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The thermoelectric powerSsTd and thermal conductivityksTd were systematically studied for a series of
Al82.6−xRe17.4Six s7øxø12d 1/1-cubic approximants. We found thatSsTd of these approximants is character-
ized by large magnitude, sign reversal with varying composition, and nonlinear temperature dependence, all of
which are also known as characteristics of the corresponding quasicrystals. The calculatedSsTd on the basis of
the Boltzmann transport formula with accurately determined electronic structure showed extremely good
agreement with the measured ones not only in their magnitude but also in the temperature and composition
dependence. These results strongly indicate that these characteristic behaviors inSsTd of the approximants and
the corresponding quasicrystals are brought about by their characteristic electronic structure, i.e., the presence
of a pseudogap across the Fermi level.
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I. INTRODUCTION

The Al-based Mackay-type icosahedral quasicrystal has
attracted a great deal of interest as a potential candidate for a
new thermoelectric material1 because it possesses large ther-
moelectric powersSd, more than 50mV/K,2–5 and low ther-
mal conductivityskd,5 as low as 1 W/K m.3,5–9 These char-
acteristic properties are often discussed in relation to the
quasiperiodicity unique to the quasicrystals. However, the
mechanism leading to the large magnitude ofSsTd and small
thermal conductivity in quasicrystals is not fully understood.
One of the most plausible factors other than quasiperiodicity
leading to these characteristics inSsTd would be the presence
of a pseudogap across the Fermi levelsEFd.

SsTd of quasicrystals is characterized not only by large
magnitude but also by strong temperature and composition
dependence.2–4 The behavior ofSsTd is generally determined
by the energy dependence of the electrical conductivity
fss«dg. Unfortunately, the electronic structure and atomic ar-
rangements, which greatly affectss«d, have hardly been ana-
lyzed for quasicrystals because quasiperiodicity in quasicrys-
tals prevents us from applying ordinary band calculations or
structure analyses well developed for crystalline materials.
Here we notice that if the characteristics inSsTd of quasic-
rystals are brought about by the presence of a pseudogap
across EF, the corresponding approximants having a
pseudogap atEF also possess similar behaviors in theirSsTd,
and that one can gain deep insight into the nature of their
SsTd by employing approximants rather than quasicrystals,
because their electronic structure and local atomic arrange-
ments can be accurately determined by ordinary band
calculations10–13 and structure analyses.14–17

Investigation of the electronic structure and the local
atomic arrangements also plays an important role in the

proper understanding of the thermal conductivityk and elec-
trical resistivityr, both of which are necessary for estimation
of the potential of thermoelectric materials in the dimension-
less figure of merit defined asZT=S2T/ skrd. The electrical
conduction in the approximants can be well investigated by
using the Boltzmann transport equation on the basis of Bloch
theory. With the great help of the accurately determined elec-
tronic structure of rational approximants, the role of elec-
tronic structure including the influence of the pseudogap
acrossEF on the electrical resistivity should be clearly re-
vealed. Thermal conductivity is generally determined by
contributions not only of the conduction electrons but also of
the phonons, and the former can be roughly estimated from
the electrical conductivity by using the Wiedemann-Franz
law. The latter is closely related to the atomic structure and is
often discussed in terms of the quasiperiodicity.3,6–9By using
rational approximants rather than the corresponding quasic-
rystals, one can clearly reveal the local atomic arrangements
and their influence on the thermal conductivity can be unam-
biguously discussed.

In this study we have systematically measured thermo-
electric power and thermal conductivity for a series of
Al82.6−xRe17.4Six s7øxø12d 1/1-cubic approximants. The
measured thermoelectric power and thermal conductivity to-
gether with previously reported electrical resistivity18 are
used to evaluate the performance of the approximant as a
thermoelectric material. By comparing the measuredSsTd,
ksTd, and rsTd of quasicrystals with those of the approxi-
mants, the influence of quasiperiodicity upon these thermo-
electric properties is also discussed. We also discuss the ori-
gin of the characteristic behaviors of the thermoelectric
power in the Al82.6−xRe17.4Six s7øxø12d 1/1-cubic ap-
proximants in terms of the electronic structure and local
atomic arrangements. It will be demonstrated, as a conse-
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quence of the present analysis, that the behaviors in the ther-
moelectric power of these 1/1-cubic approximants are quan-
titatively simulated from the accurately determined
electronic structure, and that the characteristic behavior in
SsTd in the approximants and perhaps in the quasicrystals is
accounted for by simply considering the presence of a
pseudogap acrossEF.

