
Structure of the superconducting state in a fully frustrated wire network with dice
lattice geometry

S. E. Korshunov1,2 and B. Douçot2
1L. D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow 119334, Russia

2Laboratoire de Physique Théorique et Hautes Énergies, CNRS UMR 7589, Université Paris VI and VII, 4 place Jussieu,
75252 Paris Cedex 05, France

(Received 16 April 2004; published 18 October 2004)

The superconducting state in a fully frustrated wire network with the dice lattice geometry is investigated in
the vicinity of the transition temperature. We express the projection of the Ginzburg-Landau free-energy
functional on its unstable subspace in terms of variables defined on the triangular sublattice of sixfold coor-
dinated sites. For the resulting effective model, we construct a large class of degenerate equilibrium configu-
rations, which are in one-to-one correspondence with ground states of the fully frustratedXY model with a dice
lattice. The entropy of this set of states is proportional to the linear size of the system. Finally, we show that
magnetic interactions between currents provide a degeneracy lifting mechanism and find the structure of the
periodic state selected by these interactions.
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I. INTRODUCTION

The concept of frustration has been a common link among
various problems in statistical mechanics for the past two
decades at least. Even in the absence of disorder, it often
results in a phenomenon of competition between several de-
generate ground states. Superconducting wire networks pro-
vide a very appealing class of systems where many subtle
effects induced by frustration can be observed experimen-
tally and analyzed theoretically.1–9

For simple regular networks, a natural parameter charac-
terizing the strength of the frustration is the ratiof =F /F0,
whereF is the external magnetic flux through an elementary
plaquette of the lattice andF0=hc/2e is the superconducting
flux quantum. For an ideal network of very thin wires, all
physical properties are expected to be periodic functions off,
all integer values being equivalent. In this case, the maximal
frustration is obtained whenf reaches half-integer values.
Such fluxes are interesting because already for a single loop,
they provide two equivalent ground states, distinguished by
the orientation of the supercurrent flowing around the loop.
For more complex geometries, two adjacent loops(sharing a
common link) have a lower free energy when the currents in
them flow in opposite directions. The possibility to fulfill this
requirement for any pair of adjacent loops is a geometrical
property of a given lattice, which allows one to be sure about
the structure of the superconducting state without any addi-
tional analysis. This clearly holds for a square lattice10

(where vortices of alternating signs form a regular checker-
board pattern) or for a triangular lattice.

In recent years, network geometries which do not satisfy
this criterion have received a lot of attention. The most stud-
ied examples are the honeycomb,11–15 the kagomé,14–21 and
the dice22–27 lattices. On the honeycomb lattice, the discrete
degeneracy of the classical ground states in fully frustrated
superconducting wire networks or Josephson-junction arrays
can be described in terms of formation of zero-energy do-
main walls in parallel to each other,13 the residual entropy of

such system being proportional to its linear size. Experimen-
tally, a cusplike local maximum in the superconducting tran-
sition temperatureTc is observed as the external magnetic
field is varied around the value corresponding tof =1/2.14

This behavior has been interpreted as an evidence for a de-
generacy lifting mechanism which selects a commensurate
ordered pattern of vortices.14

For the kagomé lattice, the residual entropy of classical
ground states is much larger, since it is proportional to the
whole network area.17,28 The experimental situation atf
=1/2 is not asclearcut as for the honeycomb lattice, since
the shape ofTc versus magnetic-field curves nearf =1/2 de-
pends on the resistive criterion chosen to determineTc,

19 or
on the superconducting metal(aluminum versus niobium, for
instance14). Theoretically, various degeneracy lifting mecha-
nisms have been studied in detail by Park and Huse.20

On the dice lattice(see Fig. 1), the residual entropy is
proportional to the system linear size,26 as for the honey-
comb lattice. Experimentally, magnetic decoration
experiments24,25 have found a highly disordered vortex pat-
tern, with a vortex correlation length comparable to the lat-
tice spacing. Numerical simulations27 of the corresponding
XY model support the picture proposed in Ref. 26 for the
ground states, but also demonstrate, at low temperatures, an
unusually slow relaxation of energy, as well as aging of
phase correlation functions.

In this paper we consider maximally frustrated supercon-
ducting networks on a dice lattice, in the immediate vicinity
of the superconducting transition temperature. In this limit,
the amplitude of the superconducting order parameter is not
necessarily uniform, and it is appropriate to use a generali-
zation of the approach introduced by Abrikosov29 in his first
prediction of vortex lattices in type-II superconductors. The
main idea underlying this approximation is that atTcsHd,
only a small fraction of the eigenmodes of the linearized
Ginzburg-Landau equations becomes unstable. Abrikosov
developed a variational procedure where the superconduct-
ing order parameter is constrained to remain in this unstable
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subspace[for T→TcsHd this procedure is asymptotically ex-
act]. Minimizing the quartic term in the Ginzburg-Landau
free-energy functional yields then periodic vortex lattice so-
lutions.

Adopting this approach to a dice lattice network is quite
interesting since the corresponding eigenmodes(for f =1/2)
have unusually high degeneracy and exhibit the unexpected
property of an extreme form of spacial localization. It is
indeed possible to construct an eigenfunction basis for which
each member is nonvanishing only on afinite cluster.22,30

This phenomenon arises from the Aharonov-Bohm interfer-
ence effect which is magnified in the geometry of the dice
lattice, and theseAharonov-Bohm cageshave been evi-
denced experimentally by the observation of magnetoresis-
tance oscillations in ballistic semiconductor networks31 with
the flux periodhc/e per elementary loop.

The main result of the present study is that in maximally
frustrated superconducting wire network nonlinear effects se-
lect a class of order-parameter configurations in one-to-one
correspondence with the ground states of the fully frustrated
XY model with the same geometry,26 which may be viewed
as a low-temperature approximation for the Ginzburg-
Landau model ignoring amplitude variations(London limit).
However, the inclusion into analysis of the magnetic energy
leads to the removal of the accidental degeneracy and selec-
tion of one of the periodic states minimizing the Ginzburg-
Landau free energy. The same state has the lowest free en-
ergy also at lower temperatures(down to London limit), as
well as in Josephson-junction arrays with the same geometry.

In Secs. II and III, we express the Ginzburg-Landau func-
tional for a fully frustrated dice lattice wire network after
projection on the subspace of unstable modes in terms of
complex variables defined on the triangular sublattice of six-
fold coordinated sites. Section IV describes the construction
of periodic equilibrium states for this effective problem, and
their extension to a larger class of degenerate states whose
precise connection with those proposed for the correspond-
ing XY model is established. Finally, Sec. V investigates a

degeneracy lifting due to magnetic interaction between
currents.

