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Topological aspects of dual superconductors
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We discuss topological aspects of two-gap superconductors with and without Josephson coupling between
gaps. We address nontrivial topological aspects of the dual superconductors and its connections to the Meissner
effect and flux quantization. The topological knotted string geometry is also discussed in terms of the Hopf
invariant, curvature, and torsion of the strings associated witt) ¥)U(1) gauge group.
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I. INTRODUCTION two-flavor Ginzburg-Landau theory whose free energy den-

There have been considerable attempts to understand cofity IS given by
densed matter phenomenology in terms of topological con-
figurations inherited from knot structur&s. The geometry

of knotted solitons was studied to show that the total linking ~_ 1 |[(fA_  2e: 2 1 |(h_ 2e- 2

. > . F= -V + —A|¥, -V - —A|VP,
numbers during the soliton interactions are presetvadd 2my |\ i c 2mp |\ i c
the anomaly structure of the fermions in a knotted soliton 1
background was shown to be related to the inherent chiral | = g2, \/, PV, + Uy, (2.1
properties of the solitofi.Moreover, the curvature and tor- 8

sion of a bosonic string in 3+1 dimensions were
investigated to be employed as Hamiltonian variables in a
two-dimensional Ginzburg-Landau gauge field thétinter- ~ whereW; and ¥, are order parameters for Cooper pairs of
actions of vortices were also investigatétiin the Ginzburg-  two different flavors andV is a potential of the form
Landau theory. In two and three dimensions, the crossoveV(|W; 52)=—b,|¥ |2+ 3c,|¥,/* (a=1,2) (Refs. 2 and L4
from weak- to strong-coupling superconductivities was studHere we introducey which is a characteristic of the inter-
ied to figure out their thermodynamiésQuite recently, the band Josephson coupling strength'® In the case ofp=0
SU(2) Yang-Mills theory was studied to investigate a sym-vanishing Josephson coupling, we can describe the liquid
metry between electric and magnetic variablesd also to  metallic hydrogen which should allow coexistent supercon-
discuss the two-band superconductors with interband JosepHuctivity of protonic and electronic Cooper patfs?®More-
son coupling$3-160n the other hand, many experiments andover, the interband Josephson coupling merely changes the
ab initio calculations show two-band superconductivity in energy of the knot associated with the two-band supercon-
MgB,—for instance, as in Refs. 17 and 18. The photoemisductors. The two condensates are then characterized by dif-
sion spectroscopy of the superconductor Nb8wlicates ferent effective massesm,, coherence lengthsé,
also two-band superconductivity associated with Fermi=#/(2m,b,)*? and densitieg|¥ |?)=b,/c,.
surface sheet-dependent superconductivity in this multiband We then introduce fieldp andz, defined as
system'® Also theoretical studies indicate the possibility of
two-gap superconductivity without an intrinsic Josephson ef-
fect in liquid metallic hydrogen, deuterium, and hydrogen ¥, =(2m,)Y%pz,, (2.2)
alloys under extreme pressurés?3

In this paper we will investigate the two-gap supercon-
ductors by exploiting the two-flavor Ginzburg-Landau where the modulus field is given by the condensate densi-
theory, where we study the magnetic flux quantization ofties and masseg?=(1/2m,)|¥,|?+(1/2m,)|¥,|?, and the
two-gap superconductors. We will explicitly evaluate the CP' complex fieldsz, are chosen to satisfy the geometrical
London penetration depth and the Meissner and Josephs@onstraint
effects to obtain the nontrivial topological aspects of the two-
gap superconductors. The knotted geometry will also be dis-
cussed in the framework of the bosonic strings. Z72,= |z +|22=1. (2.3

Il. MODEL FOR TWO-GAP SUPERCONDUCTORS

Now, in order to describe the two-band superconductor$n the two-gap superconductors, the gauge-invariant super-
with interband Josephson couplifgl® we start with the current is given by
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(2.9

which can be rewritten in terms of the fielgsand z, as
follows:

> - de -
J=-1eg 2<c+—A), 2.5
0 P (2.5

where

C=i(VZ'z-Z'V) =iV -4V 21~ 2,V 2+ 2,V 2,),

(2.6)

with z=(z,,2,).

Since theCP! model is equivalent to the @) nonlinear
sigma modet* (NLSM) at the canonical level, one can intro-
duce the dynamical physical fielag (a=1,2,3 which are
mappings from the space-time manifglor the direct prod-
uct of a compact two-dimensional Riemann surfateand

time dimensionR?) to the two-sphereS—namely, n,:M?

