Gap symmetry of superconductivity in UPd₂Al₃

H. Won,¹ D. Parker,² K. Maki,² T. Watanabe,³ K. Izawa,³ and Y. Matsuda³

¹Department of Physics, Hallym University, Chuncheon 200-702, South Korea

²Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, USA

³Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan

(Received 11 July 2004; published 26 October 2004)

The angle-dependent thermal conductivity of the heavy-fermion superconductor UPd₂Al₃ in the vortex state was recently measured by Watanabe *et al.* Here we analyze this data from two perspectives: universal heat conduction and the angle dependence. We conclude that the superconducting gap function $\Delta(\mathbf{k})$ in UPd₂Al₃ has horizontal nodes and is given by $\Delta(\mathbf{k}) = \Delta \cos(2\chi)$, with $\chi = ck_z$.

DOI: 10.1103/PhysRevB.70.140509

PACS number(s): 74.25.Bt

I. INTRODUCTION

Since the discovery of the heavy-fermion superconductor $CeCu_2Si_2$ in 1979^1 the gap symmetries of unconventional superconductors have become a central issue in condensed-matter physics.² In the last few years, the angle-dependent magnetothermal conductivity in the vortex state of nodal superconductors has been established as a powerful technique to address the gap symmetry. This is in part due to the theoretical understanding of the quasiparticle spectrum in the vortex state of nodal superconductors, following the work by Volovik.^{3–5} Using this approach, Izawa *et al.* have succeeded in identifying the gap symmetries of superconductivity in Sr₂RuO₄, CeCoIn₅, κ -(ET)₂Cu(NCS)₂, YNi₂B₂C, and PrOs₄Sb₁₂.^{6–10}

Superconductivity in UPd₂Al₃ was discovered by Geibel *et al.*¹¹ in 1991. The reduction of the Knight shift in NMR¹² and the Pauli limiting of H_{c2} (Ref. 13) indicate spin singlet pairing in this compound. Nodal superconductivity with horizontal nodes has been suggested from the thermal-conductivity data¹⁴ and from the *c*-axis tunneling data of thin-film UPd₂Al₃ samples.¹⁵ Very recently, McHale *et al.*¹⁶ have proposed $\Delta(\mathbf{k}) = \Delta \cos(\chi)$ (with $\chi = ck_z$) based on a model where the pairing interaction arises from antiparamagnon exchange with $\mathbf{Q} = (0, 0, \pi/c).^{17}$ Furthermore, the thermal-conductivity data of UPd₂Al₃ for a variety of magnetic-field orientations have been reported.¹⁸ At first glimpse the experimental data appeared to support the model proposed by McHale *et al.*

The object of the present paper is to show that an alternative model, i.e., $\Delta(\mathbf{k}) = \Delta \cos(2\chi)$, describes the thermal-conductivity data more consistently. For this purpose we first generalize the universal heat conduction proposed in the context of initially *d*-wave superconductivity^{19,20} to a variety of nodal superconductors. We limit ourselves to quasi-two-dimensional (quasi-2D) systems with $\Delta(\mathbf{k}) = \Delta f$ and $f = \cos(2\phi)$, $\sin(2\phi)$, $\cos \chi$, $e^{i\phi}\cos\chi$, $\cos(2\chi)\sin\chi$, and $e^{i\phi}\sin\chi$. It is found that the in-plane thermal conductivity κ_{xx} is independent of f. On the other hand, the out-of-plane thermal conductivity κ_{zz} can discriminate different f's. Second, we extend an early study of the angle-dependent thermal conductivity²¹

for κ_{yy} in a magnetic field rotated in the *z*-*x* plane. The comparison of these results with experimental data indicates $\Delta(\mathbf{k}) = \Delta \cos(2\chi)$.

