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Recently, Hermelest al. claimed that the infraredR) fixed point of noncompact QEDis stable against
instanton excitations in the limit of large flavors of massless Dirac fermjbvhsHermeleet al, cond-mat/
0404751, Phys. Rev. Bo be published October 2004 We investigate an effect of nonmagnetic disorder on
the deconfined quantum critical phase dubkKd) spin liquid (U1SL) in the context of quantum antiferro-
magnet. In the case of weak disorder the IR fixed point remains stable against the presence of both the
instanton excitations and nonmagnetic disorder and thubJ il is sustained. In the case of strong disorder
the IR fixed point becomes unstable against the disorder and the Anderson localization is expected to occur. We
argue that in this case deconfinement of spinons does not occur since the Dirac fermion becomes massive
owing to the localization.
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Recently Hermeleet al. pointed out that usual random- fixed points which is stable in some ca$dn.the absence of
phase approximatio(RPA) treatment of gauge fluctuations both the randomness and Chern-Simons interaction only the
is not sufficient in order to examine an instanton effect evenrunaway characteristic was found as the case of bosons.
in the presence of large flavofhl) of massless Dirac fermi- In this paper we investigate the role of nonmagnetic dis-
ons in compact QEE? They showed that at the infrar¢tR)  order on the deconfined quantum critical phase of QED
stable fixed point of noncompact spinor QD large N the limit of large flavors of massless Dirac fermions. In the
limit instanton excitations become irrelevant and instantorconcrete we examine the stability of the IR fixed point of
fugacity goes to zero. This originates from the fact that anoncompact QERin the presence of both the nonmagnetic
magnetic charge has a large value proportionalNtat the  disorder and instanton excitations. The existence of the
fixed point. The large fixed point value of a magnetic chargestable IR fixed point in the absence of disorder is a main
is due to screening of an electric charge by particle-holejifference from previous work&® In the previous studié$
excitations of the massless Dirac fermidnghe magnetic there are no stable IR fixed points in the absence of disorder
charge goes to zero in the absence of the massless Dirag discussed above. In the case of weak disorder the IR fixed
fermions at low energ§.The larger the magnetic charge, the point is found to remain stable and{1) spin liquid (U1SL)
smaller the probability of instanton excitations. As a conseqin the context of quantum antiferromagnet is expected to
quence they concluded that deconfinement does exist at leagirvive. The stability against the weak disorder results from
at the critical point in the larg& limit. In the context of  the existence of the IR fixed point in the absence of disorder
quantum antiferromagnet stabll1) spin liquid (U1SL) is  in two space and one time dimension. In the case of strong
obtainedf: disorder we find that it becomes unstable. We are led to the

In realistic cases disorder always exists. In the case oftrong-coupling regime where the Anderson localization is
noninteracting fermions it was shown by scaling argumenexpected to occur. Owing to the localization the Dirac fermi-
that in three spatial dimensions the presence of disordesns become massive. In the case of massive Dirac fermions
causes a metal-insulator transiti‘bBut in one or two Spatial the usual RPA treatment may be possible. Instantons are ex-
dimensions even weak disorder leads electrons to be locapected to be proliferated. We argue that deconfinement of
ized and only insulating phase is expected to €xihe  spinons is not expected to exist in the strong disorder. In
presence of long-range interaction can change the above pigddition, we discuss a bosonic field theory in the presence of
ture of noninteracting particles. Herbut studied the role of anonmagnetic disorder and find a difference in the role of
random potential resulting from nonmagnetic disorder on ajisorder on the Dirac fermions and bosons, respectively.
critical field theory of interacting bosons via the Coulomb  First we review deconfinement at the IR fixed point of
interaction® In the study he showed that competition be- QED; in the absence of nonmagnetic disorél&ve consider

tween the random potential and the Coulomb interactiomn effective action usually called QEIn imaginary time
leads to a new charged critical point near three spatial dimen-

