
Role of nonmagnetic disorder on the stability of theU„1… spin liquid: A renormalization
group study

Ki-Seok Kim
Korea Institute of Advanced Study, Seoul 130-012, Korea

(Received 7 July 2004; published 14 October 2004)

Recently, Hermeleet al. claimed that the infrared(IR) fixed point of noncompact QED3 is stable against
instanton excitations in the limit of large flavors of massless Dirac fermions[M. Hermeleet al., cond-mat/
0404751, Phys. Rev. B(to be published October 2004)]. We investigate an effect of nonmagnetic disorder on
the deconfined quantum critical phase dubbedUs1d spin liquid sU1SLd in the context of quantum antiferro-
magnet. In the case of weak disorder the IR fixed point remains stable against the presence of both the
instanton excitations and nonmagnetic disorder and thus theU1SL is sustained. In the case of strong disorder
the IR fixed point becomes unstable against the disorder and the Anderson localization is expected to occur. We
argue that in this case deconfinement of spinons does not occur since the Dirac fermion becomes massive
owing to the localization.
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Recently Hermeleet al. pointed out that usual random-
phase approximation(RPA) treatment of gauge fluctuations1

is not sufficient in order to examine an instanton effect even
in the presence of large flavorssNd of massless Dirac fermi-
ons in compact QED3.

2 They showed that at the infrared(IR)
stable fixed point of noncompact spinor QED3 in large N
limit instanton excitations become irrelevant and instanton
fugacity goes to zero. This originates from the fact that a
magnetic charge has a large value proportional toN at the
fixed point. The large fixed point value of a magnetic charge
is due to screening of an electric charge by particle-hole
excitations of the massless Dirac fermions.3 The magnetic
charge goes to zero in the absence of the massless Dirac
fermions at low energy.2 The larger the magnetic charge, the
smaller the probability of instanton excitations. As a conse-
quence they concluded that deconfinement does exist at least
at the critical point in the largeN limit. In the context of
quantum antiferromagnet stableUs1d spin liquid sU1SLd is
obtained.2

In realistic cases disorder always exists. In the case of
noninteracting fermions it was shown by scaling argument
that in three spatial dimensions the presence of disorder
causes a metal-insulator transition.4 But in one or two spatial
dimensions even weak disorder leads electrons to be local-
ized and only insulating phase is expected to exist.4 The
presence of long-range interaction can change the above pic-
ture of noninteracting particles. Herbut studied the role of a
random potential resulting from nonmagnetic disorder on a
critical field theory of interacting bosons via the Coulomb
interaction.5 In the study he showed that competition be-
tween the random potential and the Coulomb interaction
leads to a new charged critical point near three spatial dimen-
sions where a dynamical critical exponentz is exactly given
by 1.5 In the absence of the random potential the charged
critical point is not expected to exist and only the standard
runaway characteristic is found.5 In the case of Fermi fields
Ye investigated the role of disorder on a Chern-Simons field
theory of interacting Dirac fermions via Coulomb interaction
in two spatial dimensions.6 In the study he found a line of

fixed points which is stable in some cases.6 In the absence of
both the randomness and Chern-Simons interaction only the
runaway characteristic was found as the case of bosons.

In this paper we investigate the role of nonmagnetic dis-
order on the deconfined quantum critical phase of QED3 in
the limit of large flavors of massless Dirac fermions. In the
concrete we examine the stability of the IR fixed point of
noncompact QED3 in the presence of both the nonmagnetic
disorder and instanton excitations. The existence of the
stable IR fixed point in the absence of disorder is a main
difference from previous works.5,6 In the previous studies5,6

there are no stable IR fixed points in the absence of disorder
as discussed above. In the case of weak disorder the IR fixed
point is found to remain stable andUs1d spin liquid sU1SLd
in the context of quantum antiferromagnet is expected to
survive. The stability against the weak disorder results from
the existence of the IR fixed point in the absence of disorder
in two space and one time dimension. In the case of strong
disorder we find that it becomes unstable. We are led to the
strong-coupling regime where the Anderson localization is
expected to occur. Owing to the localization the Dirac fermi-
ons become massive. In the case of massive Dirac fermions
the usual RPA treatment may be possible. Instantons are ex-
pected to be proliferated. We argue that deconfinement of
spinons is not expected to exist in the strong disorder. In
addition, we discuss a bosonic field theory in the presence of
nonmagnetic disorder and find a difference in the role of
disorder on the Dirac fermions and bosons, respectively.