II. EXPERIMENTAL PROCEDURE

We employed in this study a series of Al82.6−xRe17.4Six
s7øxø12d 1/1-cubic approximants without any precipita-
tion of secondary phases. Ribbon samples were prepared by
the single-role melt-quenching technique and used for the
measurement of the thermoelectric power. Bulk samples
were used for the thermal conductivity measurement. The
details of sample preparation and phase determination were
reported previously.18

The thermoelectric power was measured at temperatures
from 90 to 400 K with a Seebeck Coefficient Measurement
System(MMR). We also used the Physical Properties Mea-
surement System(Quantum Design) with the thermal trans-
port option to simultaneously measure the thermoelectric
power and thermal conductivity for samples of,131
310 mm3 in dimension over 5øTø300 K.

Thermodynamically stable Al62.5Cu24.5Fe13, Al63Cu24Fe13,
Al62.5Cu25Fe12.5, Al63Cu24.5Fe12.5, Al62.5Cu25.5Fe12, and
Al63Cu25Fe12 icosahedral quasicrystals and Al74.6Mn17.4Si8
1/1-cubic approximants were also prepared by the same
method as that for the Al82.6−xRe17.4Six s7øxø12d
1/1-cubic approximants. TheSsTd’s of the Al-Cu-Fe icosa-
hedral quasicrystals andksTd of the Al74.6Mn17.4Si8
1/1-cubic approximants were measured and used for com-
parison with those of the the Al82.6−xRe17.4Six s7øxø12d
1/1-cubic approximants.

For the analysis ofSsTd in the Al82.6−xRe17.4Six 1/1-cubic
approximants, we employed the electronic density of states
of the Al73.6Re17.4Si9 1/1-cubic approximant calculated by
the linear muffin-tin orbital LMTO atomic-sphere approxi-
mation ASA method with atomic structure determined by a
synchrotron radiation Rietveld analysis. Details of the band
calculation and the Rietveld analysis were also reported in
our previous paper.18

III. RESULTS

Figure 1(a) shows the measuredSsTd of the
Al82.6−xRe17.4Six s7øxø12d 1/1-cubic approximants. The
SsTd observed for these Al82.6−xRe17.4Six 1/1-cubic approxi-
mants is characterized by a large value ofuSu exceeding
50 mV/K and a strong composition dependence. The com-
position dependence ofSs100 Kd, Ss200 Kd, andSs300 Kd is
plotted in Fig. 1(b). Notably, the compositions at which the
maximum and minimum values inSsTd were observed are
not at the center of the formation range of these approxi-
mants but near the lowest and highest limits of the Si con-
centrations, respectively.

SsTd in metallic alloys is often discussed using the well-
known formula19

SsTd =
p3

3

kB
2

e
TF ] ln ss«d

] «
G

«=m

, s1d

wheress«d and m represent the electrical conductivity at«
and the chemical potential, respectively. Equation(1) is use-
ful to understand the Si concentration dependence ofSsTd in
the Al82.6−xRe17.4Six 1/1-cubic approximants. Since electrical
conductivity in the metallic phase is known to be directly
proportional to the electronic density of statesNs«d, Eq. (1)
indicates thatS becomes positive or negative when the sign
of ]Ns«d /]« at m is negative or positive, respectively. Note
here thate is negative in sign and lnx increases with increas-
ing x. If m is located at an energy lower than that of the
bottom of pseudogaps«bottomd, SsTd becomes positive be-
cause of the negative value of]Ns«d /]« at m, and vice versa.

