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The nature of the vortex matter and its phase transitions in high-temperature superconducting oxides still
present open issues, although results from a number of experiments and theoretical studies do support first-
order transitions both at low and high applied magnetic fields. We report on first-order melting transitions
obtained via Monte Carlo simulations using the Lawrence-Doniach(LD) model for vortices in strongly aniso-
tropic layered superconductors, focusing on a clean three-dimensional sample of Bi2Sr2CaCu2O8, with dc
magnetic field perpendicular to the CuO2 superconducting planes. In particular, our investigations indicate that
in the high-field regime the CuO2 planes decouple at the melting transition, in agreement with very recent
experimental observations. Moreover, contrary to some theoretical suggestions, we confirm Nelson’s predic-
tions for the random-walk-like diffusion of the melted lines along the direction of the applied field. Our results
extend and clarify previous studies using the LD model and suggest the reliability of this framework in
describing strongly anisotropic layered superconductors.
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I. INTRODUCTION

Despite the great progress achieved along the years, the
sH ,Td phase diagram of high-temperature(high-Tc) super-
conductors is still not completely established. In fact, re-
cently there has been a revival concerning the true nature of
the vortex matter and its transitions in anisotropic materials,
such as Bi2Sr2CaCu2O8 (BSCCO) (Refs. 1–4) and
YBaCu3O7 (YBCO) (Ref. 5) compounds. Particularly in
BSCCO, the nature of the transition lines in intermediate and
high fields,B.Bcr,0.1 T (see discussion below), such as
the depinning, melting, and decoupling lines, is still a matter
of controversy.1,3,4,6,7 Furthermore, even with conventional
superconductors, like pure niobium, the vortex matter transi-
tion is still matter of discussion8 on whether an experimen-
tally observed transition is associated to the melting9 or to
the disordering of the flux lines due to the enhancement of
the flux line pinning in the peak effect region.10,11

On the theoretical side, Nelson and Seung12 have pre-
sented the well-known mapping of the three-dimensional
(3D) vortex system onto the 2D nonrelativistic interacting
boson system and, using Lindemann-like criteria,13,14 pre-
dicted the behavior of several lines in thesH ,Td phase dia-
gram. Some of Nelson’s12 results concerning line entangle-
ment have been questioned15 with the suggestion that, at
least in the low-density limit of the flux-line liquid, the vor-
tex system might be in a “weakly” entangled state, where the
average width of the flux lines can be much larger than the
average intervortex distance, but does not diverge with
sample thickness, in contradiction to Nelson’s “fully” en-
tangled liquid phase. Moreover, Nguyen and Sudbø16 have
imposed some restrictions to the regime of validity of Nel-
son’s scenario, which in fact has already been extended to
include nonlocal elastic effects.17,18 Through a Monte Carlo
(MC) simulation of the uniformly frustrated 3DXY
model,19–22 these authors16 have identified a second transi-

tion associated with the unbinding of vortex-loop thermal
excitations at temperatures above the melting line. In this
regime the lines-only approximation does not provide a suit-
able description of the system. Previous theoretical studies
on the vortex phase diagram ofclean anisotropic high-Tc
superconductors also include simulations using the lattice
London,23 lowest-Landau level,24,25,28 2D-boson
path-integral,26 and the Lawrence-Doniach27,29,30models. In
closing this discussion, we should remark that, in spite of
more than a decade of theoretical, numerical, and experimen-
tal studies, the question of whether vortices can form an
entangled state has not yet been convincingly answered.7

Our main concern in this work is to investigate the suit-
ability of the Lawrence-Doniach-Ginzburg-Landau model,27

or simply the Lawrence-Doniach(LD) model, of stacked su-
perconducting planes in describing vortex matter in highly
anisotropic layered superconductors, such as BSCCO com-
pounds. We report on first-order melting transitions in inter-
mediate and high magnetic fields obtained by detailed nu-
merical MC simulations using the LD model, focusing on a
clean 3D sample of BSCCO with applied dc magnetic field
H along thez axis perpendicular to the CuO2 superconduct-
ing ab planes. Despite the importance of disorder in the vor-
tex phase diagram, as can be appreciated in a recent obser-
vation of a Bragg glass phase in BSCCO and other high-Tc
materials,31 these effects are not included in our results,
since, as emphasized by Nelson32 and Nelson and Le
Doussal,33 weak point disorder affects thesH ,Td phase dia-
gram only for quite low magnetic fields(see, e.g., Fig. 2 in
Ref. 30).