II. UNIVERSAL HEAT CONDUCTION

Here we consider the thermal conductivity κ in the limit $T \rightarrow 0$ K in the presence of disorder. It is assumed that the impurities are in the unitary scattering limit.²⁰ We consider the quasi-2D gap functions $\Delta(\mathbf{k}) = \Delta f$ with $f = \cos(2\phi)$, $\sin(2\phi)$ (*d*-wave superconductor as in the high- T_c cuprates), $\cos \chi$, $e^{i\phi} \cos \chi$ [*f*-wave superconductor as proposed for Sr₂RuO₄ (Ref. 6)], $\cos(2\chi)$, $\sin \chi$, and $e^{i\phi} \sin \chi$. Following Ref. 20, the thermal conductivity within the conducting plane is given by

$$\kappa_{xx}/\kappa_n = \kappa_{yy}/\kappa_n = \frac{\Gamma_0}{\Delta} \left\langle [1 + \cos(2\phi)] \frac{C_0^2}{(C_0^2 + |f|^2)^{3/2}} \right\rangle, \quad (1)$$

$$=\frac{2\Gamma_{0}}{\pi\Delta\sqrt{1+C_{0}^{2}}}E\left(\frac{1}{\sqrt{1+C_{0}^{2}}}\right)=I_{1}(\Gamma/\Gamma_{0}),$$
 (2)

where κ_n is the thermal conductivity in the normal state when $\Gamma = \Gamma_0$, and Γ is the quasiparticle scattering rate in the normal state. Here $\langle ... \rangle$ denotes the average over ϕ and χ , and Eq. (1) tells us that the planar thermal conductivity is independent of the gap functions given above. Also $\Gamma_0 = (\pi/2\gamma)T_c = 0.882T_c$ and T_c is the superconducting transition temperature of the pure system. However, the quasiparticle scattering rate at E=0 is given by ΔC_0 , and C_0 is determined by²⁰

$$\frac{C_0^2}{\sqrt{1+C_0^2}} K \left(\frac{1}{\sqrt{1+C_0^2}}\right) = \frac{\pi\Gamma}{2\Delta}$$
(3)

and $\Delta = \Delta(0, \Gamma)$ has to be determined self-consistently as in Ref. 20. Here K(k) and E(k) are the complete elliptic integrals. We show $I_1(\Gamma/\Gamma_0)$ in Fig. 1. Now let us look at the out-of-plane thermal conductivity κ_{zz} . This is given by WON et al.

FIG. 1. The functions I_1 , I_2 and I_3 .

$$\kappa_{zz}/\kappa_n = \frac{\Gamma_0}{\Delta} \left\langle [1 - \cos(2\chi)] \frac{C_0^2}{(C_0^2 + |f|^2)^{3/2}} \right\rangle, \tag{4}$$

$$=I_1(\Gamma/\Gamma_0) \tag{5}$$

for $f = \cos(2\phi)$, $\sin(2\phi)$, and $\cos(2\chi)$, but

=

$$\frac{G_{zz}}{\kappa_n} = \frac{4\Gamma_0}{\pi\Delta\sqrt{1+C_0^2}} \left[E\left(\frac{1}{\sqrt{1+C_0^2}}\right) - C_0^2 \left(K\left(\frac{1}{\sqrt{1+C_0^2}}\right) - E\left(\frac{1}{\sqrt{1+C_0^2}}\right)\right) \right],$$

$$-E\left(\frac{1}{\sqrt{1+C_0^2}}\right) \right],$$
(6)

$$=I_2\left(\frac{\Gamma}{\Gamma_0}\right) \tag{7}$$

for $f = \cos \chi$, $e^{\pm i\phi} \cos \chi$, and

$$\kappa_{zz}/\kappa_n = \frac{2\Gamma_0\Gamma}{\Delta} \left(1 - \frac{E\left(\frac{1}{\sqrt{1+C_0^2}}\right)}{K\left(\frac{1}{\sqrt{1+C_0^2}}\right)} \right) \equiv I_3\left(\frac{\Gamma}{\Gamma_0}\right) \quad (8)$$

for $f = \sin \chi$, $e^{i\phi} \sin \chi$. These functions are shown in Fig. 1.

