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The superconducting state in a fully frustrated wire network with the dice lattice geometry is investigated in
the vicinity of the transition temperature. We express the projection of the Ginzburg-Landau free-energy
functional on its unstable subspace in terms of variables defined on the triangular sublattice of sixfold coor-
dinated sites. For the resulting effective model, we construct a large class of degenerate equilibrium configu-
rations, which are in one-to-one correspondence with ground states of the fully frusthateddel with a dice
lattice. The entropy of this set of states is proportional to the linear size of the system. Finally, we show that
magnetic interactions between currents provide a degeneracy lifting mechanism and find the structure of the
periodic state selected by these interactions.
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[. INTRODUCTION such system being proportional to its linear size. Experimen-
tally, a cusplike local maximum in the superconducting tran-
The concept of frustration has been a common link amongition temperaturel, is observed as the external magnetic
various problems in statistical mechanics for the past twdield is varied around the value correspondingftol/2
decades at least. Even in the absence of disorder, it oftefhis behavior has been interpreted as an evidence for a de-
results in a phenomenon of competition between several dggeneracy lifting mechanism which selects a commensurate
generate ground states. Superconducting wire networks prordered pattern of vortice$.
vide a very appealing class of systems where many subtle For the kagomé lattice, the residual entropy of classical
effects induced by frustration can be observed experimenground states is much larger, since it is proportional to the
tally and analyzed theoreticalty? whole network ared’?® The experimental situation aft
For simple regular networks, a natural parameter charac=1/2 is not asclearcut as for the honeycomb lattice, since
terizing the strength of the frustration is the rafie®/®,  the shape of, versus magnetic-field curves ndar1/2 de-
where® is the external magnetic flux through an elementarypends on the resistive criterion chosen to deternig or
plaquette of the lattice anfi;=hc/2e is the superconducting on the superconducting met@luminum versus niobium, for
flux quantum. For an ideal network of very thin wires, all instancé®. Theoretically, various degeneracy lifting mecha-
physical properties are expected to be periodic functiorfs of nisms have been studied in detail by Park and Hlise.
all integer values being equivalent. In this case, the maximal On the dice lattice(see Fig. }, the residual entropy is
frustration is obtained whei reaches half-integer values. proportional to the system linear siZeas for the honey-
Such fluxes are interesting because already for a single looppmb  lattice.  Experimentally, ~magnetic decoration
they provide two equivalent ground states, distinguished bgxperiment&-2° have found a highly disordered vortex pat-
the orientation of the supercurrent flowing around the looptern, with a vortex correlation length comparable to the lat-
For more complex geometries, two adjacent loggisaring a  tice spacing. Numerical simulatioffsof the corresponding
common link have a lower free energy when the currents inXY model support the picture proposed in Ref. 26 for the
them flow in opposite directions. The possibility to fulfill this ground states, but also demonstrate, at low temperatures, an
requirement for any pair of adjacent loops is a geometricainusually slow relaxation of energy, as well as aging of
property of a given lattice, which allows one to be sure abouphase correlation functions.
the structure of the superconducting state without any addi- In this paper we consider maximally frustrated supercon-
tional analysis. This clearly holds for a square laffice ducting networks on a dice lattice, in the immediate vicinity
(where vortices of alternating signs form a regular checkerof the superconducting transition temperature. In this limit,
board patterpor for a triangular lattice. the amplitude of the superconducting order parameter is not
In recent years, network geometries which do not satisfynecessarily uniform, and it is appropriate to use a generali-
this criterion have received a lot of attention. The most studzation of the approach introduced by Abriko$din his first
ied examples are the honeycomb!®the kagomé?2Land  prediction of vortex lattices in type-Il superconductors. The
the dicé227lattices. On the honeycomb lattice, the discretemain idea underlying this approximation is that B(H),
degeneracy of the classical ground states in fully frustratednly a small fraction of the eigenmodes of the linearized
superconducting wire networks or Josephson-junction array§inzburg-Landau equations becomes unstable. Abrikosov
can be described in terms of formation of zero-energy dodeveloped a variational procedure where the superconduct-
main walls in parallel to each oth&tthe residual entropy of ing order parameter is constrained to remain in this unstable
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FIG. 1. Finite cluster with the dice lattice geometry. F@W - EJ dxAX)|*, 2)
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degeneracy lifting due to magnetic interaction between
currents.

II. HARMONIC CONTRIBUTION TO FREE ENERGY
A. A single wire

In the framework of the Ginzburg-Landau approximation
the free energy of a thin superconducting wiFg-., can be
written as the sum of the two terms,
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subspacégfor T— T.(H) this procedure is asymptotically ex- N _ _
acfl. Minimizing the quartic term in the Ginzburg-Landau describing, respectively, the harmonic and the fourth-order

free-energy functional yields then periodic vortex lattice so-contributions toF.. HereaxT,—T, 8 andy are the coef-
lutions. ficients of the Ginzburg-Landau expansidnjs the length,

Adopting this approach to a dice lattice network is quite Te iS the mean-field transition temperature of the wikéx)
interesting since the corresponding eigenmodesf=1/2) is the superconducting order parameter as a function of the
have unusually high degeneracy and exhibit the unexpectegbordinatex along the wire,A|(x) is the projection of the
property of an extreme form of spacial localization. It is vector potential on the wire, arly=hc/2e is the supercon-
indeed possible to construct an eigenfunction basis for whicllucting flux quantum.
each member is nonvanishing only onfiaite cluster?2=° At the point of phase transitiol\(x)| — 0, andF._ can
This phenomenon arises from the Aharonov-Bohm interferpe neglected in comparison Wiﬁﬁre- For the given values
ence effect which is magnified in the geometry of the dicepf A(x) at the ends of the wire,

lattice, and theseAharonov-Bohm cageé&iave been evi-

denced experimentally by the observation of magnetoresis- A(0) = Ay, A(L)=Aq, 3
tance oscillations in ballistic semiconductor netwdtksith o o .
the flux periodhc/e per elementary loop. the minimum ofF 7 is achieved wheh

The main result of the present study is that in maximally ]
frustrated superconducting wire network nonlinear effects se- A(X) = [Ao sinL;X +A, sin)—(exp(— iAoD] expa(x)
lect a class of order-parameter configurations in one-to-one siny
correspondence with the ground states of the fully frustrated (4)
XY model with the same geome#§which may be viewed
as a low-temperature approximation for the Ginzburg-where p=L/¢,

Landau model ignoring amplitude variatiofisondon limit).