Our investigations on the melting transition extend previ-
ous results on the same model27,29,30,34and further character-
ize the role of line entanglement and decoupling in the phase
diagram of the 3D vortex system. The occurrence of the
first-order melting transition is determined by the presence of
discontinuity in the amplitude of the first Bragg peak of the
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planar density-density correlation function, in the rms devia-
tion of the mean planar position of the vortices, in the
hexatic order parameter, and in the mean planar distance be-
tween vortices. No evidence of an hexatic phase between the
solid and liquid ones has been found, despite early
expectations35 and LD simulation results.27 Our results on
the end-to-end displacement of the flux lines have confirmed
Nelson and Seung’s predictions12 for the random-walk-like
diffusion along the applied field direction of melted lines, in
agreement withXY MC results,19,20 as well as with the
“cage” confinement of the flux lines in the solid phase.12 In
addition, our numerical data on thez-dependent density-
density correlation function indicate that in the high-field
regime the flux lattice melts into a decoupled liquid of pan-
cake vortices, in agreement with recent experimental obser-
vations in BSCCO,1 but in disagreement with previous LD
simulation results.29

This paper is organized as follows: in Sec. II we review
the line modeling of vortex matter in BSCCO, focusing on
the analogy of 2D-interacting bosons and 3D interacting vor-
tex lines and on the LD line model to describe vortex lines in
layered superconductors; Sec. III is devoted to the presenta-
tion and discussion of our simulation results on the light of
previous model predictions, simulations, and recent experi-
mental results; finally, in Sec. IV we present our concluding
remarks.

II. LINE MODELING OF VORTEX MATTER IN BSCCO

A. Boson mapping, entanglement, and decoupling

The study of the vortex properties in high-temperature
superconductors has become a topical subject in statistical
mechanics and condensed-matter physics.13,35,36 This is
mainly due to the strong effects of thermal fluctuations and
anisotropy in the vortex lattice of such materials, giving rise
to a large region of vortex liquid phase in thesH ,Td phase
diagram, contrasting with conventional type-II superconduct-
ors in which the flux lines form a lattice up to the upper
critical field Hc2

.20

Nelson12 has observed the analogy between the Gibbs free
energy of 3D interacting vortex lines in a highly anisotropic
superconductor withH parallel to the symmetry axisz, and
the imaginary time action of 2D interacting bosons world
“lines” at finite T. In this mapping, the imaginary time ruled
by T in the 2D boson system is equivalent to the third di-
mensionz in the 3D vortex system. Under this analogy, a
random-walk picture of the transverse motion of a flux line
as it meanders along thez axis leads to the conclusion that
the vortex linediffusesas a function of the timelike variable
z:

Drz ; Îkfr iszd − r is0dg2l = Î2Dz, s1d

wherer iszd is the position of the linei in the planez, k¯l
represents thermal average, andD=sM /mdf4pkBT/ sf0Hc1

dg
is the diffusion constant,12 with M /m denoting the uniaxial
anisotropy,kB the Boltzmann constant,f0 the quantum of
magnetic flux, andHc1

the lower critical field. Further, an
entanglement correlation length is defined as the average

spacing between collisions in a vortex liquid with areal den-
sity n=B/f0:

37

jz,c ;
1

8nD
=

ẽ

8kBTn
, s2d

in which B is the magnetic induction andẽ;kBT/D. The
collisions and entanglement of the flux lines then determine
the characteristics of the vortex system wheneverLz@jz,c,
whereLz is the sample thickness.

The phase diagram of the 2D-interacting boson system
has three distinct phases: crystal, normal liquid, and super-
fluid, which correspond in the clean 3D vortex system to the
Abrikosov lattice, disentangled liquid, and entangled liquid
of lines, respectively.26 As Lz increases in the superconduct-
ing sample(or, equivalently, asT decreases in the boson
system), the disentangled liquid phase(normal liquid of 2D
bosons) becomes not accessible. Indeed, for sufficiently thick
samples the average radial distance between the ends of the
vortex line,DrLz

, is larger than the average distance between
two neighbor lines,a0;sÎ2/Î3dÎf0/B, therefore implying
that, once the vortex lattice of such thick samples melts, it
forms a liquid of entangled lines with continuous transla-
tional symmetry in the planes. Thus the criterion

DrLz
ù a0/2, s3d

assigned for the entangled liquid phase, assumes that its on-
set occurs when the projection of each line onto theab plane
touches the projection of its neighbors. In such a case, the
vortex lines lose their individuality. On the other hand, for
thinner samples, a phase of disentangled line liquid might
emerge, in which

DrLz
, a0/2. s4d

In a layered anisotropic superconductor, by a similar cri-
terion, adjacent layers may decouple and the vortex system
would become a pile of weakly coupled 2D “pancake” vor-
tices in theab planes, with the average distance between
pancakes of the same flux line in adjacent planes,

Dr1 ; Îkfr isz+ 1d − r iszdg2l, s5d

satisfying

Dr1 ù a0/2. s6d

In this case, although the line model is no longer strictly
adequate to describe the vortices, it seems that the random-
walk picture may still provide a suitable description of the
liquid phase, at least close to the melting transition.