In Fig. 2 we show $\kappa_{yy}(H)$ and κ_{zz} for $\mathbf{H} \| \hat{z}$ taken for UPd₂Al₃ (Ref. 18). In particular $(\kappa_{00})_{yy} = (\kappa_{00})_{zz}$ indicates $\Delta(\mathbf{k}) \sim \cos(2\chi)$. Of course the effect of the magnetic field is not equivalent to the effect of impurities. But this compari-

PHYSICAL REVIEW B 70, 140509(R) (2004)

FIG. 2. $\kappa_{yy}(H)$ and $\kappa_{zz}(H)$ for UPd₂Al₃.

son points to $\Delta(\mathbf{k}) \sim \cos(2\chi)$ for UPd₂Al₃. We note also that for $f = \sin \chi$ and $e^{i\phi} \sin \chi$, there will be no universal heat conduction in κ_{zz} .

III. ANGLE-DEPENDENT MAGNETOTHERMAL CONDUCTIVITY

First let us recapture the quasiparticle density of states in the vortex state of nodal superconductors. For simplicity we consider *f*'s with horizontal nodes: $f=e^{i\phi}\cos\chi$, $\cos\chi$, $\cos 2\chi$, $\sin\chi$, and $e^{i\phi}\sin\chi$ (Ref. 21). Then the first two *f*'s have nodes at $\chi_0 = \pm \pi/2$, whereas $f = \cos 2\chi$ at $\chi_0 = \pm \pi/4$ and $f = \sin\chi$ and $e^{i\phi}\sin\chi$ at $\chi_0 = 0$.

In an arbitrary field orientation we obtain the quasiparticle density of states

$$\mathcal{G}(\mathbf{H}) \equiv \frac{N(0,\mathbf{H})}{N_0} = \frac{2}{\pi^2} \frac{v_a \sqrt{eH}}{\Delta} I_1(\theta)$$
(9)

for the superclean limit and

$$\mathcal{G}(\mathbf{H}) \simeq \left(\frac{2\Gamma}{\pi\Delta}\right)^{1/2} \left[\log\left(4\sqrt{\frac{2\Delta}{\pi\Gamma}}\right)\right]^{1/2} \left[1 + \frac{v_a^2 eH}{8\pi^2\Gamma\Delta} \times \log\left(\frac{\Delta}{v_a\sqrt{eH}}\right) I_2(\theta)\right]$$
(10)

for the clean limit, where

FIG. 3. The angular functions $F_1(\theta)$ (left) and $F_2(\theta)$.

140509-2

GAP SYMMETRY OF SUPERCONDUCTIVITY IN UPd2Al3

FIG. 4. Angular-dependent magnetothermal conductivity κ_{yy} of UPd₂Al₃.

$$I_{1}(\theta) = (\cos^{2} \theta + \alpha \sin^{2} \theta)^{1/4} \frac{1}{\pi} \int_{0}^{\pi} d\phi [\cos^{2} \theta + \sin^{2} \theta]$$
$$\times (\sin^{2} \phi + \alpha \sin^{2} \chi_{0}) + \sqrt{\alpha} \sin(\chi_{0}) \cos \phi \sin(2\theta)]^{1/2}$$
$$\approx (\cos^{2} \theta + \alpha \sin^{2} \theta)^{1/4}$$
$$\times \left[1 + \sin^{2} \theta \left(-\frac{1}{2} + \alpha \sin^{2} \chi_{0} \right) \right]^{1/2}$$
$$\times \left[1 - \frac{1}{64} \frac{\sin^{2} \theta (\sin^{2} \theta + 16\alpha \sin^{2} \chi_{0} \cos^{2} \theta)}{\left(1 + \sin^{2} \theta \left(-\frac{1}{2} + \alpha \sin^{2} \chi_{0} \right) \right)^{2}} \right]$$

and

$$I_2(\theta) = (\cos^2 \theta + \alpha \sin^2 \theta)^{1/2} \left[1 + \sin^2 \theta \left(-\frac{1}{2} + \alpha \sin^2 \chi_0 \right) \right].$$
(11)