However, the inclusion into analysis of the magnetic energy \/‘ E
leads to the removal of the accidental degeneracy and selec- §=EM=\—~ ——
tion of one of the periodic states minimizing the Ginzburg- V1-Ti e
Landau free energy. The same state has the lowest free e

(5

e 4" the temperature-dependent correlation lendtiere
ergy also at lower temperaturégdown to London limij, as — a ) ] ) )
well as in Josephson-junction arrays with the same geometr$,~ §(T=01, the functiona(x) is defined by the integral

In Secs. Il and Ill, we express the Ginzburg-Landau func- <
tional for a fully frustrated dice lattice wire network after o
projection on the subspace of unstable modes in terms of a(x) = 0. dx' A(x"), (6)
complex variables defined on the triangular sublattice of six- 0%

fold coordinated sites. Section IV describes the construction

of periodic equilibrium states for this effective problem, andwhereasAy, is the value of this integral for the whole wire,
their extension to a larger class of degenerate states whodg,;=a(l).

precise connection with those proposed for the correspond- Substitution of Eq(4) into the expression for the super-
ing XY model is established. Finally, Sec. V investigates aconducting current in the wire,
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2e . . d 2w > [Acosn—Aehik]=0 (13
= — -\ - — ! ’
shows that the value of the current is constant along the wirgherej(k) are the nodes connected wittby the links of a
and is given by network (in the following, we call them the nearest neigh-
2 bors ofk). The same equations can be deriv&directly in
lo=— —e.—y|m[AoA;eiA01]_ (8 the framework(gf the continuous description without explicit
h gsiny calculation ofF . (A;, A, Aj). Multiplication of Eq.(13) by
On the other hand substitution of E¢) into Eq. (1) A*k W_ith subsequent extractio_n of the imaginary part allows to
gives a simple quadratic form @, andA,:’ obtain the current conservation equation
Flare(A0:A1,Agy) = Fo[cos (|40 +[A4%) = (AlAp)], S 1,=0. (14)
(9) j=j(k)

The form of Eq. (13) coincideg with that of the
Schrddinger equation for a single electron hopping between
AJAL = A A K + A" AL Ak, 10 the sites of the Iattlc_e Wlth the same geometry in the presence
< ‘| 0 = A 17k (10 of external magnetic field. As a consequentgf) can be
related withey(f), the largest eigenvalue of the Schrédinger
B. An arbitrary network equation in the same field. For a network whose nodes are all

2 ] characterized by the same coordination numbérmis rela-
The functionF ;. defined by Eq(9) can be then used t0 tjon can be writteh as

express the harmonic part of a free energy of a superconduct-

whereF,=1vy/(2¢ sin ) and

ing wire networkFif,)v in terms of the values of the supercon- T — Nk
ducting order parametey; in its nodesj, 0~ Te(f) _ {éarcco €o( )] . (15)
Teo L Z
Fio= (Ek) Flare(A), Al Ay (11)
J

Starting from the work of Hofstadt& (who considered the
case of a square lattizethe spectrum of the Schrodinger
equation for a single-electron hopping problem in the pres-
ence of external magnetic field has been extensively studied
for various types of two-dimensional lattices including
ttriangular?’3 honeycomi?* dice?? and kagom&:3° [attices.

The structure of the superconducting state in the network
st belowT(f) is determined by the structure of the eigen-
function corresponding tey(f).® The conditions for the ap-
plicability of the mean-field approach are discussed in Ap-
rpendix A.

Here the summation is performed over all link&) of a
network. In the following, we assume that all the links are
identical and, therefore, the functi(ﬁﬁre(Aj,Ak,Ajk) is the
same for all the links.

In the case of a network formed by identical plaquettes i
is convenient to express the value of perpendicular extern.'?llJ
magnetic fieldH in terms of the number of flux quanta per
single plaquettef=HS/®, (hereSis the area of a plaqueite
Then the directed summation of the variablag=-A;
along the perimeter of each plaquette in positive directio
(denoted below a¥) should give

C. A network with a dice lattice geometry

Ay =27t 12
% k= e (12 Dice lattic€®3"is formed by the sites with the coordina-

tion numbers 3 and 6 in such a way that each bond connects
From the form of Eq(9) it is evident that the shift of by an  two sites with different coordination numbefsee Fig. 1
integer or its reflection with respect fe1/2(f —1-f) does  Below, when discussing a dice lattice, we denote the three-
not change the form of the expression for free en¢ogycan  fold coordinated site& and the sixfold coordinated sitgs
be taken care of by a redefinition of variableand, there- Thus, the bond(jk) of a dice lattice connects the sixfold
fore, it is sufficient to analyze the intervakOf <1/2. By the  coordinated sitg with the threefold coordinated site

analogy with frustratedXY modeld® a network with the When considering the problem on a dice lattice it is con-
maximal irreducible value of, that is withf=1/2, can be venient to simplify the quadratic forfl1l) by minimizing it
called a fully frustrated network. with respect to all variabled, defined on the threefold co-

When fluctuations are completely neglected, theordinated sites. Substitutigifrom Eq.(13)] of
magnetic-field dependence of the superconducting transition
temperature in a networl.(f) can be found by looking 1
when (with the decrease of temperatutbe quadratic form Ay
defined by Eqs(9)—«11) loses its positiveness. To this end
one has to analyze the system of equations obtained by the
variation ofFff,)V with respect toA*k, into Egs.(9)<(11) then gives

= > At (16)
3 cosy;Siy
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(2 ~ _ 2(ai —
Fg/‘)l: % 2 [(3 co n- 1)(|Aj|2 + |Aj’|2) Frow I2NF,A%(sin 7o) (7= 10, (24
7" _ X where we have kept only the lowest-order term of the expan-
-2 cos{wf)(e'Aij’AjAj, +c.c)], (17 sion with respect tay— 7.