The pseudogap acrossEF in the present 1/1-cubic ap-
proximants, as well as that in other quasicrystals and
approximants,10–12,20 was already confirmed experimentally
and reported previously.18 At low Si concentrations less than
8 at. % Si, the sign of the thermoelectric power of these ap-
proximants stays positive over a whole temperature range of
the present measurement, while it turns out to be negative at
higher Si concentrations larger than 10 at. % Si. By consid-
ering that an increase of Si increases electron concentration

FIG. 1. (a) Thermoelectric power of Al82.6−xRe17.4Six 1/1-cubic
approximants as a function of temperature. Solid lines represent the
calculatedSsTd on the basis of accurately determined electronic
structure. Details of the calculation are described in Sec. IV.(b)
Thermoelectric power measured at 100, 200, and 300 K as a func-
tion of Si concentration.(c) Thermoelectric power of the Al-Cu-Fe
icosahedral quasicrystals. Strong temperature and composition de-
pendence is observed for the Al82.6−xRe17.4Six 1/1-cubic approxi-
mants. These behaviors are similar to those in the Al-Cu-Fe icosa-
hedral quasicrystals and other pseudogap systems including Fe2 VAl
(Ref. 21).
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in the system, one may naturally notice that the composition
dependence ofSs100 Kd, Ss200 Kd, and Ss300 Kd can be
qualitatively accounted for by the presence of a pseudogap
andm moving across it from the lower to the higher energy
side with increasing carrier concentration. Similar behavior
in SsTd was reported forsFe2/3V1/3dyAl1−y, which is known as
one of the well-known pseudogap systems.21

The SsTd of these 1/1-cubic approximants is also charac-
terized by a nonlinear temperature dependence, in sharp con-
trast to theT-linear dependence expected from Eq.(1). The
Nonlinear temperature dependence inSsTd suggests that Eq.
(1) is not appropriate for the quantitative evaluation of the
temperature dependence ofSsTd for the present 1/1-cubic
approximants. We noticed that this inconsistency between
Eq. (1) and the measuredSsTd is caused by an inappropriate
assumption used when Eq.(1) is deduced. We shall return to
this point later and discuss it in more detail(see Sec. IV).

We described above the characteristic behaviors inSsTd,
which are(a) large magnitude,(b) strong composition depen-
dence, and(c) nonlinear temperature dependence, for the
Al82.6−xRe17.4Six 1/1-cubic approximants. It is particularly
important to stress here that the corresponding icosahedral
quasicrystals show similar behaviors in their thermoelectric
power.2–4 For example,SsTd of Al-Cu-Fe icosahedral quasi-
crystals of six different compositions is shown in Fig. 1(c).
Obviously (a) large magnitude,(b) strong composition de-
pendence, and(c) nonlinear temperature dependence can be
confirmed in theSsTd of the Al-Cu-Fe icosahedral quasicrys-
tals. It is, thus, strongly argued that the dominant factors
leading to the large magnitude and strong composition de-
pendence inSsTd should be essentially the same in quasic-
rystals and approximants, and that the quasiperiodicity exist-
ing only in the quasicrystals has a less important role in
causing the large magnitude ofSsTd. Precise analyses of the
SsTd of the approximants, therefore, would provide us proper
understanding ofSsTd not only in the approximants but also
in their corresponding quasicrystals.

The thermal conductivity at room temperaturefks300 Kdg
of the Al82.6−xRe17.4Six 1/1-cubic approximants is plotted as
a function of Si concentrationx in Fig. 2(a). Surprisingly, the
ks300 Kd of the Al82.6−xRe17.4Six 1/1-cubic approximants is
always kept below 1.6 W/K m regardless of the Si concen-
tration. The temperature dependence ofk for the
Al74.6Re17.4Si8 1/1-cubic approximant is also depicted in
Fig. 2(b) together with that of Al74.6Mn17.4Si8 which is pre-
pared by substituting Mn for Re in the Al74.6Re17.4Si8
1/1-cubic approximant. The lowerk in Al74.6Re17.4Si8 than
that of Al74.6Mn17.4Si8 indicates the strong effect of heavy Re
in reducing the thermal conductivity of the approximants as
it is well known that heavy atoms in an array of light ele-
ments greatly contribute to reducing the thermal conductiv-
ity, most likely due to their role as a strong scatterer for the
phonons and to the localization of phonons about the heavy
atoms.

