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Nonequilibrium superconductivity near spin-active interfaces
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The Riccati formulation of the quasiclassical theory of nonequilibrium superconductors is developed for
spin-dependent scattering near magnetic interfaces. We derive boundary conditions for the Riccati distribution
functions at a spin-active interface. The boundary conditions are formulated in terms of an inBenfiatex
describing the reflection and transmission of the normal-state conduction electrons by the interface. The
S-matrix describes the effects of spin filtering and spin mixisiin rotation by a ferromagnetic interface. The
boundary conditions for the Riccati equations are applicable to a wide range of nonequilibrium transport
properties of hybrid systems of superconducting and magnetic materials. As an application we calculate the
spin and charge conductance of a normal metal-ferromagnet-supercon@E®r point contact; the spin
mixing angle that parameterizes t8enatrix is determined from experimental measurements of the peak in the
subgap differential conductance of the NFS point contact. We also use the new boundary conditions to derive
the effects of spin mixing on the phase-modulated thermal conductance of a superconducting-ferromagnetic-
superconductingSFS point contact. For high-transpareng@yetallic ferromagnét”#” junctions, the phase
modulation of the thermal conductance is dramatically different from that of nonmagnetic, “0” junctions. For
low-transparencyinsulating ferromagngtSFS tunnel junctions with weak spin-mixing resonant transmission
of quasiparticles with energies just above the gap edge leads to an increase of the thermal conductance,
compared to the normal-state conductanc@ atover a broad temperature range when the superconducting
phase bias igp= /2.
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I. INTRODUCTION A powerful formulism for calculating the nonequilibrium

Spin-dependent transport in hybrid systems composed roperties of syperconductmg heterostruc.ture(s) is prgwded by
superconductors and spin-active materials such as ferromaljl® quaS|cIa§S|caI theory .Of superconduct’l\lﬂt;?. Tfad'“on'
nets has attracted a lot of attention because of the possibili§y °ne obtains the quasiclassical Green’s functions by solv-
of generating coherent spin transport for spintronic devices.Nd the transport equations subject to boundary conditions at
The spin polarization of a ferromagnetic material, one of theSUrfaces or interfaces.

key parameters in the development of spintronic devices, is A multist_ep approach to the bou.ndary value pr.o.blem ata
usually measured either by spin-dependent tunnelin urface or interface based on an interface transition matrix

techniqueg, or by point-contact Andreev reflection NS been used by several authr&:2* This method re-
spectroscop§.Both methods infer information about the spin duires one to calculate an auxiliary Green's function for an
polarization from the conductance data of superconductor/MPenetrable surface. The auxiliary Green's function is then
ferromagne(SP junctions. When sandwiched between two US€d as an input to d-matrix equation from which one
swave superconducting leads SFS junction a ferromag- constructs the quasiclassical _Greens functions at the inter-
netic layer can produce arjunction,” i.e., a ground state of (ac€. This method can be applied to a broad class of interface
a  superconducting-ferromagnetic-superconductingFg ~ Models, and is suitable for numerical computatiés but
junction in which there is ar phase difference between the It requires the computation of intermediate, unphysical aux-
two superconductor&® The = state has been observed in lllary Green's functions. .
SFS junctions with metallic ferromagnetic lay&rélt is pre- Boundary conditions which are expressed only in terms of
dicted theoretically that an insulating or semiconducting ferthe physical quasiclassical propagators and interface reflec-
romagnetic layer can also producemajunction®° More tion and transmission amplitudes have been derived from
complicateds junctions in which the Josephson coupling is Microscopic scattering theory by Zait$@and Kieselmanft
provided by an inhomogeneous magnetization, e.g., #r nonmagnetic interfaces, and for spin-active interfaces by
ferromagnet-insulator-ferromagnet trilayer, have also beeMillis, Rainer, and one of the authot$These boundary con-
investigated theoreticalfy:4 ditions are formulated as a set of third order equations in
The study of SFS junctions is fueled in part by the pro-terms of the matrix Green’s functions at the boundary, con-
posal thatr junctions can be used to construct a nondissipanected via an interface scattering matf&matrix) for nor-
tive superconducting phase qubitMost theoretical investi- mal metal electrodes. Although auxiliary propagators are not
gations of SFS junctions are restricted to equilibriumpresent, the nonlinear boundary conditions are nonintuitive,
properties, however, the performance ofrgunction as a difficult to solve, and contain unphysical solutions which
qubit depends sensitively on the suppression of dissipativenust be discarded.
dynamics under nonequilibrium conditions. Recently, the Recently, a more intuitive and computationally efficient
nonequilibrium transport properties of Josephson junctionsorm of the quasiclassical boundary conditions was obtained
with spin-active interfaces have begun to be exploredor nonmagnetic interfaces by EschfgThis formulation
theoretically® starts from the boundary condition of Zaitsev and Kie-
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selmann, and is obtained by parameterizing the quasiclassi- K _ (ARAR K 2 JKATA _SA _  RSK=

cal Green’s functions in tern¥spof Riccati am%litu&gs’{lBy TG+ ve- VOXE= (P8 SOxE X071 - 35 - /5557

formulating the quasiclassical theory in terms of the Riccati —SK+ AKSA + )BZK, (2)

amplitudes, not only are the transport equations easier to

solve numerically, but the boundary conditions become linwhere 2# and A*, u=R,A,K, are the diagonal and off-

ear and free of spurious solutioffsEschrig’s formulation of ~ diagonal self-energies, respectively. We follow the notation

the boundary condition amounts to finding physical solutionin Ref. 27 throughout the paper. Partickhole conjugation,

to the Zaitsev-Kieselmann nonlinear boundary condition. Fodenoted by, is defined by the operatiom(p;,e)=q* (—ps,

spin-active interfaces Fogelstrom obtained boundary condi-e). The product of two functions of energy and time is

tions for the retarded and advanced coherence functionsdefined by the noncommutative convolution