o N At the conceptual level, this task can be considered as
where the summation is performed over the pajis) of  analogous to finding the structure of the vortex lattice which
nearest neighbors on the triangular lattice formed by the sixminimizes the fourth-order contribution to the free energy of
fold coordinated sites, whereas variables a bulk superconductor just belod,. In this problem(first

Ay = (A + Aj) + A + A ) 112 (18) analyze_d by Abrikoso%?),_ the harmonic contribution to free
energy is degenerate with respect to a huge number of con-
(wherek’ andk” are the two threefold coordinated sites be-tinuous variables, the positions of the order-parameter singu-
longing to the same rhombus pandj’) are the averages of larities, whereas in the present problem a huge continuous
Ajj on the two shortest paths on a network connecting thelegeneracy of the harmonic problem is related with variables
nodesj andj’. It follows from Eq.(12) that the variables A;.

Ajjr=-Ay,; have to satisfy the constraint
2 AJ.J., =3xf (19 Ill. FOURTH-ORDER CONTRIBUTION
o TO FREE ENERGY

on all plaguettes of the triangular lattice. The form of Egs. A. A single wire

(17) and (19) suggests that for € f<1/2 the problem of
finding T(f) on a dice lattice is reduced to analogous prob-
lem on a triangular lattice witH multiplied by 3/2 and a

Substitution of Eq(4) into Eq.(2) describing the fourth-
order contribution to the free energy of a superconducting

different value of7. Accordingly, the relation between the Wire gives
critical temperaturegexpressed in terms ofy) in the two "
cases is given by Fome(A) Ak Aj) = Fall (A4 + A%
3 co 5(f) - 1 =2 cogmf)cos2(3F/2). (20 + 215417 + AP A A
Analogous relation between the single-electron spectra on +15(2]A14A2 +(41A09)],  (25)

dice and triangular lattices has been derived in Ref. 22.

Quite remarkably, fof =1/2 thenondiagonal coupling in  where F,=8L/4 and the numerical constants, (with
Eq. (17) completely disappears, which allows immediately ton=2,3,4 are given by the integrals
conclude that

74(1/2) = arcco§1/\3) ~ 0.9553. (21) j i) Sirt (L — )]
o= | dt .

sint 7

This absence of coupling between different varialiegan (26)

be understood as a manifestation of the extremely localized 0

nature of the highly degenerate eigenfunctidn®rrespond-

ing to the largest eigenvalue of the single-electron Hamil\When we are interested in the structure of the superconduct-

tonian. ing phase just belowl(f), the comparison of the fourth-

As a consequence, fé=1/2 thevalue ofFEf)v turns outto  order terms in the free energy of different states should be

be exactly the same for any set of the variablesatisfying ~made by calculating them at=T(f). Thus, in the foIIovv_ing

the normalization condition we will need the values off, at »=7.(1/2)=arcco$l/v3),

1 which are

N 142 = 42, (22)
: I,=(15- 927, /32~ 0.0524,

whereN is the number of the sixfold coordinated sites in the

network with appropriately chosen periodic boundary condi- l3= \«“5(7\“‘577{1 -9)/32=0.0737, (27)
tions (the total number of sites being\3. Accordingly, to
find the structure of the superconducting state in a fully frus- l,= (27 - 1&r’57]c_1)/32z 0.2424.

trated wire network with the dice lattice geometwyhich is
the main subject of this wojkone has to minimize the

fourth-order contribution to free energy, B. A tripod of three wires
4) - (4
Frw= m Fuire(A): Ao Aje) (23 For f=1/2 thecontribution toFffx from a tripod formed
w by the three linkgj k) [wherej,=],(k) with a=1, 2, 3 are

[whereAy is given by Eq(16)], with respect to the whole set the three nearest neighbors kfnumbered in the positive
of the variables\; satisfying the constrain®2), which fixes  directior] after the substitution of Eq16) can be rewritten
also the value oFffV)v. For 0< n—-7.<1 as
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3 3 2
3y, + n E@ =N E@ (K 32
Fg&(k) = F4[¥2 |Aja|4+ V14 V2<2 |Aja|2) nw zk: nw( ) (32)
a=1l a=1
3 2 from the next but last term in Eq28) coming from the
+ ,,l(z |Aja||Aja+1|Sianaja+l> n_elghbona?_trlpods also cancel each other, and the expres-
a=1 sion forF_, is reduced to

3
) @ = 4 + o
02 (14 18y, lsinx,.,)? Fou=Fal zk:[vo Vg D) 59
a=1

3 where vy=(9/2)v;+ 3v,,
=0 (A, IA, 1A Psiny
a=1

Jas1! Jas2 B (Vl * 1/3)

alarl

3

2 3
V({x}) = V(x1x2:x3) = V1(2 SinXa) + v, SIr? xa
a=1 a=1

3
<3 (A, 1A 04, 2+ 14, |2>sinxjaja+1} (28)
a=1

Ja+1 Ja+1 (34)
where and
T S 1y, = mi2imod 20 5
V1= 3 2 3\“’5 3 3 4y por] Xjaja+l_ 7l Z(MO aT) .
4 SinceF is invariant with respect to the shift of any of the
v,==ly, variablesy;;. by a multiple of 2r, here and below for con-
3 venience we assume that they all are reduced to the interval

[=a, ], in accordance with which the right-hand side of Eq.

8 4 (35) is written asw/2 (mod 2r) instead of —3r/2, as it
v3=glat E'S' would follow from Eq.(30).