We roughly estimated the contribution of conduction elec-
trons skeld using the Wiedemann-Franz law and superim-
posed the resultingkel in Figs. 2(a) and 2(b). Sincekel is
directly proportional to the electrical conductivity, it shows a
minimum atx<9–10 where electrical resistivity possesses a

maximum. The lattice contribution of thermal conductivity
deduced asklat=k−kel at room temperature obviously shows
a maximum value atx=9 where the disordering in the struc-
ture was reported to disappear,18 and drastically decreases
with both increasing and decreasing Si concentration from
x<9. By considering similar composition dependence be-
tween ks300 Kd and klats300 Kd, we can safely argue that
the composition dependence ofks300 Kd is dominantly
brought about by the Si concentration dependence of disor-
dering in the structure. Note here that the magnitude of
ks300 Kd observed for the Al82.6−xRe17.4Six 1/1-cubic ap-
proximants is comparable with that of the corresponding
icosahedral quasicrystals.6–9 This experimental fact strongly
indicates that the quasiperiodicity has a less important con-
tribution to the reduction in the thermal conductivity, and
that short-range atomic arrangements have a much stronger
influence on it.

Although we mentioned above that the magnitude ofk in
the present approximants is strongly influenced by the pres-
ence of disordering in the structure, the most dominant fac-
tors providing such a very smallkø1.6 W/K m, are not

FIG. 2. (a) Thermal conductivity k of Al82.6−xRe17.4Six
1/1-cubic approximants measured at room temperature(solid
circles) as a function of Si concentration. Contribution of the con-
duction electronskel deduced from the electrical resistivity by using
the Wiedemann-Franz law and that of the lattice defined asklat

=k−kel are also plotted as open circles and solid triangles, respec-
tively. The magnitude of the thermal conductivity of the
Al82.6−xRe17.4Six 1/1-cubic approximants is surprisingly small re-
gardless of their composition. Obviously, the composition depen-
dence ofk is dominantly determined byklat. (b) Temperature de-
pendence of thermal conductivity observed for Al74.6Mn17.4Si8 and
Al74.6Re17.4Si8 1/1-cubic approximants. Although the structures of
these two compounds are essentially the same, the magnitude of the
thermoelectric power is fairly different. The important role of the
heavy Re atoms in reducing their thermal conductivity is strongly
suggested.
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obvious now because the disorder-free Al73.6Re17.4Si9 also
possesses very smallk.18 The disordering in the present ap-
proximants occurs only in the glue sites which are connect-
ing the Mackay clusters existing at the body center and ver-
tices of the cubic lattice. If the Mackay clusters behave as an
extremely heavy hypothetical atom most likely due to the
strong bonds between atoms inside the cluster,22 and if these
heavy hypothetical atoms are connected with weak links of
the glue atoms, the group velocity of the acoustic phonon
will be greatly reduced. This will cause a small magnitude in
the thermal conductivity. Moreover, one may easily consider
from this scenario that the disordering in the glue sites
strongly scatters the acoustic phonons. This mechanism
would be equally applicable to the corresponding quasicrys-
tals. This consideration, however, is no more than a specula-
tion because we have only limited information about the re-
lation between structure and thermal conductivity in the
approximant. To gain real insight into the origin for the small
thermal conductivity in the quasicrystals and approximants,
investigation of the relation between the atomic arrange-
ments and thermal conductivity should be performed not
only for the present approximants but also for other approxi-
mants. Thus we decided to leave this problem still open.