Here $\alpha = (v_c/v_a)^2$ and θ is the angle **H** makes from the *z* axis. Then the specific heat, the spin susceptibility, and the planar superfluid density in the vortex state in the limit $T \rightarrow 0$ K are given by²²

$$C_s / \gamma_N T = \mathcal{G}(\mathbf{H}), \quad \frac{\chi_S}{\chi_N} = \mathcal{G}(\mathbf{H}), \quad (12)$$

$$\frac{\rho_{s\parallel}(\mathbf{H})}{\rho_{s\parallel}(0)} = 1 - \mathcal{G}(\mathbf{H}).$$
(13)

Similarly the thermal conductivity κ_{yy} when the magnetic field is rotated in the *z*-*x* plane is given by

PHYSICAL REVIEW B 70, 140509(R) (2004)

$$\frac{\kappa_{yy}}{\kappa_n} = \frac{2}{\pi^3} \frac{v_a^2 e H}{\Delta^2} F_1(\theta) \tag{14}$$

in the superclean limit and

$$\frac{\kappa_{yy}}{\kappa_{00}} = 1 + \frac{v_a^2(eH)}{6\pi^2\Gamma\Delta}F_2(\theta)\log\left(2\sqrt{\frac{2\Delta}{\pi\Gamma}}\right)\log\left(\frac{2\Delta}{v_a\sqrt{eH}}\right)$$
(15)

in the clean limit where

$$F_1(\theta) = \sqrt{\cos^2 \theta + \alpha \sin^2 \theta} \left[1 + \sin^2 \theta \left(-\frac{3}{8} + \alpha \sin^2 \chi_0 \right) \right],$$
(16)

$$F_2(\theta) = \sqrt{\cos^2 \theta + \alpha \sin^2 \theta} \left[1 + \sin^2 \theta \left(-\frac{1}{4} + \alpha \sin^2 \chi_0 \right) \right].$$
(17)

We show in Fig. 3, $F_1(\theta)$ and $F_2(\theta)$ for $\alpha = 0.69$ (the value appropriate for UPd₂Al₃) and $\chi_0=0$, $\pi/4$, and $\pi/2$, which is compared with the experimental data¹⁸ taken at T=0.4 K shown in Fig. 4. Except for the data taken for H=2.5 T, the data for H=0.5, 1, and 2 T are consistent with $\chi_0=\pi/4$, indicating again $f=\cos 2\chi$. We note also the sign of the twofold term in κ_{yy} at T=0.4 K changes sign at H=0.36 T. This is consistent with the fact that for $T < v \sqrt{eH}$ the nodal excitations are mostly due to the Doppler shift while for $T > v \sqrt{eH}$ the thermal excitations dominate.²³

IV. CONCLUDING REMARKS

We have analyzed recent thermal conductivity data¹⁸ of UPd₂Al₃ from two perspectives: universal heat conduction and the angle dependence. The present study indicates $\Delta(\mathbf{k}) = \Delta \cos(2\chi)$. This is different from the conclusion reached in Ref. 18. Also we have extended the universal heat conduction for a class of superconducting order parameters $\Delta(\mathbf{k})$, which will be useful for identifying the gap symmetry of new superconductors, such as URu₂Si₂ and UNi₂Al₃.

Furthermore, we have worked out the expressions for κ_{yy} when the magnetic field is rotated within the *z*-*x* plane. The angle dependence of κ_{yy} is extremely useful to locate the nodal lines when all nodal lines are horizontal. Perhaps κ_{yy} in Sr₂RuO₄ will help to identify the precise position of the horizontal nodal lines in $\Delta(\mathbf{k})$, if a further study of nodal lines is necessary. Also after UPt₃ and UPd₂Al₃ we expect many of the U-compound superconducting energy gaps to have horizontal lines.

