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Domain-wall energies and magnetization of the two-dimensional random-bond Ising model
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We study ground-state properties of the two-dimensional random-bond Ising model with couplings having a
concentratiorp € [0, 1] of antiferromagnetic an€ll —p) of ferromagnetic bonds. We apply an exact matching
algorithm which enables us the study of systems with linear dimersigmto 700. We study the behavior of
the domain-wall energies and of the magnetization. We find that the paramagnet-ferromagnet transition occurs
at p.~0.103 compared to the concentratipyp~0.109 at the Nishimori point, which means that the phase
diagram of the model exhibits a re-entrance. Furthermore, we find no indications {ortermediatg spin-
glass ordering at finite temperature.
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I. INTRODUCTION couplings are set independently antiferromagnéljc=-1)

Despite more than two decades of intensive researcr\{vIth a probability p=[0,1] and ferromagnetio(J; =+1)

many properties of spin glassesspecially in finite dimen- with probablllty_(l—p). .
sions, are still not well understood. For two-dimensional ' n€ Phase diagram of the model as a function of tempera-
Ising spin glasses it is now widely accepted that no orderedf''¢ T and the concentratiop is shown in Fig. 1. The pure
phase for finite temperatures exist§ Furthermore, it seems System(piO)_lhas a transition at a Curie temperatufg
clear that the behavior can be described well by a zero=2IN(1+v2)]™, above which the system is paramagnetic.
temperature droplet scaling approdcbut one needs quite  When antiferromagnetic bonds are introdudgd>0), the
large system sizes to obsetéhe true behavior. One unan- ferromagnetic phase is destroyed at a threshold concentration
swered question is whether an additional phase, usuallpc(T). A particular curve on th@-T plane is known as the
calledrandom antiphaseexistd>15for T#0 in two dimen-  Nishimori line® (NL). It is defined by the equation exps2
sions with an asymmetric distribution of random bonds. Also=(1-p)/p. On this line the internal energy is analytic and
it is no clear whether at low temperatures the phase boundaifie spin-spin correlation functions obey the equalities
of the ferromagnetic phase is perpendictfidfto thep axis, (o107 *=(oi07), for integerk. It was also proveff that a
p denoting the concentration of the antiferromagnetic bondsmulticritical point delimiting two critical behaviors on the
The aim of the present paper is to reinvestigate this issues Hgrropara boundary coincides with the intersection of the NL
studying the domain-wall energy and magnetization at zeravith the boundary: this defines the Nishimori poiiNP).
temperature via the determination exactground staté¢§  Besides, by studying domain-wall energies of exact ground
for large system sizes and huge sample numbers. This allowgates for system’s sizes up to=32, Kawashima and
us to draw much more reliable conclusions in comparison tRieget® found that the stability of the ferromagnetic and
past studies, where only considerable smaller system siz&pin-glass order cease to exist at a unique concentration for
could be studied. the antiferromagnetic bonds, so they concluded that there is
The organization of the paper is as follows: In Sec. Il, weno intermediate spin-glass phase.
will expose the model and briefly describe the polynomial
matching algorithm, which allows us to treat large system A
sizes. Section Il presents our results for the domain-wall T NL
energy. In Sec. IV, we explain the additional methods used to
obtain the magnetization and show the results. Finally, we

summarize and draw our conclusions in Sec. V. FERRD PARA

Il. THE MODEL AND THE METHOD

The model consists oN=L? spinsS=+1 on a simple
square lattice with periodic boundary conditions in ¥hei- :
rection and free boundary conditions in thelirection. The 5 SG(T=0)
Hamiltonian is ) B

[

H=-2>J;SS, 1

= FIG. 1. The phase diagram of the two-dimensional random-bond
(ij) . : . . .
] S Ising model, with the concentratiop of antiferromagnetic bond
where the sum runs over all pairs of nearest neighkigfs  and the temperatur€ on the vertical axis. It has been conjectured
and theJ;; are the quenched random spin-spin couplings. Thehat the phase boundary from the NP falls vertically to phexis.
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FIG. 2. 2d spin glass with all spins @left, up spins not shown
Straight lines are ferromagnetic, jagged lines antiferromagnetic
bonds. The dotted lines connect frustrated plaquétiesses The
bonds crossed by the dotted lines are unsatisfied. In the right part ¢ ' — """ ' T
the GS with three spins pointing dowall other up is shown, L
corresponding to a minimum number of unsatisfied bonds.

FIG. 3. The domain-wall energE of the random-bond model
plotted as a function of the system sizéor various ferromagnetic-

In this paper we want to compute numerically with high bond concentration.

accuracy the critical concentratiop(cl):pc(T:O) corre-
sponding to the para-ferro transition at zero temperature, and

to compare this result with the believed value of the Nishi-0fers a very efficient |mpleme_:ntat!o?ﬁ, except that it
mori point p,=0.1091) 2122 Furthermore, we want to check consumes a lot of memory, which limits in our case the

with high accuracy, whether there is an intermediate spin-s'ze of the systems to aboti=70C" on a typical 500 MB

glass phase at nonzero temperature. workstation.