At the temperature of the superconducting transition in a
whereas y;;; are the gauge-invariant phase differencesfully frustrated wire networKthat is, atn=7.=7:(1/2)] the
between the phasesp; of the order parameter values of the coefficients, are given by
A;=|Ajlexplig;) at neighboring sixfold coordinated sites,

1 =
v ==(1+v275Y) = 0.6201,
Xijr = @jr = @ = Ajr = = Xjrj (29) 4 e

It follows from Eq. (19) that for all tripods, or, in other :l 5 - 3V2,7Y) ~ 0.0699 36
words, for all plaquettes of the triangular lattice formed by v2= gl \27:) ' ' (36)

the sixfold coordinated sites,
L46) = 3 .
3 3
> X XA =-3ml2. (30
a=1 a=1

alar1 ~ alavl

IV. MINIMIZATION OF THE FOURTH-ORDER

_ _ _ _ CONTRIBUTION TO FREE ENERGY
Since each plaquette of this lattice has a particular threefold

coordinated site in its center, the indéxnumbering such A. A single triangle
sites can be also used for numbering triangular plaquettes. |t js well known that the ground st&&® of the antifer-

~ Inthe cyclic sums in Eqi28) and analogous sums below romagneticxY model with triangular lattice can be found by
ja=]1. The last term in Eq(28) can be omitted, since during minimizing the energy separately for each triangular

summation over the whole lattice the two tripods adjacent tgyaquette and then matching these solutions with each other.

any link (j,j,) always yield opposite contributions. For vy, v,>0 the minimum ofV(x1, x2, xs) On an isolated
triangle [under the constraint of the forig85)] is achieved
C. The equal amplitude hypothesis when two of the arguments &f( x4, x2, x3) are equal to each

Let us now introduce the additional assumptigvhose other, for example

self-consistency is established in AppendixtBat the abso- X1=X2=— 1), x3= 72+ 2y(1), (37

lute values of the variable4; are the same for all sixfold

coordinated siteg, another solution with the same value iy, x», x3) being
Aj=Aexpliey), (31) X1= X2 =~ [m= V)], x3= 72 = 24(1), (38)

whereA is real. In that case the contributions to wheret=v,/v; and
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V12 + 4 +12-2 +t Fig. 2@ and ;atisfying three independent constraints of the
Y(t) = arcsin a1+ : (39  form (35), which can be chosen to be
X1t X2+ x3=7l2, (40)

With increase oft from zero to infinity, 4(t) continuously

increases from arcqitN3-1)/2]~ /8 to /6. ~x3+t X4t xs= 72, (42)
In an infinite system each variabjg;, belongs simulta-

neously to two triangles, but enters the funct\iyy, x2, x3)

on these two triangles with the opposite signs. Comparison

of Egs.(37) and(38) with each other allows to conclude that the fourth constraint,

it is impossible to minimizeFff\‘,)V by minimizingV(x1, x2: x3) o= 4= v = — 372 (43)

separately for each triangle. X2 Xa™ Xe ’

~ X1~ Xs* Xe= T2, (42

following automatically from Eqs40)—(42).
o _ The minimization oﬂ:nvf, for this supercell with respect to
B. A periodic solution the remaining three degrees of freedom shows thatyfor

When varlablea(“ are reduced to a finite interval, the €[~ 7] the minimum is achieved when

average value oI =X ey should bg equal to zero. This can X1=Xa=— 74, xa=0,
be achieved if on one quarter of triangles the right-hand side (44)
of Eq. (35) is equal to —3r/2, whereas on all remaining = ve = 3m/4 -

. g . L X2=X5=9omT4, Xe=T
triangles it is really equal ter/2. Accordingly, the minimal
supercell of a periodic set of variablgg. should consist of or in one of the five other states which can be constructed
four triangles. from this state by permutations of the variablgs In all

The four-triangle supercell with the most symmeiitic-  these states on all triangles,

angulay shape, but with the most general structure allowing

for construction of a periodic state by a periodic repetition of E sin (45)
this supercell, is shown in Fig.(®. It can be described by Xigiars = 0
the six variablesy; (with i=1,...,6 defined as shown in
which means that on each triangle the first termV6fy})
reaches its absolute minimugire., is equal to zenoAccord-
/ \ ingly, the value ofF(4 in these states does not dependgn
FUY = 2(vo + 1) F4A*N. (46)
/ \ /\ Note that the supercell defined by Eq44) consists of
two pairs of equivalentif one takes into account the equiva-

lence of = and -) triangles. Thus the actual size of the
supercell has turned out to be two times smaller than it has
been initially conjectured. But there was no way to predict

1, > & this without really performing the minimization for the four-
/ \Xz /(x % triangle supercell.
> e The same solutiofwhose structure is shown in Fig(c3]
X, Xa

can be also found by starting from the assumption that a
periodic state is formed with the help of the four-triangle

supercell with the different shape shown in Figh)2 In that
/ \ / \ / \ case the constraintd0) and(41) retain their form, whereas
in Egs.(42) and(43) one should interchangel and y,. For
/\/\/\/\ this supercell the minimum dF ., (for not too large ratio
v,/ v1) IS again achieved in the solut|0n described by Egs.
\f\/\f\/ (44) (or other equivalent solutiomns
It follows from Eg.(16) that for |Aja|:A
RVAYAY R
2 -
A7= 3 ( )

—| 3- 22 Sianaja+l .
a=1

(47)

FIG. 2. Construction of periodic patterns minimizing the fourth-
order contribution to free energga) A possible choice for the most Substitution of Eq(45) into Eq. (47) allows immediately to
symmetric four-triangle supercellb) An alternative four-triangle  conclude that in the solution which we have found the abso-
supercell.(c) The structure of the periodic solution obtained from |yte value of the order parameter on all threefold coordinated

free-energy minimization with the supercell shown(® or (b).  sjtes has the same value as on the sixfold coordinated sites,
Simple arrows correspond to phase differenggsequal to #r/4,

double arrows to +3/4, simple lines to 0, and wiggly lines to. A =]Aj| =A. (48)
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In addition to gauge-invariant variablgs;- defined on the Sin 6, + sin 6, = sin 6, (56)
bonds of triangular lattice, one can, naturally, also introduce

the gauge-invariant phase differences defined on the bonds ¥ich follows from Eq.(51). As a consequence, they turn
the original dice lattice, out to be exactly the same,

(49) 601 3= arcco$1/v’§ = 1/v’€), 0,= arcco$l/\3), (57)

as in the ground state of the fully frustratetly model
(FFXYM) with a dice latticé® for which the current conser-
vation equation also has the for(h6).