B. Lawrence-Doniach line model

Besides the two length scales usually associated with su-
perconducting properties, namely the planar correlation
lengthjab and the planar penetration depthlab, while dealing
with vortex matter it is convenient to introduce a
B-dependent scale:a0s~B−1/2d, the mean distance between
nearest-neighboring vortices. Moreover, in anisotropic super-
conductors one also considers an additional anisotropy-
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related length scalegd, whereg=lz/lab measures the ratio
between axial and planar penetration depths, andd is the
distance between adjacentab planes. Such scale marks the
onset above which the Josephson interaction between pan-
cake vortices in adjacent layers can no longer be considered
approximately quadratic[see Eq.(14) below].

Whenever the scales involved in vortex matter are such
that jab!a0!lab andlab@gd, the magnetic inductionB in
the superconducting sample is essentially constant. This sce-
nario favors descriptions throughXY models, which consider
only phase variations in the superconducting order
parameter,16,20,21 and are expected to hold for YBCO and
anisotropically similar compoundssg&20d. In contrast, in
much stronger anisotropic compoundssg*50d, such as
BSCCO, the scales are such that21 lab,gd. Under these
conditions, nonuniformities of the magnetic induction be-
come relevant, making 3D frustratedXY models less ad-
equate, while the LD model may appear as a more realistic
description.

The starting point of our simulations is the Lawrence-
Doniach-Ginzburg-Landau model of stacked superconduct-
ing planes.27,38 The LD free energy is given by

FLD =
1

8
E d3r B2srd +

dHc
2s0d

8p
o
z=1

Lz E d2rHS1 −
T

Tc
Duczu2

+
1

2
buczu4 + ujabsTds¹ab − i2eAabdczu2

− gUexpS2ieE
zn+1

zn

dz Azcz+1 − czDU2J , s7d

wherecz denotes the superconducting order parameter,g is
the interlayer Josephson coupling strength,HcsTd the ther-
modynamic critical field,e the charge of the electron,b the
Landau coefficient of the quartic term inuczu, ¹ab the in-
plane gradient,Aab the vector potential in theab plane, and
Tc the zero-field critical temperature. The above Helmholtz
free energy is considered instead of the Gibbs one:G=F
−s1/4pded3r B ·H, since in our simulations we consider
fixed B (constant number of vortices) along thez axis of the
sample. Moreover, for a single flux line crossing two adja-
cent CuO2 planes, the Josephson coupling among line seg-
ments at the two planes can be shown to be larger than the
magnetic interaction between them by a factor
,gslab/jabd2sd/sd2,10 for BSCCO,27,39 where s is the
layer thickness. Indeed, the electromagnetic interaction be-
tween layers has been shown to be relevant only in the low-
field part of the phase diagram,B,0.1 T for BSCCO
parameters,40 and therefore it is not considered here. Also,
the interaction of a flux line with the external magnetic field
can be shown to be negligible.27 At last, B-independent pin-
ning disorder is also not included since in the high-field re-
gime it is overwhelmed by the in-plane magnetic interaction
between vortices.

From the above considerations, we assume27 that the LD
free energy is dominated by two energy scales, namely the
Josephson energy densityeJ, which accounts for the interac-
tion between pancake vortices of a single flux line in adja-

cent layers, and the magnetic repulsion energy densityem,
which stands for the repulsion between segments of distinct
flux lines in the same plane. These two densities are con-
nected with the anisotropy and material parameters by the
relations

eJ ;
dEJ

dV
=

1

2

Hc
2s0d
8p

g, s8d

em ;
dEm

dV
=

Hc
2s0d
8p

jab
2 s0d

lab
2 sBd

=
1

lab
2 sBd

S f0
2

64p3lab
2 s0d

D , s9d

wherelabsBd defines a length scale in theab plane, such that

em

eJ
=

2jab
2 s0d

glab
2 sBd

. s10d

Whenever the two energy scales become comparable, one
finds

lab,cr =
Î2jabs0d

Îg
, s11d

which defines the critical field

Bcr =
f0

lab,cr
2 =

f0g

2jab
2 s0d

, s12d

above which the system behaves as a vortex lattice with
weakly interacting adjacent planes. Sinceg= lab,cr /d
=Î2jabs0d / sÎgdd, then, using BSCCO parametersg.100,
jabs0d=21 Å, and d=15 Å, one finds 1/Îg=50 and Bcr

