

Ĝ0fi = sifi , s14d

where

Ĝ0fi =E d3r8u1srW8d¹8G0srW,r8W d ·¹8fisrW8d, s15d

for ¹2G0srW ,rW8d=−ds3dsrW−rW8d. Equation (13) is found to be
useful below as it explicitly exhibits the pole structure of the
dependence off on s.

The effective conductivity of the system is computed by
using the formal solution off [either Eq.(12) or (13)] in
Eqs. (1) and (2). The average electric field is along thez
direction, so that

sef f =
1

VE0
E d3rs− k̂ · sEW d, s16d

and from Eqs.(3) and (16)

sef f =
s2

VE0
FE d3rS1 −

1

s
u10Ds− k̂ ·EW d −

1

s
E d3ru3s− k̂ ·EW dG .

s17d

The electric field in the first integral in Eq.(17) can be re-

placed byEW 0 so that from Eqs.(12) and (17),

sef f

s2
= p1

s1

s2
+ p2 −

1

s2Kz+ UL
2
UĜssdfL , s18d

wherekf ugl=s1/Vded3ru3srWd¹f ·¹g. We note that, in spite of
the similar notation, the expressionkf ugl is not a scalar prod-
uct, sinceu3srWd takes on the negative value −1 as well as the
positive values +1: It has to, because its volume average
vanishes. This separatessef f into two contributions: the re-
sults for a flat surface and a component arising from the
disorder. Alternatively, from Eqs.(13) and(16), we find that

sef f

s2
= 1 −o

i

Fi

s− si
, s19d

whereFi = uf iu2. This expressessef f in terms of the eigenval-
ueshfij and eigenvectorshsij of Eq. (14).
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Following the formulation used to study the effective con-
ductivity of a general three-dimensional, two-component
composite,2,6,7 we define the functionFssd by

Fssd = 1 −
sef f

s2
. s20d

Heresef f is the effective conductivity of the medium in the
presence of a randomly rough interface. For the flat surface
Eq. (20) becomes

F0ssd = 1 −
s0

ef f

s2
=

p1

s
, s21d

wheres0
ef f=p1s1+p2s2 is the effective conductivity in this

limit. To study the effects of the rough interface, it is most
useful to determine the difference of these two functions, i.e.,

Fssd − F0ssd =
s0

ef f − sef f

s2
. s22d

In the formulation of Eqs.(12), (16), and (18), this be-
comes

Fssd − F0ssd =
1

s2Kz+ UL

2
UĜssdfL

=
1

sKz+
L

2U Ĝssd

s− Ĝssd
Uz+

L

2L . s23d

In the formulation of Eqs.(13), (16), and(19), Eq. (22) be-
comes

Fssd − F0ssd =
1

soi

Fisi

s− si
=E

0

1

du
gssud

sss− ud
, s24d

wheregssud is the spectral density. The second equality of
Eq. (24) is a generalization of the first equality: It includes
the first equality as a special case, but is also applicable when
the pole spectrum ceases to be discrete. That enables us to
apply this formalism also to spectral functionsFssd, which
are obtained by averaging over an ensemble of similar sys-
tems. Equation(24) shows that the functionFssd−F0ssd is
determined by a set of simple poles ins. These poles appear
at the eigenvalues of Eq.(14), and are weighted by the spec-
tral densityFisi or gssud. The spectral density then deter-
mines the properties of the system as a function ofs and
contains the essential physics of the system. The goal of our
computer simulation studies will be the determination of this
spectral density for random rough interfaces and the deter-
mination of how the general features of the spectral density
are influenced by the nature of the disorder of the randomly
rough interface.

B. Average interface in thex-y plane

In this geometry, the resistivity of the medium between
the parallel plates in the presence of a randomly rough inter-
face is given by

rsrWd = r2F1 −
1

t
u1srWdG s25d

for t=r2/ sr2−r1d and

u1srWd = H1, z, jsxd
0, otherwise

. s26d

Here hjsxdj are a set of Gaussian random functions defining
the interface profile. For a flat interface,u1srWd in Eq. (25) is
replaced byu10srWd, which is defined as in Eq.(26), but with
the z,jsxd condition replaced byz,0. For these two sys-
tems, the volume fraction ofr1 is p1 and the volume fraction
of r2 is p2.

From the current continuity equation¹ ·JW =0, it follows
that the current density can be written in terms of a vector

potential, i.e.,JW =¹3AW .6 The quasistatic limit of Faraday’s

law ¹3EW =0 then gives

¹ 3 frsrWd¹ 3 AW g = 0, s27d

which definesAW in V. This equation is solved forAW subject to

the boundary condition that on the surface ofV, n̂3AW

= 1
2fn̂3 sJW0z3 rWdg wheren̂ is a unit normal out ofV.
Equation(27) can be rewritten as

¹ 3 HS1 −
1

t
u10D¹ 3 AWJ =

1

t
¹ 3 hu3srWd¹ 3 AW j, s28d

whereu3srWd=u1srWd−u10srWd. Defining a Green’s function ten-

sor,GJsrW ,r8W us,kd, in V by

− ¹ 3 HF1 −
1

t
u10srWdG¹ 3 GJsrW,r8W ut,kdJ + k2GJsrW,r8W ut,kd

= − ds3dsrW − r8W d1, s29d

subject ton̂3GJ =0 on the surface ofV, we can form the
function

AW srW,kd = AW 0srWd +
1

t
E d3r8GJsrW,r8W d ·¹8

3hu3sr8W ds¹8 3 AW 8sr8W ,kdj

= AW 0srWd +
1

t
E d3r8u3sr8W df¹8 3 GJsrW,r8W dg

· f¹8 3 AW 8sr8W ,kdg, s30d

whereAW 0srWd=sJW0z3 rWd /2 is the solution for a smooth inter-
face. Taking thek→0 limit of the right-hand side of the
second equality in Eq.(30) gives a formal solution of Eq.

(28) for AW srWd. Care must be taken in treating thek→0 limit

in Eq. (30) as in this limit GJsrW ,r8W ut ,kd does not exist even
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though¹83GJsrW ,r8W ut ,kd does exist. This is not a problem as

we will only need ¹83GJsrW ,r8W ut ,kd in the results below.
Equation(30) can be rewritten in operator notation as

AW = AW 0 +
1

t
GJAW , s31d

so that

AW = AW 0 +
1

t1 − GJ
GJAW 0. s32d

Using the standard form of the general two-composite

theory,6 an alternative expression forAW can be given in terms
of the solutions of a Hermitian eigenvalue problem. From the
Hermitian eigenvalue problem

GJ0AW i = tiAW i , s33d

where

GJ0AW i =E d3r8u1sr8W df¹8 3 GJ0srW,r8W dg · f¹8 3 AW isr8W dg

s34d

for GJ0srW ,r8W d=limk→0 GJ1srW ,r8W d with s−¹3¹+k2dGJ1srW ,r8W d
=−ds3dsrW−r8W d, it follows that

AW = AW 0 + o
i

hiti
t − ti

AW i , s35d

where hi =s1/Vded3ru1srWds¹3AW id ·s¹3AW 0d. From Eq. (35)

it is seen thatAW as a function oft is composed of simple
poles.

The effective resistivity is given by

ref f =
1

VJ0
2 E d3rrJW0 ·JW . s36d

The integral in Eq.(36) can be rewritten as

E d3rrJW0 ·JW = r2E d3rS1 −
1

t
u10DJW0 ·JW −

r2

t
E d3ru3JW0 ·JW

= Vr0
ef fJ0

2 −
r2

t
E d3ru3JW0 ·JW , s37d

wherer0
ef f is the effective resistivity of the flat surface. Writ-

ing JW =JW0+sJW −JW0d and using the fact thatu3 averages to zero
over the surface, from Eqs.(31), (32), (36), and(37) we find
that

ref f

r2
=

r0
ef f

r2
−

1

tV

1

J0
2 E d3ru3JW0 · sJW − JW0d

=
r0

ef f

r2
−

1

tV

1

J0
2E d3ru3s¹ 3 AW 0d · s¹ 3 BW d. s38d

Here, from Eqs.(31) and (32), BW =f1 / st1−GJdgGJAW 0. Alterna-

tively, from the form forAW given in Eq.(35), it can be shown
that

ref f

r2
= 1 −o

i

Hi

t − ti
, s39d

whereHi =s1/J0
2duhiu2.

By analogy with resistivity studies of composite materi-
als, we define a functionHstd for the rough interface by6

Hstd = 1 −
ref f

r2
, s40d

and for the flat interface a functionH0std by

H0std = 1 −
r0

ef f

r2
. s41d

For the interface problem it is useful to study the differ-
ence of these two functions, i.e.,Hstd−H0std. From the for-
mulation in Eqs.(31) and (32) it is found that

Hstd − H0std =
1

t
kAW 0u

GJstd

t1 − GJstd
uAW 0l, s42d

wherekfWugWl=s1/VJ0ded3ru3srWds¹3 fWd ·s¹3gWd. This form of
Hstd−H0std is used below to obtain an asymptotic limit.
From Eqs.(33)–(35) we find

Hstd − H0std =
1

t oi

Hiti
t − ti

=E dv
grsvd

tst − vd
. s43d

The second equality of Eq.(43) introduces the spectral den-
sity grsvd. This equality is a generalization of the first equal-
ity of that equation, in the same way and for the same rea-
sons that were explained for the second equality of Eq.(24).
As with the conductivity problem, the essential physics of
the effective resistivity of the composite is contained in
grsvd. The functionHstd−H0std has a structure that is very
similar to that ofFssd−F0ssd. As a function of t, it is deter-
mined as a sum of simple poles which occur at the eigenval-

ueshtij of the operatorĜstd. The spectral densityHiti or grsvd
will be determined numerically below for a variety of ran-
domly rough interfaces.