However, a complete set of boundary conditions for nonequi-

librium transport with spin-active interfaces was lacking. AB=AcB(et)= ei(ﬁﬁﬁ?—ﬂf\t??)/?A(e,t)B(e,t)_ (3)

In this paper we derive the boundary condition for the

guasiclassical Riccati amplitudes, both the coherence fundNeither the operator, nor the argumentge,t), are shown

tions and distribution functions, for spin-active interfacesexplicitly unless required.

and apply the new boundary conditions to study the nonequi- Once the Riccati equations are solved subject to appropri-

librium transport properties of clean superconductor-ate boundary conditions, the quasiclassical Green'’s functions

ferromagnet hybrid systems. The paper is organized as fokan be constructed from the Riccati amplitudes. Physical ob-

lows. The complete set of boundary conditions for theservables such as the charge or heat current can then be

Riccati amplitudes at spin-active interfaces is presented icalculated. This procedure is discussed extensively by sev-

Sec. Il, with technical steps of the derivation described in areral authors, cf. Refs. 27 and 30.

appendix. In Sec. Ill, th& matrix for scattering by two mod- At an interface or surface the local electronic potential

els for spin-active interfaces, a ferromagnetic-insulatingchanges on an atomic length and energy scales. Such strong,

layer and a ferromagnetic-metallic layer, are derived and disshort-range potentials are treated within the quasiclassical

cussed in terms of the effects gpin filteringandspin mix-  theory as boundary conditions for the quasiclassical Green’s

ing. Applications of the theory to the conductance of thefunctions, or equivalently the Riccati amplitudes. Such an

normal metal-ferromagnet-superconductor junction is anainterface can be described by a scattering maitfix,for

lyzed in Sec. IV. In Sec. V the influence of spin mixing on normal-state electrons and holes with excitation energies

the phase sensitive heat transport in SFS point contact isear the Fermi surfac&.Here we confine our discussion to

discussed in detail. specular interfaces, in which case the momentum of an ex-
citation parallel to the interfacey, is conserved. The inter-
face S matrix is then described by a unitary matrix in the

[l. THE BOUNDARY CONDITIONS FOR RICCATI combined spin, particle-hole, and direction spaces. Thus
AMPLITUDES
o . . : Su Si
In the Riccati formulation of the quasiclassical theory of S(py) = (4)
nonequilibrium superconductivity, the quasiparticle excita- 821 %2

tion spectrum is determined from coherence functiofs)

and37A, which measure the relative amplitudes for normal-Where the index 12) refers to the left(right) side of the
state quasiparticle and quasihole excitations; the occupatianterface. Each element of this matrlsj, is a diagonal
probability of theses states is described by distribution funcNambu matrix in particle-hole space
tions, XX andXX.2’-31 For brevity we refer to both types of

functions as Riccati amplitudes, or Riccati functions, since & (S 0 . Z10
all obey Riccati-type transport equations, defined on classical i\ o S; b=
trajectories in phase spa@e, R).Thus, in general the Riccati

amplitudes are functions of spad®, time, t, the direction of ~in which §; and §; are matrices in spin space, which are
the Fermi momentunyp; (or Fermi velocityv) and the ex- related by particle-hole conjugationS;(p,)=[S;(=p))1",
citation energye. where[..]" is the matrix transpose in spin spaée.

The Riccati amplitudes depend on spin, and in general are The Riccati amplitudes for the set of scattering trajecto-
described by X 2 density matrices in spin space whose ei-ries labeled 1, 1o, 2i, and 2, shown in Fig. 1 are classified
genvalues determine the local coherence and distributiomto two groups. The quanhhe&;ﬁ’* YA XX, denoted
functions for two possible spin states. The coherence ampliy lower case symbols, are obtamed by integrating the Ric-
tudes obey Riccati-type equations; for example cati equations along the four trajectories from the bulk to-

ward the interface. The quantitigd™ I, X, X}, de-
_ X R.R_ _RSR_ AR noted by upper case symbols, are obtained by starting at the
Vis VA== 26/ A I R AR () interface and integrating along the trajectory into the bulk.
The boundary conditions listed below connect the unknown
The distribution functionxX, obeys a Riccati-type transport upper case amplitudes at the interface with the known lower
equation case amplitudes via the interface scattering matrix. The deri-

(5
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lo ’*z:z" I} =S[74r + Shbth. (18
R A K X S
Fl ’Fl ’Xl z%:%: ™ 2 YK _=ReK A | TRUKA _ =R KA
B 0 Xy =Toxgry +Xoty, — agxoay,, (19
ot &1 B2 TR A XK where
SRy 5K =+ (B 'su- (B 'S (B (20)
/ %3{3{%‘% \\
H WX ) N
§ X H 2z — ~n ~o i~
{ B } . T = - [(85) S~ (B5) 'Sl MBS, (21)
1 iateine §
\\ X H ~n ~n ~
‘ o v, g, o =+ (B HSLBY -ShBY T (22
VR 54 gK s 10,19, XQK/ =~ B USLBY - SBY T (29
? ? %3{%3{“ )
Ik T4 XE%M}‘:’*: 7 2 =R = (FRal _ ot =R\ (gR)-1
LyR 131 g e ah = (5], ~ S (B ™ (24)
= &y = (B (Sul"t ~ "S- (25)

FIG. 1. (Color onling The Riccati amplitudes corresponding to
the scattering trajectories for a partially transmitting specular inter-T he boundary conditions for trajectorieséhd 2 are given
face. The interface normal & The trajectories for the scattering by interchanging indices < 2 in Egs.(6)<25). The deriva-
states are labelledi 110, 20, and . tion of EQs.(6)—«(25) is described in the appendix.
Note that there is more than one physically equivalent
vation of these boundary conditions is outlined in the appenf€Presentation of the boundary condition for any of the co-
dix. For example, the boundary conditions for trajectooy 1 herence functions. For example, it is straightforward to show

are that an alternative form of the boundary condition in Eg).
R Rt R R for '} is given by
IR =r]75S] + th15 S0, (6)
F? = Sll’))frer + 512'));[5! (26)
)= SuT + St ™ - g -
=+ (B SuBD - SBH T (27)
X3 =raxaTy + Xt — Xy, 8)