First we review deconfinement at the IR fixed point of
QED3 in the absence of nonmagnetic disorder.2 We consider
an effective action usually called QED3 in imaginary time

S=E dDxFo
s=1

N

c̄sgms]m − iamdcs +
1

2e2u] 3 au2G . s1d

Here cs is a massless Dirac spinor with a flavor indexs
=1, . . . ,N andam, a compact Us1d gauge field.x=sr ,td with
sD−1d-dimensional spacer and imaginary timet. In the
context of Us1d slave boson representation of SU(N) quan-
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tum antiferromagnet this action can be considered as an ef-
fective action in thep flux phase.7 In this case the Dirac
spinor represents a spinon carrying only the spin quantum
number 1/2. It is well known that QED3 with the noncom-
pact Us1d gauge field has a stable IR fixed point in the limit
of large flavors of massless Dirac fermions.8 A renormaliza-
tion group(RG) equation for an electric charge is easily ob-
tained to be in one-loop order,2,8

de2

dl
= s4 − Dde2 − lNe4, s2d

wherel is a positive numerical constant. The first term rep-
resents a bare scaling dimension ofe2. In s2+1dD, e2 is
relevant in contrast withs3+1dD, where it is marginal. The
second term originates from self-energy correction of the
Us1d gauge field by particle-hole excitations of massless
Dirac fermions. As shown by this RG equation, a stable IR
fixed point ofe*2 =1/lN exists in QED3. Now our question
is if the IR fixed point remains stable after admitting instan-
ton excitations. Using the electromagnetic duality, Hermele
et al. obtained RG equations of a magnetic chargeg=1/e2

and an instanton fugacityym,

dg

dl
= − s4 − Ddg − aym

2 g3 + lN,

dym

dl
= sD − bgdym, s3d

wherea and b are positive numerical constants.2 Owing to
the last termlN in the first equation a magnetic charge has a
large fixed point value proportional toN, i.e., g* =lN. As a
consequence the instanton fugacity goes to zero at this IR
fixed point.U1SL in terms of a spinon(Dirac fermion) and
noncompact Us1d gauge field is obtained at the quantum
critical phase.

Next we investigate the stability of theU1SL fixed point
in the presence of nonmagnetic disorder. We reconsider
QED3 in the presence of nonmagnetic disorder

S=E dDxFo
s=1

N

c̄sgms]m − ieamdcs +
1

2
u] 3 au2

+ Vsxdo
s=1

N

c̄sg0csG . s4d

Here Vsxd is a random potential generated by nonmagnetic
disorder. It couples to a spinon density owing to the relation
of Vos=1

N cs
†cs=Vos=1

N fs
† fs.7 Here cs represents an electron

with spin s and fs, a spinon with spins. A physically rel-
evant case is that the random potential is random only in
space but static in time. Thus it does not depend on imagi-
nary time, i.e.,Vsxd=Vsr d. We assume thatVsr d is a Gauss-
ian random potential withkVsr dVsr 8dl=Wdsr −r 8d and
kVsr dl=0.5,6 Using the standard replica trick to average over
the Gaussian random potential, we obtain an effective action
in the presence of nonmagnetic disorder

S=E dD−1rdtFo
a=1

M So
s=1

N

c̄s,agms]m − ieam,adcs,a

+
1

2
u] 3 aau2DG

−
W

2 o
a,a8=1

M

o
s,s8=1

N E dD−1rdt1dt2c̄s,asr ,t1dg0cs,asr ,t1d

3c̄s8,a8sr ,t2dg0cs8,a8sr ,t2d. s5d

Here a ,a8 are replica indices and the limitM→0 is to be
taken at the end.

Introducing renormalized field variables of
cs=e−fsD+z−2d/2glZk

1/2cs,r and am=e−fsD+z−3d/2glZa
1/2am,r, we ob-

tain renormalized couplings ofe2=e−s5−D−zdlZa
−1er

2 and
W=e−s4−D−zdlZk

−2ZWWr. Here z is a dynamical critical expo-
nent. Zk,Za,ZW are usual renormalization constants of a
Dirac fermion, gauge field, and strength of a random poten-
tial, respectively. A subscriptr represents “renormalized.”
Equation(5) is obtained to be in terms of renormalized vari-
ables