C. Sum rules

To obtain a first sum rule for the effective conductivity in
subsection A, considerFssd−F0ssd in Eqs. (23) and (24).
Multiplying Eq. (24) by s2 and taking the limit thats→`
gives

Csd,ad = lim
s→`

s2fFssd − F0ssdg → o
i

Fisi . s44d

Multiplying Eq. (23) by s2, we find that in this limit
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s2fFssd − F0ssdg → Kz+
L

2
UĜs`dUz+

L

2
L

=
1

V
E d3rE d3r8u3srWdu3sr8W d

]

] z

]

] z8
G0srW,r8W d

~
1

V
E d3r uu3srWdu = Osp3d, s45d

where p3 is the (small) volume fraction occupied by the
rough interface: It would have an accurately defined value if
the roughness were defined by a sharp interface, but its value
can also be defined, in the case of a Gaussian-distributed set
of interface functionsjsrWd [see Eqs.(6) and (7)]. For a
Gaussian-distributed sharp interface two limiting behaviors
of p3 are observed. Ford /a!1, p3 is expected to be propor-
tional to d2/ sLad. This arises from the fact thatp3 should go
to zero asd goes to zero and asL or a become infinite.
(Note: Whena→`, the Gaussian random surface tends to a
flat surface.) For d /a@1, p3 is expected to be proportional to
d /L: In this limit, a feature of length 2a on the surface con-
tributes an area toedxdyuu3srWdu, which is of order 2audu.
There areL /2a such lengths along the interface, so that the
total area along the random interface isdL and p3 goes as
d /L. A possible form that would interpolate between these
two limits would be, e.g.,p3~d2/ fsLads1+cd /adg for some

positive constantc. In Eq. (45) G0srW ,r8W d is thes→` limit of
the Green function defined in Eq.(11).

A second sum rule onFssd is the well known rule2,6

oiFi =p1. This is used in Eq.(24) to relate the residue of the
pole ats=0 to those forsi Þ0. Denoting the residue at zero
in Eq. (24) by ws, we find that

ws = − o
i

8
Fi = F0 − p1, s46d

where the prime in Eq.(46) indicates that thei =0 term[i.e.,
the residueF0 of the poles0=0 of Eq.(19)] is not included in
the sum.

Similar results forHstd−H0std can be obtained from Eqs.
(42) and (43). Multiplying Eq. (43) by t2 gives in thet→`
limit

Rsd,ad = lim
t→`

t2fHstd − H0stdg → o
i

Hiti , s47d

and doing the same to Eq.(42) gives

t2fHstd − H0stdg → −
1

V
E d3rE d3r8u3srWdu3sr8W dS ]2

] x2 +
]2

] y2D
3G0srW,r8W d ~

1

V
E d3r uu3srWdu. s48d

A second sum rule onHstd is given from Eqs.(43),6 and
relates the residue att=0 (denoted bywr) to the sum of the
residues of the nonzero poles by

wr = − o
i

8
Hi = H0 − p1, s49d

where the prime notation in Eq.(46) is again used for the
sum in Eq.(49) and H0 denotes the residue of the pole at
t0=0 in Eq. (39).

III. COMPUTER RESULTS

Following the treatment of Day and Thorpe,18,19,31,32the
spectral densities defined in Eqs.(22)–(24) and(40)–(43) are
extracted from computer simulation studies of two-
dimensional resistor networks. In this extraction, a square
lattice network of resistor bonds between two perfectly con-
ducting plates is considered. The vertices at which the resis-
tors meet are labeled bysx,zd space coordinates and the con-
ducting plates are parallel to thex-y plane. The random
interface separating regions of two different resistor types is
given by specifyingfjszd ,zg for the consideration of the sys-
tem defined in Sec. II A, or specifyingfx,jsxdg for consider-
ation of the system defined in Sec. II B.

The details of the algorithm used to extract the spectral
density from resistor network data are discussed
elsewhere.14,18,19,31,32Consequently, only a brief outline of
the workings of the code will be given here. This will be
followed by a detailed description of the resistor networks, a
discussion of the generation of the random interface, and the
presentation of the numerical results for the spectral density
of the buried interfaces.

The spectral densities are extracted from Eqs.(24) and
(43) using the analytical properties ofFssd and Hstd in the
complexs or t plane.Fssd andHstd are real fors and t real
and, except for a set of simple poles that occur on the real
axis in the interval 0øsø1 or 0ø tø1, are analytic in the
general complex plane. By numerically computingFssd and
Hstd for values ofs and t slightly off the real axis, the rela-
tionship

lim
e→0
E dx

fsxd
x − b + ie

= PE dx
fsxd
x − b

− ipfsbd s50d

can be used to extract the spectral density from the imagi-
nary parts of the numerical data.Fssd andHstd are related to
the effective resistivity and conductivity, so that one of the
many algorithms available to compute the effective resistiv-
ity and conductivity of a network of complex valued resistors
can be used for their determination. In particular, the algo-
rithm of Ref. 14 was used for the results presented below.

We have considered a square lattice resistor array of
1283128 resistor bonds. The functionsFssd andHstd were
computed for a net ofs and t values given bysn=nDs+ ie
and tn=nDt+ ie, whereDs=0.005,Dt=0.005, ande=0.003.
To generate spectral densities 500 realizations of the Gauss-
ian random interface with statistical properties characterized
by the parametersd anda defined in Eqs.(6) and (7) were
used. The coordinates of the Gaussian random interface—
fjszd ,zg for the Fssd calculation andfx,jsxdg for the Hstd
calculations—were computed using the algorithm described
in Ref. 34. In order to approximate the continuum limit of
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the two-component composite system by the resistor net-
work, a series of runs were generated for constantd /a. As d
and a were increased for fixedd /a, the spectral density di-
vided by Csd ,ad=lims→` s2fFssd−F0ssdg or Rsd ,ad
=limt→` t2 fHstd−H0stdg was found to approach a limiting
form. For fixedd /a, the volume fraction of material between
the random rough surface and they-z (or x-y) plane scales
with d2/ sLad, so that the continuum limit of the spectral
density divided byCsd ,ad andRsd ,ad should be a constant.
The limiting form of the spectral density normalized by Eq.
(44) or Eq. (47) generated from the resistor network results
should agree with the continuum limit result when the
lengths characterizing the interface roughness are large com-
pared to those of the resistor bonds.

As a check on the numerically generated data, the sum
rules of Sec. II C were evaluated. The poles ats=0 st=0d in
FssdfHstdg were obtained from the numerical data by fitting a
Lorentzian form in the neighborhood ofs=0 st=0d to the
numerically generated data. Equations(46) and(49) relating
the residues ats=0 or t=0 to the spectral densities summed
over the nonzerosi or ti were found to hold to a fraction of a
percent, i.e., running the simulation for a fixed value ofp1
generatedF0 andws satisfying Eqs.(46) and (49) to a frac-
tion of a percent. The limiting forms in Eqs.(44) and(45) for
s2fFssd−F0ssdg~ s1/Vded3r uu3srWdu and Eqs.(47) and(48) for
t2fHstd−H0stdg~ s1/Vded3r uu3srWdu were also examined. For
fixed d /a the constants of proportionality are shown to agree
to within a few percent provided thata!L. For aùL the
statistical correlations along the interface are affected by the
finite width of the sample. In this limit the agreement of the
constant of proportionality is less satisfactory.

In Fig. 1 the spectral density fromFssd data is plotted as
a function ofs=s2/ ss2−s1d. The effective conductivity data
is obtained for systems with 50%s1 and 50%s2 for inter-
faces that average to they-z plane. The results are labeled by
d and a characterizing the statistical properties in Eqs.(6)
and (7) of the set of Gaussian random functions. In each
figure two curves are presented representing results at fixed
d /a for two different sets ofsd ,ad. This gives an indication
of the convergence of the numerically generated resistor net-
work data to the continuum limit results. Units ford and a
are in resistor bond lengths, i.e.,d=1 represents ad of one
bond length. In the plots presented, the ratiod /a starts from
a high value and decreases through one to a low value. This
displays the behavior of the spectral density as one goes
from the limit of surfaces that have high peaks falling
quickly to narrow valleysd /a@1d to the limit of surfaces
having smooth tapered hillssd /a!1d. As expected, the spec-
tral densities generated by the computer simulation are in-
sensitive to the parallel shifting of the mean interface to the
right or left of thex-y plane and to the corresponding per-
centage changes ins1 and s2 of the system. The rough in-
terfaces generated by the simulation, however, must remain
well contained within the finite volume of the resistor net-
work treated by the simulation.

In general, ford /a.1 the spectral density is a broad flat
function of s over the interval 0øsø1. The flat region,
which tends to narrow asd /a=1 is approached, is not fea-
tureless. It is composed of three rather low maxima with

relatively large widths. Ford /a,1 the spectral density con-
tinues to narrow reducing to a large peak centered ats= 1

2 in
the extremed /a!1 limit. In the perturbation theory discus-
sion given in Sec. IV, it will be shown that ford /a→0 the
density of states is a single pole ats= 1

2. All of the results
presented in Fig. 1 are symmetric abouts= 1

2. This comes
from Fssd−F0ssd in Eq. (22) and the corresponding expres-
sion for Hstd−H0std. Both s0

ef f−sef f and r0
ef f−ref f for large

sized samples(i.e., L→`) are determined by the properties
of the systems in the vicinity of their random interfaces.
Consequently,s0

ef f−sef f and r0
ef f−ref f should be invariant

under the interchange ofs1 and s2. For Fssd−F0ssd this
implies that

1

soi

Fisi

s− si
=

1

soi

Fisi

s− s1 − sid
. s51d

Similarly, from Hstd−H0std it follows that

1

t oi

Hiti
t − ti

=
1

t oi

Hiti
t − s1 − tid

. s52d

Both of these indicate symmetry under reflection throughs
or t= 1

2.
The data from the finite network simulations leading to

Fssd are displayed in Table I. The sum ruleF0−ws=p1

=0.5 of Eq. (46) is evidently satisfied to a few parts per
thousand. This provides a nontrivial evaluation of the accu-
racy of our simulations and of the errors introduced by the
finiteness of the networksL=128d and its discrete nature.
The values found forCsd ,ad; lims→` s2fFssd−F0ssdg of Eq.
(44) satisfy the expectation that this quantity is proportional
to d2/ sLad for d!a and to d /L for d@a, which followed
from Eq. (45) (see Sec. II C).

