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We discuss topological aspects of two-gap superconductors with and without Josephson coupling between
gaps. We address nontrivial topological aspects of the dual superconductors and its connections to the Meissner
effect and flux quantization. The topological knotted string geometry is also discussed in terms of the Hopf
invariant, curvature, and torsion of the strings associated with Us1d3Us1d gauge group.
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I. INTRODUCTION

There have been considerable attempts to understand con-
densed matter phenomenology in terms of topological con-
figurations inherited from knot structures.1–6 The geometry
of knotted solitons was studied to show that the total linking
numbers during the soliton interactions are preserved,1 and
the anomaly structure of the fermions in a knotted soliton
background was shown to be related to the inherent chiral
properties of the soliton.4 Moreover, the curvature and tor-
sion of a bosonic string in 3+1 dimensions were
investigated7 to be employed as Hamiltonian variables in a
two-dimensional Ginzburg-Landau gauge field theory.8 Inter-
actions of vortices were also investigated9,10 in the Ginzburg-
Landau theory. In two and three dimensions, the crossover
from weak- to strong-coupling superconductivities was stud-
ied to figure out their thermodynamics.11 Quite recently, the
SU(2) Yang-Mills theory was studied to investigate a sym-
metry between electric and magnetic variables12 and also to
discuss the two-band superconductors with interband Joseph-
son couplings.13–16On the other hand, many experiments and
ab initio calculations show two-band superconductivity in
MgB2—for instance, as in Refs. 17 and 18. The photoemis-
sion spectroscopy of the superconductor NbSe2 indicates
also two-band superconductivity associated with Fermi-
surface sheet-dependent superconductivity in this multiband
system.19 Also theoretical studies indicate the possibility of
two-gap superconductivity without an intrinsic Josephson ef-
fect in liquid metallic hydrogen, deuterium, and hydrogen
alloys under extreme pressures.20–23

In this paper we will investigate the two-gap supercon-
ductors by exploiting the two-flavor Ginzburg-Landau
theory, where we study the magnetic flux quantization of
two-gap superconductors. We will explicitly evaluate the
London penetration depth and the Meissner and Josephson
effects to obtain the nontrivial topological aspects of the two-
gap superconductors. The knotted geometry will also be dis-
cussed in the framework of the bosonic strings.

II. MODEL FOR TWO-GAP SUPERCONDUCTORS

Now, in order to describe the two-band superconductors
with interband Josephson coupling,13–16 we start with the

two-flavor Ginzburg-Landau theory whose free energy den-
sity is given by
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whereC1 and C2 are order parameters for Cooper pairs of
two different flavors andV is a potential of the form
VsuC1,2u2d=−bauCau2+ 1

2cauCau4 sa=1,2d (Refs. 2 and 14).
Here we introduceh which is a characteristic of the inter-
band Josephson coupling strength.13–16 In the case ofh=0
vanishing Josephson coupling, we can describe the liquid
metallic hydrogen which should allow coexistent supercon-
ductivity of protonic and electronic Cooper pairs.20–23More-
over, the interband Josephson coupling merely changes the
energy of the knot associated with the two-band supercon-
ductors. The two condensates are then characterized by dif-
ferent effective massesma, coherence lengthsja

=" / s2mabad1/2, and densitieskuCau2l=ba /ca.
We then introduce fieldsr andza defined as

Ca = s2mad1/2rza, s2.2d

where the modulus fieldr is given by the condensate densi-
ties and masses,r2=s1/2m1duC1u2+s1/2m2duC2u2, and the
CP1 complex fieldsza are chosen to satisfy the geometrical
constraint

za
* za = uz1u2 + uz2u2 = 1. s2.3d

In the two-gap superconductors, the gauge-invariant super-
current is given by2
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which can be rewritten in terms of the fieldsr and za as
follows:

JW = − "er2SCW +
4e

"c
AWD , s2.5d

where

CW = is¹z†z− z† ¹ zd = isz1 ¹ z1
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* + z2

* ¹ z2d,

s2.6d

with z=sz1,z2
*d.