R — _ (pRy-1 R V-1 R \-17-1
where we have introduced effective reflectign, transmis- tr = = (B2 181(F1) ™~ Sal Bo) T (28)
sion (t), and branch-conversion transmissi@) amplitudes  gjmilar results for I;IR,A and TRA were obtained by
R _ R\-1al _ (pRy-1al 7-1¢ gR -1 Fogelstront. Combined with these results for the coherence
1= +[(B2) S~ (B2 Sl (B2 © functions, the boundary conditions for distribution functions
- _ - _ given in Egs.(8) and(19) provide a complete set of quasi-
t?' = _[('82Rl) 1511_ (552) lSlTZ] l('3§2) g (10 classical boundary conditions applicable to a wide range of
A B B L nonequilibrium conditions for superconductors in contact
Fir =+ (B2) 7 ISu(Bo) ™ — Sia(Bo) 17, (11)  with spin-active interfaces. These boundary conditifgs.
(6)—«(25)] reduce to the results of Ref. 27 for nonspin-active
T == (B [Su(Bo) ™ - Si(Bo) 7, (12)  scattering, i.e., whe§; and§; are spin independefit.

In deriving Egs(6)—(25) we assumed that the inverses of
,Bi'T’A, and their~ partners, are defined. Equatio(®—(25)
cannot be applied when one or more of thematrix ele-
~ _ ments is zero. However, in cases where this happens the
= (B NS =4S, (14 boundary conditions are significantly simplified, and can be
RIA readily derived following the procedure outlined in the ap-
U pendix. For example, in the case of an impenetrable wall, we

af = (IS - SuDBH ™, (13)

The auxiliary quantitiesp: ", are defined as

R_cl _ Rat=R. 7R=a. _%Ra R have perfect reflection described By,=S,;=0. Then Egs.
Bi=Si Vfﬁ, W BES NS (19 (6)~(8) are replaced by the simpler set of boundary condi-
~ tions
Bi=Si—A'SWs B =S - S (16) . .
. : IT=Suys), (29)
Similarly, for trajectory 1 we have
=T3S+ %S, (17) =SSl (30
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xf = 511X§5L- (31) elgct.rons aqqu_ire different phasg shifts upon.reflec(tﬁm_ns-

o o mission). This is the analog of circular birefringence in op-
Similarly for perfect transmissior§; =0, the boundary con-  tics. Thus, in general the polarization of an incident electron
ditions simplify to undergoes a rotation analogous to optical Faraday rotation.

R_ i The degrees of spin filtering and spin mixing are deter-
IT=S275S, (32) mined by the modulus and the phase of the refletitams-
missior) amplitudes, respectively. Consider the reflection

Tt =579}, (33)  amplitude for example. In the spinor bagis) which diago-
nalizesu - o, the spin matrixS;; is diagonal
XT = SLZXQSIZ (34) r, 0 |r+|e”’+ 0
Further simplification occurs for stationary nonequilib- 311:(0 r_> :( 0 |r_|eia_)' (39

rium transport. The time convolution products reduce to ma- ] . .
trix products, and there are additional symmetry relationsFor an arbitrary basi§;; can be parameterized as

=BT By =(B) Fa=(r])" Th=(t])", and=(af)". Su=e9is; +s) (- o)) EIN2, (36)
where the overall phase factap;;=6,+6_, and the spin-
ll. THE S MATRIX mixing angle,%,= 0,— 6_, are defined as the sum and dif-

ference of the phases for the reflected spin up and spin down
electrons. The two real amplitudes;;=(|r,|+[r_[)/2 and
11=(ry|=|r-])/2, determine the spin-filtering effect. A simi-

A microscopic calculation of the normal-stafematrix for
a spin active interface would require a solution of the many

body problem in the presence of the interface potential. Thi trizati b ied out f h el i
is a formidable problem and outside the realm of a practicairtﬁzr‘g‘r;ztrr'i(a lon can be carried out for each elem@pt,

theory aimed at understanding the transport properties of hef” . . . . .
erogeyneous superconductinggjunctions.p Thg aFI)ternative ap- The unitary condlthnSS*:l, cqmbmed with symmetries
proach is to identify the structure of tl®matrix, including of the mterf:’;lce, provide constraints between_thg valu_es of
the constraints of symmetry, and then model the interface in®i: %ii+Sj.Sj}- For a specular FI interface with inversion
terms of the key physical parameters defining these charadYMMmetry, the constraint of time reversal symmetry, which
teristics, e.g., the transmission and reflection probabilities fofcludes the reversal of the ferromagnetic moment, gives
normal-state electrons and holes moving along specific tra21=$11+7/2, and 9=¥,,. In this case the spin-mixing
jectories and in particular spin states. For a relatively smalf"dle for reflection and transmission are the same. The re-

set of physical parameters, the key characteristics of the irpU/ting S matrix simplifies, and is conveniently expressed in