®R!— S, On the other hand, the dynamical physical fields
of the CP* model arez, which map the spacetime manifold
z,:M?®R'— S, SinceS® is ho-
meomorphic to the S(2) group manifold and th€P* model

namely,
is invariant under a local (1) gauge symmetry,

z— 4%,

(2.7

for arbitrary space-time-dependefifRef. 25, the physical
configuration space of th€P' model is that of the gauge
orbits which form the cose®’/S'=S*=CP". In order to as-
sociate the physical fields of ti@P* model with those of the

O(3) NLSM, we exploit the projection fromS® to
S—namely, the Hopf bundf&2¢

n,=2z'o,z, (2.9

with the Pauli matricesr, and then, fields satisfying the
geometrical constraim,n,=1—to yield the free energy

1 1-
F=hA(Vp)2+ S h?pA(Vng?+ N —52 +V+Kpny,

e22

PHYSICAL REVIEW B70, 134511(2004)

Ill. MEISSNER EFFECTS

Now, we discuss the Meissner effect in the two-flavor
topological NLSM, where the magnetic fieRlis expressed
in terms of the fieldgp, n,, andS

hc

- - -1
B=V ><A:—4—e<V ><S+§eabmaan>< Vnc>.

(3.1

Combining Egs.(2.5 and (3.1) and the identitnyé
:%eabcnaanx Vn.,, we obtain the two-gap equation in
terms of thep andn, fields,

- 4e he
VXJ=——pZB+ VpXJ—?P €abdla V Np X Vg,

(3.2

Which can also be rewritten in terms of the vector fields
S v ><S—( 4e/ﬁc)B eab(paanX Vn.. Note that in the
two-gap equation(3.2) there exists topological contribution
proportional toe,, N,V Ny X Vi, which originates from inter-
actions of Cooper pairs of two different flavors.

Next, we consider the Meissner efféctand the corre-
sponding London penetration depth in the two-gap supercon-
ductor where the Maxwell equation realis< B=(4/c)J.
Here the rate of time variation is assumed to be so slow that
the displacement current can be ignored. Combining the
above Maxwell equation with the two-gap equat{@rR), we

arrive at the two-gap equations fdrand B:

,:_ (16m€® 2_, > 8¢ -
val= —Vp——(Vp J+Tpr><B

2 - 2 -
+E(VP'J)VP+;[(VP' V)I-(J-V)Vp]

he ,
+?P V X (€apda V Ny X V)

+h1ep V p X (€apdla V Np X Vo),

20 1671'e2 8 87 2mhe
VB= 2 P’ —C—pr J+ P €apdla V Ny
X Vne. (3.3

Note that the spatial variation of the order parameter magni-
tude Vp couples the) andB field equations. From Eq3.3),

where K=27(mymy)¥2. Introducing gauge-invariant vector we can investigate the two-gap Meissner effect at low tem-

fields S in terms of the supercurreni in Eq. (2.9, S

:(1/ﬁep2)3, one can arrive at the free energy density of the
form

2-2

1287¢€?

1 >,
F=#4Vp)?+ Zﬁzpz[(v ny?+ S+

-1 2
X(V X S+ Eeab(nav Ny X Vnc) +V+Kpn,.

peratureT <T, as below.

At low temperatureT<T, where the order parameter
magnitudep varies only very slightly over the supercon-
ductor, we obtainV X J=-(4€?/c)p’B-(fiel 2) p?€,p 1,V Ny,

X Vn,, so that we can arrive at the decoupled equations for

the J andB:

164762 fie

V2= P2+ ?p2v X (€513 V Ny X VN,
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16me® ,-  2whe

VB = 2 pB+

pPPenda VN, X V.. (3.4

Here note that we have the topological contribution with

€.pd.V Np X V.. The equation foB in Eq. (3.4) then yields
the two-gap London penetration depth
m,c?

i ( )1/2(1 . m1n25>‘1’2’
47e’nyq MyNye

where the superfluid densities are given byn,=2|¥ |?
(Ref. 28. Here, we have derived the quantityin Eg. (3.5
in London limit when |¥ |=const and thuse,,,Vny

(3.5

PHYSICAL REVIEW7B, 134511(2004)