.900 G.
Our simulations are thus performed forB.Bcr within the

framework introduced by Ryu and co-workers,27 based on
the LD model, in which the repulsion magnetic energy be-
tween pancake vortices in the same plane is given by

f0
2s

8p2lab
2 K0S ur i jszdu

lab
D , s13d

wherer i jszd; r jszd−r iszd, K0 represents the modified Bessel
function of order zero, andlabsTd=l0s1−T/Tcd−1/2 denotes
the planar penetration length at a temperatureT, with l0
;labsT=0d. In addition, the Josephson coupling between
pancake vortices belonging to the same flux line in adjacent
layers reads27

df0
2

8p3lab
2 F1 + lnSlab

d
DGS r1

2

sgdd2 − 1D, for r1 ø gd,

df0
2

4p3lab
2 F1 + lnSlab

d
DGS r1

gd
− 1D, for r1 . gd, s14d

in which r1;ur isz+1d−r iszdu. Although for very high
fields,20,41 B@Bcr, the Josephson coupling needs a nonpair-
wise and nonlocal treatment, we take the pairwise interac-
tion, as in Eq.(14), particularly to allow the computation
feasibility of this 3D model system in the range of param-
eters used to study thesB,Td phase diagram. In this sense,
since the potential energy between pancakes in neighbor lay-
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ers is still attractive for largeBsa0*gdd, Eq. (14) essentially
introduces an effective spring constant associated to small
displacements from equilibrium.27 On the other hand, for
larger displacements we assume that an interplanar core will
start to form with energy proportional to the distance be-
tween the pancakes.

III. SIMULATION RESULTS

In our MC simulations we have considered a system of 64
flux lines confined to a grid of 25632223Lz, with Lz=64
layers and periodic boundary conditions in all directions.
Each flux line may be viewed as a collection of beads(pan-
cake vortices) connected by a flexible string along thez axis,
with each bead restricted to move in anab plane. The grid
lattice in the planes is triangular in order to be commensu-
rable with the Abrikosov lattice. In a single MC step(MCS)
every bead makes a trial movement by a unit grid through
the Metropolis algorithm. We start with the triangular Abri-
kosov lattice atT=1 K and then slowly increaseT by small
stepsDT, discarding the firstn0 MCS for equilibration in the
averaging process. We perform simulations using:(i) 105

MCS, n0=23104 MCS, andDT=0.2 K; and(ii ) 106 MCS,
n0=23105 MCS, andDT=1 K (DT=0.2 K near the melting
transition). These choices for the MC running times,n0 and
DT, were made in order to assure convergence of the MC
results with regard to the system size and region of the phase
diagram. Indeed, some of our preliminary test studies using,
for instance, only 23104 MCS led to strongly time-
dependent results, mainly inthe vicinity of the melting tran-
sition, including some spurious numerical effects in the low-
field regime. Furthermore, we have chosen the following
parameters suitable to describe a BSCCO sample:13 d
=15 Å, s=1.66 Å, l0=1414.2 Å, Tc=87 K, and the ones
listed below Eq.(12) of the previous section.

The two symmetries present in the vortex line model,
namely the in-plane symmetry and the one along thez axis,
pose the question of whether they can be broken separately
or simultaneously.23 In the former case, the possibility of a
supersolid(broken translational symmetry only) or a disen-
tangled liquid(broken z-axis symmetry only) phase arises.
Otherwise, the simultaneous symmetry breaking leads to an
entangled or even decoupled liquid state. In our simulations
in the high-field regime, we have observed discontinuity at
the melting temperatureTmsBd, in several quantities related
to both planar and longitudinal symmetries, thus revealing
the first-order character of this transition. For instance, asT
increases, Fig. 1 displays, forBù1 T, the sudden disappear-
ance atT=Tm of the first Bragg peak of the structure factor in
the momentum k =skx,kyd space, SskBraggd, with Sskd
;Ssk ,z=0d, and

Ssk,zd =
1

VNo
r

kns0,0dnsr ,zdleik·r , s15d

wherekns0,0dnsr ,zdl is the density-density correlation func-
tion in planez, N is the number of lines, andV is the nor-
malization factor[SskBraggd=1 at T=1 K]. In addition, the
line-average in-plane rms displacement of a pancake vortex,

Dr in-plane; Îkfr iszd − kr iszdlg2l, s16d

also suffers a discontinuity atTmsBd in the same field range,
as shown in Fig. 1. At the onset of this discontinuity we
notice thatDr in-plane/a0.0.2–0.3, which corresponds to a
Lindemann-like criterion. As a consequence, although this
range of values ofDr in-plane/a0 at the melting line coincides
with that reported in the literature,21,27 a precise value of
TmsBd should not be strictly determined from the Lindemann
criterion, the most adequate one being that associated with a
direct measure of the discontinuity in these observables at
the melting transition.16,20,30

We should add that there exists a third symmetry associ-
ated with the in-plane orientational order. This may give rise
to the possibility of an hexatic phase(with broken orienta-
tional symmetry only) between the liquid(with complete
symmetry) and solid phases(with broken translational and
orientational symmetries). In this context, we have measured
the local orientational order parameter35 (or hexatic order
parameter27,30), defined as

C6 = o
i=1

N
1

zi
o
j=1

6

e6iui j , s17d

wherezi is the coordination number for the vortexi andui j is
the bond angle between neighborsi and j .