In Fig. 2, corresponding results for the spectral density
from Hstd of the effective resistivity with an interface which
on average gives thex-y plane are presented. The spectral
density is plotted as a function oft=r2sr2−r1d for the same
range ofd anda values used to generate the data in Fig. 1.
The same general features as found in the results(plotted
versuss) in Fig. 1 are found for those(plotted versust) in
Fig. 2. (It should be noted that although the results in Figs. 1
and 2 exhibit general similarities ift=s, in fact tÞs are
differently defined variables and the geometries of the two
systems in Figs. 1 and 2 are quite different. Even ift were
equal tos, the resulting figures are not the same, they are
only similar in overall appearance and represent results for
differently defined sets of spectral densities.) Once again the
results should be symmetric aboutt= 1

2 and, in thed /a!1
limit, the perturbation theory discussed in Sec. IV gives a
spectral density with a single pole att= 1

2. It is interesting
that the results in Figs. 1(e) and 2(e) are very similar in their
respective dependences ons andt. This comes from the fact
that in this limit the simple poles ats=1/2 or t=1/2 are
dominating the respective behaviors of these systems in the
weak perturbative limit.

The data from the finite network simulations leading to
Hstd are displayed in Table II. As was the case in Table I, the
sum ruleH0−wr=p1=0.5 of Eq.(49) is usually satisfied to a
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few parts per thousand. Again, this provides a nontrivial
evaluation of the accuracy of our simulations and of the er-
rors introduced by the finiteness of the networksL=128d and
its discrete nature. Again, as was the case in Table I, the
values found forRsd ,ad; limt→` t2fHstd−H0stdg of Eq. (47)
satisfy the expectation that this quantity is proportional to
d2/ sLad for d!a and tod /L for d@a, which followed from
Eq. (48) (see Sec. II C).

A consideration for both Figs. 1 and 2 is the effect of the
size of the resistor array on the data. At the edges of the

resistor array, the correlations along the random interface
will be disrupted. This occurs on the interface within a cor-
relation length of the edges of the array, even with the appli-
cation of periodic boundary conditions. As a consequence,
the effective correlation length of the generated data should
be a little less than that for data that would be generated in an
infinite system. These correlation length differences will be
small (at most of ordera/L) in the cases presented in Figs. 1
and 2. The spectral functions in Figs. 1 and 2, however,
exhibit only small differences for changes in the correlation

FIG. 1. A plot of the spectral density ofFssd−F0ssd divided byCsd ,ad versus s for(a) d /a=4.00 curves shown forsd ,ad=s8,2d (dashed
line) and s16,4d (solid line); (b) d /a=1.33 with curves shown forsd ,ad=s8,6d (dashed line) and s12,9d (solid line); (c) d /a=1.00 with
curves shown forsd ,ad=s12,12d (dashed line) ands16,16d (solid line); (d) d /a=0.75 with curves shown forsd ,ad=s9,12d (dashed line) and
s12,16d (solid line); and (e) d /a=0.25 with curves shown forsd ,ad=s12,48d (dashed line) and s16,64d (solid line).
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length that are of the order of magnitude of those discussed
above. On pages 10 and 11 of Ref. 38, a discussion of the
formal treatment of finite size scaling effects arising in nu-
merical simulations in terms of the dependence of the com-
puted root mean square deviation of a property on the sample
size is given. For the spectral densities of the systems treated
in Figs. 1 and 2, such a discussion would be extremely com-
putationally intensive and would not lead to new insight into
the physics of these systems. It will not be pursued here.

Another type of interface that can readily be treated by the
simulation technique and is of considerable interest is that of

periodic interfaces. For this case the operatorsĜ0 andGJ0 in
Eqs. (14) and (15) and Eqs.(33) and (34), respectively, ex-
hibit the same periodicity as their buried interfaces. This fol-

lows from the complete translational symmetry ofG0, GJ0, ¹,
¹3, and the periodicity of theu1srWd’s. Consequently, the
eigenvalues and eigenvectors of Eqs.(14) and (33) obey
Bloch’s theorem: They form bands that are characterized by
a Bloch q-vector that lies in the two-dimensional subspace
(i.e., plane) of three-dimensional space, which embodies the
periodic nature of the interface. These bands have gaps and
other typical features, similar to those found in other physi-
cal systems that are characterized by spatial periodicity.
However, only theq=0 state from any Bloch band can con-
tribute a nonzero weightFi or Hi in the spectral expansion of
Fssd or Hstd. This statement, which is an exact theorem for
continuum composites of infinite volume or periodic bound-
ary conditions,3,4 can be violated to some extent when we
deal with finite sized discrete networks. For this reason, we
includedall the eigenstateswhenever we calculated the spec-
tral weight functionsgssud, grsvd. Results of some of those
calculations, using interfaces with periodic roughness, are
reported below. A detailed treatment of the banding proper-
ties of the eigenstates for periodic interfaces will be pre-
sented in a future publication.

IV. PERTURBATION THEORY RESULTS

Perturbation theory can be used to obtain the effective
conductivity (resistivity) of the buried interface problem as

an expansion in the surface profile function. This is done
separately for each of the cases treated in subsections II A
and II B.

A. Average interface in they-z plane

For this geometry, start from the current continuity equa-

tion ¹ ·JW =0 and writeJW =−ssrWd¹f. The scalar functionfsrWd
then satisfies

F ]2

] x2 +
]2

] z2GfsrWd = 0 s53d

on either side of the interface. The boundary conditions for
L→` on fsrWd arefsz=−L /2d=0, fsz=L /2d=f0, andfsrWd,
and the normal component ofJWsrWd are continuous at the ran-
dom interface.

The solution forfsrWd can be written in the form

fLsrWd =
1

2
f0S1 +

2z

L
D + o

n=0

`

D1sndsinS2np

L
zDes2np/Ldx

+ o
n=0

`

D2sndcosF s2n + 1dp
L

zGefs2n+1dp/Lgx, s54d

for x,min jszd, and

fRsrWd =
1

2
f0S1 +

2z

L
D + o

n=0

`

C1sndsinS2np

L
zDe−s2np/Ldx

+ o
n=0

`

C2sndcosF s2n + 1dp
L

zGe−fs2n+1dp/Lgx, s55d

for x.max jszd. Here account is made of the boundary con-
ditions atz= ±L /2. In the application of the boundary con-
ditions at the randomly rough interface, the Rayleigh
hypothesis33 is assumed to be valid. This assumption is that
x,min jszd in Eq. (54) can be replaced byx,jszd, and that
x.max jszd in Eq. (55) can be replaced byx.jszd. The
Rayleigh hypothesis is generally found to be valid for Gauss-
ian random systems in whichd /a,0.1.

TABLE I. Results forFssd from network simulations.

d a −ws F0 F0−ws Csd ,ad
d

2L

d2

2La

8 2 0.093 0.406 0.499 0.0326 0.03125 0.125

16 4 0.180 0.318 0.498 0.0620 0.0625 0.25

8 6 0.064 0.436 0.500 0.0262 0.03125 0.04167

12 9 0.091 0.408 0.499 0.0376 0.046 875 0.0625

12 12 0.080 0.420 0.500 0.0339 0.046 875 0.046 875

16 16 0.104 0.395 0.499 0.0441 0.0625 0.0625

9 12 0.053 0.446 0.499 0.0233 0.035 156 0.026 367 2

12 16 0.069 0.431 0.500 0.0300 0.046 875 0.035 156 3

12 48 0.034 0.465 0.499 0.0143 0.046 875 0.011 718 8

16 64 0.044 0.453 0.497 0.0177 0.0625 0.015 625 0
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The first terms on the right-hand sides of Eqs.(54) and
(55) are the solutions forfL and fR in the case of a flat
interface. The remaining terms give the change from the flat
interface results due to the random disorder in the interface.
Consequently, the coefficientsD1snd, D2snd, C1snd, and
C2snd depend on the surface roughness profile functionjszd
and vanish whenjszd=0. In the following, a perturbation
expansion is generated by matching the interface boundary
conditions in powers of the surface profile functionjszd.

To match the interface boundary conditions, the coeffi-
cientsCasnd and Dasnd for a=1, 2 are written as series in
powers ofjszd, so that

Casnd = o
i=1

`

Ca,isnd s56d

and

FIG. 2. A plot of the spectral density ofHstd−H0std divided byRsd ,ad versus t for(a) d /a=4.00 with curves shown forsd ,ad=s8,2d
(dashed line) and s16,4d (solid line); (b) d /a=1.33 with curves shown forsd ,ad=s8,6d (dashed line) and s12,9d (solid line); (c) d /a
=1.00 with curves shown forsd ,ad=s12,12d (dashed line) and s16,16d (solid line); (d) d /a=0.75 with curves shown forsd ,ad=s9,12d
(dashed line) and s12,16d (solid line); and (e) d /a=0.25 with curves shown forsd ,ad=s12,48d (dashed line) and s16,64d (solid line).
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Dasnd = o
i=1

`

Da,isnd. s57d

HereCa,isnd andDa,isnd represent all contributions to these
coefficients of orderi in powers ofj. Using Eqs.(56) and
(57) in Eqs.(54) and(55), a system of equations forDa,i and
Ca,i are determined at the interface. These equations are used
below to obtain the solutions forf to first order injszd.

The continuity of fsrWd at x=jszd gives ufLsrWdux=jszd
= ufRsrWdux=jszd. It then follows from Eqs.(54) and (55) that

Ca,1smd − Da,1smd = 0, s58d

wherea=1 or 2. The continuity of the normal component of
the current density at the random interface gives

s1S1,0,−
dj

dz
D ·¹fL = s2S1,0,−

dj

dz
D ·¹fR s59d

for x=jszd. From this and Eqs.(54) and (55) it follows that

s2C1,1smd + s1D1,1smd = s2 − s1sj−m + jmd
f0

L
, s60d

and

s2C2,1smd + s1D2,1smd =
s1 − s2

s1 + s2

2

s2n + 1dp
f0

L
E

−L/2

L/2

dz

3cosS s2n + 1dp
L

zDdjszd
dz

, s61d

wherejszd=opjpe
is2ppz/Ld.

