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The Riccati formulation of the quasiclassical theory of nonequilibrium superconductors is developed for
spin-dependent scattering near magnetic interfaces. We derive boundary conditions for the Riccati distribution
functions at a spin-active interface. The boundary conditions are formulated in terms of an interfaceS-matrix
describing the reflection and transmission of the normal-state conduction electrons by the interface. The
S-matrix describes the effects of spin filtering and spin mixing(spin rotation) by a ferromagnetic interface. The
boundary conditions for the Riccati equations are applicable to a wide range of nonequilibrium transport
properties of hybrid systems of superconducting and magnetic materials. As an application we calculate the
spin and charge conductance of a normal metal-ferromagnet-superconductor(NFS) point contact; the spin
mixing angle that parameterizes theS-matrix is determined from experimental measurements of the peak in the
subgap differential conductance of the NFS point contact. We also use the new boundary conditions to derive
the effects of spin mixing on the phase-modulated thermal conductance of a superconducting-ferromagnetic-
superconducting(SFS) point contact. For high-transparency(metallic ferromagnet) “p” junctions, the phase
modulation of the thermal conductance is dramatically different from that of nonmagnetic, “0” junctions. For
low-transparency(insulating ferromagnet) SFS tunnel junctions with weak spin-mixing resonant transmission
of quasiparticles with energies just above the gap edge leads to an increase of the thermal conductance,
compared to the normal-state conductance atTc, over a broad temperature range when the superconducting
phase bias isf*p /2.
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I. INTRODUCTION

Spin-dependent transport in hybrid systems composed of
superconductors and spin-active materials such as ferromag-
nets has attracted a lot of attention because of the possibility
of generating coherent spin transport for spintronic devices.1

The spin polarization of a ferromagnetic material, one of the
key parameters in the development of spintronic devices, is
usually measured either by spin-dependent tunneling
techniques,2 or by point-contact Andreev reflection
spectroscopy.3 Both methods infer information about the spin
polarization from the conductance data of superconductor-
ferromagnet(SF) junctions. When sandwiched between two
s-wave superconducting leads(a SFS junction), a ferromag-
netic layer can produce a “p junction,” i.e., a ground state of
a superconducting-ferromagnetic-superconducting(SFS)
junction in which there is ap phase difference between the
two superconductors.4,5 The p state has been observed in
SFS junctions with metallic ferromagnetic layers.6–8 It is pre-
dicted theoretically that an insulating or semiconducting fer-
romagnetic layer can also produce ap junction.9,10 More
complicatedp junctions in which the Josephson coupling is
provided by an inhomogeneous magnetization, e.g., a
ferromagnet-insulator-ferromagnet trilayer, have also been
investigated theoretically.11–14

The study of SFS junctions is fueled in part by the pro-
posal thatp junctions can be used to construct a nondissipa-
tive superconducting phase qubit.15 Most theoretical investi-
gations of SFS junctions are restricted to equilibrium
properties, however, the performance of ap junction as a
qubit depends sensitively on the suppression of dissipative
dynamics under nonequilibrium conditions. Recently, the
nonequilibrium transport properties of Josephson junctions
with spin-active interfaces have begun to be explored
theoretically.16

A powerful formulism for calculating the nonequilibrium
properties of superconducting heterostructures is provided by
the quasiclassical theory of superconductivity.17–20Tradition-
ally one obtains the quasiclassical Green’s functions by solv-
ing the transport equations subject to boundary conditions at
surfaces or interfaces.

A multistep approach to the boundary value problem at a
surface or interface based on an interface transition matrix
has been used by several authors.19,21–24 This method re-
quires one to calculate an auxiliary Green’s function for an
impenetrable surface. The auxiliary Green’s function is then
used as an input to aT-matrix equation from which one
constructs the quasiclassical Green’s functions at the inter-
face. This method can be applied to a broad class of interface
models, and is suitable for numerical computations,22–24 but
it requires the computation of intermediate, unphysical aux-
iliary Green’s functions.

Boundary conditions which are expressed only in terms of
the physical quasiclassical propagators and interface reflec-
tion and transmission amplitudes have been derived from
microscopic scattering theory by Zaitsev25 and Kieselmann21

for nonmagnetic interfaces, and for spin-active interfaces by
Millis, Rainer, and one of the authors.26 These boundary con-
ditions are formulated as a set of third order equations in
terms of the matrix Green’s functions at the boundary, con-
nected via an interface scattering matrix(S matrix) for nor-
mal metal electrodes. Although auxiliary propagators are not
present, the nonlinear boundary conditions are nonintuitive,
difficult to solve, and contain unphysical solutions which
must be discarded.

Recently, a more intuitive and computationally efficient
form of the quasiclassical boundary conditions was obtained
for nonmagnetic interfaces by Eschrig.27 This formulation
starts from the boundary condition of Zaitsev and Kie-

PHYSICAL REVIEW B 70, 134510(2004)

1098-0121/2004/70(13)/134510(12)/$22.50 ©2004 The American Physical Society70 134510-1



selmann, and is obtained by parameterizing the quasiclassi-
cal Green’s functions in terms of Riccati amplitudes.27–31By
formulating the quasiclassical theory in terms of the Riccati
amplitudes, not only are the transport equations easier to
solve numerically, but the boundary conditions become lin-
ear and free of spurious solutions.27 Eschrig’s formulation of
the boundary condition amounts to finding physical solution
to the Zaitsev-Kieselmann nonlinear boundary condition. For
spin-active interfaces Fogelström obtained boundary condi-
tions for the retarded and advanced coherence functions.9

However, a complete set of boundary conditions for nonequi-
librium transport with spin-active interfaces was lacking.

In this paper we derive the boundary condition for the
quasiclassical Riccati amplitudes, both the coherence func-
tions and distribution functions, for spin-active interfaces
and apply the new boundary conditions to study the nonequi-
librium transport properties of clean superconductor-
ferromagnet hybrid systems. The paper is organized as fol-
lows. The complete set of boundary conditions for the
Riccati amplitudes at spin-active interfaces is presented in
Sec. II, with technical steps of the derivation described in an
appendix. In Sec. III, theSmatrix for scattering by two mod-
els for spin-active interfaces, a ferromagnetic-insulating
layer and a ferromagnetic-metallic layer, are derived and dis-
cussed in terms of the effects ofspin filteringandspin mix-
ing. Applications of the theory to the conductance of the
normal metal-ferromagnet-superconductor junction is ana-
lyzed in Sec. IV. In Sec. V the influence of spin mixing on
the phase sensitive heat transport in SFS point contact is
discussed in detail.