Our results displayed in Fig. 2(a) show that the hexatic
order parameter vanishes atTmsBd, along with the first Bragg
peak of the structure factor, in agreement with previous nu-
merical studies.19–21,30Indeed, even in a detailed simulation
close to the melting transition[inset of Fig. 2(a)] we find no
measurable hexatic phase, contrary to early results by Ryuet
al.27 using BSCCO parameters in a LD framework, but in
agreement with more recent simulations by Ryu and Stroud30

using YBCO parameters and the same model. Here it is
worth mentioning that Nelson’s description has predicted the
existence of an hexatic phase42 in high-Tc superconductors
[for the melting of flux lines, see, e.g., Fig. 8.1(a) in Ref. 33].

FIG. 1. T dependence of the planar structure factor at the first
Bragg peak(left axis) and line-average in-plane rms displacement
of pancake vortices(in units of a0) (right axis) at fixedB. Vertical
arrows locate the discontinuity in both observables, associated with
the first-order melting lineTmsBd. Data using 105 MCS andDT
=0.2 K.
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Despite this fact, a number of simulation results19–21,30have
agreed that the hexatic phase does not occur in high-Tc su-
perconductors.

In addition, by closely observing Figs. 1 and 2(a) we no-
tice that the discontinuity atTmsBd curve obtained using 106

MCS andDT=1 K decreases by<1 K at B=10 T, as com-
pared with the one using 105 MCS andDT=0.2 K, although
the data fluctuation in Fig. 1 is larger due to the smaller
number of MC steps. In contrast, no significant difference
was found in theTmsBd values at lower fields. We thus be-
lieve that in our simulation the vortex configurations have
attained a regime of quasiequilibrium and that the observed
first-order melting transition is a true thermodynamical one.
Moreover, by performing a MC simulation of interacting
pancakes in one single plane using 106 MCS andDT=1 K,
we obtain a field-independent(within numerical accuracy)
temperature of dislocation-mediated 2D melting,43 Tm

2D

.9 K, see Fig. 2(b); as in the 3D vortex system, no evidence
of an hexatic phase was found.

The above results, both in the configurational and mo-
mentum spaces, can be viewed through the evolution withT

of the Delaunay triangulation of the vortex configurations in
an ab plane and the magnitude of their associatedk-space
planar structure factorSskd. Figures 3 and 4 display the dis-
tinct patterns of the solid and liquid vortex phases atB
=10 T. ForT!TmsBd the pancake vortices present very low
mobility and a pattern of regular peaks is clearly observed in
the planar structure factor. AsT approachesTmsBd, the low-
T crystalline Abrikosov lattice becomes more and more dis-
torted by the presence of thermally induced defects, although
the first Bragg peaks can still be distinguished. In such a
case, though defects dominate the lattice, as shown by trian-
gulation, the vortex configuration is still almost static, not
freely switching to energetically similar ones. In contrast,
slightly aboveTmsBd, although the defect landscape looks
similar to the one slightly belowTm (see Fig. 4), the mobility
of the vortices increases considerably, thus allowing ener-
getically similar configurations to be accessed. As a result,
the first Bragg peaks collapse into an almost circular pattern,
as typical of a fully symmetric liquid phase.

FIG. 2. T dependence of the planar structure factor at the first
Bragg peak(open symbols; left axis) and the planar hexatic order
parameter(filled symbols; right axis) at fixedB: (a) 3D LD model,
with inset displaying a close view of the transition atB=10 T; (b)
2D (one layer) pancake vortex system. In both 2D and 3D cases
observables vanish at the melting transitionTmsBd, thus showing no
evidence of a hexatic phase. Data using 106 MCS andDT=1 K
[DT=0.2 K in the inset of(a)].