II. HARMONIC CONTRIBUTION TO FREE ENERGY

A. A single wire

In the framework of the Ginzburg-Landau approximation
the free energy of a thin superconducting wire,Fwire

GL , can be
written as the sum of the two terms,

Fwire
s2d =E

0

L

dxH−
a

2
uDsxdu2 +

g

2
UF− i

]

]x
−

2p

F0
AisxdGDsxdU2J

s1d

and

Fwire
s4d =

b

4
E
0

L

dxuDsxdu4, s2d

describing, respectively, the harmonic and the fourth-order
contributions toFwire

GL . Herea~Tc0−T, b andg are the coef-
ficients of the Ginzburg-Landau expansion,L is the length,
Tc0 is the mean-field transition temperature of the wire,Dsxd
is the superconducting order parameter as a function of the
coordinatex along the wire,Aisxd is the projection of the
vector potential on the wire, andF0=hc/2e is the supercon-
ducting flux quantum.

At the point of phase transitionuDsxdu→0, andFwire
s4d can

be neglected in comparison withFwire
s2d . For the given values

of Dsxd at the ends of the wire,

Ds0d = D0, DsLd = D1, s3d

the minimum ofFwire
s2d is achieved when2

Dsxd = FD0 sin
L − x

j
+ D1 sin

x

j
exps− iA01dGexpiasxd

sinh
,

s4d

whereh=L /j,

j ; jsTd =Îg

a
<

j̄

Î1 − T/Tc0

s5d

is the temperature-dependent correlation length[here

j̄,jsT=0d], the functionasxd is defined by the integral

asxd =
2p

F0
E
0

x

dx8Aisx8d, s6d

whereasA01 is the value of this integral for the whole wire,
A01=asLd.

Substitution of Eq.(4) into the expression for the super-
conducting current in the wire,

FIG. 1. Finite cluster with the dice lattice geometry.
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Isxd =
2e

"
g ReFD*sxdS− i

]

]x
−

2p

F0
AiDDsxdG , s7d

shows that the value of the current is constant along the wire
and is given by

I01 = −
2e

"

g

j sinh
ImfD0D1

*eiA01g. s8d

On the other hand substitution of Eq.(4) into Eq. (1)
gives a simple quadratic form ofD0 andD1:

7

Fwire
s2d sD0,D1,A01d = F2fcosh suD0u2 + uD1u2d − kD0uD1lg,

s9d

whereF2=g / s2j sinhd and

kD juDkl = D jDk
*eiAjk + D j

*Dke
−iAjk. s10d

B. An arbitrary network

The functionFwire
s2d defined by Eq.(9) can be then used to

express the harmonic part of a free energy of a superconduct-
ing wire networkFnw

s2d in terms of the values of the supercon-
ducting order parameterD j in its nodesj ,

Fnw
s2d = o

s jkd
Fwire

s2d sD j,Dk,Ajkd. s11d

Here the summation is performed over all linkss jkd of a
network. In the following, we assume that all the links are
identical and, therefore, the functionFwire

s2d sD j ,Dk,Ajkd is the
same for all the links.

In the case of a network formed by identical plaquettes it
is convenient to express the value of perpendicular external
magnetic fieldH in terms of the number of flux quanta per
single plaquette:f =HS/F0 (hereS is the area of a plaquette).
Then the directed summation of the variablesAjk;−Akj
along the perimeter of each plaquette in positive direction
(denoted below asoh) should give

o
h

Ajk = 2pf . s12d

From the form of Eq.(9) it is evident that the shift off by an
integer or its reflection with respect tof =1/2 sf →1− fd does
not change the form of the expression for free energy(or can
be taken care of by a redefinition of variables), and, there-
fore, it is sufficient to analyze the interval 0ø f ø1/2. By the
analogy with frustratedXY models10 a network with the
maximal irreducible value off, that is with f =1/2, can be
called a fully frustrated network.

When fluctuations are completely neglected, the
magnetic-field dependence of the superconducting transition
temperature in a networkTcsfd can be found by looking
when (with the decrease of temperature) the quadratic form
defined by Eqs.(9)–(11) loses its positiveness. To this end
one has to analyze the system of equations obtained by the
variation ofFnw

s2d with respect toDk
* ,

o
j=jskd

fDkcosh − D je
iAjkg = 0, s13d

where jskd are the nodes connected withk by the links of a
network (in the following, we call them the nearest neigh-
bors ofk). The same equations can be derived1,2 directly in
the framework of the continuous description without explicit
calculation ofFwire

s2d sD j ,Dk,Ajkd. Multiplication of Eq.(13) by
Dk

* with subsequent extraction of the imaginary part allows to
obtain the current conservation equation

o
j=jskd

I jk = 0. s14d

The form of Eq. (13) coincides2 with that of the
Schrödinger equation for a single electron hopping between
the sites of the lattice with the same geometry in the presence
of external magnetic field. As a consequence,Tcsfd can be
related withe0sfd, the largest eigenvalue of the Schrödinger
equation in the same field. For a network whose nodes are all
characterized by the same coordination numberz this rela-
tion can be written5 as

Tc0 − Tcsfd
Tc0

= F j̄

L
arccos

e0sfd
z
G2

. s15d

Starting from the work of Hofstadter32 (who considered the
case of a square lattice), the spectrum of the Schrödinger
equation for a single-electron hopping problem in the pres-
ence of external magnetic field has been extensively studied
for various types of two-dimensional lattices including
triangular,33 honeycomb,34 dice,22 and kagomé16,35 lattices.

The structure of the superconducting state in the network
just belowTcsfd is determined by the structure of the eigen-
function corresponding toe0sfd.6 The conditions for the ap-
plicability of the mean-field approach are discussed in Ap-
pendix A.

C. A network with a dice lattice geometry

Dice lattice36,37 is formed by the sites with the coordina-
tion numbers 3 and 6 in such a way that each bond connects
two sites with different coordination numbers(see Fig. 1).
Below, when discussing a dice lattice, we denote the three-
fold coordinated sitesk and the sixfold coordinated sitesj .
Thus, the bonds jkd of a dice lattice connects the sixfold
coordinated sitej with the threefold coordinated sitek.