IV. FLUX QUANTIZATION AND JOSEPHSON EFFECTS

Now, we consider the magnetic flux quantization of the
two-gap superconductors to discuss interspecies Cooper pair
tunneling—namely, the Josephson effe€t§Ve consider a
two-gap superconductor in the shape of a cylinderlike ring
where there exists a cavity inside the inner radius. In order to
evaluate the magnetic flux inside the two-gap supercon-
ductor, we embed within the interior of the superconducting
material a contour encircling the cavity. Since at low tem-
peratureT <T. appreciable supercurrents can flow only near
the surface of the superconductor and the order parameter
magnitudep vary only very slightly over the two-gap super-

X Vn,=0. Note that the two-gap surface supercurrentsonductor, integration of the supercurrdrin Eq. (2.5) over
screen out the applied field to yield the two-gap Meissnem contour vanishes to arrive at the magnetic fllix $A
effect. Moreover, the two-gap London penetration depth incarried by vortex of the superconductor. On the other hand,
Eq. (3.5 is reduced to the single-gap London penetrationto explicitly evaluate the phase effects of the two-gap super-

depth(3.7) below in the one-flavor limit withny,s=0.

Next, we consider the nontopological one-flavor limit

with ny,s=0 andV x C=0. In this limit, Eqs.(3.2) and(3.3)
are reduced to the form

- n- 1 -
VXJ=-—SB+— VX J,
m,C Nis
- [4n€? 1 1 - & -
VZ\] = (LGls'l' _Vznls_ _z(ans)z)‘] + — V nlS X B
m,;C Nqg nls m,C

1 R R
+ 2—2[(Vn15 D) Vi + Ving(J- V)ng]
1s

1 .
+—[(Vny- V)I-Q- V) V],
N1

4m€? - Ax -
B——ansXJ.

— 3.6
myC Chyg (3.6

Note that in the more restricted low temperature lifrit T,
we have the well-known single-gap equatiorigXxJ
=—(e’ng/mc)B,  VAI=(4m&?/mc?n,J, and V2B

= (4me?/myc®)n, B, which yield the single-gap London pen-

etration deptf?
m,c?

1/2 rs 3/2 ne 1/2
A_<47Teznls> _41'€<a_0> <n_1s) A G

wherer,=(3/4mny)*3, a, is the Bohr radius, and, is the
total electron density given bg.=n;,+n; with the normal
(superfluid electron densityn;, (Nyg).

Exploiting the relation in Eq(3.7), we can rewrite the
two-gap London penetration deptB.5) as

r 3/2 n 1/2 mn -1/2
A:41.€<—S) (—e> 1+—2) A. (3.9
dp Ny MyNyg

Note that, in the two-gap London penetration deg3tB),

with respect to the single-gap case we have more degrees of

freedom associated with the physical parameterand nyg

conductor, we parametrize tlzg fields as follows:

: . 6 . . 0
7 =|z|€% =% cos,, 2= |z,|€/?2= €2 sin >

(4.2

to satisfy the constrain®.3). After some algebra, we obtain

622(|21|2V 112V ¢). (4.2)

Here note that even though there exist® @adependence of
2,VZ,-7,Vz, (a=1,2) in each flavor channel, these contri-

butions toC cancel each other to yield vanishing overall
effects. Since the order parametérg are single valued in
each flavor channel, their corresponding phases should vary
27 times integersp, when the ring is encircled, to yield

¢V b, d= 21p, so that we can obtain

5€ C = (2P 2. @3

Exploiting Eq.(4.3), we arrive at
|®| = (|22f*p1 -~ [22°P2) Do,

which is also written in terms of tha, fields to yield the
fractional magnetic flux quantized with the vortex of the
two-gap superconductors:

D] :%(pl_ P2+ (p1 + P2)na) Do, (4.4

with the fluxoid®,=hc/2e=2.0679x 10"’ G cn?. Here note

that the interband Josephson coupling does not change the
flux quantization since its role converts circularly symmetric
vortex to a two-dimensional sine-Gordon vortéx> To in-
vestigate the physical meaning of the magnetic {dwd) for

the two-gap superconductor, we consider a particular case of
p;=p,=1. In this case, we can find the magnetic flux carried
by the vortex in terms of the angke

|®| = ng®y = P, cos¥,

which shows that such a vortex can possess an arbitrary frac-

to adjust theoretical predictions to experimental data for the¢ion of a magnetic flux quantum sind®| depends on the