ACKNOWLEDGMENTS

We thank Balazs Dora, Stephan Haas, Hae-Young Kee, Peter Thalmeier, and Attila Virosztek for helpful collaborations on related subjects. H.W. acknowledges support from Korean Science and Engineering Foundation (KOSEF) through Grant No. R05-2004-000-1084.

PHYSICAL REVIEW B 70, 140509(R) (2004)

- ¹F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. **43**, 1892 (1979).
- ²M. Sigrist and K. Ueda, Rev. Mod. Phys. **63**, 239 (1991).
- ³G.E. Volovik, JETP Lett. **58**, 469 (1993) [Pis'ma Zh. Eksp. Teor. Fiz. **58**, 457 (1993)].
- ⁴H. Won and K. Maki, cond-mat/0004105 (unpublished).
- ⁵T. Dahm, H. Won, and K. Maki, cond-mat/0006301 (unpublished).
- ⁶K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. Lett. **86**, 2653 (2001).
- ⁷K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, and Y. Onuki, Phys. Rev. Lett. 87, 057002 (2001).
- ⁸K. Izawa, H. Yamaguchi, T. Sasaki, and Y. Matsuda, Phys. Rev. Lett. **88**, 027002 (2002).
- ⁹K. Izawa, K. Kamata, Y. Nakajima, Y. Matsuda, T. Watanabe, M. Nohara, H. Takagi, P. Thalmeier, and K. Maki, Phys. Rev. Lett. **89**, 137006 (2002).
- ¹⁰ K. Izawa, Y. Nakajima, J. Goryo, Y. Matsuda, S. Osaki, H. Sugawara, H. Sato, P. Thalmeier, and K. Maki, Phys. Rev. Lett. **90**, 117001 (2003).
- ¹¹C. Geibel, C. Schank, S. Thies, H. Kitazawa, C.D. Bredl, A. Böhm, M. Rau, A. Granel, R. Caspary, R. Helfrich, U. Ahlheim, G. Weber, and F. Steglich, Z. Phys. B: Condens. Matter 84, 1

(1991).

- ¹²H. Tou, Y. Kitaoka, K. Asayama, C. Geibel, C. Schank, and F. Steglich, J. Phys. Soc. Jpn. **64**, 725 (1995).
- ¹³J. Hessert, M. Huth, M. Jourdan, H. Adrian, C.T. Rieck, and K. Scharnberg, Physica B **230–232**, 373 (1997).
- ¹⁴May Chiao, B. Lussier, E. Elleman, and L. Taillefer, Physica B 230, 370 (1997).
- ¹⁵M. Jourdan, M. Huth, and H. Adrian, Nature (London) **398**, 47 (1999).
- ¹⁶P. MacHale, P. Thalmeier, and P. Fulde, cond-mat/0401520 (unpublished).
- ¹⁷N. Bernhoeft, Eur. Phys. J. B **13**, 685 (2000).
- ¹⁸T. Watanabe, K. Izawa, Y. Kasahara, Y. Haga, Y. Onuki, P. Thalmeier, K. Maki, and Y. Matsuda, cond-mat/0405211 (unpublished).
- ¹⁹ P. A. Lee, Phys. Rev. Lett. **71**, 1887 (1993).
- ²⁰Y. Sun and K. Maki, Europhys. Lett. **32**, 335 (1995).
- ²¹P. Thalmeier and K. Maki, Europhys. Lett. 58, 119 (2002).
- ²²H. Won and K. Maki, Europhys. Lett. **56**, 729 (2001).
- ²³ H. Won and K. Maki, Curr. Appl. Phys. 1, 291 (2001); also in *Vortices in Unconventional Superconductors and Superfluids*, edited by G. E. Volovik, N. Schopohl, and R. P. Huebener (Springer, Berlin, 2002).