When considering the problem on a dice lattice it is con-
venient to simplify the quadratic form(11) by minimizing it
with respect to all variablesDk defined on the threefold co-
ordinated sites. Substitution[from Eq. (13)] of

Dk =
1

3 cosh
o

j=jskd
D je

iAjk s16d

into Eqs.(9)–(11) then gives
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Fnw
s2d =

F2

3 cosh
o
s j j 8d

fs3 cos2 h − 1dsuD ju2 + uD j8u
2d

− 2 cosspfdseiAjj 8D jD j8
* + c.c.dg, s17d

where the summation is performed over the pairss j j 8d of
nearest neighbors on the triangular lattice formed by the six-
fold coordinated sites, whereas variables

Ajj 8 = fsAjk8 + Ak8 j8d + sAjk9 + Ak9 j8dg/2 s18d

(wherek8 andk9 are the two threefold coordinated sites be-
longing to the same rhombus asj and j8) are the averages of
Ajj 8 on the two shortest paths on a network connecting the
nodes j and j8. It follows from Eq. (12) that the variables
Ajj 8;−Aj8 j have to satisfy the constraint

o
h

Ajj 8 = 3pf s19d

on all plaquettes of the triangular lattice. The form of Eqs.
(17) and (19) suggests that for 0ø f ø1/2 the problem of
finding Tcsfd on a dice lattice is reduced to analogous prob-
lem on a triangular lattice withf multiplied by 3/2 and a
different value ofh. Accordingly, the relation between the
critical temperatures(expressed in terms ofh) in the two
cases is given by

3 cos2 hcsfd − 1 = 2 cosspfdcoshc
ns3f/2d. s20d

Analogous relation between the single-electron spectra on
dice and triangular lattices has been derived in Ref. 22.

Quite remarkably, forf =1/2 thenondiagonal coupling in
Eq. (17) completely disappears, which allows immediately to
conclude that

hcs1/2d = arccoss1/Î3d < 0.9553. s21d

This absence of coupling between different variablesD j can
be understood as a manifestation of the extremely localized
nature of the highly degenerate eigenfunctions22 correspond-
ing to the largest eigenvalue of the single-electron Hamil-
tonian.

As a consequence, forf =1/2 thevalue ofFnw
s2d turns out to

be exactly the same for any set of the variablesD j satisfying
the normalization condition

1

N
o

j

uD ju2 = D2, s22d

whereN is the number of the sixfold coordinated sites in the
network with appropriately chosen periodic boundary condi-
tions (the total number of sites being 3N). Accordingly, to
find the structure of the superconducting state in a fully frus-
trated wire network with the dice lattice geometry(which is
the main subject of this work) one has to minimize the
fourth-order contribution to free energy,

Fnw
s4d = o

s jkd
Fwire

s4d sD j,Dk,Ajkd s23d

[whereDk is given by Eq.(16)], with respect to the whole set
of the variablesD j satisfying the constraint(22), which fixes
also the value ofFnw

s2d. For 0,h−hc!1

Fnw
s2d < − 12NF2D2ssinhcdsh − hcd, s24d

where we have kept only the lowest-order term of the expan-
sion with respect toh−hc.

At the conceptual level, this task can be considered as
analogous to finding the structure of the vortex lattice which
minimizes the fourth-order contribution to the free energy of
a bulk superconductor just belowHc2. In this problem(first
analyzed by Abrikosov29), the harmonic contribution to free
energy is degenerate with respect to a huge number of con-
tinuous variables, the positions of the order-parameter singu-
larities, whereas in the present problem a huge continuous
degeneracy of the harmonic problem is related with variables
D j.

III. FOURTH-ORDER CONTRIBUTION
TO FREE ENERGY

A. A single wire

Substitution of Eq.(4) into Eq. (2) describing the fourth-
order contribution to the free energy of a superconducting
wire gives

Fwire
s4d sD j,Dk,Ajkd = F4fI4suD ju4 + uDku4d

+ 2I3suD ju2 + uDku2dkD juDkl

+ I2s2uD ju2uDku2 + kD juDkl2dg, s25d

where F4=bL /4 and the numerical constantsIn (with
n=2,3,4) are given by the integrals

In =E
0

1

dt
sinnshtdsin4−nfhs1 − tdg

sin4 h
. s26d

When we are interested in the structure of the superconduct-
ing phase just belowTcsfd, the comparison of the fourth-
order terms in the free energy of different states should be
made by calculating them atT=Tcsfd. Thus, in the following
we will need the values ofIn at h=hcs1/2d=arccoss1/Î3d,
which are

I2 = s15 − 9Î2hc
−1d/32< 0.0524,

I3 = Î3s7Î2hc
−1 − 9d/32< 0.0737, s27d

I4 = s27 − 13Î2hc
−1d/32< 0.2424.

B. A tripod of three wires

For f =1/2 thecontribution toFnw
s4d from a tripod formed

by the three linkss jakd [where ja; jaskd with a=1, 2, 3 are
the three nearest neighbors ofk numbered in the positive
direction] after the substitution of Eq.(16) can be rewritten
as
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Fnw
s4dskd = F4F3n1 + n2

4 o
a=1

3

uD ja
u4 +

n1 + n2

4
So

a=1

3

uD ja
u2D2

+ n1So
a=1

3

uD ja
uuD ja+1

usinx jaja+1D2

+ n2o
a=1

3

suD ja
uuD ja+1

usinx jaja+1
d2

− n1o
a=1

3

uD ja
uuD ja+1

uuD ja+2
u2sinx jaja+1

− sn1 + n3d

3o
a=1

3

uD ja
uuD ja+1

usuD ja
u2 + uD ja+1

u2dsinx jaja+1G, s28d

where

n1 =
4

3
I2 +

16

3Î3
I3 +

4

3
I4,

n2 =
4

3
I2,

n3 =
8

3
I2 +

4
Î3

I3,

whereas x j j 8 are the gauge-invariant phase differences
between the phasesw j of the order parameter
D j ;uD juexpsiw jd at neighboring sixfold coordinated sites,

x j j 8 = w j8 − w j − Ajj 8 ; − x j8 j . s29d

It follows from Eq. (19) that for all tripods, or, in other
words, for all plaquettes of the triangular lattice formed by
the sixfold coordinated sites,

o
a=1

3

x jaja+1
= − o

a=1

3

Ajaja+1
= − 3p/2. s30d

Since each plaquette of this lattice has a particular threefold
coordinated site in its center, the indexk numbering such
sites can be also used for numbering triangular plaquettes.

In the cyclic sums in Eq.(28) and analogous sums below
j4; j1. The last term in Eq.(28) can be omitted, since during
summation over the whole lattice the two tripods adjacent to
any link s jajbd always yield opposite contributions.