N
sions where a dynamical critical exponeris exactly given _ — . 1

by 15 In the absence of the random potential the charged S_JdDX[ 21 VoYl G 18,y + E'a xa . @

critical point is not expected to exist and only the standard B

runaway characteristic is fourtdn the case of Fermi fields Here ¢, is a massless Dirac spinor with a flavor index
Ye investigated the role of disorder on a Chern-Simons field=1, ... N anda,, a compact (1) gauge fieldx=(r, 7) with

theory of interacting Dirac fermions via Coulomb interaction (D —1)-dimensional space and imaginary timer. In the
in two spatial dimension&.In the study he found a line of context of U1) slave boson representation of U quan-
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tum antiferromagnet this action can be considered as an ef- M /N
fective action in therr flux phas€. In this case the Dirac S:de‘lrdr[E (E R Rt 1-X- 0 1V
spinor represents a spinon carrying only the spin quantum a=1 \o=1

number 1/2. It is well known that QEPwith the noncom- 1

pact U1) gauge field has a stable IR fixed point in the limit +=|a x aa|2)]

of large flavors of massless Dirac fermidh&.renormaliza- 2

tion group(RG) equation for an electric charge is easily ob- M N

) _ W E Z

tained to be in or;e-loop ordéf _ Eava,:l > fdD‘lrdTlde%,a(r’Tl)VO%va(r'Tl)
—=(4-D e2 - )\Ne4, 2
dl ( ) ( ) X(v[/(r',u/(r’TZ)YOIJIU',H'(r’Tz)' (5)

where\ is a positive numerical constant. The first term rep-Here a,«’ are replica indices and the limi — 0 is to be
resents a bare scaling dimension &f In (2+1)D, €? is  taken at the end.

relevant in contrast witi3+1)D, where it is marginal. The Introducing ~ renormalized  field  variables  of
second term originates from self-energy correction of thet,=€ 1P 221Z/%) anda,=elC*=3/21z 7  we ob-
U(1) gauge field by particle-hole excitations of masslesdain renormalized couplings ofe?=e P21z 1e? and
Dirac fermions. As shown by this RG equation, a stable IRW=€ “°?'Z2Z,W,. Herez is a dynamical critical expo-
fixed point ofe2=1/\N exists in QER. Now our question Nnent. Z,Z,,Zy are usual renormalization constants of a
is if the IR fixed point remains stable after admitting instan-Dirac fermion, gauge field, and strength of a random poten-
ton excitations. Using the electromagnetic duality, Hermeldial, respectively. A subscript represents “renormalized.”
et al. obtained RG equations of a magnetic chaggel /e Equation(5) is obtained to be in terms of renormalized vari-

and an instanton fugacity, ables
q Mo/N
d—f’ =— (4-D)g- ay2g®+ N, S= f d®rrde| X (E 2o, o ¥, ~ 108, )y
a=1 \o=1
Z
dy, +2|9' X a, 2)
d_Im:(D_,Bg)ymn (3) 2 | |
W M N
where @ and 8 are positive numerical constarft©wing to -Zs 2 > de_lr'dridTéZ, L1707
the last term\N in the first equation a magnetic charge has a 2 wa'=1 0.0’ =1 ”
large fixed point value proportional g, i.e.,g"=AN. As a _
consequence the instanton fugacity goes to zero at this IR XYoot T Yot (1 70) Yot o (1, T5) (6)

fixed point.U1SL in terms of a spinoiDirac fermiorn) and
noncompact 1) gauge field is obtained at the quantum
critical phase.

Next we investigate the stability of tHé1SL fixed point
in the presence of nonmagnetic disorder. We reconsid

with rescaled space =e'r and time7r’ =e"?'7. In the above
we omitted a subscript for a simple notation. Calculating
the renormalization constan®,Z,,Z,, in one-loop order,
dye obtain RG equations

QED; in the presence of nonmagnetic disorder de?
§ H:(S—Z—D)ez—)\Ne“,
— 1
S:dex E lﬂa’yﬂ(ﬂﬂ—ieaﬂ)gbg+—|(9 X al?
o=1 2 dw
E:(4—z—D—)(e2)W+§(N+c)V\/2 7

N
V(X Zaw{,] : 4)
o=1

with positive numerical constants, y,{,c. Herez is deter-
mined by the condition o8 %7 =e 27, with Z,, a renor-
Here V(x) is a random potential generated by nonmagnetianalization constant of a Dirac fermion in momentum &gl
disorder. It couples to a spinon density owing to the relatiorthat in energy, which gives

of VEN. cfc,=V=N 15,7 Here c, represents an electron

with spin o and f,, a spinon with spiro. A physically rel- z=1+AW (8)
evant case is that the random potential is random only ifyith a positive numerical constaAt Our interest is the case
space but static in time. Thus it does not depend on imagiof D=2+1, i.e., two space and one time dimensions. These
nary time, i.e.V(x)=V(r). We assume tha#(r) is a Gauss- RG equations basically coincide with those of Ref. 6Din

ian random potential with(V(r)V(r'))=Ws(r-r’) and  =2+1 if the term (4-D)€? in the first RG equation is ne-
(V(r))=05>¢ Using the standard replica trick to average overglected. The presence of this term leads to the stable IR fixed
the Gaussian random potential, we obtain an effective actiopoint as discussed earlier. Precise values of the positive nu-
in the presence of nonmagnetic disorder merical constants are not important in our consideration. We
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solve the above RG equations with arbitrary positive numeri- dh y
cal constants in order to understand a general structure. dl = )\_Nh' 11