II. THE BOUNDARY CONDITIONS FOR RICCATI
AMPLITUDES

In the Riccati formulation of the quasiclassical theory of
nonequilibrium superconductivity, the quasiparticle excita-
tion spectrum is determined from coherence functions,gR,A

and g̃R/A, which measure the relative amplitudes for normal-
state quasiparticle and quasihole excitations; the occupation
probability of theses states is described by distribution func-
tions, xK and x̃K.27–31 For brevity we refer to both types of
functions as Riccati amplitudes, or Riccati functions, since
all obey Riccati-type transport equations, defined on classical
trajectories in phase spacesp ,Rd.Thus, in general the Riccati
amplitudes are functions of space,R, time, t, the direction of
the Fermi momentum,p f (or Fermi velocityv f) and the ex-
citation energy,e.

The Riccati amplitudes depend on spin, and in general are
described by 232 density matrices in spin space whose ei-
genvalues determine the local coherence and distribution
functions for two possible spin states. The coherence ampli-
tudes obey Riccati-type equations; for example

iv f · ¹ gR = − 2egR + gRD̃gR + SRgR − gRS̃R − DR. s1d

The distribution function,xK, obeys a Riccati-type transport
equation

is]t + v f · ¹ dxK = sgRD̃R + SRdxK + xKsDg̃A − SAd − gRS̃Kg̃A

− SK + DKg̃A + gRD̃K, s2d

where Sm and Dm, m=R,A,K, are the diagonal and off-
diagonal self-energies, respectively. We follow the notation
in Ref. 27 throughout the paper. Particle↔hole conjugation,
denoted bỹ , is defined by the operationq̃sp̂ f ,ed=q* s−p̂ f ,
−ed. The product of two functions of energy and time is
defined by the noncommutative convolution

AB; A + Bse,td = eis]e
A]t

B−]t
A]e

Bd/2Ase,tdBse,td. s3d

Neither the operator,+, nor the arguments,se ,td, are shown
explicitly unless required.

Once the Riccati equations are solved subject to appropri-
ate boundary conditions, the quasiclassical Green’s functions
can be constructed from the Riccati amplitudes. Physical ob-
servables such as the charge or heat current can then be
calculated. This procedure is discussed extensively by sev-
eral authors, cf. Refs. 27 and 30.

At an interface or surface the local electronic potential
changes on an atomic length and energy scales. Such strong,
short-range potentials are treated within the quasiclassical
theory as boundary conditions for the quasiclassical Green’s
functions, or equivalently the Riccati amplitudes. Such an
interface can be described by a scattering matrix,S, for
normal-state electrons and holes with excitation energies
near the Fermi surface.26 Here we confine our discussion to
specular interfaces, in which case the momentum of an ex-
citation parallel to the interface,pi, is conserved. The inter-
face S matrix is then described by a unitary matrix in the
combined spin, particle-hole, and direction spaces. Thus

Ssp̂ fd = SŜ11 Ŝ12

Ŝ21 Ŝ22

D , s4d

where the index 1(2) refers to the left(right) side of the

interface. Each element of this matrix,Ŝij , is a diagonal
Nambu matrix in particle-hole space

Ŝij = SSij 0

0 SI i j
D, i, j = 1,2, s5d

in which Sij and SI i j are matrices in spin space, which are
related by particle-hole conjugation,SI i jspid=fSjis−pidgtr,
wheref. .gtr is the matrix transpose in spin space.26

The Riccati amplitudes for the set of scattering trajecto-
ries labeled 1i, 1o, 2i, and 2o, shown in Fig. 1, are classified
into two groups. The quantitieshg j

R,A,g̃ j
R,A,xj

K , x̃j
Kj, denoted

by lower case symbols, are obtained by integrating the Ric-
cati equations along the four trajectories from the bulk to-

ward the interface. The quantitieshG j
R,A,G̃ j

R,A,Xj
K ,X̃j

Kj, de-
noted by upper case symbols, are obtained by starting at the
interface and integrating along the trajectory into the bulk.
The boundary conditions listed below connect the unknown
upper case amplitudes at the interface with the known lower
case amplitudes via the interface scattering matrix. The deri-
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vation of these boundary conditions is outlined in the appen-
dix. For example, the boundary conditions for trajectory 1o
are

G1
R = r1l

Rg1
RSI11

† + t1l
Rg2

RSI12
† , s6d

G̃1
A = SI11g̃1

Ar̃1r
A + SI12g̃2

At̃1r
A , s7d

X1
K = r1l

Rx1
Kr̃1r

A + t1l
Rx2

Kt̃1r
A − a1l

Rx̃2
Kã1r

A , s8d

where we have introduced effective reflectionsrd, transmis-
sion std, and branch-conversion transmissionsad amplitudes

r1l
R = + fsb21

R d−1S11
† − sb22

R d−1S12
† g−1sb21

R d−1, s9d

t1l
R = − fsb21

R d−1S11
† − sb22

R d−1S12
† g−1sb22

R d−1, s10d

r̃1r
A = + sb21

A d−1fS11sb21
A d−1 − S12sb22

A d−1g−1, s11d

t̃1r
A = − sb22

A d−1fS11sb21
A d−1 − S12sb22

A d−1g−1, s12d

a1l
R = sG1

RSI11 − S11g1
Rdsb̃12

R d−1, s13d

ã1r
A = sb̃12

A d−1sSI11
† G̃1

A − g̃1
AS11

† d. s14d

The auxiliary quantities,bi j
R/A, are defined as

bi j
R = Sij

† − g j
RSI i j

†g̃i
R; b̃i j

R = SI ji − g̃ j
RSjigi

R, s15d

bi j
A = Sij − gi

ASI i j g̃ j
A; b̃i j

A = SI ji
† − g̃i

ASji
†g j

A. s16d

Similarly, for trajectory 1i we have

G̃1
R = r̃1l

Rg̃1
RS11 + t̃1l

Rg̃2
RS21, s17d

G1
A = S11

† g1
Ar1r

A + S21
† g2

At1r
A , s18d

X̃1
K = r̃1l

Rx̃1
Kr1r

A + t̃1l
Rx̃2

Kt1r
A − ã1l

Rx2
Ka1r

A , s19d

where

r̃1l
R = + fsb̃21

R d−1SI11 − sb̃22
R d−1SI21g−1sb̃21

R d−1, s20d

t̃1l
R = − fsb̃22

R d−1SI11 − sb̃22
R d−1SI21g−1sb̃22

R d−1, s21d

r1r
A = + sb̃21

A d−1fSI11
† sb̃21

A d−1 − SI21
† sb̃22

R d−1g−1, s22d

t1r
A = − sb̃22

A d−1fSI11
† sb̃21

A d−1 − SI21
† sb̃22

A d−1g−1, s23d

ã1l
R = sG̃1

RS11
† − SI11

† g̃1
Rdsb12

R d−1, s24d

a1r
A = sb12

A d−1sS11G1
A − g1

ASI11d. s25d

The boundary conditions for trajectories 2i and 2o are given
by interchanging indices 1↔2 in Eqs.(6)–(25). The deriva-
tion of Eqs.(6)–(25) is described in the appendix.