Electrical resistivity, as well as the thermoelectric power
and thermal conductivity, is one of the factors that deter-
mines the performance of thermoelectric materials. We
should comment here on our previous data for room tem-
perature electrical resistivity frs300 Kdg of the
Al82.6−xRe17.4Six 1/1-cubic approximants.18 We reported in
our previous paper18 that rs300 Kd of the Al82.6−xRe17.4Six
1/1-cubic approximants possesses a maximum value atx
=9–10, where the electronic specific heat coefficient(g
value) takes its minimum. This unique Si concentration de-
pendence of theg value andrs300 Kd definitely indicates
that the Si concentration dependence ofrs300 Kd is domi-
nated by the shape of the pseudogap existing acrossm. A
smallerrs300 Kd, which is preferable for thermoelectric ma-
terials, is obtained whenm is located not at«bottom but at
rather lower or higher energies, where largeuSsTdu is also
observed.

By using the measured thermoelectric power, electrical
resistivity, and thermal conductivity, we calculated the di-
mensionless figure of meritfZT=S/ srkdg for the present
1/1-cubic approximants. The resultingZT are summarized in
Table I. A large magnitude of thermoelectric power is not
obtained whenm is located at the bottom of the pseudogap

but rather at lower or higher energies, where the electrical
resistivity fortunately shows lower magnitude because of the
relatively large electrical density of states. As a consequence
of the simultaneous achievement of large thermoelectric
power, low electrical resistivity, and small thermal conduc-
tivity, ZT of the 1/1-cubic approximants is enhanced up to
0.04 at room temperature. The largestZT values with a posi-
tive S (p type) and negativeS (n type) at room temperature
are 0.04 in Al74.6Re17.4Si8 and 0.02 in Al71.6Mn17.4Si11, re-
spectively. These values are slightly smaller than the maxi-
mum ZT reported for icosahedral quasicrystals.23,24 How-
ever, sinceSsTd increases andrsTd decreases with increasing
temperature, we may observe much largerZT at high tem-
peratures above 300 K. In addition, we already confirmed
that a partial substitution of Re for Mn in the
Al82.6−xRe17.4Six 1/1-cubic approximants enhancesZT. Ther-
moelectrical properties of quaternary Al-Mn-Re-Si 1/1-cubic
approximants will be reported elsewhere in the near future.

IV. DISCUSSION

In this section, we concentrate on discussing the mecha-
nism leading to the nonlinear temperature dependence, large
magnitude, and strong concentration dependence ofSsTd ob-
served for the present Al82.6−xRe17.4Six 1/1-cubic approxi-
mants in terms of the electronic structure nearEF.

Maciá25,26 reported an analytical calculation of the tem-
perature dependence of thermoelectric power for icosahedral
quasicrystals. He used a hypotheticalss«d consisting of two
Lorenzian-type pseudogaps, which was originally proposed
by Landauro and Solbrig.27 They had to employ this hypo-
theticalss«d because information about a realisticss«d is, at
this moment, neither experimentally nor theoretically avail-
able for icosahedral quasicrystals due to their lack of period-
icity. We emphasize here that if we employ the rational ap-
proximants instead of their corresponding quasicrystals,SsTd
can be quantitatively evaluated without using a hypothetical
ss«d, because information aboutss«d is obtained using the
accurately determined electronic structure and local atomic
arrangements. SinceSsTd observed for icosahedral quasicrys-
tals shows essentially the same behaviors as those of the
corresponding approximants, the present analysis ofSsTd of
the approximants might reveal the mechanism leading to the
unusual behaviors ofSsTd not only in approximants but also
in quasicrystals.

We introduce here a rigorous equation to calculateSsTd:19

TABLE I. Thermoelectric properties of the Al82.6−xRe17.4Six 1/1-1/1-1/1 approximant.

Composition
rs300 Kd (Ref. 18)

smV cmd
g (Ref. 18)
(mJ/mol K)