London penetration depth.

parameter co8 measuring the relative densities of the two
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condensates in the superconductor as shown in(&£4). 1

Moreover, in the case qf;=—p,, the magnetic flux4.4) is G= 5 Sin 6dp 0deé.

reduced to the well-known single-gap magnetic flux quanti-

zation, |®|=p,®,, where we can readily find=0 to yield The Hopf invariantQy is then given by

|z;/=1 and|z,|=0. Note that, exploiting the above identity 1 1

4.2,V xJin Eq. (3.6) can be also rewritten in terms of the Qu= 8.2 f HOC= ﬁj sin 6da OdB O d6.

phase ¢, as V x J=—(€2n,/mc)B—(he/2my) VX V ¢,

~(€¢/mc) Vi XA, where we have the explicit phase- Note that if there exists a nonvanishing Hopf invariant, the

dependent term. bundle of two strings forms a knot so that the flat connection
da cannot be removed through the gauge transformation

V. KNOTTED STRING GEOMETRY (5.4).

. . . . Next, to figure out the knot structure more geometrically
Now, we consider bosonic string knot geometry associ-

ated with the two-gap superconductors. It is shown to be avﬂvi(;zjlstngglcgl/ eiiz)nv%:]]:?:g (Ij: gi:é;hggoé??é i))azfddefmed by 2

equivalence between the two-flavor Ginzburg-Landau theory
and a version of the @) NLSM introduced in Ref. 31. & =(cospcos6,- sinBcosd,-siné), & = (sin B,cosB,0).
Moreover, the model in Ref. 31 describes topological excita- . ) . L
tions in the form of stable, finite-length knotted closed Using this orthonormal basis, we define wigh=6,+i€; a
vortices? to lead to an effective string theotyThis equiva- ~ Curvature and a torsion:
lence can thus imply that the two-gap superconductors simi- 1
larly support topologically nontrivial, knotted solitons. K==
In order to investigate the stringy features of the two- 2
flavor Ginzburg-Landau theory, we recall that in the Hopf _
bundle (2.8), n, remains invariant under the () gauge _ . 5 _ _
transformation2.7). Exploiting the parametrizatiof#.1), n, = 5e (dh +1d12)€, = COS0 5= dier.
can be rewritten in terms of the anglésand B= ¢, + ¢s:

.1 : :
ei“éi -gn= E +a(_ Sin 69,8+ |(7i0),

Here one can readily check that the curvatufeand the
n=(cospBsin #,— sinB sin #,cos6). (5.1)  torsion 7, are invariant under the () X U(1) gauge trans-

. _ formations defined by Eq$2.7) and(5.2) and also they are
Note thain, is independent of the angte= ¢, - ¢, so thata not independent to yield flatness relations between them:

can be considered as a coordinate generalization of param-
eters of the string coordinateg(s) € R3, which describe the dr+2ik Ok =0, df+ir0x*=0.

knot structure involved in our two-gap superconductor. In

fact, the knot theory in the two-gap superconductor can p&lere we emphasize that the knotted stringy str_uctures of the
constructed in terms of a bundle of two strings. Moreover,two'gap superconductors are constructed only in terms of the

the U1) gauge transformatio(®.7) is related with the angle CP' complex fieldsz, in the order parameterd’, in Eq.
a in such a way that (2.2), since the modulus field associated with the conden-

sate densities does not play a central role in the geometrical
a—at§, (5.2 arguments involved in the topological knots of the system.

to yield reparametrization invarianse-3(s).
In order to evaluate the Hopf invariant associated with the VI. CONCLUSIONS
knot structure of the two-gap superconductor, we substitute

Eq. (4.1) into Eq.(2.6) to obtain We have studied the current equations in two-gap super-

conductor to yield the nontrivial topological aspects and dis-

C=cos6dB + de, (5.9)  cussed its relationship to Meissner effects. We have also dis-
cussed the knotted string geometry in terms of the Hopf

invariant, curvature and torsion of the strings associated with
U(1) X U(1) gauge group.

which is also attainable from E@4.2). Note thatC in Eg.
(5.3 transforms under Eq2.7) as

C—cosadB+d(a+¢), (5.9

so thatC can be identified as the () gauge field and its ACKNOWLEDGMENTS
fexterlor ?her|¥at|ve Eroggces the pull-back of the area two- . \ork of AJN. is supported by Grant No. VR-2003-
orm on the two-sphers:, 3466. S.T.H. would like to thank the Institute for Theoretical
1. . Physics at the Uppsala University for the warm hospitality
H=dC= SN dnOdn=singdp Udo, during his stay and to acknowledge financial support in part
from Korea Science and Engineering Foundation Grant No.
and the corresponding dual one—foﬁ]r%eiijjk, which can  R01-2000-00015. The authors thank Egor Babaev for helpful
be rewritten in terms of the angleésand j3: discussions.