First we check the case of noninteracting Dirac fermions
in the presence of a random potential. In zero charge limifThe second equation shows the instability of this fixed point.
(e—0) a RG equation is given by Now we examine an instanton effect on these fixed points.
Using the electromagnetic duality, we obtain RG equations

aw _ 2 of a magnetic chargg=e™2 and an instanton fugacity, in
d (4-z=D)W+ (N + )W ©) the presence of a random potential

In D=3+1 (three spatial dimensiopghere is an unstable dg _ 3

fixed point of W,=1/Z(N+c) with z=1+[A/¢(N+c)] to 4=~ (5-2-D)g-ayrg*+AN,

separate a metal and an insulator.0sr2+1 of present in-

terest the unstable fixed point becomes zero, WézO0. dw 1

Thus only insulating phase is expected to éxast discussed o (4 -z-D- X—>W+ J(N+oW?,

in the Introduction. 9

In the case of interacting Dirac fermions via long-range
“electromagnetic” interactichthese RG equationgEg. (7)] dym =(z-1+D-Bg)y (12)
show three fixed points iD=2+1; thefirst is W,,=0 and dl m

— H — — 2 _ H
ei_c—O with z=1, th? Secon9W2°_02 and %C_%/}N with with positive numerical constants, 8 the same as those in
z=1, and the third, W3,=O(1/N°) and e5.=(1/AN) Eq. (3). The t 208 in the first RG tion is added
+O(1/N®) with z=1+O(1/N2). The first is a fixed point of C0: (3 The term -ayyg=in the first RG equation Is adde
' owing to the screening of a magnetic charge by instanton

free Dirac fermions which is unstable for nonzero charge,,itations? In the case of weak disorder, i.&\/< W, the

10 i i % . .
€210 The RG flow goes to the second, the IR fixed point of |5 gy eq point ofg"=\N remains stable as discussed above.

noncompact QER The t.hir‘.j is an unstable fixed point. T_his Thus theU1SL is sustained by the same reason as the case of
fixed point does not exist in the absence of the gauge inter,

. . ' ! "““"Mo disorder. In the case of strong disorder, V&> W5, the
action. The existence of the new unstable fixed point origiqg fixed point becomes unstable. The strength of disorder
nates from the terni4—D)e? of the first RG equation in

, ) _becomes larger. An important question is whether the mag-
Eq. (7), representing the relevance of an electric charge ietic charge goes to zero or not as the strength of disorder
D=2+1. In thecase of small strength of the random poten-qes |arger. At first glance of E¢L1) the fixed point value of

tial, i.e., W<Ws,, the random potential becomes irrelevant 5 glectric charge seems to be sustained. Thus one may con-
and the usual IR fixed poirithe secongliremains stable. The = ¢)de thatU1SL is still expected to occur. In this case, more
stability against thg weak _dlsc_>rder results from thg eX'Ste”,CBrecisely, gappetl1SL may appear owing to the Anderson

of the stable IR fixed point in the absence of disorder injycajization which is expected to occur in the strong disorder.
D=2+1, aswill be shown below. In the case of large gy this is an illusion. As discussed above, the Dirac fermi-

strength of the random potential, i.84>Wa, the random g are expected to be massive owing to the localization. The
potential becomes stronger. We are led to the strong-couplingyqye calculation cannot apply to this strong-coupling re-

regime where our perturbative calculation does not apply. Iyime. Further, this phase is not expected to be critical any
this case the Anderson localization is expected to occur anf,ore. In this “insulating” phase of spinons the screening of
thus the Dirac fermions become massive. the internal charge becomes negligible. The internal charge is
In order to see the stability of the fixed points WezeXpa”dexpected to go to infinity following its bare scaling dimen-
the RG equations near each fixed point. Inseréfges.+f  gion. The magnetic charge goes to zero. In this case instanton
andW=W,+hto Eq.(7), we obtain linearized RG equations gy citations are relevant perturbation and the instanton fugac-

near the IR fixed point ity gets larger to go to infinity. Thus deconfinement of
df A spinons is not expected to occur in the strong disorder.
al =—f- )\_Nh’ Now we discuss an effect of nonmagnetic disorder on a

critical-field theory of interacting bosons via long-range elec-
tromagnetic interaction. The critical-field theory usually
dubbed scalar QEPcan be considered to describe interact-
ing holons via internal gauge interaction in the context of
U(1) slave boson theory!! In the scalar QERa stable IR