We can reach a much higher precision compared to pre-
vious studies, by applying a matching algorithm. This allows Ill. DOMAIN-WALL ENERGIES
to compute exact ground states for large system siXes, AND FINITE-SIZE SCALING
=700 spins in our case. Let us now explain just the basic ) .
idea of the matching algorithm, for the details, see Refs. Ve calculate the domain-wall energi defined by ok
23-25. The method works for spin glasses which are planar Ep~Ea Where E, and E, are the ground-state energies
graphs, this is the reason, why we apply periodic boundar)‘/‘”th pepodlc and th_e antiperiodic boundary conditions |n_the
conditions only in one direction. In the left part of Fig. 2 a X-direction, r_espectlvely. We take an average over the disor-
small 21 system with open boundary conditions is shown.der. We are interested in the exponeptand 6s that charac-
All spins are assumed to be “up,” hence all antiferromagneti¢érize the system-size dependence of the merand the
bonds are not satisfied. If one draws a dotted line perpeﬁ’-‘”dth o(SE) of the distribution of the domain-wall energies:

dicular to all unsatisfied bonds, one ends up with the situa- AExL? and o(dE) L%, )
tion shown in the figure: all dotted lines start or end at frus-

trated plaquettes and each frustrated plaquette is connectedfor a general dimensiombof the system, a positive value of
exactly one other frustrated plaquette. Each pair of plaquettgs indicates the stability of a ferromagnetic phase per0,

is then said to benatched Now, one can consider the frus-

trated plaquettes as the vertices and all possible pairs of cor 10 — T . —

nections as the edges ofl@ual graph. The dotted lines are &Ep f 8%8(1) g
selected from the edges connecting the vertices and called :p B 0‘102
perfectmatching, sincall plaquettes are matched. One can P _ 0'103
assign weights to the edges in the dual graph, the weights ar :g B 0‘104

equal to the sum of the absolute values of the bonds crosse
by the dotted lines. The weight of the matching is defined g
as the sum of the weights of the edges contained in thex
matching. As we have seen, measures the broken bonds,
hence, the energy of the configuration is given By

==X y[ij| +2A. Note that this holds fomny configuration

of the spins, since a corresponding matching always exists
Obtaining a ground state means minimizing the total weight
of the broken bondgsee right panel of Fig.)2 so one is

—>p =0.105

looking for aminimum-weight perfect matchinghis prob- 10 L'OO

lem is solvable in polynomial time.

The algorithms  for  minimum-weight  perfect FIG. 4. The width of the distribution of the domain-wall energy
matchings®?” are among the most complicated algorithms«(SE) of the random-bond model plotted as a function of the sys-
for polynomial problems. Fortunately the LEDA library tem sizelL for various ferromagnetic-bond concentration
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no ferromagnetic ordering is present. Then, in dimension 34 r L=g) ——

above the lower critical dimensiod,, we havef#s>0 and 32t L=100 ~—x— 1

spin glass-ordering is stable against thermal fluctuations. On 3t 2 ’,::f,z e

the other hand, whems<0, thermal fluctuations prevent 28| o L=160 - |

spin-glass ordering® The current belief is that ird=2, — f Foae ]

0s<0 holds for all concentrationp(cl)<p<1—p(cl). N L4l L=500 -+
We have computedr(SE) and AE for sizes up tolL g 7 L=700 vt

=700 and for values op ranging from 0.100 to 0.109. We © 227

performed a disorder average of a number of realizations 27

ranging from 30000 for the smallest sizes to typically 2000 18 .

for the largest siz& =700. In Figs. 3 and 4 the mean and the 161 *°

width of the distribution of domain-wall energies are plotted 14 2 . . . . . .

as a function of the system size. We denotepﬁf/ and p(cz) 04 02 0 0(12) 0 04 06 08

the critical concentrations of antiferromagnetic bonds at (pp L™

which the asymptoti¢. dependencies aiE and o(SE), re- FIG. 6. The scaling plot ofr(SE) versus the concentration of the

spectively,.change from increasing_to decreasing, i.(_—:t., thﬁntiferromagnetic bonds, using the valup?=0.104, $,=0.74,
concentrations where a ferromagnetic phase and a spln-gl\?\?zs:_o_ls_
e

phase, respectively, cease to exist at finite temperature.
conclude from the figures that” ~0.103, while forp!® the
“transition” is less sharp but the value is between 0.103 an
0.105. For small sizes, the width even seems to increase f

all values ofpe[0.1,0.107 we have considered. For small S(pe.é.4) we used the implementation of the simplex

sizes, at mtermephate concentratiops=[0.1,0.13, the method offered by Numerical Recipes librayThe best fits
mean of the domain-wall energy already decreases with sys.-.

tem size, while the width of the distribution first increases,glve the estimates
which appears as if the system exhibits some kind of spin-
glass phase. This is probably the reason that in some previ-
ous studie¥*the existence of an additional intermediate with S=0.75 and
phase has been assumed. We see that we have to consider ©
large system sizes to observe the true behavior. p” =0.1042),
Another way to computep.”® is to check the scaling
relations forAE and o(SE) proposed in Ref. 15

oduced in Ref. 29 whose minimum value should be close to

fwis fit, we used an appropriate cost functi8ip., ¢, ¢) in-
:
urnity when the fit is statistically acceptable. To minimize

p’=0.1031) $,=0.755), y¢,=-0.125) (5)