Note that there is more than one physically equivalent
representation of the boundary condition for any of the co-
herence functions. For example, it is straightforward to show
that an alternative form of the boundary condition in Eq.(6)
for G1

R is given by

G1
R = S11g1

Rr1r
R + S12g2

Rt1r
R , s26d

r1r
R = + sb̃12

R d−1fSI11sb̃12
R d−1 − SI12sb̃22

R d−1g−1, s27d

t1r
R = − sb̃22

R d−1fSI11sb̃12
R d−1 − SI12sb̃22

R d−1g−1. s28d

Similar results for G j
R,A and G̃ j

R,A were obtained by
Fogelström.9 Combined with these results for the coherence
functions, the boundary conditions for distribution functions
given in Eqs.(8) and (19) provide a complete set of quasi-
classical boundary conditions applicable to a wide range of
nonequilibrium conditions for superconductors in contact
with spin-active interfaces. These boundary conditions[Eqs.
(6)–(25)] reduce to the results of Ref. 27 for nonspin-active
scattering, i.e., whenSij andSI i j are spin independent.41

In deriving Eqs.(6)–(25) we assumed that the inverses of
bi j

R/A, and their; partners, are defined. Equations(6)–(25)
cannot be applied when one or more of theS matrix ele-
ments is zero. However, in cases where this happens the
boundary conditions are significantly simplified, and can be
readily derived following the procedure outlined in the ap-
pendix. For example, in the case of an impenetrable wall, we
have perfect reflection described byS12=S21=0. Then Eqs.
(6)–(8) are replaced by the simpler set of boundary condi-
tions

G1
R = S11g1

RSI11
† , s29d

G̃1
A = SI11g̃1

AS11
† , s30d

FIG. 1. (Color online) The Riccati amplitudes corresponding to
the scattering trajectories for a partially transmitting specular inter-
face. The interface normal isẑ. The trajectories for the scattering
states are labelled 1i, 1o, 2o, and 2o.
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X1
K = S11x1

KS11
† . s31d

Similarly for perfect transmission,Sjj =0, the boundary con-
ditions simplify to

G1
R = S12g2

RSI12
† , s32d

G̃1
A = SI12g̃2

AS12
† , s33d

X1
K = S12x2

KS12
† . s34d

Further simplification occurs for stationary nonequilib-
rium transport. The time convolution products reduce to ma-
trix products, and there are additional symmetry relations:

bi j
A=sbi j

Rd†, b̃i j
A=sb̃i j

Rd†, r̃1r
A =sr1l

Rd†, t̃1r
A =st1l

Rd†, andã1r
A =sa1l

Rd†.

III. THE S MATRIX

A microscopic calculation of the normal-stateS matrix for
a spin active interface would require a solution of the many-
body problem in the presence of the interface potential. This
is a formidable problem and outside the realm of a practical
theory aimed at understanding the transport properties of het-
erogeneous superconducting junctions. The alternative ap-
proach is to identify the structure of theS matrix, including
the constraints of symmetry, and then model the interface in
terms of the key physical parameters defining these charac-
teristics, e.g., the transmission and reflection probabilities for
normal-state electrons and holes moving along specific tra-
jectories and in particular spin states. For a relatively small
set of physical parameters, the key characteristics of the in-
terface can be obtained from measurements, e.g., from
normal-state transport properties, and then used to make pre-
dictions for nonequilibrium properties in the superconduct-
ing state. This is the most tractable approach to interpreting
and predicting the nonequilibrium properties of heteroge-
neous superconducting junctions.

In this section we discuss the parametrization of theS
matrix in terms of a spin-mixing angle and spin-dependent
normal-state transmission coefficients. Other authors have
also discussed the form of this interfaceS matrix for particu-
lar magnetic interfaces, cf. Refs. 9, 10, 14, and 32. We dis-
cuss the form of theS matrix for both a ferromagnetic insu-
lating interface and a clean ferromagnetic metallic interface.
For both cases we assume the interface is atomically smooth
so that the momentum parallel to the interface,pi, is a good
quantum number.

First consider theS matrix of a ferromagnetic insulating
or semiconducting(FI) interface.9,10,32 Choose the direction
of the spontaneous magnetizationm̂ as the quantization axis
for the conduction electron spin. Then spin up(1) and down
(2) electrons see the FI interfaces as a potential barrier with
thicknessl and heightEg7h, whereEg is the average band
gap andh is the exchange energy. The effects of the FI layer
on the transport of electrons are twofold:(1) spin filtering in
which the reflection(transmission) probabilities for spin up
and spin down electrons are different, because these elec-
trons with different spin polarization see different potential
barriers, and(2) spin mixing in which spin up and down

electrons acquire different phase shifts upon reflection(trans-
mission). This is the analog of circular birefringence in op-
tics. Thus, in general the polarization of an incident electron
undergoes a rotation analogous to optical Faraday rotation.

The degrees of spin filtering and spin mixing are deter-
mined by the modulus and the phase of the reflection(trans-
mission) amplitudes, respectively. Consider the reflection
amplitude for example. In the spinor basisu6l which diago-
nalizesm̂ ·s, the spin matrixS11 is diagonal

S11 = Sr+ 0

0 r−
D = Sur+ueiu+ 0

0 ur−ueiu−
D . s35d

For an arbitrary basisS11 can be parameterized as

S11 = eiw11/2fs11 + s118 sm̂ · sdgeism̂·sdq11/2, s36d

where the overall phase factor,w11;u++u−, and the spin-
mixing angle,q11;u+−u−, are defined as the sum and dif-
ference of the phases for the reflected spin up and spin down
electrons. The two real amplitudes,s11=sur+u+ ur−ud /2 and
s118 =sur+u− ur−ud /2, determine the spin-filtering effect. A simi-
lar parametrization can be carried out for each element,Sij ,
of the S matrix.