terface can be obtained from measurements, e.g., frofy'e basis|=):
normal-state transport properties, and then used to make pre-
dictions for nonequilibrium properties in the superconduct- S, = gzzei"”z(
ing state. This is the most tractable approach to interpreting
and predicting the nonequilibrium properties of heteroge- o
neous superconducting junctions. e i \s"DTe"-(”2 0
In this section we discuss the parametrization of e S =Sp=le 0
matrix in terms of a spin-mixing angle and spin-dependent
normal-state transmission coefficients. Other authors hawehereR,+D,=1, «=1,]. The overall phase factog, drops
also discussed the form of this interfagenatrix for particu- out of all observables in the quasiclassical approximation
lar magnetic interfaces, cf. Refs. 9, 10, 14, and 32. We disand can be omitted. Therefore, tSematrix is described by
cuss the form of th& matrix for both a ferromagnetic insu- three parameters: the transparencies for spin up and spin
lating interface and a clean ferromagnetic metallic interfacedown electronsD; andD,, and the spin mixing anglej}.
For both cases we assume the interface is atomically smooth If we also have reflection symmetry in a plane perpen-
so that the momentum parallel to the interfapg,is a good  dicular to the interface, the;(—-p,)=S;(p,). This implies
quantum number. that that theS matrix for hole scattering is simpl§; =S;.
First consider theS matrix of a ferromagnetic insulating This model of a ferromagnetic interface defined by &7),
or semiconductingFl) interface®'%32Choose the direction as well as special cases without spin filtering, have been
of the spontaneous magnetizatignas the quantization axis discussed previously by several authdt$32The reflection
for the conduction electron spin. Then spin(p) and down  and transmission probabilitieR,,D,,and? are functions of
(—) electrons see the Fl interfaces as a potential barrier witlthe direction of the trajectory of an incident quasipartifle,
thicknessl and heightEy+ h, whereE, is the average band and depend on material parameters such as the bandgap,
gap andh is the exchange energy. The effects of the Fl layerthe Fermi velocities of the electrons in the two metallic
on the transport of electrons are twofo(d) spin filteringin leads,v;;, exchange fieldh, barrier thicknesd, etc.
which the reflectiontransmissioi probabilities for spin up To illustrate the typical parameters for spin mixing and
and spin down electrons are different, because these elespin filtering by a Fl interface consider a FI barrier with a
trons with different spin polarization see different potentialband gap of£,=0.825 eV and and exchange splitting fof
barriers, and(2) spin mixingin which spin up and down =0.18 eV, between two metallic leatfs.For conduction

\E'ETe“?/z 0 )
0 \Ei eiv2 )’

—ia/z) ’ (37)

\“’Dle
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0.015 0.04 both spin species are nearly perfectly transmitt®g~ 1
—D, ] -(h/2E;)?, and the spin-filtering effect is negligibly small

2 -o.03 D,-D h\3
Zr _
0.01 o ~ (’)( ) . (40)
1 9w DT + Dl 2Ef
D, -0.02 Thus, the dominant effect of the FM interface is spin mixing,
and an approximate form for th8 matrix of an ideal FM
0-005 laa interface is given by5,,=S,,=0 and
S1p= Sy = €T, (41)
- — M Y- v m—r Starting from Eq.(41) a more detailed model for th8 ma-
' T om ’ ’ trix of a FM interface can be constructed by adding a thin

FIG. 2. (Color onling The spin up(D,) and spin down(D_) _nonmagnetic _insulating Iaye_r, with transpar_elﬁhjnside_the
transmission probabilities, and the spin mixing angle as a functior\c_jeal FM, which may describe an interfacial dielectric bar-

of the angle of incidencep=arcco$p;-2). The model parameters T€r. The composites matrix of this structure takes the form

for the S-FI-S interface are described in the text. of Eqg. (37) with D;=D,=D. . . _ .
However, there presumably exist a wide variety of spin-

electrons with effective mass* equal to the band mass of active interfaces, described by any physically allowed value

carriers in the FI we can calculate the spin-mixing angle ancﬁ)f ¥ and D,.. Thus, the calculations that follow are carried
the transmission probabilities for spin up and spin down conoUt for a broad range of values éfandD,.

duction electrons at normal incidence. A barrier of widith
=0.5 nm givesD;=0.013,D,=0.007, and?¥=0.032r. The
ratio D, /D, vanishes exponentially as the barrier thickness We now illustrate the application of the boundary condi-
increases, and the spin-mixing andlesaturates at 0.0348  tions by calculating some representative transport properties
the spin-mixing angle for a perfectly reflecting FI surface.for both normal metal-ferromagnet-superconductbiFS)

For angles away from normal incidence the effective barrieand SFS point contacts. These calculations highlight the role
thickness increases and the corresponding transmission progf the spin-mixing angle in modifying the local spectrum
abilities decrease rapidly away from normal incidence asear the point contact and in modifying the effective trans-
shown in Fig. 2. The spin-mixing angle also decreases withission coefficient for excitations that carry currents across
the angle of incidence, and vanishes for grazing incidence.the interface of the point contact.

The & matrix model in Eq(37) is sufficiently general to Although the formalism is applicable to superconductors
account for the essential features of spin-active scattering byjith any pairing symmetry, the calculations described here
a clean, ferromagnetic metalli®M) layer'® For example, are for spin-singlets-wave superconductors. For a point
assume the transmission and reflection of electrons by theontact the radius of the contact is much smaller than the
interface is controlled by Fermi wave-vector mismatch at thecoherence length. In this limit the pairbreaking effect of the
SFM interface. Upon entering the FM layer, the Fermi mo-FM on the magnitude of the order parameter can be ne-
menta for majority(spin up and minority(spin down elec-  glected, and the voltage drop occurs at the contact because of
trons changes tp;=+/(Eq+h)2m*, respectively. As a result the large Sharvin resistan8&Then at the point contact the
the transmitted majority- and minority-spin electrons acquireRiccati amplitudesy™, ¥, X, X take their local, bulk

IV. FM AND FI POINT CONTACTS

a relative phase. equilibrium values given Bf
For sufficiently large angles of incidence the normal com- R . s+,
ponent of the momentum of the spin down electrons in the Y (el < Aj) == (iop)e™ ™%, (42)
FM, p;=/(E; co€ ®-h)2m*, vanishes and becomes imagi- _
nary for larger angles of incidence. Thus, these spin down V(e > A) =~ (ioy)sgn(e)e” 5%, (43)

electrons can only tunnel through the FM barrier. Since the

charge and heat currents are dominated by trajectories close e—eV
. . . ", K _ R[2
to normal incidence we consider the transmission probabili- X =(1-[y]|9)tanh oT (44)
I

ties and spin-mixing angle in the small angle limit near nor-
mal incidence, where both, and p, are real. If we further where we introduced the dimensionless parameters,
assume the exchange field is relatively welad€ E;, then to

the leading order i/E;: 8= arccos— el < A, (45)
AJ,, 1
9=06,-6_=(p;-p,)I, (38)
G
« % H «| N > 4j,
D, = 1 - (pl/p, - p/p%)? sirf(pcl)/4. (39) coshd;= rlel> 4, (46