Thus, in terms o, the state which we have fourd is
S g.=tm (50) schematically shown in Fig.(8)] has exactly the same strut_:-

= k= = ture as one of the ground states of the FFXYM with a dice
lattice. It has to be emphasized that the reasons for that are

When Eq.(498) is fulfilled, expression(8) for the currentina more subtle than a simple reduction of one model to the

Ok = ek = ¢~ Ak

where py=argA,). As a consequence of E(L2), the vari-
ables;,=-6;, which we assume to be reduced to the inter-
val (-, ), have to satisfy the constraint

link is reduced to other. First, in the case of a superconducting wire network
_ the relation(48), the form of which seems to imply a pos-
Ik = 1o SIN Gy, (51)  sible reduction t&XY model, is valid only in the minimum of
free energy. Second, the substitution of &) into Eq.(25)
where :
gives
2
lo= 2e 'y.A , (52) Fimre(01) = Fa[2(1,+ 1) + 813 cos6y + 41, cog 6],
h ésingy (59)

Calculation of whereas in the case of the FFXYM in the expression for the

A ALY = A2 _ip energy of a bond the term proportional to €ésis simply
A xpliy) = A% exp(=16y) ®3) absent, whereas the term proportional to édms a coeffi-
with the help of Eq(16) demonstrates that in the considered cient of the oppositénegative sign. Thus the two models do
state the variablegy have the same three valugsp to a  not become equivalent even if E@8) is artificially intro-
permutation and a simultaneous change of sign duced as an additional assumption.
0”(: + 01, + 02, + 03, (54)
C. Additional degeneracy
The ground state of the FFXYM with a dice lattice is
known to possess a well-developed accidental degeneracy,
O,— 0,=mld, 0, + O3= /2, O, + 0,=3ml4, (55 which can be described in_ terms of the formation of a net-
work of zero-energy domain wafson the background of a
leading to the automatic fulfillment of Eqé&50), as well as  periodic state. This construction can start from any of the
the current conservation equation four periodic states shown in Fig. 3 and allows to obtain, in

on all tripods forming dice lattice. These values have to sat-
isfy the constraints

FIG. 3. The four periodic
states generating the class of de-
generate states discussed in the
text by adjunction of domain
walls. The plaquettes with posi-
tive vorticities are shaded, and the

Y

(e) % %
three types of arrows correspond
to the three possible gauge-
invariant phase difference, 6,
03 (modulo 2m). Labels are cho-
sen to match those introduced in
Ref. 26.

@
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particular, the three other states shown in that figure by inNote that this property holds not only at=0, when it trivi-
troduction of such domain walls. ally follows from V({x}) being dependent only on cog.2

For example, both state) and statge) can be obtained but also at finite values of;.
from state(a) by introduction of the dense sequence of par- Comparison of Eq.(62) with Eq. (46) shows that
allel zero-energy domain wall®f two different types In  the values of FY in the two states become equal at
that language stat@) can be described as the dense networky,/»,=3, whereas in our case, according to Eg36),
of intersecting domain walls of two types. On the other handy,/ v, ~0.1127<3. At so low values of the rati@,/ v;, the
if one starts the construction from sta, both statga) and  alternative solution discussed in this section is simply un-
state(g) are formed by introduction of parallel domain walls, staple.
whereas the network of two types of walls corresponds to
state(e). V. MAGNETIC ENERGY

The same set of statédescribed in a more detail in Ref. A. An arbitrary network
26) minimizestfbf, for givenA. In Appendix B we check that _ . _ _ _
all these states are extremal not only when one assumes When currents in a two-dimensional wire network satisfy
|Aj|:const, but also in the absence of this constraint. Thdhe current conservation equations, the current in each link
accidental degeneracy related to formation of zero-energ§a" be expressed as a difference of so-called mesh cuffents,

domains walls gives rise to residual entropy proportional td«» @ssociated with the plaquettésieshes of a network.
the linear size of the system. Namely, the current in the linkjk) can be written as the

In the framework of the description of different states in adifference of the mesh currents associated with the two
network in terms of the gauge-invariant phase difference®laquetieSa anda’) adjacent to this link,

0y € (-, m), all rhombic plaguettes of a dice lattice can =M™ 63)
be considered as occupied by positive and negative half- k™ e Ta
vortices, whose vorticitiesn,=+1/2 aregiven by The magnetic energy of the currents in the netwdik g,
1 1 can be then expressed in terms| gf
m,=—2, 0= *—-. 59
: 2% = %5 (59)

1

Emagn: EE LaBI $|?, (64)
In the family of states minimizing:ff\‘,)v the half-vortices of “h
the same sign always form triads with one “central” and twowhere a symmetric matrik .z is usually called the mutual
“edge” vortices?® The formation of domain walls which cost inductance matri£°
no free energy is related to the changes in the orientation The diagonal elements of this matrix describe the self-
and/or in the shape of these triads, but does not lead to foinductances of current loops which can be associated with
mation of vortex clusters of any other size. different plaquettes of the network and, accordingly, have to

At low temperaturegT<T,) the free energy of a fully be positive. On the other hand, its nondiagonal elements de-
frustrated wire network with the dice lattice geomdtmhich ~ scribe the mutual inductances of nonintersecting coplanar
then can be described in terms of the London approximationcurrent loops. Magnetic fields of such loops substract from
is minimal for the same set of states, but with the slightlyeach other and, therefore, the nondiagonal elements, pf
different value& of 4, have to be negative. In an infinite network the constraint

6,=ml12, 6,= 73, 6;=57/12, (60) > Lp=0 (65)

satisfying, nonetheless, the same constraibis.
has to be satisfied. This ensures the invariandé,gf;, with
respect to a possible redefinition of mesh currents,
D. Alternative solution IM— 17+ 8™, which leaves the physical currents in the links,

The analysis of the supercell shown in FigbRallows |k intact. For practical purposes it is convenient to deffpe

also to find a state which minimiz&s® for large ,. In the 1N SUch a way that
notation of Fig. 2b) the structure of this state is given by S m=g (66)