Solving Eqs.(58), (60), and(61) givesC1,1smd=D1,1smd,
C2,1smd=D2,1smd,

C1,1smd =
s2 − s1

s1 + s2

f0

L
sjm + j−md, s62d

and

C2,1smd =
s1 − s2

s1 + s2

2

s2n + 1dp
f0

L
E

−L/2

L/2

dz

3cosS s2n + 1dp
L

zDdjszd
dz

. s63d

The z component of current density is then

Jz
s1d = − s1

f0

L
− s1

2p

L
o
n=0

` Fn cos
2np

L
zC1,1sndes2np/Ldx

−
2n + 1

2
sin

s2n + 1dp
L

zC2,1sndefs2n+1dp/LgxG , s64d

for x,jszd, and

Jz
s2d = − s2

f0

L
− s2

2p

L
o
n=0

` Fn cos
2np

L
zC1,1snde−s2np/Ldx

−
s2n + 1d

2
sin

s2n + 1dp
L

zC2,1snde−fs2n+1dp/LgxG , s65d

for x.jszd. The average current density for a given surface
profile jszd is

Jz,av =
1

L
E

−L/2

L/2 F 1

L1 + jszdE−L1

jszd

Jz
s1ddx

+
1

L2 − jszdEjszd

L2

Jz
s2ddxGdz, s66d

whereL1 andL2→` are the lengths of thes1 ands2 mate-
rials in thex directions. Averaging Eq.(66) over jszd gives

the average current densitykJWl.
The average current densitykJWl is computed from Eqs.

(62)–(66) using

kjmjnl =
Îpad2

L
exp −Spma

L
D2

dn+m,0, s67d

TABLE II. Results from network simulations forHstd.

d a −wr H0 H0−wr Rsd ,ad
d

2L

d2

2La

8 2 0.086 0.409 0.495 0.0310 0.03125 0.125

16 4 0.168 0.323 0.491 0.0606 0.0625 0.25

8 6 0.060 0.439 0.469 0.0246 0.03125 0.04167

12 9 0.087 0.412 0.499 0.0359 0.046 875 0.0625

12 12 0.075 0.424 0.499 0.0323 0.046 875 0.046 875

16 16 0.099 0.400 0.499 0.0424 0.0625 0.0625

9 12 0.050 0.450 0.500 0.0218 0.035 156 0.026 367 2

12 16 0.064 0.435 0.499 0.0284 0.046 875 0.035 156 3

12 48 0.028 0.470 0.498 0.0132 0.046 875 0.011 718 8

16 64 0.035 0.463 0.498 0.0165 0.0625 0.015 625 0
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ksjn + j−nd2l =
Îpad2

L
exp −Spna

L
D2

s2 + d−2n,0 + d2n,0d,

s68d

and

o
n=0

`

fs2n + 1d < E
0

`

dnfs2n + 1d. s69d

Equation(69) has been used for functionsfs2n+1d which
depend onC2snd. We find

kJzl = −
L1s1 + L2s2

L1 + L2

f0

L

+
4

L1 + L2

ss2 − s1d2

s1 + s2

f0

L

Îppad2

L2 o
n=0

`

n exp −Spna

L
D2

.

s70d

[Note: The general form ofkJzl in Eq. (70) for the caseL1

=L2 can be checked using a rough argument, originally given
by Landau and Lifshitz for a bulk disordered medium. This
is presented in the Appendix.] For equal concentrations ofs1
ands2, in theL→` limit for L1=L2=L /2,

Fssd − F0ssd =
1

Îp

1

s

1

s− 1
2

d

L

d

a
. s71d

Here we use the definition ofFssd and F0ssd in Eqs.
(20)–(24).

The above expression has two simple poles ats=0 and
s=1/2. Wenote that the singularities at these two values ofs
are generic features of the functionFssd that appear for quite
arbitrary microstructures: The pole ats=0 is a result of the
fact that the subvolume of thes1 constituent percolates in the
microstructure of Sec. II A, i.e., a continuous path through
that constituent exists between the top and bottom equipo-
tential plates.6 The pole ats=1/2 is aresult of the following
mathematical property: Although the details of the pole spec-
trum of Fssd (i.e., positions and residues) depend on the pre-
cise microstructure, that spectrum usually has an accumula-
tion point ats=1/2,even if all the interfaces are smooth and
regular and have no singular points.5 Thus, in general,Fssd
will have an essential singularity at that point. The simple
pole which we found ats=1/2, using perturbation theory, is
the remnant of that essential singularity.

In the L→` limit for L1=L2=L /2, Eqs. (54)–(66) and
(69) can be used to obtainFssd−F0ssd for a general surface
profile correlatorkjszdjs0dl. We find that

Fssd − F0ssd = −
1

2p

1

s

1

s− 1
2

PE dz
1

z

d

dz
kjszdjs0dl. s72d

Here the principal part −s1/pdPedzs1/zdsd/dzdkjszdjs0dl
=esdk/2pdukugskd, where in the L→` limit kjszdjs0dl
=esdk/2pdgskdeikz. Equations(54)–(66) and(69) can also be
used to determineFssd−F0ssd for interfaces that are nonran-
dom and periodic. For a periodic profile function of the form

jszd = o
n=0

`

jn cos
2pn

a
z+ o

n=1

`

fn sin
2pn

a
z, s73d

Fssd − F0ssd =
p

2

1

s

1

s− 1
2
F2

j0
2

La
+ o

n=1

` S jn
2

La
+

fn
2

La
DG . s74d

B. Average interface in thex-y plane

For this geometry, the same formulation as that given in
the first paragraph of Sec. IV A is used. The difference here,
however, is that the average interface is in thex-y plane, not
the y-z plane.

As the interface between the two components of the com-
posite is not bounded in thex-y plane, the solution of Eq.
(53) for fsrWd can now be written in the form

f.srWd = A. + B.z+E dk

2p
eikxfC.skde−kz+ D.skdekzg,

s75d

wherez.jsxd, and

f,srWd = A, + B,z+E dk

2p
eikxfC,skde−kz+ D,skdekzg,

s76d

where z,jsxd. From the condition thatfsz=−L /2d=0, it
follows that

A, =
L

2
B, s77d

and

D,skd = − C,skdekL. s78d

Here again the Rayleigh hypothesis,33 i.e., the representation
of the solutions for z.jsxd by the form valid for
z.max jsxd and the solutions forz,jsxd by the form valid
for z,min jsxd is assumed. From the condition thatfsz
=L /2d=f0, it follows that

f0 = A. +
L

2
B. s79d

and

D.skd = − C.skde−kL. s80d

Equations(77)–(80) are used to eliminateB., B,, D.skd,
andD,skd from Eqs.(75) and (76), so that

f.srWd = A. +
2

L
sf0 − A.dz+E dk

2p
eikxC.skdfe−kz− e−kLekzg

s81d

and
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f,srWd = A,S1 +
2

L
zD +E dk

2p
eikxC,skdfe−kz− ekLekzg.

s82d

The coefficientsA,, A., C.skd, andC,skd are determined as
functions of jsxd by matching boundary conditions at the
random interface.

The continuity offsrWd and the component ofJWsrWd normal
to the interface atz=jsxd gives

f.fz= jsxdg = f,fz= jsxdg s83d

and

s2F−
djsxd

dx
,0,1G ·¹f.srWd = s1F−

djsxd
dx

,0,1G ·¹f,srWd.

s84d

Expanding in powers ofjsxd, we write

Ciskd = o
n=0

`

Cn
i skd, s85d

wherei =. or ,, andCn
i skd represents terms of order n inj.

Substituting Eqs.(81) and (82) into Eqs.(83) and (84) and
using Eq.(85) gives

C0
.skd = 0, s86d

C1
.skd =

s1ss2 − s1d
ss2 + s1d2

1

1 − e−kL

2f0

L
ĵskd, s87d

C2
.skd =

s1ss2 − s1d
ss2 + s1d3

1

ekL − e−kL

2f0

L
Fss1 − s2dsekL + 1d

3E dq

2p
q

eqL + 1

eqL − 1
ĵsk − qdĵsqd + 2s2sekL − 1d

3E dq

2p
qĵsk − qdĵsqdG , s88d

for the first three Cn
.skd coefficients. Here jsxd

=esdk/2pde−ikxĵskd. In the same way, theCn
,skd coefficients

are determined and found to be closely related to the
hCn

.skdj. The hCn
,skdj are obtained from thehCn

.skdj by not-
ing that −Cn

,skd is given from the expression forCn
.skd by

replacingL with −L and interchangings1 ands2. From Eqs.
(83) and (84), the leading order terms injsxd give

A. = A, =
s2

s2 + s1
f0. s89d

The effective conductivity is determined from the average

currentkJWl=−kssrWd,fsrWdl. Using Eqs.(81), (82), and(85)–
(88), the averagez component of the current density is found
to be

kJzl = −
s2s1

s2 + s1

2f0

L
H1 + 8ÎpF ss2 − s1d

ss2 + s1dG2S d

L
D2a

L

3E dr

2p
r
e2r + 1

e2r − 1
expS−

r2a2

L2 DJ . s90d

In the d=0 limit this correctly reduces to the effective con-
ductivity of the flat surface system. Using the relationship
ref f=1/sef f, the differenceHstd−H0std, defined in Eqs.(40)
and (43), to leading order ind is

Hstd − H0std = 2Îp
1

t

1

t − 1
2

S d

L
D2a

L
E dr

2p
r
e2r + 1

e2r − 1
expS−

r2a2

L2 D .

s91d

In the L→` limit

Hstd − H0std =
1

Îp

1

t

1

t − 1
2

d

L

d

a
. s92d

This has the same functional form as that ofFssd−F0ssd in
Eq. (71).