J

Thus, for normal incidence the spin-mixing angle is of orderand A; is the gap,V; is the potential.T; is the temperature,
9~ psl(h/Ey), which can easily approach The electrons of ~ and ¢; is the phase of superconductor on sjel, 2. Appli-
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cation of the boundary conditions, Eq$)—25), is straight 40 1 P
forward; we obtainl¥*, T4, X<, and X from which we 304 D=0.05
construct the quasicjlassical Green'’s functions. 5 ] * D=0.10
T 204
% R
A. NFS conductance o~ 10
Consider the electrical conductance of a NFS contact at o_'
fixed temperatureT, and voltage biasy. Due to both spin 20 - L '
mixing and the proximity effect, the local density of states 1 6=
(DOS) of the superconductor deviates from the bulk 57 D=0.05
Bardeen-Cooper-Schrieffer form. Surface states appear be- > 104 = D010
low the gap, and a splitting of the DOS for spin (p) and =
spin down(—) excitations develops for any<Q9 < &
1-RR .
N.(le <A)=N; — , (47) oy - T T T -t 1
1+RR - 2VR|R, cog25 + ) ] o=
30 D=0.05
925_ —25RR 4 - D=0.10
N.(|e > A) =N 5 — , (48 3 21
e+ e RR, - 2VR;R, cosd 3
10
whereN; is the density of states at the Fermi level, ahi$ o ] Jg
defined in Eqs(45) and(46). For perfect reflectionR, =R, Vs ——
=1, there is a true surface bound state, analogous to the 0.0 02 04 06 08 10 12
Shiba state bound to a magnetic impurity in stwave eV/A

superconductoﬁ‘% For finite transmission, the surface bound g 3. (Color onling Differential conductanceg!/dV, for NFS
states broaden into resonances due to the proximity couplingbntacts with different spin mixing angle$=0, =/2, and, at
with the normal metal. In the tunneling limit, i.e., for low T=g and forD;=D,=D=0.05 andD=0.1. The normal-state resis-
transmission wittD,;~D =D <1, N.(e) exhibits a relatively  tance of the point contact By=(e?N;D.A)", where A is the area
sharp resonance peak below the gapeat+A cog19/2)  of the contact.

with a width of ordery=DA/2.3° For higher values of the

transmission probability the resonances broaden into a sub=pa/2, provides a spectroscopic measure of the interface

gap continuum. o transmission probability. However, thermal broadening
The differential conductance for low-transmission Junc-dominates the width of the subgap resonances in the tunnel-

tions reflects the resonance states which transport charge Viigy limit, except at very low temperatures, as shown in Fig.
resonant Andreev reflection. The spectral current densityy

j(e), can be calculated from the solution for the quasiclassi- Asymmetry in the transmission probabilitig3; # D, for

cal propagators at the interface spin up and spin down excitations also leads to a finite spin
i> 4 coshs[e?D.D /(D +D)) +sinhs] current. The corresponding spectral current density is given

in e +e¥RR, -2/RR, cosd
I T AV 2(D, - D )sinh(20)

> = 84 29 / ' (52
it DD /(D;+D)) (50 e+ e 2RR - 2/R/R, cos?d
in s 1+RR - Zy"RTRL cog25+ ) for |e[>A. In contrast to the charge current the subgap spin

current spectral density vanishes identicd|r =0) because

= . _ .
where |~ is f[he spectral current density .f¢f|<A and jy there is no resonant Andreev reflection for spin transport.
«e(D;+D)) is the spectral current density when the both 7 ) spin current is then given by EG1) with j(e)

electrodes are in the normal state. The total current density iijs(e) In Fig. 4 we also show the differential spin conduc-

then given by tance for weak spin filterind),; =2D=0.2. Note the onset of
1 e+eV e—eV the spin conductance aiv=A for T— 0, and the absence of
j:Efdej(e) tan pe (51)

oT Andreev resonance peaks in the spin conductance for non-
zero spin mixing. The spin conductance is normalized by the

Figure 3 shows the zero temperature differential conductanceormal-state spin conductance of a point contact of atea

for NFS junctions with different spin-mixing angles. The (R})™=N¢(D;-D )A.

proximity effect is evident as a finite subgap conductance The limit of extreme spin filtering provided by a half-

even for a nonmagnetic interface. The interface resonanametallic ferromagnetic metal is discussed in detail using the

induced by a finite spin-mixing angle is also clearly exhib-transfer matrix method to incorporate spin mixing at the in-

ited as a broad peak in subgap conductancee¥t terface between a FM and a superconduttdye obtain the

~ A coqg¥/2). Note also that the width of the resonange, same results as Ref. 24 for the current of a half-metallic
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Following the same line of argument as described for the
NFS contact we apply the boundary conditions, Egs.
(6)«(25), to construct the Green functions for the SFS con-
tact. The ABS spectrum is straightforward to calculate and
has been discussed in the context of the Josephson current of
the SFS weak link by several auth8r¥:?2 There are two
branches(labeled as*) of spin up Andreev bound states
with energies

O+ O*
e =A sgr(sin p)cos—p, (53)
- 2 2
where the angle is defined as
p=arcco$\RR + VD;D, cos). (54)

The spin down bound states are at energies
€l(9) = el(- 9 = - (). (55)

At 9=0 or m, the ABS spectra is degenerate with respect to
spin. For 0< 9 < the spin degeneracy is lifted, thus, the
typical bound state spectrum has four branches, two branches
per spin direction fop # 0. Branches with opposite spin are
“mirror reflections” of one another with respect to the Fermi
energy(e=0). In the tunneling limitD,;=D =D —0, and to