The unitary condition,SS†=1, combined with symmetries
of the interface, provide constraints between the values of
hwi j ,qi j ,sij ,sij8 j. For a specular FI interface with inversion
symmetry, the constraint of time reversal symmetry, which
includes the reversal of the ferromagnetic moment, gives
w21=w11+p /2, and q21=q11. In this case the spin-mixing
angle for reflection and transmission are the same. The re-
sultingS matrix simplifies, and is conveniently expressed in
the basis,u6l:

S11 = S22 = eiw/2SÎR↑eiq/2 0

0 ÎR↓e−iq/2D ,

S21 = S12 = ieiw/2SÎD↑eiq/2 0

0 ÎD↓e−iq/2D , s37d

whereRa+Da=1, a= ↑ ,↓. The overall phase factor,w, drops
out of all observables in the quasiclassical approximation
and can be omitted. Therefore, theS matrix is described by
three parameters: the transparencies for spin up and spin
down electrons,D↑ andD↓, and the spin mixing angle,q.

If we also have reflection symmetry in a plane perpen-
dicular to the interface, thenSijs−pid=Sijspid. This implies
that that theS matrix for hole scattering is simplySI i j =Sij .
This model of a ferromagnetic interface defined by Eq.(37),
as well as special cases without spin filtering, have been
discussed previously by several authors.9,10,32The reflection
and transmission probabilities,Ra ,Da ,andq are functions of
the direction of the trajectory of an incident quasiparticle,p̂ f,
and depend on material parameters such as the band gap,Eg,
the Fermi velocities of the electrons in the two metallic
leads,v f i, exchange field,h, barrier thickness,l, etc.

To illustrate the typical parameters for spin mixing and
spin filtering by a FI interface consider a FI barrier with a
band gap ofEg=0.825 eV and and exchange splitting ofh
=0.18 eV, between two metallic leads.42 For conduction
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electrons with effective massm* equal to the band mass of
carriers in the FI we can calculate the spin-mixing angle and
the transmission probabilities for spin up and spin down con-
duction electrons at normal incidence. A barrier of widthl
=0.5 nm givesD↑=0.013,D↓=0.007, andq=0.032p. The
ratio D↓ /D↑ vanishes exponentially as the barrier thickness
increases, and the spin-mixing angleq saturates at 0.0348p,
the spin-mixing angle for a perfectly reflecting FI surface.
For angles away from normal incidence the effective barrier
thickness increases and the corresponding transmission prob-
abilities decrease rapidly away from normal incidence as
shown in Fig. 2. The spin-mixing angle also decreases with
the angle of incidence, and vanishes for grazing incidence.

The S matrix model in Eq.(37) is sufficiently general to
account for the essential features of spin-active scattering by
a clean, ferromagnetic metallic(FM) layer.10 For example,
assume the transmission and reflection of electrons by the
interface is controlled by Fermi wave-vector mismatch at the
S-FM interface. Upon entering the FM layer, the Fermi mo-
menta for majority(spin up) and minority(spin down) elec-
trons changes topf

±=ÎsEf ±hd2m*, respectively. As a result
the transmitted majority- and minority-spin electrons acquire
a relative phase.

For sufficiently large angles of incidence the normal com-
ponent of the momentum of the spin down electrons in the
FM, pz

−=ÎsEf cos2 F−hd2m*, vanishes and becomes imagi-
nary for larger angles of incidence. Thus, these spin down
electrons can only tunnel through the FM barrier. Since the
charge and heat currents are dominated by trajectories close
to normal incidence we consider the transmission probabili-
ties and spin-mixing angle in the small angle limit near nor-
mal incidence, where bothpz

+ and pz
− are real. If we further

assume the exchange field is relatively weak,h!Ef, then to
the leading order inh/Ef:

q = u+ − u− . spz
+ − pz

−dl , s38d

Da . 1 − spz
a/pz − pz/pz

ad2 sin2spz
ald/4. s39d

Thus, for normal incidence the spin-mixing angle is of order
q,pflsh/Efd, which can easily approachp. The electrons of

both spin species are nearly perfectly transmitted,Da.1
−sh/2Efd2, and the spin-filtering effect is negligibly small

D↑ − D↓
D↑ + D↓

, OS h

2Ef
D3

. s40d

Thus, the dominant effect of the FM interface is spin mixing,
and an approximate form for theS matrix of an ideal FM
interface is given byS11=S22.0 and

S12 = S21 . eiweissW ·m̂dq/2. s41d

Starting from Eq.(41) a more detailed model for theS ma-
trix of a FM interface can be constructed by adding a thin
nonmagnetic insulating layer, with transparencyD, inside the
ideal FM, which may describe an interfacial dielectric bar-
rier. The compositeS matrix of this structure takes the form
of Eq. (37) with D↑=D↓=D.

However, there presumably exist a wide variety of spin-
active interfaces, described by any physically allowed value
of q and Da. Thus, the calculations that follow are carried
out for a broad range of values ofq andDa.

IV. FM AND FI POINT CONTACTS

We now illustrate the application of the boundary condi-
tions by calculating some representative transport properties
for both normal metal-ferromagnet-superconductor(NFS)
and SFS point contacts. These calculations highlight the role
of the spin-mixing angle in modifying the local spectrum
near the point contact and in modifying the effective trans-
mission coefficient for excitations that carry currents across
the interface of the point contact.

Although the formalism is applicable to superconductors
with any pairing symmetry, the calculations described here
are for spin-singlet,s-wave superconductors. For a point
contact the radius of the contact is much smaller than the
coherence length. In this limit the pairbreaking effect of the
FM on the magnitude of the order parameter can be ne-
glected, and the voltage drop occurs at the contact because of
the large Sharvin resistance.33 Then at the point contact the
Riccati amplitudesg j

R/A, g̃ j
R/A, xj

K, x̃j
K take their local, bulk

equilibrium values given by27

g j
Rsueu , D jd = − sis2de−id j+if j , s42d

g j
Rsueu . D jd = − sis2dsgnsede−d j+if j , s43d

xj
K = s1 − ug j

Ru2dtanh
e − eVj

2Tj
, s44d

where we introduced the dimensionless parameters,

d j = arccos
e

D j
,ueu , D j , s45d

coshd j =
ueu
D j

,ueu . D j , s46d

and D j is the gap,Vj is the potential,Tj is the temperature,
andf j is the phase of superconductor on sidej =1,2.Appli-

FIG. 2. (Color online) The spin upsD+d and spin downsD−d
transmission probabilities, and the spin mixing angle as a function
of the angle of incidence,F=arccossp̂ f ·ẑd. The model parameters
for the S-FI-S interface are described in the text.
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cation of the boundary conditions, Eqs.(6)–(25), is straight

forward; we obtainG j
R/A, G̃ j

R/A, Xj
K, and X̃j

K from which we
construct the quasiclassical Green’s functions.