Since theCP1 model is equivalent to the O(3) nonlinear
sigma model24 (NLSM) at the canonical level, one can intro-
duce the dynamical physical fieldsna sa=1,2,3d which are
mappings from the space-time manifold(or the direct prod-
uct of a compact two-dimensional Riemann surfaceM2 and
time dimensionR1) to the two-sphereS2—namely, na:M2

^ R1→S2. On the other hand, the dynamical physical fields
of the CP1 model areza which map the spacetime manifold
M2 ^ R1 into S3—namely,za :M2 ^ R1→S3. SinceS3 is ho-
meomorphic to the SU(2) group manifold and theCP1 model
is invariant under a local U(1) gauge symmetry,

z→ eij/2z, s2.7d

for arbitrary space-time-dependentj (Ref. 25), the physical
configuration space of theCP1 model is that of the gauge
orbits which form the cosetS3/S1=S2=CP1. In order to as-
sociate the physical fields of theCP1 model with those of the
O(3) NLSM, we exploit the projection fromS3 to
S2—namely, the Hopf bundle25,26

na = z†saz, s2.8d

with the Pauli matricessa and thena fields satisfying the
geometrical constraintnana=1—to yield the free energy

F = "2s¹rd2 +
1
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where K=2hsm1m2d1/2. Introducing gauge-invariant vector

fields SW in terms of the supercurrentJW in Eq. (2.4), SW

=s1/"er2dJW, one can arrive at the free energy density of the
form
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III. MEISSNER EFFECTS

Now, we discuss the Meissner effect in the two-flavor

topological NLSM, where the magnetic fieldBW is expressed

in terms of the fieldsr, na, andSW:

BW = ¹ 3 AW = −
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Combining Eqs.(2.5) and (3.1) and the identity¹3CW

= 1
2eabcna¹nb3 ¹nc, we obtain the two-gap equation in

terms of ther andna fields,
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which can also be rewritten in terms of the vector fields

SW : ¹ 3SW =s−4e/"cdBW − 1
2eabcna¹nb3 ¹nc. Note that in the

two-gap equation(3.2) there exists topological contribution
proportional toeabcna¹nb3 ¹nc which originates from inter-
actions of Cooper pairs of two different flavors.

Next, we consider the Meissner effect27 and the corre-
sponding London penetration depth in the two-gap supercon-

ductor where the Maxwell equation reads¹3BW =s4p /cdJW.
Here the rate of time variation is assumed to be so slow that
the displacement current can be ignored. Combining the
above Maxwell equation with the two-gap equation(3.2), we

arrive at the two-gap equations forJW andBW :
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Note that the spatial variation of the order parameter magni-

tude¹r couples theJW andBW field equations. From Eq.(3.3),
we can investigate the two-gap Meissner effect at low tem-
peratureT,Tc as below.

At low temperatureT,Tc where the order parameter
magnituder varies only very slightly over the supercon-

ductor, we obtain¹3JW =−s4e2/cdr2BW −s"e/2dr2eabcna¹nb

3 ¹nc, so that we can arrive at the decoupled equations for

the JW andBW :

¹2JW =
16pe2

c2 r2JW +
"e

2
r2 ¹ 3 seabcna ¹ nb 3 ¹ ncd,
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¹2BW =
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Here note that we have the topological contribution with

eabcna¹nb3 ¹nc. The equation forBW in Eq. (3.4) then yields
the two-gap London penetration depth

L = S m1c
2

4pe2n1s
D1/2S1 +

m1n2s

m2n1s
D−1/2

, s3.5d

where the superfluid densitiesnas are given bynas=2uCau2
(Ref. 28). Here, we have derived the quantityL in Eq. (3.5)
in London limit when uCau=const and thuseabcna¹nb
3 ¹nc=0. Note that the two-gap surface supercurrents
screen out the applied field to yield the two-gap Meissner
effect. Moreover, the two-gap London penetration depth in
Eq. (3.5) is reduced to the single-gap London penetration
depth(3.7) below in the one-flavor limit withn2s=0.