T T 1 leading order inp<< 49, the splitting of the spin up states is

0.0 05 Vi, 10 15 given by
FIG. 4. (Color onling Differential charge conductancd|/dV, 9 S — P
and spin conductance)®/dV, for a NFS contact with spin-mixing el = A|cos— Fsin—yDsin—|. (56)
angle,9==/2 and transparencief);=2D,=0.2, at temperatures, 2 2 2
T=0.01T;, T=0.1T., andT=0.ZT,. Note that the voltage is normal- The spectral weight of an ABS comes at the expense of

ized in units ofA,, the gap aff=0. the continuum spectrurfle] > A). In addition there is asym-

metry with respect to spif\'(|e| >A) # N!(|¢/>A), and as a
ferromagnetic-superconductor point contact by settilg  result spin up and spin down quasiparticles contribute differ-
=D and D =0. In this limit the subgap conductance from ently to the heat current. To compute the heat current, we
resonant Andreev reflection is completely suppressed by th@llow the procedure described in Ref. 33. The boundary
spin-filtering effect. conditions for the distribution functions, Eq&) and (19),
enable us to obtain an analytical result for the Keldysh
Green'’s function at the point contact. From this result we can
calculate the spectral density for the heat current for the set

In a recent report we discussed the role of Andreev bounaf trajectories{1i, 10, 2i, 20}. The spectral heat current con-
states in regulating quasiparticle transport of heat througlains contributions from spin up and spin down electron-like
point-contact Josephson weak links®® Spin mixing gener-  and hole-like quasiparticles
ates a spin-resolved spectrum of Andreev bound states at a
spin-active point contact even in the absence of a phase bias. ooy € Tk Zaky = € Trak - K
We apply the formalism and boundary conditions developed Jepy) Ari Tr(Gsi - 01, 4 (G20~ Ga). (57

in previous sectionslto investigate the gffect of spin mix.ingW ere Tr represents the trace of Nambu matrix propagators
on the phase sensitive heat transport in temperature bia cp '

S .
SFS point contacts. We show that the relative phase shift ﬁls straightforward to show that the spectral heat current can

. : . e expressed in an intuitive form by introducing the effective
spin up and down electrons, together with the phase dias transmission coefficier® for heat transport
= ¢,— ¢, determines the spectrum of Andreev bound states ’
at the point contact. The effects of these states on the trans- e a € € .
mission probability of continuum excitations that transport J'(e,pp) =—2¢ ta”hf _ta”hf D(epy). (58)
heat is calculated. ' 2

The thermal conductance of the point contact is defined’he contributions tg® come from direct(e—e) transmis-
by the ratio of the total heat current and the temperature biasion and branch conversige(h) — h(e)] transmission chan-
ST=T,—T; in the limit 5ST— 0. The results reported later are nels, D=, ,o+Dq .1
normalized by the normal-state thermal conductanc& at _ [~
kn=(7?112) ANw(T(D;+D)), where A is the area of the De-e=[(D; + D )cosh24) - 2vD;D, cosH cos¢)]
point contact. X sink? 8/ 22, (59

B. SFS thermal conductance
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:De_’hz[(DT+Dl)_2DTDl_2VRTRlDTDl cosdg] 12
X sint? 8/ 22, (60) 10 U N

47X
Y 2y 4% 0%

Z2=[VR\R, + \D;D, cos¢ - cost25)cos 9]
+ sink?(26)sir? 9. (61)

In the normal stat&® — (D;+D)/2, and spin mixing has no
effect on the quasiparticle transport. However, in the super-
conducting state the transmission coefficienfor quasipar-
ticles of energye and momentunp; is sensitive to both the
phase bias¢, and the spin-mixing angley.

Consider first the case witth=0. Spin mixing leads to
bound states atgg=xA cog/2). For the case in whiciD,

=D,=D, only the direct transmission channel contributes, g 5 (color onling The thermal conductance of a SFS point

«(0.0) /%,

i.e., De_n(¢p=0)=0 and contact withD;=D=0.1 atT=0.8T,. The thermal conductance is
- A2 normalized to its value af.. ¢ and ¥ change from O tor.
De o(dp=0=D————— <D. (62
&2 — A2c02> junctior?): tuning ¢ from O to = pushes the ABS toward the
2 gap edge, so the thermal conductance increases. The phase

modulation of the thermal conductance for a general value of

Thus, quasiparticle transmission is suppressed by the SPY can be understood qualitatively in a similar manner. The

mixing effect for any value of the normal-state transparencythermal conductance is maximum when the bound states are

g’:in?gorwﬂles?ﬁég'&e;'s -iI:shriosruepgtr:)isglc;nblgu%ﬁu?f\é?re %ﬁosest to the gap edge. The .diffe.rer_n phase modulation of
¢:O’S' L heat t  f | tpe thermal conductance for O junctiofi®. O < 7/2) versus
pin MIXING SUPpresses heat fransport Tor any vaile of ; i 9> 1/ 2) should be observable in high transpar-
the normal state transparency. wJunctlons(_ e . -
For a spin-inactive point conta¢®=0) in tunneling limit, ency SFS junctions; one should n prmuplg be able to
D<1, it is known thatd(e) has a resonance peak at change the spin-mixing angle by varying the thlckrjess of the
FM layer, thus tuning between O arjunction behavior. The
1 ¢ 5 phase of the SFS junction can then be controlled by varying
€edA=1 +§D sin? 2 +0(D), (63 the magnetic flux linking a superconducting quantum inter-
ference device containing the SFS contact.
which is a reflection of a shallow bound state just below the In contrast to FM contacts, SFS junctions with Fl contacts
gap edge atg/A=1-35D sir’¢/2+0O(D?). Tuning ¢ from 0 are expected to be in the tunneling limit, i.8;  <1. For
to 7 leads to an increase in the thermal conductance becausiee Fl interface described in Sec. Il with=0.5 nm, D,
of resonant transmission of quasiparticleseat €,.4> En- =0.013,D,=0.007, andy=0.032r, the discrimination be-
hanced transmission still exists for SFS point contacts, but asveen transparencies for different spin orientation is rela-
¥ increases the resonance peakdfe) gradually vanishes. tively large, D;=2D, but the spin mixing is weak. As a
For ¥=m, the bound states are at energiess  result the phase modulation of the thermal conductance is
=+A\D sin(¢/2), and there is no resonance peak®fe).  almost the same as that of a spin-inactive tunnel junction.