Like Eq. (71), this expansion also has two simple poles at
t=0 and t=1/2. These are generic features of the function
Hstd: The pole att=0 expresses the fact that the subvolume
of the s2 constituent does not percolate between the top and
bottom plates of the structure of Sec. II B.6 In general, the
point t=1/2 is anaccumulation point of the pole spectrum of
Hstd, and thus this function usually has an essential singular-
ity at that point.5 The simple pole that we obtained using
perturbation theory is, again, the remnant of that essential
singularity.

In addition, for a general surface profile correlator
kjsxdjs0dl,

Hstd − H0std = −
1

2p

1

t

1

t − 1
2

PE dx
1

x

d

dx
kjsxdjs0dl,

which is the same form as Eq.(72) for Fssd−F0ssd. For the
nonrandom periodic surface given by

jsxd = o
n=0

`

jn cos
2pn

a
x + o

n=1

`

fn sin
2pn

a
x, s93d

we get

Hstd − H0std =
p

2

1

t

1

t − 1
2
F2

j0
2

La
+ o

n=1

` S jn
2

La
+

fn
2

La
DG . s94d

C. Perturbation theory results

In the limit that d!a!L, the perturbation theory for
Fssd−F0ssd and Hstd−H0std is very similar. The functional
form of Fssd−F0ssd fHstd−H0stdg exhibits simple poles ats
=0st=0d ands= 1

2
st= 1

2
d. These two poles are observed in the

d!a limit of the s.0st.0d data plotted in Fig. 1(Fig. 2).
Actually, at s=1/2 or t=1/2 there should be an essential
singularity, as explained above.5

An interesting feature of the perturbation theory results is
that both Fssd−F0ssd and Hstd−H0std are proportional to
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d2/ sLad. This suggests a scaling relation forFssd−F0ssd,
Hstd−H0std, and their sum rules. To see if this is the case, we
have considered plots of the sum rules ofFssd−F0ssd and
Hstd−H0std displaying such scaling.

In Fig. 3(a) plots of the sum rules in Eqs.(44) and(47) for
Gaussian randomly rough interfaces are presented for vari-
ousd anda. The results are plotted so that the vertical scale
shows lims→` s2fFssd−F0ssdg / sd2/Lad or limt→` t2fHstd
−H0stdg / sd2/Lad and the horizontal scale showsd /a. The
horizontal line indicates the perturbation theory limit and the
dashed line is a Pade fit to the data. The Pade form used is
y=f1–0.8260sd /adg / fÎp+0.9179sd /adg, where y is on the
vertical axis. This form forces the Pade form to a fit to the
perturbation theory results1/Îpd in the d /a=0 limit. The
numerically generated data lies on a universal curve given by
the Pade form when plotted as described above. At smalld /a
the numerically generated points closest to the Pade results
are the ones with largerd anda. This suggests that the dis-
crepancy between the numerically generated data and the
Pade form is mainly due to the discrete nature of the resistor
network. [By this we mean that in modeling a continuum
system by a discrete finite sized lattice, not all length scales
are treated correctly(see a discussion of aliasing in Ref. 39).
The numerical simulation of the lattice model does not accu-

rately treat lengths less than the lattice constant and lengths
greater than the lattice size. The continuum solutions, how-
ever, contain all length scales, although with varying degrees
of importance. The limitd /a→0 is represented in the lattice
by d /a=(lattice constant)/(length of a side of the total lat-
tice). This may differ form thed /a→0 limit of the con-
tinuum model.] The general decrease of the Pade form re-
sults in Fig. 3(a) with increasingd /a is consistent with the
discussions given below Eq.(45) for the dependence ofp3 on
d, a, andL. We remind the reader, however, that our com-
puter data are limited by the discrete nature and finite size of
the lattice.

In Fig. 3(b) a similar plot to that in Fig. 3(a) is given, but
for periodic interfaces.40 For these results the interfaces are
given byjszd=d coss2p /adz for the geometry of Sec. II A or
by jsxd=d coss2p /adx for the geometry of Sec. II B. The
data in Fig. 3(b) are scaled in the same manner as that in Fig.
3(a). The horizontal line gives the perturbation-limiting
form, and the dashed line is a Pade fit withy
=f1.571–0.137sd /adg / f1+2.414sd /adg wherey is the verti-
cal axis, andy at d /a=0 is fixed on the valuep /2 obtained
from perturbation theory. The data fall on a universal curve
given by the Pade form, and the discrepancies between the
numerically generated data and the Pade form again seem to
come from the effects of a discrete lattice. Again a decrease
in the Pade form is observed with increasingd /a, and this is
consistent with out discussions of the dependence ofp3 on d,
a, andL.

An additional condition thatsef f and ref f must satisfy is
the reciprocity relation.10 This is a relation betweensef f and
ref f defined on dual lattices. A good discussion of this rela-
tion can be found in Sec. 3.2 of Ref. 18. Since the square
lattice is self-dual, the reciprocity relation relates the pertur-
bation theory results for Fssd and Hstd, so that
sef fss1,s2,p1d /s2 = s1/sef fss2,s1,p1d=ref fss2,s1,p1d /r1.
This relation is satisfied by the perturbation results in Eqs.
(71) and (92) since interchangings1 and s2 in t=r2/ sr2

−r1d givest8=r1/ sr1−r2d=s2/ ss2−s1d=s. As the perturba-
tion theory gives expressions forFssd andHstd that map into
one another under interchangings and t, the reciprocity re-
lation is satisfied.

V. SURFACE PLASMONS AT A RANDOMLY ROUGH
INTERFACE

In this section the long wavelength dispersion relation of
surface plasmons on a one-dimensionally randomly rough
dielectric interface is related to the functionsFssd−F0ssd and
Hstd−H0std. Two cases of surface plasmon propagation along
the rough interface are treated:(a) propagation parallel to the
grooves of the one-dimensional roughness and(b) propaga-
tion perpendicular to the grooves of the one-dimensional
roughness. Applications of the relationship are given.

The propagation of surface plasmons along the random
interfaces is considered for the geometries given in Secs.
II A and II B. For the surface plasmon considerations, how-
ever, the material with conductivitys1 in Secs. II A and II B
is replaced by a material with dielectric constantesvd and

FIG. 3. Plot of the weight defined as lims→` s2fFssd
−F0ssdg / sd2/Lad or limt→` t2fHstd−H0stdg / sd2/Lad versus ratio
=d /a for (a) the Gaussian randomly rough interface and(b) the
periodic cosine interface.
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the material with conductivitys2 is replaced by vacuum.
Results for the resistor network can be used in the treatment
of these two dielectric geometries, as in the continuum limit
the conductivity problems studied in Secs. II and IV are iso-
morphic to the dielectric media problems. Replacings1 by
e1, s2 by e2, andsef f by eef f maps the two different problems
onto one another so that results for one can be used to de-
scribe the other.

A. Dispersion relation: propagation parallel to the grooves

To relateHstd−H0std to the surface plasmon dispersion
relation for propagation parallel to the grooves of the one-
dimensionally rough interface, consider the parallel plate ge-
ometry of Sec. II B. The region above the random interface
is vacuum and the region below the interface is filled with an
homogeneous isotropic dielectric characterized byesvd. The
potential difference between the plates in the following con-
siderations is not fixed, but the system operates as a capacitor
containing a quasistatic electric field. The surface plasmon
modes treated in this geometry propagate in they direction.

The upper plate has a quasistatic surface charge density,
qssx,y,vd of frequencyv, and the lower plate has a surface
charge density −qssx,y,vd. The spatial variations of
qssx,y,vd are considered to be on length scales much larger
than those characterizing the roughness of the randomly
rough interface(i.e., d, a). Consequently, the response of the
system toqssx,y,vd is determined by the effective dielectric
properties of the random media, so that

DVsx,y,vd = 4pL
qssx,y,vd

eef f , s95d

whereDVsx,y,vd is the potential between the plates atsx,yd
and eef f is the effective dielectric constant. For a flat inter-
face, Eq.(95) becomes

DV0sx,y,vd = 4pL
qssx,y,vd

e0
ef f , s96d

where the subscripts 0 indicate flat interface quantities. Here
the charge densitiesqssx,y,vd driving the systems in Eqs.
(95) and (96) are the same. From Eqs.(95) and (96) it then
follows that

DVsx,y,vd − DV0sx,y,vd = 4pLS 1

eef f −
1

e0
ef fDqssx,y,vd.

s97d

The flat surface surface-plasmon of quasistatic frequency
v propagating in they direction has an electric potential of
the form

fsy,z,vd = sAe−kz+ A1e
ksz−L/2ddeiky s98d

above the interface, and

fsy,z,vd = sBekz+ B1e
−ksz+L/2ddeiky s99d

below the interface. Matching the boundary conditions at the
interface and the surface charge density[i.e., ±qssy,vd]
boundary conditions at the upper and lower plates deter-

minesA, A1, B, andB1. (Notice that the charge density for a
plasmon propagating in they direction has nox dependence
in the approximation used here.) From these coefficients it is
found that

DV0sy,vd = 4p
qssy,vd

k
F 1

esvd
+ 1GtanhskL/2d, s100d

so that the difference in potential between the plates depends
only on y.