FIG. 3. From top to bottom: snapshots of part of the 3D vortex
configuration from a top view, Delaunay triangulation of the 64
pancake vortices and its associated planar structure factor at fixed
B=10 T. (a) At T=1 K vortices form an almost defect-free crystal-
line lattice with well defined first Bragg peaks;(b) at T
=50 K.TmsBd the Bragg peaks have vanished in the fully symmet-
ric liquid phase. Scales are the same for both temperatures. Data
taken after 106 MC, usingDT=1 K.
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In Fig. 5 we present data for the correlation lengthjz
along the applied field and close to the melting temperature,
obtained by fitting thez-dependent decay of the structure
factor, averaged over 14 configurations, with the
expression12

Ssk,zd = Ssk,z= 0de−uzu/jz. s18d

For high fields(B=10 and 5 T in Fig. 5) jz changes abruptly
at TmsBd from values larger than the half width of the sample
(due to the periodic boundary condition inz) to values
smaller or, at most, comparable to the distance between two
adjacent layers, i.e.,jz&d. This indicates that in the high-
field regime the flux lattice melts into a decoupled liquid of
pancake vortices. This result contradicts those presented by
Hellerqvist et al.,29 in which measurements of thez-axis
transport in a single BSCCO crystal for fields up to 9 T
suggested that the decoupling of the superconducting CuO2
layers occurs via a continuous crossover in this material, as
also supplemented by MC simulations using the LD model.29

Indeed, as shown in Fig. 4 of Ref. 27, the melting(irrevers-
ibility ) and decoupling processes are clearly associated to
distinct lines, as determined from experiments and MC LD

simulations(e.g., these lines differ over 30 K forH=2 T).
The discrepancies regarding our results may be attributed to
the longer run times and larger samples used in our proce-
dures.

FIG. 4. Same as in Fig. 3 at fixedB=10 T and close to the
melting transition,TmsBdP (18.6 K, 18.8 K). Thesolid flux lattice is
shown highly distorted slightly below the melting line[(a) T
=18.6 K] and destructed just above it[(b) T=18.8 K]. Scales as in
Fig. 3. Data taken after 106 MCS, usingDT=0.2 K.

FIG. 5. T dependence of the correlation length(in units of d)
along the applied field(z axis) at (a) B=10 T, (b) B=5 T, and(c)
B=1 T, presenting discontinuity at the same temperature asTmsBd
(see Figs. 1 and 2), above indicated by an interval. The upper and
lower dashed lines correspond, respectively, to the half width
Lz/2s=32dd of the sample(due to the periodic boundary condition
in z) and to 2d. Data taken after 105 MCS, usingDT=0.2 K, and
averaged over 14 samples.
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For lower fields(B=1 T in Fig. 5), jz aboveTmsBd is
somewhat larger thand, thus indicating a possible crossover,
as B decreases, to a liquid phase of entangled lines with
weak axial correlation or the breaking of the system into an
almost 2D pancake vortex liquid, i.e.,d&jz!Lz.

Figure 6 presents the rms displacement of the vortex lines
in the z direction,

Drz,z0
; Îkfr iszd − r isz0dg2l. s19d

As shown in Fig. 6(a), Drz,z0
sTd also displays discontinuity at

TmsBd, wherez=Lz andz0=Lz/2 were taken due to the peri-
odic boundary condition inz. Figure 6(b) shows the depen-
dence onz of Drz,0 below and above the melting transition.

Notice that the cage confinement, i.e.,Drz,z0
,a0/2, actually

occurs in the solid phase atT,TmsBd. In addition, contrarily
to some recent theoretical suggestions,15 the positionr iszd of
the decoupled pancake vortices, which once constituted a
flux line in the solid phase, is such thatDrz,z0

~ szTd1/2, thus
confirming Nelson’s predictions12 for the random-walk-like
diffusion of melted lines, Eq.(1), and also in agreement with
previous MC results.19,20 However, in very low fields pre-
liminary results do not exclude the occurrence of a disen-
tangled or weakly entangled vortex liquid phase. It is also
worth mentioning that the end-to-end rms displacement
DrLz,Lz/2

is usually associated with line entanglement. In this
sense, forBù1 T the entanglement criterion based on Eq.
(3) is fulfilled at the melting temperature, as indicated by the
arrow in the inset of Fig. 6(a) at B=10 T: Drz,z0

=a0/2.
Another measure of the line entanglement is commonly

given by the winding number,19

v =
1

No
i j
KUo

z

Q„r iszd,r jszd…UL , s20d

averaged over all nearest neighbor lines, which is plotted in
Fig. 7. Here,Q is the angle betweenr i jszd andr i jsz−1d. We
notice that the discontinuity inv is also present atTmsBd for
B.1 T, signaling that lines effectively begin to “entangle”
at the melting transition.