C. The equal amplitude hypothesis

Let us now introduce the additional assumption(whose
self-consistency is established in Appendix B) that the abso-
lute values of the variablesD j are the same for all sixfold
coordinated sitesj ,

D j = D expsiw jd, s31d

whereD is real. In that case the contributions to

Fnw
s4d = o

k

Fnw
s4dskd s32d

from the next but last term in Eq.(28) coming from the
neighboring tripods also cancel each other, and the expres-
sion for Fnw

s4d is reduced to

Fnw
s4d = F4D4o

k

fn0 + Vshx jaja+1
jdg, s33d

wheren0=s9/2dn1+3n2,

Vshxjd = Vsx1,x2,x3d ; n1So
a=1

3

sinxaD2

+ n2o
a=1

3

sin2 xa

s34d

and

o
a=1

3

x jaja+1
= p/2smod 2pd. s35d

SinceFnw
s4d is invariant with respect to the shift of any of the

variablesx j j 8 by a multiple of 2p, here and below for con-
venience we assume that they all are reduced to the interval
f−p ,pg, in accordance with which the right-hand side of Eq.
(35) is written asp /2 (mod 2p) instead of −3p /2, as it
would follow from Eq.(30).

At the temperature of the superconducting transition in a
fully frustrated wire network[that is, ath=hc=hcs1/2d] the
values of the coefficientsnn are given by

n1 =
1

4
s1 +Î2hc

−1d < 0.6201,

n2 =
1

8
s5 − 3Î2hc

−1d < 0.0699, s36d

n0 = 3.

IV. MINIMIZATION OF THE FOURTH-ORDER
CONTRIBUTION TO FREE ENERGY

A. A single triangle

It is well known that the ground state38,39 of the antifer-
romagneticXY model with triangular lattice can be found by
minimizing the energy separately for each triangular
plaquette and then matching these solutions with each other.

For n1,n2.0 the minimum ofVsx1,x2,x3d on an isolated
triangle [under the constraint of the form(35)] is achieved
when two of the arguments ofVsx1,x2,x3d are equal to each
other, for example

x1 = x2 = − cstd, x3 = p/2 + 2cstd, s37d

another solution with the same value ofVsx1,x2,x3d being

x1 = x2 = − fp − cstdg, x3 = p/2 − 2cstd, s38d

wheret=n2/n1 and
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cstd = arcsin
Î12 + 4t + t2 − 2 + t

4s1 + td
. s39d

With increase oft from zero to infinity,cstd continuously
increases from arcsinfsÎ3−1d /2g<p /8 to p /6.

In an infinite system each variablex j j 8 belongs simulta-
neously to two triangles, but enters the functionVsx1,x2,x3d
on these two triangles with the opposite signs. Comparison
of Eqs.(37) and(38) with each other allows to conclude that
it is impossible to minimizeFnw

s4d by minimizingVsx1,x2,x3d
separately for each triangle.

B. A periodic solution

When variablesx j j 8 are reduced to a finite interval, the
average value ofoa=1

3 x jaja+1
should be equal to zero. This can

be achieved if on one quarter of triangles the right-hand side
of Eq. (35) is equal to −3p /2, whereas on all remaining
triangles it is really equal top /2. Accordingly, the minimal
supercell of a periodic set of variablesx j j 8 should consist of
four triangles.

The four-triangle supercell with the most symmetric(tri-
angular) shape, but with the most general structure allowing
for construction of a periodic state by a periodic repetition of
this supercell, is shown in Fig. 2(a). It can be described by
the six variablesxi (with i =1, . . . ,6) defined as shown in

Fig. 2(a) and satisfying three independent constraints of the
form (35), which can be chosen to be

x1 + x2 + x3 = p/2, s40d

− x3 + x4 + x5 = p/2, s41d

− x1 − x5 + x6 = p/2, s42d

the fourth constraint,

− x2 − x4 − x6 = − 3p/2, s43d

following automatically from Eqs.(40)–(42).
The minimization ofFnw

s4d for this supercell with respect to
the remaining three degrees of freedom shows that forxi
P f−p ,pg the minimum is achieved when

x1 = x4 = − p/4, x3 = 0,
s44d

x2 = x5 = 3p/4, x6 = p,

or in one of the five other states which can be constructed
from this state by permutations of the variablesxi. In all
these states on all triangles,

o
a=1

3

sinx jaja+1
= 0, s45d

which means that on each triangle the first term ofVshxjd
reaches its absolute minimum(i.e., is equal to zero). Accord-
ingly, the value ofFnw

s4d in these states does not depend onn1,

Fnw
s4d = 2sn0 + n2dF4D4N. s46d

Note that the supercell defined by Eqs.(44) consists of
two pairs of equivalent(if one takes into account the equiva-
lence of p and −p) triangles. Thus the actual size of the
supercell has turned out to be two times smaller than it has
been initially conjectured. But there was no way to predict
this without really performing the minimization for the four-
triangle supercell.

The same solution[whose structure is shown in Fig. 2(c)]
can be also found by starting from the assumption that a
periodic state is formed with the help of the four-triangle
supercell with the different shape shown in Fig. 2(b). In that
case the constraints(40) and (41) retain their form, whereas
in Eqs.(42) and(43) one should interchangex1 andx4. For
this supercell the minimum ofFnw

s4d (for not too large ratio
n2/n1) is again achieved in the solution described by Eqs.
(44) (or other equivalent solutions).

It follows from Eq. (16) that for uD ja
u=D

uDku2 =
D2

3
S3 − 2o

a=1

3

sinx jaja+1D . s47d

Substitution of Eq.(45) into Eq. (47) allows immediately to
conclude that in the solution which we have found the abso-
lute value of the order parameter on all threefold coordinated
sites has the same value as on the sixfold coordinated sites,

uDku = uD ju = D. s48d

FIG. 2. Construction of periodic patterns minimizing the fourth-
order contribution to free energy.(a) A possible choice for the most
symmetric four-triangle supercell.(b) An alternative four-triangle
supercell.(c) The structure of the periodic solution obtained from
free-energy minimization with the supercell shown in(a) or (b).
Simple arrows correspond to phase differencesx j j 8 equal to ±p /4,
double arrows to ±3p /4, simple lines to 0, and wiggly lines top.
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In addition to gauge-invariant variablesx j j 8 defined on the
bonds of triangular lattice, one can, naturally, also introduce
the gauge-invariant phase differences defined on the bonds of
the original dice lattice,

u jk = wk − w j − Ajk, s49d

wherewk;argsDkd. As a consequence of Eq.(12), the vari-
ablesu jk=−ukj, which we assume to be reduced to the inter-
val s−p ,pd, have to satisfy the constraint