X1=X2=X3=—Xx4=76; x5=—xs=5ul6. (61 a

The value ofL,; depends only on the relative disposition
of the two plaquettesr and 8, and in the limit of infinitely
thin wires can be found by calculating the double integral
over their perimeter$’, and [,

This alternative state is characterized by even more devel- [
oped accidental degeneracy leading to extensive residual en- Ta  Tp

tropy. Namely, the value oF(, does not change if at an The expression fot ., given by Eq.(67) in the case ofa
arbitrary number of siteg the variablesp; are shifted byr. =g is logarithmically divergent, which means thiag, has

It minimizes the value of the second term in £84) sepa-
rately for each triangle, the value Efn‘\‘,)v being

3
FW = 2{ vo+ Z(ul + vz)} F,A*N. (62)
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always to be calculated more accurately, taking into account
the finite width of the wires. The same is true for the value of
L.z for neighboring plaquetteghaving a common link In
the case of more distant neighbgraving only a common
node or simply not touching each othene can use Eq67) 5
based on the assumption of infinitely thin wires without en-
countering any divergences.
Equation(67) can be also rewritten as the double integral 5
over the areas of the plaquettesand 8. For a# 8

1
Laﬁ,:—fdzl’af dzrﬁm, (68)
S, Sg « P

which shows thatlLa,B| rapidly decays with the growth of FIG. 4. Classification of plaquettes according to their distance
R,z the distance between the centers of the plaquetesd ~ from the shaded one.
B. ForR,g>L,

\/

AVACAVAVAN
AVAVAN
AV4

NAVEAAVAY:

A

ha=8\7 - 123 + IM(27/4)(1 +13)1%(5 + 27)°],

S,S
~_ 2B (69) (71)

Lag=—

In any periodic state minimizing the free energy of a frus- Ny=12- 10/3 + 217 - (33/2In 2 - (97/4)In 3
trated network, the plaquettes with negative and positive val- — - —
ues of 1T regularly alternate with each other, Eg,ag, (nor- +(172)In[(1 +V3)*°(4 -2+, (72
malized, for example, per plaquettss given by a rapidly _ A
decaying sign alternating lattice sum. It allows one to expect Ns=3+5/3-37-y13-12In3
that the main contribution to this sum comes from its largest = = = =
terms, corresponding to the self-inductances of the plaquettes I[N+ 207)(5 + 207)°/(1 +13)°]
and the mutual inductances of rather close neighbors. Analo- +(1/2)In[(1 +13)(- 2 + V1347 +13)%/2],
gously, when comparing the magnetic energies of different
degenerate states minimizing the fourth-order term in the
free energy, the main contribution to the difference betweervhereas numerically,
them can be expected to come from the closest neighbors
whose contributions do not cancel each other identically.
Besides the proper energy of the magnetic field induced
by currents and given by E@64), one also has to take into A3~ 0.3637,
account the decrease of the superconducting free energy re- (74)
lated to the vector potential of this field. In the weak screen- Ay~ 0.1671,
ing regime the sum of these two contributioRg,,g, differs
from EpagnOnly by sign, A5 = 0.0723.

(73

\, ~ 0.5569,

Fmagn= — Emagn Thuis the decrease dt,| with n is rather fast even for
n~1.
and, therefore, one has to maximigggn

C. The form and the magnitude of magnetic energy

In a general situation the values of mesh currelfts
Figure 4 introduces the classification of neighbors forshould be found from Eqg63) and, accordingly, are given
rhombic plaquettes of a dice lattice, which can be used foby nonlocal linear combinations of link currenkg. Quite
the natural reordering of summation in E&4). A chosen remarkably, substitution of Eq16) into Eq. (8) allows to
plaquette(which is shadephas four nearest neighbofde-  find that the values of mesh currents in a fully frustrated
noted by 3, four next-to-nearest neighbo(denoted by 2 superconducting wire network with dice lattice geometry in
two third neighborgdenoted by § etc., as shown in Fig. 4 the vicinity of T, are given by the local expression
up to sixth neighbors. In the following we denote the self-

B. Mutual inductances of dice lattice plaquettes

inductance of a plaquetie, and the mutual inductance of a m = _2e —Y_|a|lA | XJJ (75)
plaguette and iteth neighbor(which is a negative quantity Ty gsm 7 ey
L,=-\.L. ) )
For n from 2 to 5 the calculation of,, with the help of Where 17, is the mesh current in the plaquette
Eq. (67) or Eq.(68) gives ajj =(jK']'K").
- = = In the family of states m|n|m|zmg: and described in
Ap=43-2V7-2-15In3-41In1 +\3) Sec. IV the absolute value ¢f’, on all plaquettes acquires

+In[8(4 + \5)5(— 1+ 2\5)(1 + 25\5)2], (70) only two values
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:|O/\;§, IemZIO/V%v (76)  fied in experiments, since for a temperature around 1K
o ) . Auni(T) is of the order of 1 cm, see E@A8).
wherel, is given by Eq(52). The choice betweel{' andlg It is clear from the form of Eq(77) that the subtraction of

is determined by whether the plaquettg, is occupied by E£O f0m F(4> does not change the functional form of the
the central or edge vortex of a triad to which it belongs, fouarth order term(expressed in the terms of the variables
whereas the sign dff, by the sign of this vortex. The ratio xjj"), but leads only to a small increase of the coefficient
g=I17/17 following from Eqs.(76) is equal tog,=1/42. in Eq. (34). The next contribution tde,,q, Which is related

Substitution of Eq(75) into Eq. (64) shows thaE.4,iS  to mutual inductances of neighboring plaquettes, has a more
of the fourth order in;, and thus should be addeédith the  complicated structure,

negative sighto the fourth order terr’rlF(W which has been

3
minimized in Sec. IV. It follows from Eq(75) that for [A|| y L,13
=A the main contribution td€,4, [Which is related to self- Emagn= ~ T% g. COSXj iy COSXigyiiny  (81)
inductances of lattice plaquettds,~8LIn(L/d), whered is -
the thickness of the wirgscan be written as However, in all the states minimizi ‘\2, the three variables
v on each triangle are always given b
EQ)n=En S [1-sirPy; ], N ’ Yo gNen Dy
(" X1,2,3= w2 F 77/2, + ’77/4, + 37T/4, (82)
whereE, =Lol5/6c% o _ o as a consequence of which the sum osmein Eq. (81) is
The value of the coefficiert,,, which atT=T. is given  equal to -1/2 for allk and, therefore, the subtraction of
by E(n% from F& - Eiﬁa .also does not lift the degeneracy. To
Lof 2€\?( v\ be sure of that we have checked also that all the states mini-
m= Z(%) <E) A* (78) mizing F remaln extremal with respect to variations @f

even When one includes |nto analysis the extra terms ob-
should be compared with,A%=(L/4)BA* With the help of  tained by the variation oV
Eqgs.(A5) and (A6) one obtains