Next, we consider the nontopological one-flavor limit

with n2s=0 and¹3CW =0. In this limit, Eqs.(3.2) and (3.3)
are reduced to the form
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Note that in the more restricted low temperature limitT,Tc,

we have the well-known single-gap equations¹3JW

=−se2n1s/m1cdBW , ¹2JW =s4pe2/m1c
2dn1sJW, and ¹2BW

=s4pe2/m1c
2dn1sBW , which yield the single-gap London pen-

etration depth29
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D1/2
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where rs=s3/4pned1/3, a0 is the Bohr radius, andne is the
total electron density given byne=n1n+n1s with the normal
(superfluid) electron densityn1n sn1sd.

Exploiting the relation in Eq.(3.7), we can rewrite the
two-gap London penetration depth(3.5) as

L = 41.9S rs

a0
D3/2S ne

n1s
D1/2S1 +

m1n2s

m2n1s
D−1/2

Å. s3.8d

Note that, in the two-gap London penetration depth(3.8),
with respect to the single-gap case we have more degrees of
freedom associated with the physical parametersm2 andn2s
to adjust theoretical predictions to experimental data for the
London penetration depth.

IV. FLUX QUANTIZATION AND JOSEPHSON EFFECTS

Now, we consider the magnetic flux quantization of the
two-gap superconductors to discuss interspecies Cooper pair
tunneling—namely, the Josephson effects.30 We consider a
two-gap superconductor in the shape of a cylinderlike ring
where there exists a cavity inside the inner radius. In order to
evaluate the magnetic flux inside the two-gap supercon-
ductor, we embed within the interior of the superconducting
material a contour encircling the cavity. Since at low tem-
peratureT,Tc appreciable supercurrents can flow only near
the surface of the superconductor and the order parameter
magnituder vary only very slightly over the two-gap super-

conductor, integration of the supercurrentJW in Eq. (2.5) over
a contour vanishes to arrive at the magnetic fluxF= rA
carried by vortex of the superconductor. On the other hand,
to explicitly evaluate the phase effects of the two-gap super-
conductor, we parametrize theza fields as follows:

z1 = uz1ueif1 = eif1 cos
u

2
, z2 = uz2ueif2 = eif2 sin

u

2

s4.1d

to satisfy the constraint(2.3). After some algebra, we obtain

CW = 2suz1u2 ¹ f1 − uz2u2 ¹ f2d. s4.2d

Here note that even though there exists a¹u dependence of
za¹za

* −za
* ¹za sa=1,2d in each flavor channel, these contri-

butions to CW cancel each other to yield vanishing overall
effects. Since the order parametersCa are single valued in
each flavor channel, their corresponding phases should vary
2p times integerspa when the ring is encircled, to yield

r¹fa ·dlW=2ppa so that we can obtain

R C = 4psuz1u2p1 − uz2u2p2d. s4.3d

Exploiting Eq.(4.3), we arrive at

uFu = suz1u2p1 − uz2u2p2dF0,

which is also written in terms of thena fields to yield the
fractional magnetic flux quantized with the vortex of the
two-gap superconductors:

uFu =
1

2
sp1 − p2 + sp1 + p2dn3dF0, s4.4d

with the fluxoidF0=hc/2e=2.0679310−7 G cm2. Here note
that the interband Josephson coupling does not change the
flux quantization since its role converts circularly symmetric
vortex to a two-dimensional sine-Gordon vortex.14,15 To in-
vestigate the physical meaning of the magnetic flux(4.4) for
the two-gap superconductor, we consider a particular case of
p1=p2=1. In this case, we can find the magnetic flux carried
by the vortex in terms of the angleu:

uFu = n3F0 = F0 cosu,

which shows that such a vortex can possess an arbitrary frac-
tion of a magnetic flux quantum sinceuFu depends on the
parameter cosu measuring the relative densities of the two
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condensates in the superconductor as shown in Eq.(4.1).
Moreover, in the case ofp1=−p2, the magnetic flux(4.4) is
reduced to the well-known single-gap magnetic flux quanti-
zation, uFu=p1F0, where we can readily findu=0 to yield
uz1u=1 and uz2u=0. Note that, exploiting the above identity

(4.2), ¹3JW in Eq. (3.6) can be also rewritten in terms of the

phase f1 as ¹3JW =−se2n1s/m1cdBW −s"e/2m1d¹n1s3 ¹f1

−se2/m1cd¹n1s3AW , where we have the explicit phase-
dependent term.