Instead® is suppressed at all energies Figure 7 shows a map of the thermal conductance as a func-
e€-A? 0.70
D(I= 7T)=D—¢<D- (64) l
&~ A sirf 065,
. . . 0.60
Thus, to leading order iB, D (=) =D(1-A?/€) is inde-
pendent of¢, so phase modulation of the thermal conduc- Ez 0.55
tance vanishes. These features are shown clearly in Fig. 5 for f
the thermal conductance calculated in the tunneling limit ¥ 08
with D;=D =D=0.1 and for general values a} and ¢. 045
Resonant enhancement of the conductance occurs in the vi-
cinity of ¢~ 7 and9<1. Increasingd suppresses the over- 0.40;
all thermal conductance as well as the phase modulation.
Figure 6 shows the thermal conductance in the high trans- pr

parency limit withD,=D =D=0.9. At¥=0 (a “0” junction),
tuning ¢ towardsz pushes the ABS deep into the gap, so
D(e) is increasingly suppressed frol, and the thermal FIG. 6. (Color onling The thermal conductance for a SFS point
conductance goes down. The opposite occumd=atr (a “=” contact withD;=D;=0.9 atT=0.8T..
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harmonic structure of the current-voltage characteristics of
magnetic Josephson point contattsnd recently to study
the Josephson effect and conductance of superconductors in
contact with half-metallic ferromagnet$?* The advantage
of the Ricatti approach is that the implementation of the
boundary condition is given explicitly in one step, without
introducing auxiliary propagators. The Riccati formulation
also makes analytical analysis more tractable. The Riccati
method has been successfully used to study the equilibrium
properties, e.g., the direct current Josephson effect and
temperature-induced O transition of SFS junction$1°As
shown by Baraslet al,* the Riccati approach is especially
powerful to study more complicated hybrid structures such
“00 02 0.4 0.6 0.8 1.0 as SFIFS junctions.
ol As examples of the potential application of the newly de-
) rived boundary condition for the nonequilibrium distribution
F_IG. 7. (Color_onll_ne_ Th_e thermal conductance of a SFS con- functions, X, we investigated the charge and spin conduc-
tact in the tunneling limit wittD, =2D,=0.013 and=0.032r. tances for NFS point contacts and heat transport through
temperature and phase biased SFS point contacts. We
tion of temperature and phase bias for the junction paramshowed how the spin-mixing angi® defined as the relative
eters given earlier. For simplicity we neglected the angulaphase between spin up and down electrons upon transmis-
dependence oD, and 9. Note that resonant transmission sion (or reflection, controls the local excitation spectrum
leads to enhancement of the thermal conductance compargg@d the transport of charge, spin, and energy across the point
to the normal-state conductanceTgtover a broad tempera- contact. Beyond this relatively simple application, we expect
ture range 0.5, <T<T, for ¢=m/2. that results and physics can be explored for a broad range of
nonequilibrium transport problems involving spin-active in-
terfaces with the new boundary conditions.

V. DISCUSSION AND CONCLUSION

In this paper we derived the boundary conditions for the
quasiclassical Ricatti amplitudes, including the distribution
functions,xX, for general interfaces. This completes the de- The authors thank Dr. M. Eschrig for stimulating discus-
velopment of the boundary conditions for the Riccati ampli-sions. This work was supported in part by the NSF Grant No.
tudes at spin-active interfaces initiated in Ref. 9. The result®MR 9972087, and STINT; the Swedish Foundation for In-
summarized in Sec. Il apply to a broad range of superconternational Cooperation in Research and Higher Education
ducting interfaces, and are specifically applicable to nonequiand the Wenner-Gren Foundations. J.A.S. acknowledges the

librium transport involving spin-active interfaces. The support and hospitality of the T11 Group at Los Alamos
boundary conditions can be applied to investigate dynamica\ational Laboratory.

properties, are applicable for any paring symmetry. The ef-

fects of disorder are readily described within the quasiclas-

sical theory framework. APPENDIX: DERIVATION OF EQS. (6)—(25)
In the dirty limit the quasiclassical theory for conven-

tional superconductors can be formulated in terms of Ferm{'

surface averaged quasiclassical Green functibiihie qua-

ACKNOWLEDGMENTS

In this Appendix we outline how the boundary conditions
or the Riccati amplitudes, Eq$6)—25), are derived from
the Millis-Rainer-Sauls boundary conditions. Our starting

siclassical transport equations reduce to diffusion-tglpe- - g
ade) equations. Boundary conditions for the the Fermi-pomt is the set Of. Eq_s(.63)—(66) of I}OEf' 26, which in terms
of Shelankov projection operatot¥;

surface averaged Usadel propagators at a spin active
interface has been discussed recently in Ref. 38. A compari- PAR PAK L5
son between results for the dirty SFS and NSF junctions pP)=| * * |= (11 &),)\E{li,lo,Zi,ZO}
based on the Usadel equations and boundary conditions and 0 PQ'A 2 -l

the dirty limit of the Ricatti formalism with the general spin- (A1)
active boundary conditions developed here will be discussed

in a separate report. Finally, we note that we have presentezin be written as

boundary conditions and results applicable to specular inter-

faces. The boundary conditions can be extended to include P2(Sy,P'Sh, + $,PYS] )PP =0, (A2)
atomic scale roughness at a spin-active interface, but this
extension is outside the scope of this report. p2 (%TZPE(’%Z + SIszerS.L JP? =0, (A3)

The Riccati approach to the boundary problem in quasi-
classical theory is complimentary to thel-matrix “ i m o 1on it voon i
approach®21-24which has been used to calculate the sub- Py (S11P:"S11 + $,P2°S,)P= =0, (A4)
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Plo(S,PUS + §,P2S] )P = 0. (A5) B -THAUTRS, - Sy