Substituting Eq.(100) into Eq. (97) for largeL gives

DVsy,vd = 4pqssy,vd
1

kHF 1

esvd
+ 1G + kLS 1

eef f −
1

e0
ef fDJ .

s101d

The condition for a surface plasmon mode to exist is that
DVsy,vd=0 for nonzeroqssy,vd. This gives

0 =
1

esvd
+ 1 +kLS 1

eef f −
1

e0
ef fD

=
1

esvd
+ 1 −kLfHstd − H0stdg, s102d

wheret=esvd / fesvd−1g as the equation determining the sur-
face plasmon dispersion relation on the random interface in
the L→` limit. In the perturbation theory limit discussed in
Sec. IV B, we find from Eqs.(92) and (102) that

0 = 1 −
2

Îp

fesvd − 1g2

fesvd + 1g2

d2

a
k s103d

determines the surface plasmon dispersion relation at long
wavelengths. The dispersion relation on the weakly random
rough surface of Sec. IV B can also be computed from re-
sults of a Green’s function scattering theory developed in
Refs. 41 and 42. It is found that the dispersion relation from
Refs. 41 and 42 is determined by

0 = 1 −
2s1 + cos2ud

Îp

fesvd − 1g2

fesvd + 1g2

d2

a
k. s104d

Hereu is the angle between the surface plasmon wave vector
in the plane of the mean surface and the direction perpen-
dicular to the grooves of the one-dimensionally randomly
rough interface. Equations(103) and(104) are in agreement.

B. Dispersion relation: Propagation perpendicular to the
grooves

To relateFssd−F0ssd andHstd−H0std to the surface plas-
mon dispersion relation for propagation perpendicular to the
grooves of the one-dimensionally rough interface, consider
the parallel plate geometry of Sec. II A. The plasmon now
travels in thez direction. (Note that the discussions in this
section are quite separate from those made in Sec. V A. Sec-
tion V A treated the system described by the geometry in
Sec. II B, whereas the discussion in this section is for a sys-
tem described by the geometry in Sec. II A. These figures
represent two distinct and different physical systems.) The
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region to the left of the random interface is filled with an
homogeneous isotropic dielectric characterized byesvd and
the region to the right of the random interface is vacuum.
The potential difference between the upper and lower plates
is zero.

We consider the case in which the wavelength of the sur-
face plasmon is much greater than the parametersa and d
characterizing the surface roughness. In this limit the re-
sponse of the system to fields and charges far from the sur-
face can be described in terms of an effective dielectric con-
stant. The scalar potential of the surface plasmons with
quasistatic frequencyv is then taken to be of the form

fsx,z,vd = fskzdf0sx,vd, s105d

where fskzd=sin kz for kL/2=np or fskzd=coskz for kL/2
=s2n+1dp /2 with n=0,1,2, . . . and

f0sx,vd = Aeksx+L/2d s106d

in the region to the left of the interface, with

f0sx,vd = Be−ksx−L/2d s107d

in the region to the right of the interface.
From the discussion given in Sec. V A for plasmons mov-

ing in a system with the geometry of Sec. II B, it is expected
from Eq. (95) that for L8@d, a,

fsx = L8/2,z,vd − fsx = − L8/2,z,vd = −
L8Dxsx = L8/2,z,vd

eef f .

s108d

Here Dxsx=L /2 ,z,vd is viewed as being proportional to a
surface charge density on a fictitious set of capacitor plates at
x=L8 /2 andx=−L8 /2. The charge densities on the plates are
equal in magnitude and opposite in sign. From Eqs.
(105)–(108) it then follows that

A = BF1 +
kL8

eef fG . s109d

A second relationship betweenA and B can be obtained
from e−`

` dxDzsx,z=−L /2 ,vd=0. This is a statement that
there is no net charge on the plate atz=−L /2 and follows
from the boundary conditionsfsx,z=L /2 ,vd−fsx,z=
−L /2 ,vd=0. From Eqs.(105)–(107) we find that

0 =E
−`

`

dxDzsx,− L/2,vd = − fesvdA + BgUdf

dr
U

r=−kL/2

−E
−L8/2

L8/2

dxDzsx,− L/2,vd, s110d

and for kL8!1 from kDzsx,−L /2 ,vdl=e8ef fkEzsx,
−L /2 ,vdl<−e8ef fkBsdf /drdur=−kL/2 that

E
−L8/2

L8/2

dxDzsx,− L/2,vd < − ke8ef fBL8Udf

dr
U

r=−kL/2
.

s111d

In the above,e8ef f is found by replacingref f by 1/e8ef f, r1 by
1/esvd, andr2 by 1 in Eq.(40).

Equations(109)–(111) then give(settingL8=L)

esvd + 1 = −esvd
kL

e8ef f − kLeef f s112d

as the condition for a plasmon to exist on the rough interface.
In terms of Hstd−H0std for t=esvd / fesvd−1g and Fssd
−F0ssd for s=1/f1−esvdg Eq. (112) becomes

0 = fesvd + 1g − kLhesvdfHstd − H0stdg + Fssd − F0ssdj
s113d

for kL!1. In the perturbation theory limit discussed in Sec.
IV, Eq. (113) yields

0 = 1 −
4

Îp

fesvd − 1g2

fesvd + 1g2

d2

a
k s114d

as the condition determining the surface plasmon dispersion
relation. This agrees with the results in Eq.(104), which was
obtained by another method.41,42

C. Effective boundary conditions for one-dimensionally rough
interfaces

It is interesting to note that the above results for surface
plasmon propagation on a one-dimensionally randomly
rough interface, in the limit of long wavelength, can be ob-
tained by representing the effects of the interface roughness
by a set of effective boundary conditions defined over the
plane of the mean random interface.

Consider a random dielectric-vacuum interface described
by the surface profile functionz=jsxd. Let us replace the
rough interface and its boundary conditions by a smooth sur-
face atz=0 supporting a position-dependent effective surface
polarizations.43 This polarization is chosen so as to reproduce
the results in Eqs.(102) and (113). To do this, the effective
surface polarization is taken to be a vector field withx andz
components defined by

Ps,xsxd = xxExfx,jsxd+g, s115d

where Ps,xsxd is the x component of polarization per area
located atsx,z=0d, xxsxd is the susceptibility atsx,z=0d,
Exfx,jsxd+g is the x component of the electric field in the
vacuum above the surface, and by

Ps,zsxd = xzEzfx,jsxd+g s116d

for the correspondingz components of the quantities occur-
ring in Eq.(115). There is no roughness in they direction, so
that they component of effective surface polarization is zero,
i.e., xysxd=0. The susceptibilities for determining the aver-
age fields above and below the interface are then written in
terms ofFssd−F0ssd andHstd−H0std as

4pxx = − LfFssd − F0ssdg s117d

and

4pxz = LfHstd − H0stdg. s118d

Here t=esvd / sesvd−1d, s=1/f1−esvdg, esvd is the dielec-
tric constant of the medium below the random interface, and
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L→` is the separation of the two parallel plates used in the
determination ofFssd−F0ssd andHstd−H0std.

The boundary conditions at thez=jsxd interface are re-
placed by effective boundary conditions on thez=0 plane
which are written in terms of the effective surface polariza-
tions defined in Eqs.(115)–(118). The new boundary condi-

tions atz=0 are from¹3EW =0 given by

0 = Ex
+sxd − Ex

−sxd + 4p
] Ps,zsxd

] x
, s119d

whereEx
+sxd andEx

−sxd are the average electric fields imme-

diately above and below thez=0 interface, and from¹ ·DW

=0 given by

0 = Dz
+sxd − Dz

−sxd + 4p
] Ps,xsxd

] x
, s120d

whereDz
+sxd and Dz

−sxd are the average displacement fields
immediately above and below thez=0 interface respectively.
Using these conditions to compute the dispersion relations of
the surface plasmons reproduces the results in Sec. V A and
V B.

D. Electron energy loss for motion parallel to a surface

Recently Mendozaet al.44 (see also Refs. 45–47) have
developed a theory for determining the small energy losses
of electrons with energies of order of 100 KeV moving par-
allel to a dielectric surface. The mean dielectric surface is
taken at thez=0 plane with the dielectric in the region above
the plane and vacuum below the plane, and the electron
moves with position coordinatessx=0,y=vt ,z=−z0d. (Note:
This is slightly different from the other treatments given in
this paper which have taken the dielectric to be below the
surface. To facilitate the discussions here, we shall use the
geometry and notation in Mendozaet al.44 in this subsec-
tion.) The losses arise from the polarization of the dielectric
medium, and are related to the surface response function,
gsQ,−z0,vd, defined by

findsQW ,− z0,vd = − gsQ,− z0,vdfextsQW ,z0,vd. s121d

HerefextsQW ,−z0,vd is the spectral component of the electric
potential from the electron in the case that no dielectric me-
dium is present, and in position-frequency space we have

fextsrW,z;vd =E d2Q

s2pd2fextsQW ,vdeiQW rW+Qz, s122d

where rW =sx,yd is a two-dimensional vector parallel to the

interface. The potentialfindsQW ,−z0,vd, which in position-
frequency space is given by

findsrW,z;vd =E d2Q

s2pd2findsQW ,vdeiQW rW−Qz, s123d

is the induced electric potential in thez=−z0 plane due to the
interaction of the electron with the dielectric medium above
the interface. In the following, the surface response function
for a rough interface,gsQ,−z0,vd, will be expressed in terms

of Fssd−F0ssd andHstd−H0std for electron motions parallel
and perpendicular to the grooves of the one-dimensionally
rough interface. Given these expressions, Eqs.(6) and(7) of
Ref. 44 can be used to compute the probability per unit path
length, per unit energy, of the electron scattering with energy
lossE=hv.

To computefindsrW ,z;vd the effective boundary condi-
tions of Sec. V C are used. The electric quasistatic potential
in the presence of the surface roughness is given throughout
space by

frsrW,z;td =E Ud2Q

s2pd2eiQW ·rWfszde−ivtU
v=Qyv

, s124d

where

fszd = Ae−Qz s125d

for z.0, and

fszd = B1e
−Qsz+z0d + B2e

Qsz+z0d s126d

for 0.z.−z0 (here theB2 term is the induced potential seen
by the electron), and

fszd = CeQsz+z0d s127d

for z,−z0. The boundary conditions for the determination of
A, B1, B2, and C are (a) at z=−z0, ]f+/]z−]f−/]z=4pe,
f+=f−, (b) at z=0 Eqs.(119) and (120), and(c) at z→ ±`
the fields are zero.