E,, o D. Selection of the state by magnetic energy
AL 2Ty (79)
F.A K°E (Tc)

where « is the Ginzburg-Landau parameter of the material
from which the wires are made and their cross-section
area. Since the mean-field phase transition in a fully frus- © Lo( 1T 2 5

trated network takes place whefiT,) =L, Eq.(79) can be Enagn™ 5\ & (1+29°N, (83)
rewritten as

magrt

In a more general situation, when the rage!7/17 is
kept as a free parameter, the first two contributions to the
magnetic energy can be written as

i —~ T 80 (1) |rCn 2 2
Pl A (80) Bnagn™ ~ L1 ¢ | 20°N, (84)
Thus, in order to geEqag,<Fiy (the weak screening re- and naturally, are also the same for all the states minimizing
gime) one should have g@
nw*
o< K22, The difference appears when con&derE{@ 4 the con-
N . tribution to E,q,coming from the mutual mductances of the
In other terms the same condition can be rewritten as plaquettes WhICh are next-to-nearest neighbors of each other.
Ao (T ~ L] > L, Comparison otE magn fOr the four periodic states, the struc-

ture of which is shown in Fig. 3, shows that for agywith

where Agq(€) ~ (k€)°L/ o is the effective penetration depth lg|<1 the minimum otEEﬁagnls achieved in the staie), and

for the magnetic field in a network. In such a c&gg,Can  the maximum in the statee).
be treated as a small correction, which is reIevant only for The nonequivalent contributions to magnetic energy of

the removal of the acmdental degeneracy between differenfiferent periodic states can be characterized by the dimen-

states mlnlmlzmg: - In the opposite limit finding the struc-  sjonless parameter defined by the relation
ture of the ordered state becomes an even more complicated

problem because one has to miniml—‘zﬁ)ﬁ F;‘;;+ Emagn tak-

ing into account the dependence of all three terms on the

magnetic fields induced by the currents. Therefore, below we

always assume < «°L?; that is, the wires are thin enough. The values ofe for basic periodic states can be then ex-
Note, however, that the applicability of the mean-field ap-pressed in terms of the coefficients as

proach requires the wires to be not too thin, o ) ) )

o> K23/ A (T); see Appendix A. The two conditions @n €a= 20N~ (1 + 20\g + (2~ 4g7)\g+ 4g°Ns +

are compatible provided < A, (T), which is readily satis- (86)

O e L('En )2
Emagn_ Emagn+ Emagn Cz — N. (85)
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e.=(1+ 9N, - gz)\3 +(1 -39, - (2 - 292))\5 oo TABLE |. Comparison of dimensionless parametecharacter-
izing the magnetic energy of four basic periodic states in different
(87) orders of approximation.
€=~ 20"\~ (1= 209)A3+ 27, — 4g°\s + -++, (89) n a c e g
2 0.5569 0.8354 —-0.5569 -0.2785
€= (1= 309N+ 0N+ (L +0ON4— (2 - 207)N5+ .

¢ B2+ 0hs 9k 9k (89) 3 -0.1704 0.6536 —-0.5569 -0.0966

4 -0.1704 0.5700 -0.2227 0.1540

Substitution of the values of, given by Eqs(74) into Egs. 5 -0.0258 0.4977 -0.3673 0.0817

(86)—(89) shows that forlg| <1 the state(c) maximizes the

nth approximation toe, geometry, this subspace has unusually high degen¢ascy

2 consequence of the localized nature of mgdesl includes a
€M = > EM (90) finite fraction (one-third of the total number of mode&:3

L(I™2N magr . : . .

¢/ Nm=2 Remarkably, nonlinear effects select particular linear combi-

not only forn=2 (as it follows from the previous paragraph nations of these spacially localized states which reproduce

but also for all other values afit has been possible to check Precisely the current patterns obtained for the pire
(up ton=5). Since the value ok, rapidly decreases with the

limit.26
increase ofn, the same conclusion can be expected to be N the second part of this paper, we have compared mag-
valid in the limit of n— oo, Table | illustrates the dependence

netic energies of current patterns in different periodic states
of €™ on n for four basic periodic states in the case of Minimizing the Ginzburg-Landau functional. The dominant
9:1/\5 contribution to this degeneracy lifting mechanism is due to

In a Josephson-junction array the value of the current in dteractions of current loops which can be associated with
junction is also given by Eq51), where nowly=(2e/#)J (J second-neighbor plaqu.e.ttes. It favors.the pepodlc pattern in
being the coupling constant of a single junchioAs a con- which the triads of positive and negative vortices have three

sequence, the results of this section are applicable to a fullg.Ifferent orientationgstate(C) in Fig. 3|. The same conclu-

frustrated Josephson-junction array as well. The value of th lon 'i Va“q alﬁo n Londqtr;] l'r:n't and in the tcaSE of ab
parameterg in the array is also equal tg,, because its osephson-junction array wi € same geometry. 1t can be

ground state is characterized by exactly the same values ped that choratmn experiments performed in more equi-
the variablesd,, Eq. (57), as in a fully frustrated wire net- Ibrium conditions than those of Refs. 24 and 25 may reveal

work just belowT.,. sugrhh_an ordlleng. | i First it is |
On the other hand, fof < Ty, whenlj x 6, the value of ; ISt ¥VOL ea\_/fes”sg]verat\ topen qu::s Kt)nj-h Irst, 1 'St'rgl'
g in a fully frustrated wire network is equal tgy=3/5, as portant to know It all the Stales constructed here are stable

can be found from Eqg60). It can be expected that with the with respect to local fluctuations in both order-parameter am-
decrease in temperature the valuggoh a network continu- plitudes and phases. We have checked numerically that this

ously decreases fromy, to go. However, the conclusion on is indeed the case for the periodic states shown on Fig. 3, as
the selection of the staie) by the magn,etic energy is valid well as for configurations with a single domain wall between