134511-4



TOPOLOGICAL ASPECTS OF DUAL SUPERCONDUCTORS PHYSICAL REVIEW7B, 134511(2004)

*Electronic address: soonhong@ewha.ac.kr (200Y.
Electronic address: niemi@teorfys.uu.se 18F Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jor-
iA-J- Niemi, Phys. Rev. D61, 125006(2000. gensen, Phys. Rev. Let87, 047001(2001).
E. Babaev, L.D. Faddeev, and A.J. Niemi, Phys. Rev6R 19T, Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara, and H.
100512(2002). Takagi, Science294, 2518(2002).

3
E. Babaev, Phys. Rev. Let88, 177002(2002. 20N.W. Ashcroft, J. Phys.: Condens. Mattég, A129 (2000

4 L
L. Freyhult and A.J. Niemi, Phys. Lett. B57, 121(2002. 21N.W. Ashcroft, Phys. Rev. Lett92, 187002(2004.

SE. Babaev, Phys. Rev. 0, 043001(2004). 2 h | ' q li
6For other examples of topologically nontrivial condensed matter S.A. Bonev, E. SC, wegler, T. Ogitsu, and G. Galli, Nat(iran-
don) (to be publishey E. Babaev, A. Sudbo, and N.W. Ash-

systems see G.E. VolovikThe Universe in a Helium Droplet

(Clarendon Press, Oxford, 2003 croft, ibid. 431, 666 (2004.

AL, Niemi, Phys. Rev. D67, 106004(2003. 23K, Moulopoulos and N.W. Ashcroft, Phys. Rev. Let6, 2915
8V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fi20, 1064 (1997).

(1950). 24M. Bowick, D. Karabali, and L.C.R. Wijewardhana, Nucl. Phys.
9A.A. Abrikosov, Sov. Phys. JETR, 1174(195%. B 271, 417(1986; S.T. Hong, W.T. Kim, and Y.J. Park, Phys.
10, Babaev, Phys. Rev. B3, 172502(2001); Nucl. Phys. B686, Rev. D 60, 125005(1999.

397 (2004. 25E. Witten, Nucl. Phys. B149, 285 (1979.

11E. Babaev and H. Kleinert, Phys. Rev. B, 12083(1999; E. 26A. D’'Adda, P. DiVecchia, and M. Luscher, Nucl. Phys. 552,
Babaev,ibid. 63, 184514(2001); J. Smiseth, E. Smorgrav, and 125(1979.

A. Sudbo, Phys. Rev. Lett93, 077002(2004). 2I\W. Meissner and R. Ochsenfeld, Naturwissenschaftdn 787
12|, Faddeev and A.J. Niemi, Phys. Lett. B25, 195(2002. (1933.
13A.J. Leggett, Prog. Theor. Phy86, 901 (1966). 28N.W. Ashcroft and N.D. MerminSolid State Physio@Holt, Rine-
14E. Babaev, Phys. Rev. Lett89, 067001 (2002; cond-mat/ hart and Winston, New York, 1976

0201488(unpublishegl 29F. London and H. London, Proc. R. Soc. London, Serl49, 71
15E, Babaev, Nucl. Phys. B86, 397 (2004). (1935; F. London,SuperfluidgWiley, New York, 1954, Vol. 1.
16A. Niemi, J. High Energy Phys08, 035(2004). 30B.D. Josephson, Phys. Lett, 251(1962.

173. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J'L.D. Faddeev, Quantisation of Solitogsnpublishegl
Akimitsu, Nature(London) 410, 63 (2001); W.N. Kang, H.J.  %2L.D. Faddeev and A.J. Niemi, Natuteondorn) 387, 58 (1997.
Kim, E.M. Choi, C.U. Jung, and S.l. Lee, Scien@92 1521 333, Nasir and A.J. Niemi, Mod. Phys. Lett. A7, 1445(2002.

134511-5