Solving the boundary value problem gives

fextsQW ,− z0;vd =
− 2pe

Q
s128d

and

findsQW ,− z0;vd = B2, s129d

where

B2 =
2pe

Q

esvd − 1 + 4pQfesvdxz + Qx
2xx/Q

2g
esvd + 1 + 4pQf− esvdxz + Qx

2xx/Q
2g

e−2Qz0,

s130d

and

gsQW ,vd = −
B2

B1
. s131d

In the limit v /v→0 for motion parallel to the grooves,

e2Qz0gsQW ,vd

=
esvd − 1 +LQhesvdfHstd − H0stdg − Fssd + F0ssdj
esvd + 1 −LQhesvdfHstd − H0stdg + Fssd − F0ssdj

,

s132d

where t=esvd / fesvd−1g and s=1/f1−esvdg. In the same
limit for motion perpendicular to the grooves, a solution
similar to that outlined above gives
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e2Qz0gsQW ,vd =
esvd − 1 +LQesvdfHstd − H0stdg
esvd + 1 −LQesvdfHstd − H0stdg

.

s133d

E. Reflection ofp-polarized electromagnetic waves from a
one-dimensionally randomly rough surface near

normal incidence

It has been important to us in our discussions ofFssd
−F0ssd andHstd−H0std to show that these functions are not
just mathematical curiosities, but that they are related to a
number of physically measurable and important properties of
surfaces. In this section, the functionsFssd−F0ssd and Hstd
−H0std are also related to the reflectivity ofp-polarized light
near normal incidence from one-dimensionally randomly
rough interfaces. This is a very basic optical property of
rough surfaces.

In these considerations, we treat electromagnetic waves of
quasistatic frequencyv incident from vacuum onto a dielec-
tric medium that is uniform, isotropic, and characterized by a
dielectric constantesvd. The plane of incidence is taken to be
either parallel or perpendicular to the grooves of the one-
dimensionally random interface. We assume that the wave-
lengthl@d ,a and only calculate the specular reflection, but
not diffuse scattering.

1. Plane of incidence perpendicular to the grooves of the one-
dimensional surface

In the considerations given here thex-y plane is the mean
plane of the vacuum-dielectric interface.

On a flat vacuum-dielectric interface, the Fresnel coeffi-
cient for the reflection ofp-polarized light is41,42

R0spd =
esvda0spvd − aspvd
esvda0spvd + aspvd

. s134d

Here p is the component of the wave vector of the incident
planewave of electromagnetic radiation in thex-y plane,
a0spvd=fv2/c2−p2g1/2, and aspvd=fev2/c2−p2g1/2 with
Re aspvd, Im aspvd.0. For the rough interface scattering
geometry of this section, Eqs.(8), (13b), and(17) of Ref. 42
give an average Fresnel coefficient of the form

Rrspd =
esvda0spvd − aspvd + iesvdMspd
esvda0spvd + aspvd − iesvdMspd

. s135d

Here the average Fresnel coefficient of the rough interface is
defined from Eq. (8) of Ref. 42 by kRspukdl=2pdsp
−kdRrspd andMspd (Given in the pole approximation in Eq.
(17) of Ref. 42.) is the self-energy correction of the average
single particle Green’s function for surface plasmon propa-
gation on the rough interface.(The Green’s function is aver-
aged over the random roughness of the interface.) The aver-
age Greens function for the propagation of a surface plasmon
of wavevectorp and frequencyv on the random interface,
Gspvd, is given in terms ofMspd by

Gspvd = 1/hfG0spvdg−1 − Mspdj. s136d

Here G0spvd= iesvd / fesvda0spvd+aspvdg is the surface
plasmon Green’s function for propagation on a flat surface.

Using Mskd from Eqs.(18) and (19) of Ref. 42 and Eq.
(135) evaluated at normal incidence gives

Rrsp = 0d =
esvd − esvd1/2 + iesvdsv/cdM0

esvd + esvd1/2 − iesvdsv/cdM0
, s137d

where

M0 = −
2

Îp

1

esvd2

fesvd − 1g2

esvd + 1

s2

a
= − L

Fssd − F0ssd
esvd2 .

s138d

The correctionM0 due to surface roughness scattering is
seen to be divergent atesvd=0 ande=−1. These singulari-
ties are prominent in determining the effects of surface
roughness on the reflectance at normal incidence. The results
in Eqs. (137) and (138) agree in the limit thate→−1 with
the reflectivity results to leading order in the surface rough-
ness calculated using the boundary conditions in Sec. V C.

2. Plane of incidence parallel to the grooves of the one-
dimensional surface

To obtain the Fresnel coefficient for light incident in an
arbitrary plane of incidence perpendicular to the one-
dimensionally rough interface, Eq.(135) and results in Ref.
41 can be used. Reference 41 contains expressions for the
Green’s function describing the propagation of surface plas-
mons along the interface at an arbitrary angle to the grooves
of the one-dimensionally rough interface. These expressions
give the self-energyM0 in the limit of weak roughness. The
resulting Fresnel coefficient is obtained from Eq.(137) with
M0 of the form

M0 = −
2

Îp

1

esvd2

fesvd − 1g2

esvd + 1
sin2fi

s2

a

= − L
Fstd − F0std

esvd2 sin2fi . s139d

Herefi is the angle between the magnetic field of the inci-
dent electromagnetic wave and the direction perpendicular to
the grooves of the grating. Atfi =p /2 the results in Eqs.
(138) and (139) are found to agree, to leading order in the
interface roughness, with the reflectivity computed using the
boundary conditions of Sec. V C.

3. Evaluation of reflectivity for ion crystals

In this subsection Eqs.(137)–(139) are evaluated for a
vacuum-CdS interface at normal incidence of light. Results
are presented for magnetic field polarizations parallel and
perpendicular to the grooves of a one-dimensionally random
rough surface. In these evaluations the dielectric function of
CdS is given by the form48
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esvd = e0
vl

2 − v2 − ivcv

vt
2 − v2 − ivcv

, s140d

where e0=5.4, vt=232.0 cm−1, vl =298.0 cm−1, and vc
=6.9 cm−1.48

Results are presented in Fig. 4 for the reflectivity versus
frequency. The one-dimensionally rough surface is Gaussian
random characterized byvts=0.1 andvta=1.0. For the case
in which the magnetic field is parallel to the grooves of the
one-dimensionally rough surface a dip in the reflectance at
v /vt=1.243 is observed. This arises from the singularity in
Eq. (138) at esvd=−1. Aside from this feature the reflectance
is little changed from the unperturbed reflectance. For the
case in which the magnetic field is perpendicular to the
grooves of the one-dimensionally rough surfacefi =0 in Eqs.
(139) and the reflectance is given by the unperturbed reflec-
tance.

VI. LAYERED INTERFACES

In certain instances the results presented above for single
interfaces should generalize to systems of multiple interfaces
that on average are parallel to one another. For interfaces that
are at separations far from each other, it is expected that each
interface can be separately viewed as interacting with an ef-
fective medium which accounts for the average effects of the
other interfaces on the system. This should be the case when
the average separation between the interfaces is much greater
than the parameters characterizing the surface roughness. In
this limit a given interface in the system sees only an average
effect of the electric field fluctuations created by the presence
of its neighboring random interfaces. To facilitate this picture
of multiple random interfaces we will develop below an ef-
fective circuit representation for single interfaces and then
suggest a generalization to multiple interfaces.

It is interesting to note from Eq.(24) that if boths1 and
s2 are real and positive, thens,0 or s.1 and Fssd
−F0ssd.0. From Eq.(22) this indicates that the conductance
of the system with an average interface in they-z plane is

decreased by interface roughness. The effective interface
conductance,sint

ef f, defined bysint
ef f=sef f−s0

ef f, is seen to be
negative, and for weakly rough surfacesusint

ef fu is small. A
useful way of viewing the system in terms of an equivalent
electrical circuit is to think of the layer of conductances1,
the layer of conductances2, and the interface with interface
conductancesint

ef f as a set of three parallel resistors across
which a constant potential is applied. For smallusint

ef fu (i.e.,
large interface resistances) the resistance of the system is
dominated by the layers ofs1 ands2. Only whenusint

ef fu be-
comes large does it significantly affect the properties of the
system. A drawback of this equivalent circuit representation
is that the effective interface resistance is negative. It is ex-
pected that the equivalent circuit representation is easily gen-
eralizable to a system of multiple interfaces that are on mean
parallel to they-z plane and that in this case the multiple
interfaces at sufficient interface separations add like parallel
resistors.

An explanation of the decrease in the effective conductiv-
ity of the system with a rough interface from the smooth
surface case comes from an examination of the region along
the x axis that bounds the random interface[see Fig. 5(a)].
For the smooth interface, this region consists of a layer of
high conductivity and a layer of low conductivity. The cur-
rent flow is set by the layer of high conductivity. For the
random interface all linear paths between the plates atz
=L /2 andz=−L /2 intersect materials of both high and low
conductivity. This reduces the net conductivity in this region.

For Hstd−H0std we note from Eq.(43) that if bothr1 and
r2 are real and positive, thenHstd−H0std.0 for t,0 and
t.0. The resistance of two slabs connected in series is, con-
sequently, always decreased by interface roughness, and
from Eqs. (40) and (41) the effective interface resistivity
rint

ef f=ref f−r0
ef f is found to be negative. An equivalent circuit

representation for this slab geometry is that of three resistors
in series. These represent the layer of resistivityr1, the layer
of resistivity r2, and the resistivity of the interface layer. A
drawback in this equivalent circuit representation is that the
effective resistivity of the interface layer is negative, but the
equivalent series resistor representation should be directly
generalizable to a system of multiple interfaces that are on
mean parallel to thex-y plane and at sufficient interface
separations form one another.

In these systems the effective resistivity is decreased from
the smooth surface results due to surface roughness. This
arises due to the tongues of low resistivity media that pro-
trude into the regions which would otherwise, in the smooth
surface system, contain high resistivity material[see Fig.
5(b)]. These tongues provide low resistivity paths that lower
the effective resistivity of the system with a random inter-
face.