Following the convention in literature, we denote a = (SIS = /RSl (1 =FATH 165, (A10)
Keldysh® Nambu matrix with check accent, a Nambu Equations(A9) and (A10) suggest the solution
(particle-hole spin) matrix with hat accent, and a spin ma- - ~

trix without any accent. We use thansatzof Eschrig” to (FFS1 = S (B ™= (IS~ S1295) (B5) ™,
parametgrize the projectors in terms of Riccati amplitudes, (A11)
e.g., forPY we have

. (BR) SIS = 5SS = (B SIS - %58y,
pR= ( Tﬂ)(l - AL, (A6) (A12)
—11

The earlier results assume the inversesﬁﬁ‘r‘A and their

~ partners exist. This is generally the case for partially trans-
_TA mitting interfaces. Otherwise, EqEA9) and (A10) can be
=( ! )(1 A IRCANN (A7)  solved rather trivially since some of th® matrix elements
1 vanish. EquationgA1l) and (A12) immediately lead to the
result obtained by FogelstrofrEqg. (26), which is equivalent

< on XK O)AA . 0 0 . to Eqg.(6), as well as
PPy o P )P 4 e A (A13)
where we omitted the superscript. IThe strategy to solve 5 =+[(BD S, - (B S BH T (A14)
Eqgs.(A2)—(A5) is to reduce the order of the equation set by R R 1t R 1 11 Rt
exploiting the properties of the projectors and to decompose to =~ [(B) S~ (Br) Sl (Br) ™. (A1H)
the equations for the KeldyshNambu matrices into equa-

. ; . It is also straightforward to verify that the solution, Eg6)
tions of spin matrices. and Egs.(A13)«(A15), indeed satisfy EqgA9) and (A10).

Take the retarded components of E¢fs2)~A5) and plug | 3 similar manner, the boundary conditions for all retarded
in the expressions foIEﬁFe Each of the four equations of and advanced coherence functions can be derived.
Nambu matrices collapses into an equation for the coherence The Keldysh components of Eq#2)—~A5) can be sim-
functions which are spin matrices. For example, the retardeglified by using the equations for retarded and advanced pro-

part of Eq.(A3) and(A4) give jectors. Then after plugging in the expressions for all the
projectors,PQ'R’A’K, once again we find that the Nambu ma-
B -THBR RS, - S,95) trix equations collapse into spin matrix equations for the Ric-
~ i~ cati amplitudes. For example, the Keldysh components of
= (SIS - /58, (1 =W 65, (A9)  Egs.(A3) and(Ad) lead to

0=~ AR TS, + (ST - YRS ) (L ~F5TE) 0 x5 + X[~ S[A(1 -~ FA)/A) 1(F Si - Suh) + Shi(1
- ﬁfg)_laA ]+ B?l(l - FR‘ﬁ)_le(l - 7/1(\1:?)_10"1(\1_ :351(1 -13 7}5)_1)(5(1 - 7ﬁFA) “21 (Sllrl 7’1511)(1
=D @ -TE) TS0~ Sudh) + (Sl - Sl (1 - 5T BEQ ~T59) 158 - S:74) (A16)

0=[- BXL - T S0+ (SIS - Y555 (1 = FAT5) 75S50x5 + X[ - SI,72(1 - T4y T1S1o— Sisvh) + Shal 1
‘)’AFA) 161/Az:|+312(1 FRVUB) 1X (1- VTA a12 :322(1 -1 5{) 1X (1- UAFA) 1“92 (S.I.ZFR 7B312)(1
— PR (L =T HTES1— Si8) + (SIS — Y55 ) (1 - FATD) (1 - T4 95) M5S0 - S:57). (AL7)

Again, if the inverses OBiR’A do not exist Eqs(A16) and  X(af,)™* to obtain transformed equations, Eq§A\10)’
(A17) simplify and are readily solved. For the general case(A11)’, which are not reproduced here. The transformed Eq.
in order to solve foiX{ andX$, we construct83)™*x [Eq.  (A10)’ contains onlyX¥, X, x&, andX¥. We regularize each
(A16)] X(a)1=(B5) tx [EQ. (Al7)] X(ah)™* and term by carrying out a series of transformations. For ex-
(BRI [Eq. (Al6)] x(af) ™ -(BY) X [Eq. (A17)]  ample, the terms proportional i are transformed to
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+(B5) B ~T TR @35S~ S (ah) ™
+ (BB X (ShbE, - Sl (1 - AT (e ™
+(B5) X (o)™

and further into

= (B5) B ~THR) (S ™ X(S1) (1

- ﬁfﬁ)_laﬁl(aél)_l + (352)_1:3?2(1

- IR (SH) xS TR (1 = AT Palad) ™ (AL9)
with the help of algebraic identities such as

R~R R_ R~ R_
A oSy + 15 = Sip,a ¥aSr + 1 = Spa,

(A18)

(A20)

1-THE =B + 5 6%. (A21)

(B5) BRI -THD) M BT, = = (B5) A1
s SRR TCAT
(A22)

As a result the transformed Eq&10)’ (A11)’ can be ex-
pressed as

PHYSICAL REVIEW B 70, 134510(2004)

(B3 B - TR ™My (1 - AT BB

= (B3 B -TER) ™ ny(1 - ATD BH B ™,
(A23)

(,3?2)_1,352(1 - I‘?;’?)_lnz(l - ﬁfg)_lﬁéz(ﬁél)_l
= (ﬁlRl)_lﬂgl(l - F?V;)_lnz(l - 7@?9)'1,8'2“1(,3?1)‘1'

(A24)

with
ny = X§ - rixiTy, — tHaty, +afixbay,,  (A25)
n, = X5 — r3x5Ts, — thx((to, + aix, a, . (A26)

Obviously n;=n,=0 satisfies Eqs(A23) and (A24), or
equivalently, the original Eq¥A16) and (A17). The equa-
tion n;=0 yields the boundary condition fO(f in Eq. (8).
The boundary condition fo)(JK is derived in a similar manner
starting from Eqs(A2) and (A5).
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