S=E dD−1r 8dt8Fo
a=1

M So
s=1

N

Zkc̄s,agms]m8 − ieam,adcs,a

+
Za

2
u]8 3 aau2DG

− ZW
W

2 o
a,a8=1

M

o
s,s8=1

N E dD−1r 8dt18dt28c̄s,asr 8,t18d

3g0cs,asr 8,t18dc̄s8,a8sr 8,t28dg0cs8,a8sr 8,t28d s6d

with rescaled spacer 8=e−lr and timet8=e−zlt. In the above
we omitted a subscriptr for a simple notation. Calculating
the renormalization constantsZk,Za,ZW in one-loop order,
we obtain RG equations

de2

dl
= s5 − z− Dde2 − lNe4,

dW

dl
= s4 − z− D − xe2dW+ zsN + cdW2 s7d

with positive numerical constantsl ,x ,z ,c. Herez is deter-
mined by the condition ofe−2zlZv=e−2lZk with Zk, a renor-
malization constant of a Dirac fermion in momentum andZw,
that in energy,5 which gives

z= 1 +AW s8d

with a positive numerical constantA. Our interest is the case
of D=2+1, i.e., two space and one time dimensions. These
RG equations basically coincide with those of Ref. 6 inD
=2+1 if the term s4−Dde2 in the first RG equation is ne-
glected. The presence of this term leads to the stable IR fixed
point as discussed earlier. Precise values of the positive nu-
merical constants are not important in our consideration. We
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solve the above RG equations with arbitrary positive numeri-
cal constants in order to understand a general structure.

First we check the case of noninteracting Dirac fermions
in the presence of a random potential. In zero charge limit
se→0d a RG equation is given by

dW

dl
= s4 − z− DdW+ zsN + cdW2. s9d

In D=3+1 (three spatial dimensions) there is an unstable
fixed point of Wc=1/zsN+cd with z=1+fA/zsN+cdg to
separate a metal and an insulator. InD=2+1 of present in-
terest the unstable fixed point becomes zero, i.e.,Wc=0.
Thus only insulating phase is expected to exist4 as discussed
in the Introduction.

In the case of interacting Dirac fermions via long-range
“electromagnetic” interaction9 these RG equations[Eq. (7)]
show three fixed points inD=2+1; thefirst is W1c=0 and
e1c

2 =0 with z=1, the second,W2c=0 and e2c
2 =1/lN with

z=1, and the third, W3c=Os1/N2d and e3c
2 =s1/lNd

+Os1/N3d with z=1+Os1/N2d. The first is a fixed point of
free Dirac fermions which is unstable for nonzero charge
e2.10 The RG flow goes to the second, the IR fixed point of
noncompact QED3. The third is an unstable fixed point. This
fixed point does not exist in the absence of the gauge inter-
action. The existence of the new unstable fixed point origi-
nates from the terms4−Dde2 of the first RG equation in
Eq. (7), representing the relevance of an electric charge in
D=2+1. In thecase of small strength of the random poten-
tial, i.e., W,W3c, the random potential becomes irrelevant
and the usual IR fixed point(the second) remains stable. The
stability against the weak disorder results from the existence
of the stable IR fixed point in the absence of disorder in
D=2+1, as will be shown below. In the case of large
strength of the random potential, i.e.,W.W3c, the random
potential becomes stronger. We are led to the strong-coupling
regime where our perturbative calculation does not apply. In
this case the Anderson localization is expected to occur and
thus the Dirac fermions become massive.

In order to see the stability of the fixed points we expand
the RG equations near each fixed point. Insertinge2=e2c

2 + f
andW=W2c+h to Eq.(7), we obtain linearized RG equations
near the IR fixed point

df

dl
= − f −

A

lN
h,

dh

dl
= −

x

lN
h. s10d

As shown by these RG equations, it is clear that the IR fixed
point is stable against the weak disorder. The stability origi-
nates from the finite fixed-point value of an electric charge,
i.e., e2c

2 =1/lN. Expanding the RG equations near the third
fixed point, we obtain linearized RG equations to the order of
1/N

df

dl
= − f −

A

lN
h,

dh

dl
=

x

lN
h. s11d

The second equation shows the instability of this fixed point.
Now we examine an instanton effect on these fixed points.

Using the electromagnetic duality, we obtain RG equations
of a magnetic chargeg=e−2 and an instanton fugacityym in
the presence of a random potential

dg

dl
= − s5 − z− Ddg − aym

2 g3 + lN,

dW

dl
= S4 − z− D − x

1

g
DW+ zsN + cdW2,

dym

dl
= sz− 1 +D − bgdym s12d

with positive numerical constantsa ,b the same as those in
Eq. (3). The term −aym