The limiting factor on the equivalent circuit representa-
tion is the effects of surface roughness fluctuations at one
surface on the potential seen at another surface. An estimate
of the importance of fluctuations in the interface roughness
on the interaction between interfaces can be made by consid-
ering the potential at the mean surface of an interface due to
a small localized fluctuation on a neighboring interface. We
consider how a cylindrical fluctuation that maintains the av-
erage surface field and profile on one interface affects the

FIG. 4. Plot of the reflectance versus frequencysv /vtd for CdS.
Results are shown for the case in which the magnetic field of the
incident light is parallel(solid) and perpendicular(dashed) to the
grooves of the one-dimensionally rough interface.
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potential on a neighboring interface. It is well known that the
potential from a dielectric cylinder of radiusa in a uniform

applied electric fieldEk̂ is Vdipole~ sS/ rdE cosu, where S
=pa2 is the cross-sectional area of the cylinder andsr ,ud are

polar coordinates withu measured relative tok̂. This poten-
tial form generalizes in the limit of far fields for a cylinder of
arbitrary bounded cross sectional shape of area S. Next con-
sider two adjacent interfaces in a layered medium. The po-
tential difference between the two inner interfaces in the ge-
ometry of Fig. 5(c) is Df~d2E, whereE is the average field
at the mean interface. A fluctuation on the lower interface
can be modeled as a set of two cylinder dipoles of cross-
sectional areasda (hered anda define the Gaussian random
surface profile statistics) that are oppositely directed along

the k̂ direction. One dipole cylinder is located atsx
=−a/2 ,z=d /2d relative to a coordinate system whose origin
lies on the mean surface of the lower interface and the other
is located atsx=a/2 ,z=−d /2d. The intensity of the dipole
moment on each of the two cylinders is taken to be propor-
tional to daE. The electrostatic potential on the upper inter-
face at a point adjacent to the a surface fluctuation on the
lower interface is then approximatelyDfdipole~d2aE/d2

2.
The ratioDfdipole/Df~d2a/d2

3 must be small for the inter-
faces to be treated in an equivalent resistor scheme that ig-
nores the detailed effects of surface fluctuations on adjacent
interfaces. A similar argument can be applied to the geometry

in Fig. 5(d). Here two dipoles oppositely directed along thek̂
direction are located atsx=d /2 ,z=a/2d and sx=−d /2 ,z
=−a/2d relative to a coordinate system whose origin lies on
the mean surface of the left hand interface. On the right-hand
interface, separated by a distanced2 form the left-hand inter-
face, the potential adjacent to this fluctuation isDfdipole
~da2E/d2

2. The change in electrostatic potential observed in

moving a distance comparable tod2 in the k̂ direction is
Df~d2E. For the effects of the fluctuations to be small,
againDfdipole/Df=da2/d3

2 must be small.
Another way of arriving at an estimate of the effects of

surface fluctuations on the interaction between adjacent in-
terfaces is to treat the surface roughness on an interface as a
position dependent dipole distribution on the mean plane of
the interface. The total dipole moment averages to zero over
the interface. For the case in Fig. 5(c), let the lower of the
two embedded interfaces have a dipole density given bypsxd
with Gaussian random statistics, i.e.,kpsxdl=0 and
kpsxdpsx8dl=sdpd2 expf−sx−x8d2/a2g, wherek l indicates an
average over the surface. If the separation between the two
interfaces isd2 and the mean plane of the lower interface is
at z=0, then in thed2@a limit it follows that kE2sx,z
=d2dl / kE2sx,z=0dl~ fa/d2g3. This agrees with the power law
dependence obtained in the previous paragraph.

VII. CONCLUSION

A study has been presented of the spectral densities of
two-component composites with buried random interfaces
for both effective conductivity and resistivity systems. Ana-
lytical limiting forms and perturbation theory results have
been used in conjunction with numerical results from resistor
network studies to determine the dependence of the spectral
densities on the statistical properties of the buried interface.

It is found in both effective conductivity(resistivity) sys-
tems that ford /aù1 the spectral density is a broad plateau

FIG. 5. Schematic plots for a single random interface:(a) verti-
cal and (b) horizontal. The horizontal is thex direction and the
vertical is thez direction. Schematic plot for two interfaces. The
horizontal is thex direction and the vertical is thez direction. (c)
Two horizontal interfaces separated byd2. (d) Two vertical inter-
faces separated byd2. In both figures the applied potential is across
the horizontal upper most and lower most plates.
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function of s st) in the region 0,s,1s0, t,1d. Three low
broad maxima are observed over the plateau and asd /a ap-
proaches 1 the plateau narrows. Ford /a!1 the spectral den-
sities in both effective conductivity and resistivity systems
for 0,s,1s0, t,1d approach a single isolated pole ats
= 1

2
st= 1

2
d. Data generated from numerical simulation are

found to exhibit the analytical limiting forms predicted by
the Bergman-Milton theory.

The spectral densities numerically generated for periodic
interfaces are found to exhibit features distinct from those of
the densities generated for randomly rough interfaces. Evi-
dence of a band structure is seen in the numerical data which,
for finite sized systems, appears to be given by a clustering
of simple poles.

Both the effective conductivity and resistivity systems can
be modeled in terms of effective circuits of resistors. In the
effective conductivity system the equivalent circuit is that of
parallel resistors, while the effective resistivity system has an
equivalent circuit of series resistors. This simple modeling is
expected to generalize to systems of buried interfaces which
are parallel upon interface averaging, and the simulation re-
sults for the effective surface resistivity and conductivities
are expected to be of use in studying more complicated bur-
ied interface geometries than those used for their computa-
tion.

The functionsFssd−F0ssd and Hstd−H0std are shown to
be related to a number of problems in surface physics. These
include the determination of the renormalization of the sur-
face plasmon dispersion due to interface roughness, the en-
ergy losses of moving charged particles due to surface polar-
ization, and the reflectivity of electromagnetic waves at
rough interfaces in the weak roughness limit. Recent experi-
ments on the electron-energy loss49 and the reflectivity50 of
silver particles deposited on a substrate have identified fea-
tures related to surface plasmon-polaritons. These results
seem to be consistent with the gross features expected from
the theory presented in Sec. V(i.e., anomalies in these func-
tions associated with plasmon-polaritons), but are for sys-
tems that are two-dimensionally random and composed from
three different dielectric components. Our theories are for
one-dimensionally random surfaces composed from two dif-
ferent dielectric components. Nonetheless, we hope that fu-
ture experimental efforts can be directed to one-
dimensionally rough surfaces of a type that will allow for a
quantitative comparison with the results presented in this pa-
per.
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APPENDIX: GENERAL FORM OF EQ. (70)

A rough check on the form in Eq.(70) for the current can
be made using a treatment based on a discussion given by
Landau and Lifshitz51 of the effective permittivity of bulk
dielectric mixtures. The arguments in Ref. 51 for a bulk me-
dia are closely followed in the discussion given below of
interfaces.

Consider the geometry in Sec. II A used for the derivation
of Fssd in Sec. IV A. Define the current in the system by

JWsx,zd=JW0+dJWsx,zd, whereJW0=ed3rJWsx,zd /V is the volume

average ofJWsx,zd and dJWsx,zd is the fluctuation from the
volume average current. Likewise, the electric field is

EW sx,zd=EW 0+dEW sx,zd and the conductivity isssx,zd=s0

+dssx,zd. Ohm’s law then readsJWsx,zd=fs0+dssx,zdgfEW 0

+dEW sx,zdg, so that upon averaging,

JW0 = s0EW 0 + fdsdEW g0, sA1d

where f¯g0 indicates a volume average. An approximation

for fdsdEW g0 is now obtained.

From ¹ ·JW =0 it follows that

s0¹ · dEW + EW 0 ·¹ds = 0, sA2d

where only terms of first order in the small parameter are

retained. Noting thatdEW =sdE1,0 ,dE3d and assuming a local
average of a specific realization of a random surface, Eq.
(A2) gives

dE3 = −
E30

s0s1 + ad
ds, sA3d

whereE30=fE3g0 anda is a constant arising from the aniso-
tropy of the interface geometry. It follows that

fdsdE3g0 = −
E30

s0s1 + ad
fsdsd2g0, sA4d

so that the effective conductivity is given by

sef f = s0 −
fsdsd2g0

s0s1 + ad
. sA5d

The spatial averaged value of the conductivity appearing in
Eq. (A5) is given bys0=ss1+s2d /2. An estimate offsdsd2g0

in Eq. (A5) can be obtained in thed /a,1 limit using the
fact that the effective conductivity of the system must be
invariant under the interchange of the regions of conductivity
s1 and s2. Likewise, the effective conductivity must be in-
variant under a sign change of the amplituded of the surface
disorder. This, however, is not the case with the correlation
length of the statistical fluctuations of the random surface,
which must always be positive. The effective conductivity
should then display terms linear in a. Taking these consider-
ations together, along with the fact that the effective conduc-
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tivity equalss0 when d=0 or a=0 or s1=s2, we find that
fsdsd2g0=bsad2/L3dss1−s2d2, whereL is the length of the
interface andb is a constant. From Eq.(A5) then

sef f =
s1 + s2

2
− 2b

ad2

L3

ss1 − s2d2

s1 + adss1 + s2d
. sA6d

This agrees with the form ofsef f obtained from Eq.(70) in
the d /a!1, L1=L2 limit.

It is interesting to note that in the case of a two-
dimensionally randomly rough surface,dEW =sdE1,dE2,dE3d,
which leads to a change in the denominator on the left-hand
side of Eq.(A6), replacing 1+a by 1+2a. If, as with the
homogeneous on average mediaa=1, this would give a fac-
tor of 1/2 in Eq.(A6) for the one-dimensionally rough sur-
face and a factor of 1/3 in Eq.(A6) for the two-
dimensionally rough surface. The arguments above should
give a rough indication of the behavior of the conductivity of
the system in the perturbation limit.
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