A. NFS conductance

Consider the electrical conductance of a NFS contact at
fixed temperature,T, and voltage bias,V. Due to both spin
mixing and the proximity effect, the local density of states
(DOS) of the superconductor deviates from the bulk
Bardeen-Cooper-Schrieffer form. Surface states appear be-
low the gap, and a splitting of the DOS for spin up(1) and
spin down(2) excitations develops for any 0,q,p:

N±sueu , Dd = Nf
1 − R↑R↓

1 + R↑R↓ − 2ÎR↑R↓ coss2d 7 qd
, s47d

N±sueu . Dd = Nf
e2d − e−2dR↑R↓

e2d + e−2dR↑R↓ − 2ÎR↑R↓ cosq
, s48d

whereNf is the density of states at the Fermi level, andd is
defined in Eqs.(45) and (46). For perfect reflection,R↑=R↓
=1, there is a true surface bound state, analogous to the
Shiba state bound to a magnetic impurity in ans-wave
superconductor.34 For finite transmission, the surface bound
states broaden into resonances due to the proximity coupling
with the normal metal. In the tunneling limit, i.e., for low
transmission withD↑<D↓=D!1, N±sed exhibits a relatively
sharp resonance peak below the gap ate± .±D cossq /2d
with a width of orderg.DD /2.35 For higher values of the
transmission probability the resonances broaden into a sub-
gap continuum.

The differential conductance for low-transmission junc-
tions reflects the resonance states which transport charge via
resonant Andreev reflection. The spectral current density,
jsed, can be calculated from the solution for the quasiclassi-
cal propagators at the interface

j.

jN
=

4 coshd fe−dD↑D↓/sD↑ + D↓d + sinhdg
e2d + e−2dR↑R↓ − 2ÎR↑R↓ cosq

, s49d

j,

jN
= 2o

±

D↑D↓/sD↑ + D↓d
1 + R↑R↓ − 2ÎR↑R↓ coss2d ± qd

, s50d

where j_ is the spectral current density forueu_D and jN
~esD↑+D↓d is the spectral current density when the both
electrodes are in the normal state. The total current density is
then given by

j =
1

2
E de jsedFtanhS e + eV

2T
D − tanhS e − eV

2T
DG . s51d

Figure 3 shows the zero temperature differential conductance
for NFS junctions with different spin-mixing angles. The
proximity effect is evident as a finite subgap conductance
even for a nonmagnetic interface. The interface resonance
induced by a finite spin-mixing angle is also clearly exhib-
ited as a broad peak in subgap conductance ateV
<D cossq /2d. Note also that the width of the resonance,g

<DD /2, provides a spectroscopic measure of the interface
transmission probability. However, thermal broadening
dominates the width of the subgap resonances in the tunnel-
ing limit, except at very low temperatures, as shown in Fig.
4.

Asymmetry in the transmission probabilities,D↑ÞD↓, for
spin up and spin down excitations also leads to a finite spin
current. The corresponding spectral current density is given
by

js. =
2sD↑ − D↓dsinhs2dd

e2d + e−2dR↑R↓ − 2ÎR↑R↓ cosq
, s52d

for ueu.D. In contrast to the charge current the subgap spin
current spectral density vanishes identicallys js,=0d because
there is no resonant Andreev reflection for spin transport.
The total spin current is then given by Eq.(51) with jsed
→ j ssed. In Fig. 4 we also show the differential spin conduc-
tance for weak spin filtering,D↑=2D↓=0.2. Note the onset of
the spin conductance ateV=D for T→0, and the absence of
Andreev resonance peaks in the spin conductance for non-
zero spin mixing. The spin conductance is normalized by the
normal-state spin conductance of a point contact of areaA,
sRN

s d−1=NfsD↑−D↓dA.
The limit of extreme spin filtering provided by a half-

metallic ferromagnetic metal is discussed in detail using the
transfer matrix method to incorporate spin mixing at the in-
terface between a FM and a superconductor.24 We obtain the
same results as Ref. 24 for the current of a half-metallic

FIG. 3. (Color online) Differential conductance,dI /dV, for NFS
contacts with different spin mixing angles,q=0, p /2, andp, at
T=0 and forD↑=D↓;D=0.05 andD=0.1. The normal-state resis-
tance of the point contact isRN=se2NfDAd−1, whereA is the area
of the contact.
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ferromagnetic-superconductor point contact by settingD↑
=D and D↓=0. In this limit the subgap conductance from
resonant Andreev reflection is completely suppressed by the
spin-filtering effect.

B. SFS thermal conductance

In a recent report we discussed the role of Andreev bound
states in regulating quasiparticle transport of heat through
point-contact Josephson weak links.33,36 Spin mixing gener-
ates a spin-resolved spectrum of Andreev bound states at a
spin-active point contact even in the absence of a phase bias.
We apply the formalism and boundary conditions developed
in previous sections to investigate the effect of spin mixing
on the phase sensitive heat transport in temperature biased
SFS point contacts. We show that the relative phase shift of
spin up and down electrons, together with the phase biasf
=f2−f1, determines the spectrum of Andreev bound states
at the point contact. The effects of these states on the trans-
mission probability of continuum excitations that transport
heat is calculated.

The thermal conductance of the point contact is defined
by the ratio of the total heat current and the temperature bias
dT=T2−T1 in the limit dT→0. The results reported later are
normalized by the normal-state thermal conductance atTc,
kN=sp2/12dANfv fTcsD↑+D↓d, whereA is the area of the
point contact.

Following the same line of argument as described for the
NFS contact we apply the boundary conditions, Eqs.
(6)–(25), to construct the Green functions for the SFS con-
tact. The ABS spectrum is straightforward to calculate and
has been discussed in the context of the Josephson current of
the SFS weak link by several authors.9,10,22 There are two
branches(labeled as6) of spin up Andreev bound states
with energies

e±
↑ = D sgnSsin

q ± r

2
Dcos

q ± r

2
, s53d

where the angler is defined as

r = arccossÎR↑R↓ + ÎD↑D↓ cosfd. s54d

The spin down bound states are at energies

e±
↓sqd = e±

↑s− qd = − e7
↑ sqd. s55d

At q=0 or p, the ABS spectra is degenerate with respect to
spin. For 0,q,p the spin degeneracy is lifted, thus, the
typical bound state spectrum has four branches, two branches
per spin direction forrÞ0. Branches with opposite spin are
“mirror reflections” of one another with respect to the Fermi
energyse=0d. In the tunneling limit,D↑=D↓=D→0, and to
leading order inr!q, the splitting of the spin up states is
given by