; ; two such ordered states. Unfortunately, a sinfplealytica)
=g rval — <1. . K
not only forgo=g=gy, butin the whole interval ~g<1 stability proof holding for the complete class of degenerate

VI. CONCLUSION states is not available now. o _
Second, alternative degeneracy lifting mechanisms should

The main result of this work is that the superconductingbe analyzed, as has been done for a wire network with
state in a fully frustrated wire network with the dice lattice kagomé geometry by Park and Hif8eThese authors have
geometry exhibits the same set of degenerate spacial patterftaind that the dominant perturbation to the idealized
minimizing the free energy in the two limiting cases whenGinzburg-Landau description of a wire network arises from
the temperature is either low compared to the critical tem+he finite width of wires, which removes the degeneracy be-
peratureT, (London limit) or close toT, (Ginzburg-Landau tween the two opposite orientations of the supercurrents in a
limit). This conclusion is quite interesting, given the fact thatgiven loop. This mechanism can be interpreted in the terms
the system is described by two rather different models irof magnetic-field redistribution between the network
these two limits. In the London limit, the amplitude fluctua- plaquettes(see discussion in Ref. 41, where it has been
tions of the superconducting order parameter are negligibleamed “hidden incommensurability”and, accordingly, is
and the corresponding fully frustratey model has been effective only when a network contains nonequivalent
analyzed in Ref. 26. In the vicinity of., we used the varia- plaquettes. Therefore, in the case of a dice laificemed by
tional approach pioneered by Abrikosov, where the spacialdentical rhombic plaquettg# cannot play a prominent role.
variations of the complex order parameter are constrained to Another degeneracy lifting mechanism is related with the
live in the subspace of unstable modes for the correspondinigee energy of fluctuations around various free-energy
linearized Ginzburg-Landau equations. minima and will be the subject of a separate report. It is

Our interest in this problem had been stimulated by thdikely to be the dominant one in the vicinity df, but with
fact that for a fully frustrated network with the dice lattice decrease in temperature it becomes less and less important in
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comparison with magnetic interactions of currents analyzed AuniTed)

it L8 < 02 A7
in this work. ) (A7)
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is the expression for the universal value of the two-

APPENDIX A: CONDITION FOR THE APPLICABILITY dimensional penetration length at the temperature of the

OF THE MEAN-FIELD APPROACH Berezinskii-Kosterlitz-Thouless phase transition in a two-
dimensional superconduct&rin the right-hand side of Eq.

In two-dimensional superconductors the most importan{A8) the temperature should be expressed in kelvin.
fluctuations are the fluctuations of the order-parameter phase In aluminum wire networks fabricated with electron-
o= argA). WhenT, is approached from below, the free en- beam lithograph§®8142324 T ~1.2 K, and therefore
ergy of the phase fluctuations in a single wire, Auni(Teo) = 1.7 cm, whereasaccording to the estimates of

Park and Hus®) x~1.

J
Fuire = 5(5‘)0] - 6‘Pk)21 (A1)
APPENDIX B: CONSISTENCY OF THE EQUAL

. . . AMPLITUDE HYPOTHESIS
can be characterized by the effective coupling consfant

which in the absence of external magnetic field is given by e shall now check that for the class of states described
in Sec. 1V, in which the amplitudeig;| are the same for all
a(M)y _ 72 sixfold coordinated siteg the der|vat|ves9F )/a|A | are in-
LB~ LBEM’

dependent of the sixfold coordinated sjitef thls property is
_ satisfied, it is then possible to enforce the equilibrium condi-
The fluctuations are of no importance wha(T)> kgT, tion J[F 2)+F(4)]/¢9|A =0 with equal amplitude$A;| since
which means that the critical region corresponds to @ nw

' is proportional toX;|Aj|? (with a negative coefficient
below the critical temperature of the netwark

JM) = (A2)

2(T) > ¥ _ (A3) Derivation of F'0=3,F¥(k) with respect tdA|| gives
LBKsTco
Since the maximal deviation of(f) from T, is achieved i é :
ince the maximal deviation of(f) from T, is achieve W _ £ A3| 8 + 4y sty - 2v;, > sinyi |
when g T.(f)]~L,25 the critical region can be considered as (9|A |~ 0 22 Xy ™ 121 Xiyea
sufficiently narrow if (B1)
L3< i (A4)  wherej, (with b=1,...,6 are the six neighbors gf num-
BksTeo bered in positive directiofsee Fig. %, and it is assumed that
When the mean free path of electron is much smaller than
the thickness of a wire, the values of the coefficients entering i

the Ginzburg-Landau functional for the wire are determined
simply by the values of the analogous coefficients for the
material from which the wire is fabricated. Substitution of

iz /\ Js
B= Bk Y= T Ybulk: (A5) \ /
whereo is the cross section of a wire, and / j \

13 J
167> 5
Bouk= "7~ o2 Yok (A6)
J
where k is the ratio of the penetration depth and the coher- !
ence length, into EqA4) allows one to rewrite this condi- FIG. 5. The six neighbors of the sifecontributing to the sums

tion as in Eq. (B1).
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j7=]1- The contribution from the third term in E(R8) van-  hand, summation of Eq45) over the six tripods containing
ishes from Eq(B1) as a consequence of E@5), which is  the given sitg allows one to conclude that the second sum in
valid for any tripod in any of the states discussed in Sec. IVEQ. (B1) is always equal to zero. Thus, the expression in the

It turns out that the first sum in E@gB1) is equal to 2 for  right-hand side of Eq(B1) does not depend oj for any
anyj in any of the considered degenerate states. On the othepnfiguration with|AJ-|:const described in Sec. IV.
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