o
h

u jk = ± p. s50d

When Eq.(48) is fulfilled, expression(8) for the current in a
link is reduced to

I jk = I0 sinu jk, s51d

where

I0 =
2e

"

gD2

j sinh
. s52d

Calculation of

D jDk
* expsiAjkd = D2 exps− iu jkd s53d

with the help of Eq.(16) demonstrates that in the considered
state the variablesu jk have the same three values(up to a
permutation and a simultaneous change of sign),

u jk = ± u1, ± u2, 7 u3, s54d

on all tripods forming dice lattice. These values have to sat-
isfy the constraints

u2 − u1 = p/4, u1 + u3 = p/2, u2 + u3 = 3p/4, s55d

leading to the automatic fulfillment of Eqs.(50), as well as
the current conservation equation

sinu1 + sinu2 = sinu3, s56d

which follows from Eq.(51). As a consequence, they turn
out to be exactly the same,

u1,3= arccoss1/Î3 7 1/Î6d, u2 = arccoss1/Î3d, s57d

as in the ground state of the fully frustratedXY model
(FFXYM) with a dice lattice,26 for which the current conser-
vation equation also has the form(56).

Thus, in terms ofu jk, the state which we have found[it is
schematically shown in Fig. 3(a)] has exactly the same struc-
ture as one of the ground states of the FFXYM with a dice
lattice. It has to be emphasized that the reasons for that are
more subtle than a simple reduction of one model to the
other. First, in the case of a superconducting wire network
the relation(48), the form of which seems to imply a pos-
sible reduction toXY model, is valid only in the minimum of
free energy. Second, the substitution of Eq.(48) into Eq.(25)
gives

Fwire
s4d su jkd = F1f2sI4 + I2d + 8I3 cosu jk + 4I2 cos2 u jkg,

s58d

whereas in the case of the FFXYM in the expression for the
energy of a bond the term proportional to cos2 u is simply
absent, whereas the term proportional to cosu has a coeffi-
cient of the opposite(negative) sign. Thus the two models do
not become equivalent even if Eq.(48) is artificially intro-
duced as an additional assumption.

C. Additional degeneracy

The ground state of the FFXYM with a dice lattice is
known to possess a well-developed accidental degeneracy,
which can be described in terms of the formation of a net-
work of zero-energy domain walls26 on the background of a
periodic state. This construction can start from any of the
four periodic states shown in Fig. 3 and allows to obtain, in

FIG. 3. The four periodic
states generating the class of de-
generate states discussed in the
text by adjunction of domain
walls. The plaquettes with posi-
tive vorticities are shaded, and the
three types of arrows correspond
to the three possible gauge-
invariant phase differencesu1, u2,
u3 (modulo 2p). Labels are cho-
sen to match those introduced in
Ref. 26.
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particular, the three other states shown in that figure by in-
troduction of such domain walls.

For example, both state(c) and state(e) can be obtained
from state(a) by introduction of the dense sequence of par-
allel zero-energy domain walls(of two different types). In
that language state(g) can be described as the dense network
of intersecting domain walls of two types. On the other hand,
if one starts the construction from state(c), both state(a) and
state(g) are formed by introduction of parallel domain walls,
whereas the network of two types of walls corresponds to
state(e).

The same set of states(described in a more detail in Ref.
26) minimizesFnw

s4d for givenD. In Appendix B we check that
all these states are extremal not only when one assumes
uD ju=const, but also in the absence of this constraint. The
accidental degeneracy related to formation of zero-energy
domains walls gives rise to residual entropy proportional to
the linear size of the system.

In the framework of the description of different states in a
network in terms of the gauge-invariant phase differences
u jkP s−p ,pd, all rhombic plaquettesa of a dice lattice can
be considered as occupied by positive and negative half-
vortices, whose vorticitiesma= ±1/2 aregiven by

ma =
1

2p
o
h

u jk = ±
1

2
. s59d

In the family of states minimizingFnw
s4d the half-vortices of

the same sign always form triads with one “central” and two
“edge” vortices.26 The formation of domain walls which cost
no free energy is related to the changes in the orientation
and/or in the shape of these triads, but does not lead to for-
mation of vortex clusters of any other size.

At low temperaturessT!Tc0d the free energy of a fully
frustrated wire network with the dice lattice geometry(which
then can be described in terms of the London approximation)
is minimal for the same set of states, but with the slightly
different values26 of ua,

u1 = p/12, u2 = p/3, u3 = 5p/12, s60d

satisfying, nonetheless, the same constraints(55).

D. Alternative solution

The analysis of the supercell shown in Fig. 2(b) allows
also to find a state which minimizesFnw

s4d for largen2. In the
notation of Fig. 2(b) the structure of this state is given by

x1 = x2 = x3 = − x4 = p/6; x5 = − x6 = 5p/6. s61d

It minimizes the value of the second term in Eq.(34) sepa-
rately for each triangle, the value ofFnw

s4d being

Fnw
s4d = 2Fn0 +

3

4
sn1 + n2dGF4D4N. s62d

This alternative state is characterized by even more devel-
oped accidental degeneracy leading to extensive residual en-
tropy. Namely, the value ofFnw

s4d does not change if at an
arbitrary number of sitesj the variablesw j are shifted byp.

Note that this property holds not only atn1=0, when it trivi-
ally follows from Vshxjd being dependent only on cos 2xa,
but also at finite values ofn1.

Comparison of Eq.(62) with Eq. (46) shows that
the values of Fnw

s4d in the two states become equal at
n2/n1=3, whereas in our case, according to Eqs.(36),
n2/n1<0.1127!3. At so low values of the ration2/n1, the
alternative solution discussed in this section is simply un-
stable.

V. MAGNETIC ENERGY

A. An arbitrary network

When currents in a two-dimensional wire network satisfy
the current conservation equations, the current in each link
can be expressed as a difference of so-called mesh currents,40

Ia
m, associated with the plaquettes(meshes) of a network.