e±
↑ . DFcos

q

2
7 sin

q

2
ÎD sin

f

2
G . s56d

The spectral weight of an ABS comes at the expense of
the continuum spectrumsueu.Dd. In addition there is asym-
metry with respect to spin,N↑sueu.DdÞN↓sueu.Dd, and as a
result spin up and spin down quasiparticles contribute differ-
ently to the heat current. To compute the heat current, we
follow the procedure described in Ref. 33. The boundary
conditions for the distribution functions, Eqs.(8) and (19),
enable us to obtain an analytical result for the Keldysh
Green’s function at the point contact. From this result we can
calculate the spectral density for the heat current for the set
of trajectories,h1i ,1o,2i ,2oj. The spectral heat current con-
tains contributions from spin up and spin down electron-like
and hole-like quasiparticles

jhse,p̂ fd =
e

4pi
Trsĝ1i

K − ĝ1o
K d =

e

4pi
Trsĝ2o

K − ĝ2i
K d, s57d

where Tr represents the trace of Nambu matrix propagators.
It is straightforward to show that the spectral heat current can
be expressed in an intuitive form by introducing the effective
transmission coefficientD for heat transport,

jhse,p̂ fd = − 2eStanh
e

2T1
− tanh

e

2T2
DDse,p̂fd. s58d

The contributions toD come from directse→ed transmis-
sion and branch conversionfeshd→hsedg transmission chan-
nels,D=De→e+De→h:

De→e = fsD↑ + D↓dcoshs2dd − 2ÎD↑D↓scosq cosfdg

3 sinh2 d/Z2, s59d

FIG. 4. (Color online) Differential charge conductance,dI /dV,
and spin conductance,dIs/dV, for a NFS contact with spin-mixing
angle,q=p /2 and transparencies,D↑=2D↓=0.2, at temperatures,
T=0.01Tc, T=0.1Tc, andT=0.2Tc. Note that the voltage is normal-
ized in units ofD0, the gap atT=0.
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De→h = fsD↑ + D↓d − 2D↑D↓ − 2ÎR↑R↓D↑D↓ cosfg

3 sinh2 d/Z2, s60d

Z2 = fÎR↑R↓ + ÎD↑D↓ cosf − coshs2ddcosqg2

+ sinh2s2ddsin2 q. s61d

In the normal stateD→ sD↑+D↓d /2, and spin mixing has no
effect on the quasiparticle transport. However, in the super-
conducting state the transmission coefficientD for quasipar-
ticles of energye and momentump f is sensitive to both the
phase bias,f, and the spin-mixing angle,q.

Consider first the case withf=0. Spin mixing leads to
bound states ateB=±D cossq /2d. For the case in whichD↑
=D↓=D, only the direct transmission channel contributes,
i.e., De→hsf=0d=0 and

De→esf = 0d = D
e2 − D2

e2 − D2cos2
q

2

, D. s62d

Thus, quasiparticle transmission is suppressed by the spin
mixing effect for any value of the normal-state transparency,
D, and for all energies. The suppression is most severe at
q=p, i.e., when the ABS is more strongly bound.43 Thus for
f=0 spin mixing suppresses heat transport for any value of
the normal state transparency.

For a spin-inactive point contactsq=0d in tunneling limit,
D!1, it is known thatDsed has a resonance peak at

eres/D = 1 +
1

2
D sin2 f

2
+ OsD2d, s63d

which is a reflection of a shallow bound state just below the
gap edge ateB/D=1−1

2D sin2f /2+OsD2d. Tuningf from 0
to p leads to an increase in the thermal conductance because
of resonant transmission of quasiparticles ate<eres.

33 En-
hanced transmission still exists for SFS point contacts, but as
q increases the resonance peak ofDsed gradually vanishes.
For q=p, the bound states are at energieseB
=±DÎD sinsf /2d, and there is no resonance peak ofDsed.
InsteadD is suppressed at all energies

Dsq = pd = D
e2 − D2

e2 − D2D sin2 f

2

, D. s64d

Thus, to leading order inD, Dsq=pd.Ds1−D2/e2d is inde-
pendent off, so phase modulation of the thermal conduc-
tance vanishes. These features are shown clearly in Fig. 5 for
the thermal conductance calculated in the tunneling limit
with D↑=D↓=D=0.1 and for general values ofq and f.
Resonant enhancement of the conductance occurs in the vi-
cinity of f<p andq!1. Increasingq suppresses the over-
all thermal conductance as well as the phase modulation.

Figure 6 shows the thermal conductance in the high trans-
parency limit withD↑=D↓=D=0.9. Atq=0 (a “0” junction),
tuning f towardsp pushes the ABS deep into the gap, so
Dsed is increasingly suppressed fromD, and the thermal
conductance goes down. The opposite occurs atq=p (a “p”

junction9): tuningf from 0 to p pushes the ABS toward the
gap edge, so the thermal conductance increases. The phase
modulation of the thermal conductance for a general value of
q can be understood qualitatively in a similar manner. The
thermal conductance is maximum when the bound states are
closest to the gap edge. The different phase modulation of
the thermal conductance for 0 junctions(i.e. q,p /2) versus
p junctionssq.p /2d should be observable in high transpar-
ency SFS junctions; one should in principle be able to
change the spin-mixing angle by varying the thickness of the
FM layer, thus tuning between 0 orp junction behavior. The
phase of the SFS junction can then be controlled by varying
the magnetic flux linking a superconducting quantum inter-
ference device containing the SFS contact.

In contrast to FM contacts, SFS junctions with FI contacts
are expected to be in the tunneling limit, i.e.,D↑,↓!1. For
the FI interface described in Sec. III withl =0.5 nm, D↑
=0.013, D↓=0.007, andq=0.032p, the discrimination be-
tween transparencies for different spin orientation is rela-
tively large, D↑.2D↓, but the spin mixing is weak. As a
result the phase modulation of the thermal conductance is
almost the same as that of a spin-inactive tunnel junction.33

Figure 7 shows a map of the thermal conductance as a func-

FIG. 5. (Color online) The thermal conductance of a SFS point
contact withD↑=D↓=0.1 atT=0.8Tc. The thermal conductance is
normalized to its value atTc. f andq change from 0 top.

FIG. 6. (Color online) The thermal conductance for a SFS point
contact withD↑=D↓=0.9 atT=0.8Tc.
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tion of temperature and phase bias for the junction param-
eters given earlier. For simplicity we neglected the angular
dependence ofDa and q. Note that resonant transmission
leads to enhancement of the thermal conductance compared
to the normal-state conductance atTc over a broad tempera-
ture range 0.5Tc&T,Tc for f*p /2.