V. KNOTTED STRING GEOMETRY

Now, we consider bosonic string knot geometry associ-
ated with the two-gap superconductors. It is shown to be an
equivalence between the two-flavor Ginzburg-Landau theory
and a version of the O(3) NLSM introduced in Ref. 31.
Moreover, the model in Ref. 31 describes topological excita-
tions in the form of stable, finite-length knotted closed
vortices32 to lead to an effective string theory.33 This equiva-
lence can thus imply that the two-gap superconductors simi-
larly support topologically nontrivial, knotted solitons.

In order to investigate the stringy features of the two-
flavor Ginzburg-Landau theory, we recall that in the Hopf
bundle (2.8), na remains invariant under the U(1) gauge
transformation(2.7). Exploiting the parametrization(4.1), na
can be rewritten in terms of the anglesu andb=f1+f2:

nW = scosb sinu,− sinb sinu,cosud. s5.1d

Note thatna is independent of the anglea=f1−f2 so thata
can be considered as a coordinate generalization of param-
eters of the string coordinatesxWssdPR3, which describe the
knot structure involved in our two-gap superconductor. In
fact, the knot theory in the two-gap superconductor can be
constructed in terms of a bundle of two strings. Moreover,
the U(1) gauge transformation(2.7) is related with the angle
a in such a way that

a → a + j, s5.2d

to yield reparametrization invariances→ s̃ssd.
In order to evaluate the Hopf invariant associated with the

knot structure of the two-gap superconductor, we substitute
Eq. (4.1) into Eq. (2.6) to obtain

C = cosudb + da, s5.3d

which is also attainable from Eq.(4.2). Note thatC in Eq.
(5.3) transforms under Eq.(2.7) as

C → cosudb + dsa + jd, s5.4d

so thatC can be identified as the U(1) gauge field and its
exterior derivative produces the pull-back of the area two-
form on the two-sphereS2,

H = dC =
1

2
nW · dnW ∧ dnW = sinudb ∧ du,

and the corresponding dual one-formGi =
1
2ei jkHjk, which can

be rewritten in terms of the anglesu andb:

G =
1

2
sinudb ∧ du.

The Hopf invariantQH is then given by

QH =
1

8p2 E H ∧ C =
1

8p2 E sinuda ∧ db ∧ du.

Note that if there exists a nonvanishing Hopf invariant, the
bundle of two strings forms a knot so that the flat connection
da cannot be removed through the gauge transformation
(5.4).

Next, to figure out the knot structure more geometrically
we employ a right-handed orthonormal basis defined by a
triplet snW ,eW1,eW2d wherenW is given by Eq.(5.1) and

eW1 = scosb cosu,− sinb cosu,− sinud, eW2 = ssinb,cosb,0d.

Using this orthonormal basis, we define witheW±=eW2± ieW1 a
curvature and a torsion:

ki
± =

1

2
e±aeW± · ]inW =

1

2
e±as− sinu]ib ± i]iud,

ti =
i

2
eW− · s]i + i]iadeW+ = cosu]ib − ]ia.

Here one can readily check that the curvatureki
± and the

torsion ti are invariant under the Us1d3Us1d gauge trans-
formations defined by Eqs.(2.7) and (5.2) and also they are
not independent to yield flatness relations between them:

dt + 2ik+ ∧ k− = 0, dk± ± it ∧ k± = 0.

Here we emphasize that the knotted stringy structures of the
two-gap superconductors are constructed only in terms of the
CP1 complex fieldsza in the order parametersCa in Eq.
(2.2), since the modulus fieldr associated with the conden-
sate densities does not play a central role in the geometrical
arguments involved in the topological knots of the system.

VI. CONCLUSIONS

We have studied the current equations in two-gap super-
conductor to yield the nontrivial topological aspects and dis-
cussed its relationship to Meissner effects. We have also dis-
cussed the knotted string geometry in terms of the Hopf
invariant, curvature and torsion of the strings associated with
Us1d3Us1d gauge group.
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