Ss100 Kd
smV/K d

Ss200 Kd
smV/K d

Ss300 Kd
smV/K d

ks300 Kd
(W/m K)

kels300 Kd
(W/m K)

klats300 Kd
(W/m K) ZT300 K

Al75.6Re17.4Si7 1500 0.6 8.7±0.9 18±2 24±3 0.9±0.1 0.49 0.41 0.013

Al74.6Re17.4Si8 1800 0.45 30±3 43±5 52±6 1.1±0.1 0.36 0.74 0.04

Al73.6Re17.4Si9 3500 0.3 1.6±0.2 0.22 1.38

Al72.6Re17.4Si10 3300 0.28 −4.6±0.5 −5.9±0.6 −9±1 1.3±0.1 0.23 1.07 0.001

Al71.6Re17.4Si11 1800 0.31 −22±3 −9±1 −36±5 1.1±0.1 0.41 0.69 0.02

Al70.6Re17.4Si12 1400 0.42 0.53
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SsTd =
1

eT

E
−`

`

ss«ds« − mdf]fs«d/]«gd«

E
−`

`

ss«df]fs«d/]«gd«

. s2d

Equation(1) is deduced from Eq.(2) by using techniques
used in the Sommerfeld expansion, in which some factors in
the integrands in both the numerator and denominator vanish
at «<m. The approximation employed to deduce Eq.(1)
causes essentially the same result as that caused by an as-
sumption of a linearly varying electrical conductivity with
energy. One may naturally realize that this is unsatisfactory
especially at high temperatures, because the energy width of
a few kBT centered at«=m, where]fs«d /]« has meaningful
magnitudes, increases with increasing temperature and the
nonlinear energy dependence ofss«d is no longer trivial.

In order to calculateSsTd of the present 1/1-approximants
with Eq. (2), we employed a numerical integration rather
than an analytical treatment. McIntosh and Kaiser28 reported
a method in which the integrands in Eq.(2) were divided
into three functionsss«d, −]fs«d /]«, and s«−md]fs«d /]«,
and separately treated. Two of these functions, −]fs«d /]«
ands«−md]fs«d /]«, can be easily calculated at a given tem-
perature and are shown in Figs. 3(a) and 3(b) for three dif-
ferent temperatures, respectively. Both functions serve as
windows that define the energy range of integration as a
result of a negligibly small contribution outside the energy
range of a fewkBT in width centered atm. Since the electri-
cal conductivityss«d exists in the integrals with these two
window-functions, one has to takess«d into account only in
a narrow energy range of a fewkBT centered atm.

The function −]fs«d /]« is an even function aboutm and
its integrated intensity −e−`

` s]f /]«dd« gives rise to unity re-
gardless of the temperature. Thus, −e−`

` s]f /]«dss«dd« re-
sults simply in a mean value ofss«d averaged over the en-
ergy range of a fewkBT centered atm. On the other hand,
s«−md]fs«d /]« is an odd function and its maximum and
minimum, both of which are temperature independent, occur
at «<−1.3kBT and at«<1.3kBT, respectively. The values
deduced frome−`

m s«−mds]f /]«dd« and em
`s«−mds]f /]«dd«

are positive and negative with the same magnitude. Thus
e−`

` s«−mds]f /]«dss«dd« possesses a positive value when the
intensity of ss«d at about«=−1.3kBT is larger than that at
about «=1.3kBT, and vice versa. These considerations on
−]fs«d /]« and s«−md]fs«d /]« encourage us to argue that a
large thermoelectric power is obtained ifss«d averaged over
a few kBT in width aboutm is kept small and if the magni-
tude of ss«d at «<1.3kBT is much smaller or much larger
than that at«<−1.3kBT.

Absolute values ofe−`
m s«−mds]f /]«dd« and em

`s«−md
3s]f /]«dd« always linearly increase with increasing tem-
perature. If we assume an electrical conductivityss«d to vary
linearly with energy acrossm, one may naturally realize that
e−`

` s«−mds]f /]«dss«dd« possessesT2 dependence. Since
e−`

` s]f /]«dss«dd« is constant and equal tossmd in the case
of the «-linear ss«d, Eq. (2) involving T in its denominator
possessesT-linear temperature dependence as it is suggested
by Eq. (1). The thermoelectric power, therefore, is more en-
hanced if the slope of the linearly varyingss«d is larger and
ssmd is smaller under the assumption of a linearly varying
ss«d with energy. These conditions for a largeS are exactly
the same as those discussed on the basis of Eq.(1).