Figure 8 displays the mean distance between two pancake
vortices in the sameab plane which are neighbors in the
solid phase:

Dr i,j ; Îkfr iszd − r jszdg2l. s21d

Below the melting temperature,Dr i,j hardly changes, al-
though thermal defects start to proliferate in the vortex solid
lattice. Even close to the melting transition, with the vortex
lattice heavily distorted by these defects(as seen in Fig. 4),
the mean distance between neighbor lines still remains little
modified. In contrast, such a scenario changes dramatically
aboveTmsBd, where the large fluctuations inDr i,j indicate a

FIG. 6. (a) T dependence of the line-average end-to-end rms.
displacement of vortex lines. ForBù1 T the discontinuity occurs at
TmsBd. Solid lines indicate best fittings toDrLz,Lz/2

2 ~T. The horizon-
talline marks the onset of the regime in which finite size effects are
expected to occur due to the periodic boundary conditions in theab
planes. Data using 105 MCS andDT=0.2 K. Inset: Details of the
transition at B=10 T; the horizontal line indicates the value
DrLz,Lz/2

=a0/2 usually associated to an entanglement criterion. Inset
data using 106 MCS andDT=0.2 K. (b) The average displacements
of the vortex lines in thez direction, atB=10 T, and for tempera-
tures below and above melting:TmsBdP(18.6 K, 18.8 K). Horizon-
tal line,Drz,0=a0/2, marks the saturation value of the average radial
projection of a flux line in the vortex solid state. In the liquid phase,
Drz,0

2 ~z; for larger values ofz, saturation effects occur due to peri-
odic boundary conditions. Data using 106 MCS andDT=0.2 K.

FIG. 7. T dependence of the average winding number of neigh-
bor lines, usually associated with line entanglement. The disconti-
nuity occurs atTmsBd. Data using 105 MCS andDT=0.2 K.
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considerable enhancement of the vortex mobility in the liq-
uid phase.

We have also measured the average number of collisions
between pancakes,nc. A collision between vortices occurs
each time a bead(pancake vortex) makes a trial movement to
a grid unit already occupied by another bead.19 The results
shown in Fig. 9 indicate that effects of cut and reconnection
of lines become relevant only inT.TmsBd and are progres-
sively incremented as the mobility of the pancake vortices
enhances in the liquid phase, in agreement with results found
using both the LD(Ref. 27) and the uniformly frustrated 3D
XY (Ref. 19) models.

Finally, Figs. 10 and 11 displaysH ,Td diagrams of tran-
sition lines obtained with BSCCO samples in three distinct
experimental works.1,3,4 The nature of the transitions above
the low-field first-order transition[TFOTsHd in Fig. 10;
HFOTsTd in Fig. 11] is still controversial. Indeed, by measur-
ing the flux penetration through a sample surface, Fuchset
al.4 first associatedTx in Fig. 10 with a phase boundary char-

acterized by the enhancement of the surface barrier. These
authors also pointed out that the line along which the Bragg
peaks disappear followsTFOT at high temperatures and con-
tinues to follow theTx line in higher fields.44 In addition,
based on a previous study using very low doses of columnar
defects,45 they mentioned that the vortex matter loses its
shear modulus along theTFOT line, rather than along theTx
line. From these considerations, the authors concluded that
Tx is the melting line of a supersolid phase, although it re-
mained to be determined which of the lines reflect thermo-
dynamic phase transitions. On the other hand, Shibauchiet
al.3 extended these studies by using a sample-moving mag-
netization technique, from which they detected an anomaly
in the magnetization curve, which was associated toTx. By
using Josephson plasma resonance to investigate the inter-

FIG. 8. T dependence at fixedB of the mean distance between
two pancake vortices in the sameab plane which are neighbors in
the solid phase, showing the considerable enhancement of their mo-
bility in the liquid phase forT.TmsBd. Data using 106 MCS and
DT=1 K.

FIG. 9. T dependence of the average number of collisions be-
tween pancake vortices per line, associated with the emergence of
cut and reconnection line processes. The onset above whichnc be-
comes finite coincides withTmsBd. Data using 105 MCS andDT
=0.2 K.

FIG. 10. Melting transition temperatures in high and intermedi-
ate fields using 105 MCS andDT=1 K (Tm, full circles), and phase
diagram of BSCCO obtained by two independent experimental
works, as in Ref. 3: samples A and B measured by Shibauchiet al.3

sample C by Fuchset al.4 TFOT is the low-field first-order transition
temperature;Hsp marks the second peak in the magnetization curve;
Tx is associated to the melting of a supersolid phase or to a surface-
barrier related transition.