V. DISCUSSION AND CONCLUSION

In this paper we derived the boundary conditions for the
quasiclassical Ricatti amplitudes, including the distribution
functions,xK, for general interfaces. This completes the de-
velopment of the boundary conditions for the Riccati ampli-
tudes at spin-active interfaces initiated in Ref. 9. The results
summarized in Sec. II apply to a broad range of supercon-
ducting interfaces, and are specifically applicable to nonequi-
librium transport involving spin-active interfaces. The
boundary conditions can be applied to investigate dynamical
properties, are applicable for any paring symmetry. The ef-
fects of disorder are readily described within the quasiclas-
sical theory framework.

In the dirty limit the quasiclassical theory for conven-
tional superconductors can be formulated in terms of Fermi
surface averaged quasiclassical Green functions.37 The qua-
siclassical transport equations reduce to diffusion-type(Us-
adel) equations. Boundary conditions for the the Fermi-
surface averaged Usadel propagators at a spin active
interface has been discussed recently in Ref. 38. A compari-
son between results for the dirty SFS and NSF junctions
based on the Usadel equations and boundary conditions and
the dirty limit of the Ricatti formalism with the general spin-
active boundary conditions developed here will be discussed
in a separate report. Finally, we note that we have presented
boundary conditions and results applicable to specular inter-
faces. The boundary conditions can be extended to include
atomic scale roughness at a spin-active interface, but this
extension is outside the scope of this report.

The Riccati approach to the boundary problem in quasi-
classical theory is complimentary to theT-matrix
approach,19,21–24which has been used to calculate the sub-

harmonic structure of the current-voltage characteristics of
magnetic Josephson point contacts,16 and recently to study
the Josephson effect and conductance of superconductors in
contact with half-metallic ferromagnets.23,24 The advantage
of the Ricatti approach is that the implementation of the
boundary condition is given explicitly in one step, without
introducing auxiliary propagators. The Riccati formulation
also makes analytical analysis more tractable. The Riccati
method has been successfully used to study the equilibrium
properties, e.g., the direct current Josephson effect and
temperature-induced 0−p transition of SFS junctions.9,10 As
shown by Barashet al.,14 the Riccati approach is especially
powerful to study more complicated hybrid structures such
as SFIFS junctions.

As examples of the potential application of the newly de-
rived boundary condition for the nonequilibrium distribution
functions,xK, we investigated the charge and spin conduc-
tances for NFS point contacts and heat transport through
temperature and phase biased SFS point contacts. We
showed how the spin-mixing angleq, defined as the relative
phase between spin up and down electrons upon transmis-
sion (or reflection), controls the local excitation spectrum
and the transport of charge, spin, and energy across the point
contact. Beyond this relatively simple application, we expect
that results and physics can be explored for a broad range of
nonequilibrium transport problems involving spin-active in-
terfaces with the new boundary conditions.
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APPENDIX: DERIVATION OF EQS. (6)–(25)

In this Appendix we outline how the boundary conditions
for the Riccati amplitudes, Eqs.(6)–(25), are derived from
the Millis-Rainer-Sauls boundary conditions. Our starting
point is the set of Eqs.(63)–(66) of Ref. 26, which in terms
of Shelankov projection operators,39,40

P̌±
l = SP̂±

l,R P̂±
l,K

0 P̂±
l,A
D =

1

2
S1̌ ±

ǧl

− ip
D,l [ h1i,1o,2i,2oj

sA1d

can be written as

P̌−
2osŜ22P̌+

2iŜ22
† + Ŝ21P̌−

1iŜ21
† dP̌+

2o = 0, sA2d

P̌+
2isŜ22

† P̌−
2oŜ22 + Ŝ12

† P̌+
1oŜ12dP̌−

2i = 0, sA3d

P̌+
1isŜ11

† P̌+
1oŜ11 + Ŝ21

† P̌−
2oŜ21dP̌−

1i = 0, sA4d

FIG. 7. (Color online) The thermal conductance of a SFS con-
tact in the tunneling limit withD↑=2D↓=0.013 andq.0.032p.
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P̌−
1osŜ11P̌−

1iŜ11
† + Ŝ12P̌+

2iŜ12
† dP̌+

1o = 0. sA5d

Following the convention in literature, we denote a
Keldysh^ Nambu matrix with check accent, a Nambu
(particle-holê spin) matrix with hat accent, and a spin ma-
trix without any accent. We use theansatzof Eschrig27 to
parameterize the projectors in terms of Riccati amplitudes,

e.g., for P̌+
1i we have

P̂+
R = S 1

− G̃1
RDs1 − g1

RG̃1
Rd−1s1,g1

Rd, sA6d

P̂+
A = S− G1

A

1
Ds1 − g̃1

AG1
Ad−1sg̃1

A,1d, sA7d

P̂+
K = P̂+

RSx1
K 0

0 0
DP̂−

A + P̂−
RS0 0

0 X̃1
KDP̂+

A, sA8d

where we omitted the superscript 1i. The strategy to solve
Eqs.(A2)–(A5) is to reduce the order of the equation set by
exploiting the properties of the projectors and to decompose
the equations for the KeldysĥNambu matrices into equa-
tions of spin matrices.

Take the retarded components of Eqs.(A2)–(A5) and plug

in the expressions forP̂±
l,R. Each of the four equations of

Nambu matrices collapses into an equation for the coherence
functions which are spin matrices. For example, the retarded
part of Eq.(A3) and (A4) give

b12
R s1 − G1

Rg̃1
Rd−1sG1

RSI12 − S12g2
Rd

= sS22
† G2

R − g2
RSI22

† ds1 − g̃2
RG2

Rd−1b̃22
R , sA9d

b11
R s1 − G1

Rg̃1
Rd−1sG1

RSI11 − S11g1
Rd

= sS21
† G2

R − g1
RSI21

† ds1 − g̃2
RG2

Rd−1b̃12
R . sA10d

Equations(A9) and (A10) suggest the solution

sG1
RSI11 − S11g1

Rdsb̃12
R d−1 = sG1

RSI12 − S12g2
Rdsb̃22

R d−1,

sA11d

sb11
R d−1sS21

† G2
R − g1

RSI21
† d = sb12

R d−1sS22
† G2

R − g2
RSI22

† d.

sA12d

The earlier results assume the inverses ofbi j
R/A and their

; partners exist. This is generally the case for partially trans-
mitting interfaces. Otherwise, Eqs.(A9) and (A10) can be
solved rather trivially since some of theS matrix elements
vanish. Equations(A11) and (A12) immediately lead to the
result obtained by Fogelström,9 Eq. (26), which is equivalent
to Eq. (6), as well as

G2
R = r2l

Rg2
RSI22

† + t2l
Rg1

RSI21
† , sA13d

r2l
R = + fsb12

R d−1S22
† − sb11

R d−1S21
† g−1sb12

R d−1, sA14d

t2l
R = − fsb12

R d−1S22
† − sb11

R d−1S21
† g−1sb11

R d−1. sA15d

It is also straightforward to verify that the solution, Eq.(26)
and Eqs.(A13)–(A15), indeed satisfy Eqs.(A9) and (A10).
In a similar manner, the boundary conditions for all retarded
and advanced coherence functions can be derived.