Namely, the current in the links jkd can be written as the
difference of the mesh currents associated with the two
plaquettes(a anda8) adjacent to this link,

I jk = Ia
m − Ia8

m . s63d

The magnetic energy of the currents in the network,Emagn,
can be then expressed in terms ofIa

m,

Emagn=
1

2c2o
a,b

LabIa
mIb

m, s64d

where a symmetric matrixLab is usually called the mutual
inductance matrix.40

The diagonal elements of this matrix describe the self-
inductances of current loops which can be associated with
different plaquettes of the network and, accordingly, have to
be positive. On the other hand, its nondiagonal elements de-
scribe the mutual inductances of nonintersecting coplanar
current loops. Magnetic fields of such loops substract from
each other and, therefore, the nondiagonal elements ofLab

have to be negative. In an infinite network the constraint

o
a

Lab = 0 s65d

has to be satisfied. This ensures the invariance ofEmagnwith
respect to a possible redefinition of mesh currents,
Ia
m→ Ia

m+dIm, which leaves the physical currents in the links,
I jk, intact. For practical purposes it is convenient to defineIa

m

in such a way that

o
a

Ia
m = 0. s66d

The value ofLab depends only on the relative disposition
of the two plaquettesa andb, and in the limit of infinitely
thin wires can be found by calculating the double integral
over their perimetersGa andGb,

Lab =R
Ga

dr aR
Gb

dr b

1

ur a − r bu
. s67d

The expression forLab given by Eq.(67) in the case ofa
=b is logarithmically divergent, which means thatLaa has
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always to be calculated more accurately, taking into account
the finite width of the wires. The same is true for the value of
Lab for neighboring plaquettes(having a common link). In
the case of more distant neighbors(having only a common
node or simply not touching each other) one can use Eq.(67)
based on the assumption of infinitely thin wires without en-
countering any divergences.

Equation(67) can be also rewritten as the double integral
over the areas of the plaquettesa andb. For aÞb

Lab = −E
Sa

d2r aE
Sb

d2r b

1

ur a − r bu3
, s68d

which shows thatuLabu rapidly decays with the growth of
Rab, the distance between the centers of the plaquettesa and
b. For Rab@L,

Lab < −
SaSb

Rab
3 . s69d

In any periodic state minimizing the free energy of a frus-
trated network, the plaquettes with negative and positive val-
ues ofIa

m regularly alternate with each other, soEmagn (nor-
malized, for example, per plaquette) is given by a rapidly
decaying sign alternating lattice sum. It allows one to expect
that the main contribution to this sum comes from its largest
terms, corresponding to the self-inductances of the plaquettes
and the mutual inductances of rather close neighbors. Analo-
gously, when comparing the magnetic energies of different
degenerate states minimizing the fourth-order term in the
free energy, the main contribution to the difference between
them can be expected to come from the closest neighbors
whose contributions do not cancel each other identically.

Besides the proper energy of the magnetic field induced
by currents and given by Eq.(64), one also has to take into
account the decrease of the superconducting free energy re-
lated to the vector potential of this field. In the weak screen-
ing regime the sum of these two contributions,Fmagn, differs
from Emagn only by sign,

Fmagn= − Emagn,

and, therefore, one has to maximizeEmagn.

B. Mutual inductances of dice lattice plaquettes

Figure 4 introduces the classification of neighbors for
rhombic plaquettes of a dice lattice, which can be used for
the natural reordering of summation in Eq.(64). A chosen
plaquette(which is shaded) has four nearest neighbors(de-
noted by 1), four next-to-nearest neighbors(denoted by 2),
two third neighbors(denoted by 3), etc., as shown in Fig. 4
up to sixth neighbors. In the following we denote the self-
inductance of a plaquetteL0 and the mutual inductance of a
plaquette and itsnth neighbor(which is a negative quantity),
Ln=−lnL.

For n from 2 to 5 the calculation ofLn with the help of
Eq. (67) or Eq. (68) gives

l2 = 4Î3 − 2Î7 − 2 −15ln 3 − 4 lns1 +Î3d

+ lnf8s4 +Î7d5s− 1 + 2Î7ds1 + 25Î7d2g, s70d

l3 = 8Î7 − 12Î3 + lnfs27/4ds1 +Î3d12/s5 + 2Î7d6g,

s71d

l4 = 12 − 10Î3 + 2Î7 − s33/2dln 2 − s97/4dln 3

+ s1/2dlnfs1 +Î3d50s4 −Î7d31s2 +Î7d11g, s72d

l5 = 3 + 5Î3 − 3Î7 −Î13 − 12 ln 3

+ lnfs2 +Î7ds1 + 2Î7ds5 + 2Î7d3/s1 +Î3d8g

+ s1/2dlnfs1 +Î13ds− 2 +Î13d4s7 +Î13d8/2g,

s73d

whereas numerically,

l2 < 0.5569,

l3 < 0.3637,
s74d

l4 < 0.1671,

l5 < 0.0723.

Thus the decrease ofuLnu with n is rather fast even for
n,1.

C. The form and the magnitude of magnetic energy

In a general situation the values of mesh currentsIa
m

should be found from Eqs.(63) and, accordingly, are given
by nonlocal linear combinations of link currentsI jk. Quite
remarkably, substitution of Eq.(16) into Eq. (8) allows to
find that the values of mesh currents in a fully frustrated
superconducting wire network with dice lattice geometry in
the vicinity of Tc are given by the local expression

I j j 8
m = −

2e

"

g

j sinh
uD juuD j8u

cosx j j 8
Î3

, s75d

where I j j 8
m is the mesh current in the plaquette

a j j 8=s jk8 j8k9d.
In the family of states minimizingFnw

s4d and described in
Sec. IV the absolute value ofI j j 8

m on all plaquettes acquires
only two values

FIG. 4. Classification of plaquettes according to their distance
from the shaded one.
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Ic
m = I0/Î3, Ie

m = I0/Î6, s76d

whereI0 is given by Eq.(52). The choice betweenIc
m andIe

m

is determined by whether the plaquettea j j 8 is occupied by
the central or edge vortex of a triad to which it belongs,
whereas the sign ofI j j 8

m by the sign of this vortex. The ratio
g= Ie

m/ Ic
m following from Eqs.(76) is equal tog1=1/Î2.

Substitution of Eq.(75) into Eq. (64) shows thatEmagn is
of the fourth order inD j, and thus should be added(with the
negative sign) to the fourth-order termFnw

s4d, which has been
minimized in Sec. IV. It follows from Eq.(75) that for uD ju
=D the main contribution toEmagn [which is related to self-
inductances of lattice plaquettes,L0,8LlnsL /dd, whered is
the thickness of the wires], can be written as

Emagn
s0d = Emo

s j j 8d

f1 − sin2x j j 8g, s77d

whereEm=L0I0
2/6c2.