FIG. 11. Phase diagram of BSCCO as in Ref. 1:HFOTsTd is the
low-field first-order transition;HsTmind is a melting transition line;
HsTp2d is a decoupling line;HsTmaxd is the line whereHsTp2d and
HsTp1d merge in high fields;Tp1sHd,T,Tp2sHd is the interval
where the “peak effect” is expected to occur.
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layer phase coherence, these authors observed that, for fields
above theTFOT line, their measurements were consistent with
the theoretical calculations46 assuming the decoupled pan-
cake liquid state. Further, at theTx line they found no
anomaly in the interlayer phase coherence. Therefore they
concluded that the vortex decoupling does not occur atTx,
but, instead,Tx could be associated to the melting of a su-
persolid phase or to a surface-barrier related transition, al-
though no clear-cut thermodynamic phase transition has been
found. Finally, very recently, Torreset al.1 measured the non-
local in-plane resistance originated from transverse vortex-
vortex correlations and associatedHsTmind to a theoretical
3D melting line13,47,48 and HsTp2d to the thermally induced
3D-2D vortex liquid decoupling transition in the vicinity of
Tc (Ref. 49) (see Fig. 11). They also argue that the vortex
pinning efficiency is enhanced in the interval
Tp1sHd,T,Tp2 and that, forH.0.5 T, the linesHsTp1d
and HsTp2d start to merge, whereas forH.2 T, a single
transition in the vortex matter takes place atHsTmaxd, as seen
in Fig. 11. From these studies, the authors concluded that a
rigid vortex lattice exists for fields above theTFOT line, over
a wide region in thesH ,Td phase diagram. In addition, in the
intermediate field regimes0.05&H&0.5 Td they found evi-
dence for the vortex lattice melting and vortex liquid decou-
pling phase transitions, whereas in high fieldssH*2 Td a
vortex lattice melting-decoupling transition is supported by
their measurements. These results1,3,4 corroborate early
studies50 on the vortex lattice melting line in BSCCO.

Figure 10 also includes our MC data onTmsBd, which
suggests that the high-field line aboveTFOT (Refs. 3 and 4)
may indeed be associated with a strong melting-decoupling
transition[jz&d aboveTmsBd, for B.1 T, as seen in Fig. 5].
For intermediate fields(0.1,B,1 T), the vortex system ex-
hibits a weaker first-order melting transition. These consid-
erations(see also discussion related to results of Fig. 5) agree
with the argument by Torreset al.,1 which associated the
high-field transition line to the merging of the 3D melting
line and the 3D-2D vortex liquid decoupling transition. A
better agreement between our MC results and the experimen-
tal ones is expected by using a suitable choice of parameters,
although the low-field regime(in particular theTFOT line) is
outside the scope of our reported numerical simulations of a
disorder-free system.

IV. CONCLUSIONS

We have performed extensive Monte Carlo simulations of
clean strongly anisotropic BSCCO samples using the
Lawrence-Doniach line model, which proved suitable to de-
scribe layered high-Tc superconducting oxides. In such

strongly anisotropic compounds the nonuniformities of the
magnetic induction become relevant, which makes the de-
scription through the 3D frustratedXY model less adequate.
We have found first-order melting transitions in the interme-
diate and high-field regimes(0.1øBø10 T), as indicated by
the presence of discontinuity in the amplitude of the first
Bragg peak of the planar density-density correlation func-
tion, the rms deviation of a pancake vortice, the rms devia-
tion of the in-plane distance between pancake vortices, and
in the hexatic order parameter. Contrary to early investiga-
tions by Ryuet al.27 using the LD model, with smaller size
systems and shorter MC running times, no clear indication of
an hexatic phase was found, even in the single-layer limit.
Discontinuities at the same melting temperature and field
range have also been found in the winding number and the
rms end-to-end line displacement, observables typically as-
sociated with line entanglement. In particular, in intermediate
and high fields, our results on the end-to-end displacement
have confirmed Nelson’s predictions12 for the random-walk-
like diffusion of melted lines, as well as the cage confine-
ment in the solid phase. In high fields, although previous
results by Hellerqvistet al.29 using the LD model suggest
that decoupling of the superconducting CuO2 layers occurs
via a continuous crossover in this material, our results indi-
cate a vortex lattice first-order melting-decoupling transition
[jz&d above TmsBd], corroborating early results on plane
decoupling along the melting line found inXY model
simulations20,46 and elastic vortex theory,43,49 and also in
agreement with recent experimental observations in
BSCCO.1 Therefore we have found no entangled liquid
phase in high fields.7,12

In conclusion, our results thus suggest that the LD model,
as implemented in this work, may provide a quite reliable
description of strongly anisotropic high-Tc superconducting
materials. In fact, there are some similarities for the scenario
in high magnetic fields using two different approaches,
namely theXY and LD line models. Since they are based on
distinct dominant mechanisms, these similarities require
deeper physical interpretation. These results have stimulated
us to pursue new applications of the method, under current
investigation, in particular the behavior of the vortex matter
in the presence of columnar disorder.51
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