Analytical treatment of Eq.(2) is far from being straight-
forward. However, we showed above that, if we separately
treat the three functionsss«d, −]fs«d /]«, and s«
−md]fs«d /]«, the temperature dependence of the thermoelec-
tric power can be calculated numerically from Eq.(2) even
though ss«d has a nonlinear energy dependence, provided
that information aboutss«d is precisely determined. There-
fore, we consider it most important to gain precise informa-
tion aboutss«d for the determination ofSsTd.

Here we employ the Boltzmann-type electron conduction
mechanism to evaluatess«d of the approximants. This must
be appropriate because the temperature range we consider is
not very low but rather high, where the weak localization and
the electron-electron correlation effects would be less impor-
tant and the Boltzmann-type equation can be used to inter-
pret the temperature dependence of the electrical conductiv-
ity as was suggested by the Mott-Kaveh formula.18,29 The
Boltzmann-type electrical conductivity in an isotropic sys-
tem is described as

ss«d =
e2

3
Ns«dvs«d,s«d, s3d

whereNs«d, vs«d, and,s«d represent the electron density of
states, group velocity, and mean free path, respectively. We
assume here an isotropic electronic structure because icosa-
hedral quasicrystals and their rational cubic approximants are

FIG. 3. Functions in the integrands in Eq.(2). The solid line,
dashed line, and dotted line indicate those calculated withT=50,
150, and 300 K, respectively.

THERMOELECTRIC PROPERTIES OF… PHYSICAL REVIEW B 70, 144202(2004)

144202-5



nearly isotropic. If we additionally assume energy indepen-
dentv and,, these energy independent terms can be pulled
out of the integrals in both denominator and numerator and
cancel out. As a consequence,ss«d in Eq. (2) is simply re-
placed byNs«d. The resulting equation we used in our analy-
sis is

SsTd =
1

eT

E
−`

`

Ns«ds« − mdf]fs«d/]«gd«

E
−`

`

Ns«df]fs«d/]«gd«

. s4d

We introduce here the density of statesNs«d of the
Al73.6Re17.4Si9 1/1-cubic approximant calculated on the ba-
sis of the LMTO ASA method using the reliable crystal
structure determined by synchrotron radiation Rietveld
analysis.15 The details of the LMTO ASA calculation and of
the Rietveld analysis were reported elsewhere.15,18 The
LMTO ASA density of states of the Al73.6Re17.4Si9 1/1-cubic
approximant is depicted in Fig. 4, and that deduced from
electronic specific heat coefficients is superimposed on it.
The carrier concentration dependence of the density of states
deduced from the electronic specific heat coefficients for
these two series of 1/1-approximants showed extremely
good agreement with the theoretically calculated density of
states. This means that the substitution of Si for Al does not
significantly affect the shape ofNs«d but simply increases the
number of valence electrons in the system. Thus we calcu-
lated SsTd for different Si concentrations using Eq.(4) and
Ns«d of the 1/1-cubic approximants with a proper choice of
EF, which is shown in Fig. 4(b) with dashed lines.

The calculatedSsTd on the basis of the LMTO ASA den-
sity of states were superimposed on Fig. 1(a) with solid lines.
The calculatedSsTd is in surprisingly good agreement with
the measured ones not only in its sign reversal with increas-
ing Si concentration but also the nonlinear temperature de-
pendence. We have to stress here that we did not use any
parameter fitting to calculateSsTd, but just employed a pre-
cisely determinedNs«d and properly selectedm.

We noticed that the magnitude ofSsTd monotonically in-
creases with increasing temperature when the bottom of the

pseudogaps«bottomd remains outside the narrow energy range
of a few kBT in width centered atm, but it starts to decrease
when the temperature is increased high enough at which the
energy range covers«bottom. It is argued, in other words, that
the peak temperature wheredSsTd /dT becomes zero is
roughly determined by the energy difference betweenm and
«bottom. This is closely related to the fact that the highestSsTd
is obtained not at the condition ofm=«bottom but whenm is
located at an energy below or above«bottom. These features
must be characteristic not only of the present approximants
but also of all pseudogap systems that include icosahedral
quasicrystals. The present analysis of theSsTd of the
Al73.6Re17.4Si9 1/1-cubic approximants lets us conclude that
the characteristic behavior ofSsTd in these approximants and
perhaps that in the corresponding quasicrystals is brought
about simply by the presence of a pseudogap of a few hun-
dreds of meV in width.