The value of the coefficientEm, which atT=Tc is given
by

Em =
L0

4
S2e

"c
D2Sg

j
D2

D4, s78d

should be compared withF4D4=sL /4dbD4. With the help of
Eqs.(A5) and (A6) one obtains

Em

F4D4 ,
s

k2j2sTcd
, s79d

wherek is the Ginzburg-Landau parameter of the material
from which the wires are made ands their cross-section
area. Since the mean-field phase transition in a fully frus-
trated network takes place whenjsTcd<L, Eq. (79) can be
rewritten as

Em

F4D4 ,
s

k2L2 . s80d

Thus, in order to getEmagn!Fnw
s4d (the weak screening re-

gime) one should have

s ! k2L2.

In other terms the same condition can be rewritten as

LefffjsTcd , Lg @ L,

where Leffsjd,skjd2L /s is the effective penetration depth
for the magnetic field in a network. In such a caseEmagncan
be treated as a small correction, which is relevant only for
the removal of the accidental degeneracy between different
states minimizingFnw

s4d. In the opposite limit finding the struc-
ture of the ordered state becomes an even more complicated
problem because one has to minimizeFnw

s2d+Fnw
s4d+Emagn tak-

ing into account the dependence of all three terms on the
magnetic fields induced by the currents. Therefore, below we
always assumes!k2L2; that is, the wires are thin enough.

Note, however, that the applicability of the mean-field ap-
proach requires the wires to be not too thin,
s@k2L3/LunivsTd; see Appendix A. The two conditions ons
are compatible providedL!LunivsTd, which is readily satis-

fied in experiments, since for a temperature around 1 K
LunivsTd is of the order of 1 cm, see Eq.(A8).

It is clear from the form of Eq.(77) that the subtraction of
Emagn

s0d from Fnw
s4d does not change the functional form of the

fourth-order term(expressed in the terms of the variables
x j j 8), but leads only to a small increase of the coefficientn2
in Eq. (34). The next contribution toEmagn, which is related
to mutual inductances of neighboring plaquettes, has a more
complicated structure,

Emagn
s1d = −

L1I0
2

3 o
k

o
a=1

3

cosx jaja+1
cosx ja+1ja+2

. s81d

However, in all the states minimizingFnw
s4d, the three variables

x j j 8 on each triangle are always given by

x1,2,3= p/2 7 p/2, 7 p/4, ± 3p/4, s82d

as a consequence of which the sum overa in Eq. (81) is
equal to −1/2 for allk and, therefore, the subtraction of
Emagn

s1d from Fnw
s4d−Emagn

s0d also does not lift the degeneracy. To
be sure of that we have checked also that all the states mini-
mizing Fnw

s4d remain extremal with respect to variations ofw j
even when one includes into analysis the extra terms ob-
tained by the variation ofEmagn

s1d .

D. Selection of the state by magnetic energy

In a more general situation, when the ratiog= Ie
m/ Ic

m is
kept as a free parameter, the first two contributions to the
magnetic energy can be written as

Emagn
s0d =

L0

2
S Ic

m

c
D2

s1 + 2g2dN, s83d

Emagn
s1d = − L1S Ic

m

c
D2

2g2N, s84d

and, naturally, are also the same for all the states minimizing
Fnw

s4d.
The difference appears when consideringEmagn

s2d , the con-
tribution toEmagncoming from the mutual inductances of the
plaquettes which are next-to-nearest neighbors of each other.
Comparison ofEmagn

s2d for the four periodic states, the struc-
ture of which is shown in Fig. 3, shows that for anyg with
ugu,1 the minimum ofEmagn

s2d is achieved in the state(e), and
the maximum in the state(c).

The nonequivalent contributions to magnetic energy of
different periodic states can be characterized by the dimen-
sionless parametere defined by the relation

Emagn= Emagn
s0d + Emagn

s1d + e
LsIc

md2

c2 N. s85d

The values ofe for basic periodic states can be then ex-
pressed in terms of the coefficientsln as

ea = 2g2l2 − s1 + 2g2dl3 + s2 − 4g2dl4+ 4g2l5 + ¯ ,

s86d
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ec = s1 + g2dl2 − g2l3 + s1 − 3g2dl4 − s2 − 2g2dl5 + ¯ ,

s87d

ee = − 2g2l2 − s1 − 2g2dl3 + 2l4 − 4g2l5 + ¯ , s88d

eg = s1 − 3g2dl2 + g2l3 + s1 + g2dl4 − s2 − 2g2dl5 + ¯ .

s89d

Substitution of the values ofln given by Eqs.(74) into Eqs.
(86)–(89) shows that forugu,1 the state(c) maximizes the
nth approximation toe,

esnd =
c2

LsIc
md2N

o
m=2

n

Emagn
smd , s90d

not only forn=2 (as it follows from the previous paragraph),
but also for all other values ofn it has been possible to check
(up ton=5). Since the value ofln rapidly decreases with the
increase ofn, the same conclusion can be expected to be
valid in the limit of n→`. Table I illustrates the dependence
of esnd on n for four basic periodic states in the case of
g=1/Î2.

In a Josephson-junction array the value of the current in a
junction is also given by Eq.(51), where nowI0=s2e/"dJ (J
being the coupling constant of a single junction). As a con-
sequence, the results of this section are applicable to a fully
frustrated Josephson-junction array as well. The value of the
parameterg in the array is also equal tog1, because its
ground state is characterized by exactly the same values of
the variablesua, Eq. (57), as in a fully frustrated wire net-
work just belowTc.

On the other hand, forT!Tc0, whenI jk~u jk, the value of
g in a fully frustrated wire network is equal tog0=3/5, as
can be found from Eqs.(60). It can be expected that with the
decrease in temperature the value ofg in a network continu-
ously decreases fromg1 to g0. However, the conclusion on
the selection of the state(c) by the magnetic energy is valid
not only forg0øgøg1, but in the whole interval −1,g,1.

VI. CONCLUSION

The main result of this work is that the superconducting
state in a fully frustrated wire network with the dice lattice
geometry exhibits the same set of degenerate spacial patterns
minimizing the free energy in the two limiting cases when
the temperature is either low compared to the critical tem-
peratureTc (London limit) or close toTc (Ginzburg-Landau
limit ). This conclusion is quite interesting, given the fact that
the system is described by two rather different models in
these two limits. In the London limit, the amplitude fluctua-
tions of the superconducting order parameter are negligible,
and the corresponding fully frustratedXY model has been
analyzed in Ref. 26. In the vicinity ofTc, we used the varia-
tional approach pioneered by Abrikosov, where the spacial
variations of the complex order parameter are constrained to
live in the subspace of unstable modes for the corresponding
linearized Ginzburg-Landau equations.