The Keldysh components of Eqs.(A2)–(A5) can be sim-
plified by using the equations for retarded and advanced pro-
jectors. Then after plugging in the expressions for all the
projectors,P̂±

l,R/A/K, once again we find that the Nambu ma-
trix equations collapse into spin matrix equations for the Ric-
cati amplitudes. For example, the Keldysh components of
Eqs.(A3) and (A4) lead to

0 = f− b11
R s1 − G1

Rg̃1
Rd−1S11 + sS21

† G1
R − g1

RSI21
† ds1 − g̃2

RG2
Rd−1g̃2

R
21gx1

K + x1
Kf− S11

† g1
As1 − G̃1

Ag1
Ad−1sG̃1

AS11 − SI11g̃1
Ad + S21

† s1

− g2
AG̃2

Ad−1a21
A g + b11

R s1 − G1
Rg̃1

Rd−1X1
Ks1 − g1

AG̃1
Ad−1a11

A − b21
R s1 − G2

Rg̃2
Rd−1X2

Ks1 − g2
AG̃2

Ad−1a21
A − sS11

† G1
R − g1

RSI11
† ds1

− g̃1
RG1

Rd−1x̃1
Ks1 − G̃1

Ag̃1
Ad−1sG̃1

AS11 − SI11g̃1
Ad + sS21

† G2
R − g1

RSI21
† ds1 − g̃2

RG2
Rd−1x̃2

Ks1 − G̃2
Ag2

Ad−1sG̃2
AS21 − SI21g̃1

Ad sA16d

0 = f− b12
R s1 − G1

Rg̃1
Rd−1S12 + sS22

† G2
R − g2

RSI22
† ds1 − g̃2

RG2
Rd−1g̃2

RS22gx2
K + x2

Kf− S12
† g1

As1 − G̃1
Ag1

Ad−1sG̃1
AS12 − SI12g̃2

Ad + S22
† s1

− g2
AG̃2

Ad−1a22
A g + b12

R s1 − G1
Rg̃1

Rd−1X1
Ks1 − g1

AG̃1
Ad−1a12

A − b22
R s1 − G2

Rg̃2
Rd−1X2

Ks1 − g2
AG̃2

Ad−1a22
A − sS12

† G1
R − g2

RSI12
† ds1

− g̃1
RG1

Rd−1x̃1
Ks1 − G̃1

Ag1
Ad−1sG̃1

AS12 − SI12g̃2
Ad + sS22

† G2
R − g2

RSI22
† ds1 − g̃2

RG1
Rd−1x̃2

Ks1 − G̃2
Ag2

Ad−1sG̃2
AS22 − SI22g̃2

Ad. sA17d

Again, if the inverses ofbi j
R/A do not exist Eqs.(A16) and

(A17) simplify and are readily solved. For the general case,
in order to solve forX1

K andX2
K, we constructsb21

R d−13 [Eq.
(A16)] 3sa21

A d−1−sb22
R d−13 [Eq. (A17)] 3sa22

A d−1 and
sb11

R d−13 [Eq. (A16)] 3sa11
A d−1−sb12

R d−13 [Eq. (A17)]

3sa12
A d−1 to obtain transformed equations, Eqs.sA10d8

sA11d8, which are not reproduced here. The transformed Eq.
sA10d8 contains onlyX1

K, x1
K, x2

K, andx̃2
K. We regularize each

term by carrying out a series of transformations. For ex-
ample, the terms proportional tox1

K are transformed to
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+ sb21
R d−1b11

R s1 − G1
Rg̃1

Rd−1sa1l
Rg̃2

RS21 − S11dx1
Ksa21

A d−1

+ sb21
R d−1x1

KsS21
† g2

Aã1r
A − S11

† ds1 − g1
AG̃1

Ad−1a11
A sa21

A d−1

+ sb21
R d−1x1

Ksa21
A d−1 sA18d

and further into

− sb21
R d−1b11

R s1 − G1
Rg̃1

Rd−1r1l
RsS11

+ d−1x1sS11d−1r̃1r
A s1

− g1
AG̃1

Ad−1a11
A sa21

A d−1 + sb22
R d−1b12

R s1

− G1
Rg̃1

Rd−1r1l
RsS11

+ d−1x1sS11d−1r̃1r
A s1 − g1

AG̃1
Ad−1a12

A sa22
A d−1 sA19d

with the help of algebraic identities such as

a1l
Rg̃2

RS21 + r1l
R = S11,a1l

Rg̃2
RS22 + t1l

R = S12, sA20d

1 − G1
Rg̃1

R = r1l
Rb11

R + t1l
Rb12

R , sA21d

sb21
R d−1b11

R s1 − G1
Rg̃1

Rd−1t1l
Rb12

R = − sb22
R d−1b12

R s1

− G1
Rg̃1

Rd−1r1l
Rb11

R .

sA22d

As a result the transformed Eqs.sA10d8 sA11d8 can be ex-
pressed as

sb21
R d−1b11

R s1 − G1
Rg̃1

Rd−1n1s1 − g1
AG̃1

Ad−1b11
A sb21

A d−1

= sb22
R d−1b12

R s1 − G1
Rg̃1

Rd−1n1s1 − g1
AG̃1

Ad−1b12
A sb22

A d−1,

sA23d

sb12
R d−1b22

R s1 − G2
Rg̃2

Rd−1n2s1 − g2
AG̃2

Ad−1b22
A sb21

A d−1

= sb11
R d−1b21

R s1 − G2
Rg̃2

Rd−1n2s1 − g2
AG̃2

Ad−1b21
A sb11

A d−1,

sA24d

with

n1 ; X1
K − r1l

Rx1
Kr̃1r

A − t1l
Rx2

Kt̃1r
A + a1l

Rx̃2
Kã1r

A , sA25d

n2 ; X2
K − r2l

Rx2
Kr̃2r

A − t2l
Rx1

Kt̃2r
A + a2l

Rx̃1
Kã2r

A . sA26d

Obviously n1=n2=0 satisfies Eqs.(A23) and (A24), or
equivalently, the original Eqs.(A16) and (A17). The equa-
tion n1=0 yields the boundary condition forX1

K in Eq. (8).
The boundary condition forX̃j

K is derived in a similar manner
starting from Eqs.(A2) and (A5).
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