We discuss next the reliability of the assumptions, the
energy independent, and energy independentv, that we em-
ployed to calculateSsTd in this study. A weak temperature
dependence of the electrical resistivity of the
Al82.6−xRe17.4Six 1/1-cubic approximants allows us to believe
that the mean free path of the conduction electron, is fairly
shortened nearly to interatomic distances.18 In such a case,,
can be safely assumed to be energy independent.

On the other hand, it is very difficult to judge if the as-
sumption of energy independent group velocity is appropri-
ate or not for the present Al82.6−xRe17.4Six 1/1-cubic approxi-
mants. It is confirmed in our analysis thatSsTd in the
Al82.6−xRe17.4Six 1/1-cubic approximants can be quantita-
tively reproduced from Eq.(4) with the assumption of an
energy independent velocity. Perhaps information about the
wave number and the group velocity has already been lost in
these approximants, most likely because the mean free path,
is so shortened as to satisfy the condition of,<lF (the
Fermi wavelength) known as the Mott limit, where the wave
packet is no longer well defined. One may think that this
consideration is inconsistent with the use of the Boltzmann
formula [Eq. (3)]. However, we believe that the Boltzmann
formula is still useful even under the Mott limit, because
Mott and Davis30 gave a proof that the Kubo-Greenwood
formula, which is used to interpret the electrical conductivity
in nonperiodic materials, reduced to the Boltzmann formula,
and because the Boltzmann conductivitysB is used as one of
the factors in the Mott-Kaveh formula29 which interprets the
temperature dependence of electrical conductivity under the
weak-localization effect. It is also very important to note
before going on that the group velocity insB is replaced by
the energy-independent Mottg factor in Mott’s formulation
for the electrical conductivity in disordered materials.31

It is easily seen that theSsTd calculation we employed in
this paper cannot be directly applied to quasicrystals because
the electronic structure in quasicrystals is hard to evaluate by
the ordinary band calculation developed for crystalline ma-
terials. However, we have already developed a method to
calculateSsTd on the basis of the experimentally determined
electronic structure by using high-resolution photoemission
spectroscopy.32 We are now in progress to experimentally
reveal the mechanism leading to the characteristic behavior

FIG. 4. The electronic density of states for the Al73.6Re17.4Si9
1/1-cubic approximants calculated by the LMTO ASA method
(Ref. 18). Those calculated from the electronic specific heat coeffi-
cient are superimposed. Them for each Si concentrationx used to
calculateSsTd is shown with dashed lines withx.
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of SsTd in icosahedral quasicrystals by applying the present
method to photoemission spectra of high energy resolution.

In summary, the temperature dependence ofSsTd in these
phases was quantitatively reproduced by using precisely de-
termined electronic structure. We conclude that the large
thermoelectric power in Al82.6−xRe17.4Six 1/1-cubic approxi-
mants and the corresponding quasicrystals is simply brought
about by the presence of a pseudogap acrossEF.

V. CONCLUSION

In this study, the temperature dependence of the thermal
conductivity and thermoelectric power of Al82.6−xRe17.4Six
1/1-cubic approximants was systematically investigated and

the dimensionless figure of meritZT for the thermoelectric
materials is evaluated using the measured electron transport
properties. These approximants possess large thermoelectric
power ranging from −40 to 50mV/K and small thermal
conductivity less than 1.6 W/K m. In combination with the
relatively low electrical resistivity, the dimensionless figure
of merit reaches 0.04 at Al74.6Re17.4Si8 and 0.02 at
Al71.6Re17.4Si11 with positive and negative sign ofS, respec-
tively. SsTd of these approximants was analyzed on the basis
of the Boltzmann transport equation. We found that the large
magnitude and the characteristic temperature dependence of
SsTd in the approximants and the corresponding quasicrystals
are caused by the presence of a pseudogap across the Fermi
level.
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