2 g3 in the first RG equation is added
owing to the screening of a magnetic charge by instanton
excitations.2 In the case of weak disorder, i.e.,W,W3c, the
IR fixed point ofg* =lN remains stable as discussed above.
Thus theU1SL is sustained by the same reason as the case of
no disorder. In the case of strong disorder, i.e.,W.W3c, the
IR fixed point becomes unstable. The strength of disorder
becomes larger. An important question is whether the mag-
netic charge goes to zero or not as the strength of disorder
gets larger. At first glance of Eq.(11) the fixed point value of
an electric charge seems to be sustained. Thus one may con-
clude thatU1SL is still expected to occur. In this case, more
precisely, gappedU1SL may appear owing to the Anderson
localization which is expected to occur in the strong disorder.
But this is an illusion. As discussed above, the Dirac fermi-
ons are expected to be massive owing to the localization. The
above calculation cannot apply to this strong-coupling re-
gime. Further, this phase is not expected to be critical any
more. In this “insulating” phase of spinons the screening of
the internal charge becomes negligible. The internal charge is
expected to go to infinity following its bare scaling dimen-
sion. The magnetic charge goes to zero. In this case instanton
excitations are relevant perturbation and the instanton fugac-
ity gets larger to go to infinity. Thus deconfinement of
spinons is not expected to occur in the strong disorder.

Now we discuss an effect of nonmagnetic disorder on a
critical-field theory of interacting bosons via long-range elec-
tromagnetic interaction. The critical-field theory usually
dubbed scalar QED3 can be considered to describe interact-
ing holons via internal gauge interaction in the context of
Us1d slave boson theory.7,11 In the scalar QED3 a stable IR
fixed point called charged orIXY fixed point is also found in
the limit of largeN12 as the case of the spinor QED3. HereN
is the flavor number of boson fields. The charged fixed point
governs a superconductor to insulator transition. The charged
fixed point is shown to be unstable in the presence of weak
disorder.13 A new stable fixed point is expected to appear in
association with a random potential. This fixed point seems
to be related with a Bose glass to a superconductor
transition,5,13 not a Mott insulator to superconductor transi-
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tion governed by the charged fixed point.12 But its nature is
not clear. The emergence of the new stable fixed point is a
main difference between the scalar and spinor QED3. This is
because even weak disorder is a relevant perturbation only in
a bosonic field theory. The relevance of weak disorder origi-
nates from a different scaling between bosons and Dirac
fermions.14 This different scaling is due to a difference in the
equation of motion, the Klein-Gordon equation, and the
Dirac equation, respectively. At this new stable fixed point
the fixed point value of an electric charge square is still
proportional to inverse of the flavor number of bosons, i.e.,
ec

2,N−1.13 Thus a magnetic charge is proportional toN as
the case of the charged fixed point. In the limit of large flavor
number instanton fugacity goes to zero at this new fixed
point. Deconfinement of boson fields(holons) is expected to
occur. Bosonic Us1d liquid is sustained at the new fixed point
associated with nonmagnetic disorder.

In this paper we considered SUsNd quantum antiferro-
magnet described byN flavors of massless Dirac fermions
interacting via compact Us1d gauge fields. But a real antifer-
romagnet has SUs2d symmetry. Thus the flavor number of
the Dirac fermions is given byN=2.7 In this case it is not
clear whether the present result can be applicable. It is
known that there exists a critical flavor numberNc associated
with spontaneous chiral symmetry breakingsSxSBd in
QED3

7. But a precise value of the critical number is still in
debate.15 If the critical value is larger than 2, the SxSB is
expected to occur for the physicalN=2 case.7,16 The Dirac
fermions become massive. In the SxSB phase the massive
Dirac fermions are confined to form mesons, here, magnons.7

As a result, in the case ofNc.N=2 the U1SL is not ex-
pected to exist and the present consideration is not applied.

But there is a cure even in this case. We consider hole doping
to theU1SL. Doped holes are represented by holons carrying
only a charge degree of freedom.17 Recently Senthil and Lee
claimed that critical fluctuations of holons at a quantum criti-
cal point associated with a superconducting transition can
result in the suppression of instanton excitations and thus the
quantum critical point can be described by theU1SL for a
spin degree of freedom.17 This argument is based on the fact
that the SxSB does not occur owing to critical fluctuations of
holons. The critical fluctuations increase a flavor number of
massless fluctuations.18 If a total flavor number of massless
spinons and holons exceeds the critical valueNc, the SxSB is
not expected to occur.18,19As a result the present scenario for
the role of nonmagnetic disorder in theU1SL has a chance to
be applicable.

To summarize, we showed that theUs1d spin liquid is
sustained against the presence of weak nonmagnetic disor-
der. However, strong disorder leads the fixed point to be
unstable and the RG flow goes to the strong-coupling re-
gime. In the strong-coupling regime our perturbative RG
does not work any more. Thus a more refined calculation is
required. We argued that deconfinement of spinons does not
occur in this regime since the Dirac fermions become mas-
sive owing to localization. Lastly, we compared the case of
Dirac fermions with that of bosons. In a bosonic field theory
a new stable fixed point associated with disorder emerges in
contrast with a fermionic field theory. At this new stable
fixed point an electric charge is sufficiently screened and
deconfinement of bosons is expected to occur.
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