As shown by these RG equations, it is clear that the IR fixedixed point called charged dKY fixed point is also found in
point is stable against the weak disorder. The stability origithe limit of largeN'? as the case of the spinor QEDHereN
nates from the finite fixed-point value of an electric chargejs the flavor number of boson fields. The charged fixed point
i.e., €5,=1/\N. Expanding the RG equations near the thirdgoverns a superconductor to insulator transition. The charged
fixed point, we obtain linearized RG equations to the order ofixed point is shown to be unstable in the presence of weak

a=—mh. (10

1/N disordert3 A new stable fixed point is expected to appear in
association with a random potential. This fixed point seems
df ——f- Ah to be related with a Bose glass to a superconductor

dl AN transition®2 not a Mott insulator to superconductor transi-
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tion governed by the charged fixed potAtBut its nature is  But there is a cure even in this case. We consider hole doping
not clear. The emergence of the new stable fixed point is & theU1SL. Doped holes are represented by holons carrying
main difference between the scalar and spinor @EDis is  only a charge degree of freeddhRecently Senthil and Lee

because even weak disorder is a relevant perturbation only ifaimed that critical fluctuations of holons at a quantum criti-

a bosonic field theory. The relevance of weak disorder origi| nqint associated with a superconducting transition can
nates from a different scaling between bosons and Dira

fesult in the suppression of instanton excitations and thus the
Y T 9 ; .
feerggggﬁ' O-I]:hiﬁ(i'igﬁremescs:g;g_ggrlé%:lo2%gﬁgennczrﬁ t?ﬁequantum critical point can be described by ti&SL for a

q . r : d : .-spin degree of freedoA.This argument is based on the fact
Dirac equation, respectively. At this new stable fixed point

the fixed point value of an electric charge square is StiIIthat the &SB does not occur owing to critical fluctuations of
-d_point. g€ sq 7 "holons. The critical fluctuations increase a flavor number of
proportional to inverse of the flavor number of bosons, i.e.

. . . massl fl ionS.If | flavor number of massl
eZ~N13 Thus a magnetic charge is proportionalNoas assless fluctuationS.If a total flavor number of massless

. : T spinons and holons exceeds the critical valiyethe S¢SB is
the case of the charged fixed point. In the limit of large flavor ) expected to occdf:1°As a result the present scenario for
number instanton fugacity goes to zero at this new fixe

point. Deconfinement of boson fieldsolong is expected to he role of nonmagnetic disorder in thi.SL has a chance to

. S : ) - be applicable.
occur. Bosonl_c 1) liquid is s_ustglned at the new fixed point To summarize, we showed that thi1) spin liquid is
associated with nonmagnetic disorder.

. ; . sustained against the presence of weak nonmagnetic disor-
In this paper we considered $N) quantum antiferro- 9 P g

t d ibed bM f ; | Dirac fermi der. However, strong disorder leads the fixed point to be
magnet described bj flavors of massless Dirac fermions | hiapie and the RG flow goes to the strong-coupling re-
interacting via compact (1) gauge fields. But a real antifer-

gime. In the strong-coupling regime our perturbative RG
romagnet has S@2) symmetry. Thus the flavor number of §oeq ot work any more. Thus a more refined calculation is
the Dirac fermions is given bN=2." In this case it is not

. required. We argued that deconfinement of spinons does not
clear whether the present result can be applicable. It igccyr in this regime since the Dirac fermions become mas-
known that there exists a critical flavor numidérassociated  gjye owing to localization. Lastly, we compared the case of
with spontaneous chiral symmetry breakii§xSB) in  pjrac fermions with that of bosons. In a bosonic field theory
QEDy'. But a precise value qf the critical number is St_l” N a new stable fixed point associated with disorder emerges in
debate®® If the critical value is larger than 2, thexSB is  contrast with a fermionic field theory. At this new stable

expected to occur for the physichil=2 case/*® The Dirac  fixed point an electric charge is sufficiently screened and

Dirac fermions are confined to form mesons, here, maghons.
As a result, in the case dfi,>N=2 the ULSL is not ex- The author thanks Professor Han Jung-Hoon for helpful
pected to exist and the present consideration is not appliediscussions of basic concepts in association with disorder.
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