Our interest in this problem had been stimulated by the
fact that for a fully frustrated network with the dice lattice

geometry, this subspace has unusually high degeneracy(as a
consequence of the localized nature of modes) and includes a
finite fraction (one-third) of the total number of modes.22,30

Remarkably, nonlinear effects select particular linear combi-
nations of these spacially localized states which reproduce
precisely the current patterns obtained for the pureXY
limit.26

In the second part of this paper, we have compared mag-
netic energies of current patterns in different periodic states
minimizing the Ginzburg-Landau functional. The dominant
contribution to this degeneracy lifting mechanism is due to
interactions of current loops which can be associated with
second-neighbor plaquettes. It favors the periodic pattern in
which the triads of positive and negative vortices have three
different orientations[state(c) in Fig. 3]. The same conclu-
sion is valid also in London limit and in the case of a
Josephson-junction array with the same geometry. It can be
hoped that decoration experiments performed in more equi-
librium conditions than those of Refs. 24 and 25 may reveal
such an ordering.

This work leaves several open questions. First, it is im-
portant to know if all the states constructed here are stable
with respect to local fluctuations in both order-parameter am-
plitudes and phases. We have checked numerically that this
is indeed the case for the periodic states shown on Fig. 3, as
well as for configurations with a single domain wall between
two such ordered states. Unfortunately, a simple(analytical)
stability proof holding for the complete class of degenerate
states is not available now.

Second, alternative degeneracy lifting mechanisms should
be analyzed, as has been done for a wire network with
kagomé geometry by Park and Huse.20 These authors have
found that the dominant perturbation to the idealized
Ginzburg-Landau description of a wire network arises from
the finite width of wires, which removes the degeneracy be-
tween the two opposite orientations of the supercurrents in a
given loop. This mechanism can be interpreted in the terms
of magnetic-field redistribution between the network
plaquettes(see discussion in Ref. 41, where it has been
named “hidden incommensurability”), and, accordingly, is
effective only when a network contains nonequivalent
plaquettes. Therefore, in the case of a dice lattice(formed by
identical rhombic plaquettes) it cannot play a prominent role.

Another degeneracy lifting mechanism is related with the
free energy of fluctuations around various free-energy
minima and will be the subject of a separate report. It is
likely to be the dominant one in the vicinity ofTc, but with
decrease in temperature it becomes less and less important in

TABLE I. Comparison of dimensionless parameter« character-
izing the magnetic energy of four basic periodic states in different
orders of approximation.

n a c e g

2 0.5569 0.8354 −0.5569 −0.2785

3 −0.1704 0.6536 −0.5569 −0.0966

4 −0.1704 0.5700 −0.2227 0.1540

5 −0.0258 0.4977 −0.3673 0.0817
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comparison with magnetic interactions of currents analyzed
in this work.
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APPENDIX A: CONDITION FOR THE APPLICABILITY
OF THE MEAN-FIELD APPROACH

In two-dimensional superconductors the most important
fluctuations are the fluctuations of the order-parameter phase
w= argsDd. WhenTc is approached from below, the free en-
ergy of the phase fluctuations in a single wire,

Fwire <
J

2
sdw j − dwkd2, sA1d

can be characterized by the effective coupling constantJ,
which in the absence of external magnetic field is given by

JsTd =
asTdg

Lb
=

g2

Lbj2sTd
. sA2d

The fluctuations are of no importance whenJsTd@kBT,
which means that the critical region corresponds to

j2sTd .
g2

LbkBTc0
. sA3d

Since the maximal deviation ofTcsfd from Tc0 is achieved
whenjfTcsfdg,L,2,5 the critical region can be considered as
sufficiently narrow if

L3 !
g2

bkBTc0
. sA4d

When the mean free path of electron is much smaller than
the thickness of a wire, the values of the coefficients entering
the Ginzburg-Landau functional for the wire are determined
simply by the values of the analogous coefficients for the
material from which the wire is fabricated. Substitution of

b < sbbulk, g < sgbulk, sA5d

wheres is the cross section of a wire, and

bbulk =
16p3

F0
2 gbulk

2 k2, sA6d

wherek is the ratio of the penetration depth and the coher-
ence length, into Eq.(A4) allows one to rewrite this condi-
tion as

L3 !
LunivsTc0ds

pk2 , sA7d

where

LunivsTd =
F0

2

16p2kBT
<

2 cm K

T
sA8d

is the expression for the universal value of the two-
dimensional penetration length at the temperature of the
Berezinskii-Kosterlitz-Thouless phase transition in a two-
dimensional superconductor.42 In the right-hand side of Eq.
(A8) the temperature should be expressed in kelvin.

In aluminum wire networks fabricated with electron-
beam lithography4,5,8,14,23,24 Tc0<1.2 K, and therefore
LunivsTc0d<1.7 cm, whereas(according to the estimates of
Park and Huse20) k,1.

APPENDIX B: CONSISTENCY OF THE EQUAL
AMPLITUDE HYPOTHESIS

We shall now check that for the class of states described
in Sec. IV, in which the amplitudesuD ju are the same for all
sixfold coordinated sitesj , the derivatives]Fnw

s4d /]uD ju are in-
dependent of the sixfold coordinated sitej . If this property is
satisfied, it is then possible to enforce the equilibrium condi-
tion ]fFnw

s2d+Fnw
s4dg /]uD ju=0 with equal amplitudesuD ju since

Fnw
s2d is proportional too juD ju2 (with a negative coefficient

below the critical temperature of the network).
Derivation ofFnw

s4d=okFnw
s4dskd with respect touD ju gives

]Fnw
s4d

]uD ju
= F4D3F8n0 + 4n2o

b=1

6

sin2x j j b
− 2n1o

b=1

6

sinx jbjb+1G ,

sB1d

where jb (with b=1, . . . ,6) are the six neighbors ofj num-
bered in positive direction(see Fig. 5), and it is assumed that

FIG. 5. The six neighbors of the sitej contributing to the sums
in Eq. (B1).

S. E. KORSHUNOV AND B. DOUÇOT PHYSICAL REVIEW B70, 134507(2004)

134507-12



j7; j1. The contribution from the third term in Eq.(28) van-
ishes from Eq.(B1) as a consequence of Eq.(45), which is
valid for any tripod in any of the states discussed in Sec. IV.

It turns out that the first sum in Eq.(B1) is equal to 2 for
any j in any of the considered degenerate states. On the other

hand, summation of Eq.(45) over the six tripods containing
the given sitej allows one to conclude that the second sum in
Eq. (B1) is always equal to zero. Thus, the expression in the
right-hand side of Eq.(B1) does not depend onj for any
configuration withuD ju=const described in Sec. IV.
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