#>=0.745), ¢,=-0.135) (6)

with S=0.65. The resulting scaling plots are shown in Figs. 5
and 6. We have estimated the error bars given above in the

following way. For each parameter, we fix it to different
(3) T -

values and perform the minimization over the remaining two
parameters. In Fig. 7 we show as example a plot of this
partly minimized value o8(p., #, ¢) as a function op.. Our
error bars are the ranges of values wh&e,, ¢, ) in-

AEL1=1f,((p - p{")L?),

o(SE)LY2=f,((p- p@)L?2). (4)

The parameterp., ¢, and ¢ for both moments of domain ) fi o |
wall energies have to be chosen such that a good data cdf€ases to twice of its minimum value.

lapse for all data is obtained. To quantify the “goodness” of Within the statistical errors the critical parameters for both
' moment of 5E agree: this strongly suggest the absence of a

spin-glass phase. Therefore there is a discrepancy between

9 : :
o L=80 +———
8 L
8 :
7F Somin + 4
7 -
6 | L3
6r +
s S5t ©
E o 51
4 r -+
s 24} .
3r > + +
3 L
2 -
.j 2 L
1t L ] .
A +
0 . . . " " 1} + ottty ++
04 02 0 0.2 0.4 0.6 . , , , , , ,
(p-pV )L 01 0101 0102 0103 0104 0105 0.106 0.107

p
FIG. 5. The scaling plot of mean domain-wall enersfy versus

the concentration of the antiferromagnetic bonds, using the values FIG. 7. Plot of the minimum value d®(p., ¢, ¢) for different
p’=0.103,¢,=0.75, y, =—0.12. fixed values ofp,.
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0.7894 — ¢+t T T 7 brated, i.e., the relative fluctuations of the average magneti-
zation are less than 19 Additionally, we see that the value

of the magnetization found by the ground-state algorithm,
i.e., for zero MC steps, is slightly outside the scattering of
the datapoints for large Monte Carlo steps, and that the se-
lected configuration has a lower magnetization value. To
check whether this is a coincidence or not, we did some test
by applying the matching algorithm to a mainly ferromag-
netic system with some antiferromagnetics bond. Surpris-
ingly, we found that that the free spins of the configuration

0.7892 |
0.789 |
0.7888 |

0.7886 5"

0.7884 ‘ X

0.7882 } . S SES .
are selected without preferential direction respect to the di-

0.788 L rection of the total magnetization. However there could be
¢ 100 S00 300 <00 S04 vak 200 B0 a0 some bias for more complicated domain walls, but we cannot

mes fully explain it since we used a commercial library. Besides,

FIG. 8. Magnetization averaged over 100 samples300,p ~ compared to the final statistical error basee below, this
=0.1) as a function of the number of MC steps for a zero- difference is negligible. Hence we conclude that the ground
temperature single-spin-flip dynamics. The bold line is the runningState obtained by the matching algorithm exhibits a typical
average(averaged over the sampjes magnetization of the cluster, in which the ground state is
located.

Anyway, the set of ground states usually is divided into
severalclusters®* different ground states belong to the same

Nishimorit® and later by Kitatant’ Later, Le Doussal and cluster if they are related by a sequence of single free spin
flips (i.e., spin in zero local field Ground states in different

Harri® have shown that the tangent to the phase boundar},{luster can onlv be reached from each other by making co-
at the NP is vertical. But this result does not exclude the rative fi yf multiol ins or when usin y inal _g i
possibility of a re-entrance in the phase diagram as shown iﬁ.pe ative Tips of mutliple Spins or when using single-sp
Fig. 1. ips via increasing the energy. This means that with our
single-spin-flip MC algorithm aff=0 the system always
stays in the same cluster. In principle one can enumerate all
IV. STUDY OF THE MAGNETIZATION ground stated® Since the ground-state degeneracy grows ex-

. onentially fast with the system size, only small systems can
We furthermore study the para-ferro transition by evalu—Ee treatedylike this y y y

ating the magnetization and using the Binder cumulant cross- Thus, we have applied an alternative method to find dif-

the critical concentratiop evaluated at the NP and at zero
temperature, in disagreement with the conjecm{epff) by

. 132 : o _
ing method’**2The Binder cumulant is given by ferent ground states, the so-callec¢toupling methodit al-
3 (my* lows us to obtain ground states from different clusters, but no
B(p,L) = > 1- W : (7)  exhaustive enumeration is necessary. The basic idea is to first

add a perturbation to the system which tends to increase the
wherem=1/NX§ is the magnetization an@d--) denotes the energy if two neighboring spins are in the same relative ori-
average over the disorder. For second order phase transitior@)tation as in the ground state and then to recalculate the
the curves for different sizes intersect at one point, the critiground state. LeSfl) be the ground-state spin configuration.
cal concentratiorp.”. This is a consequence of finite-size We tlhen perturb the couplingy by an amount proportional
scaling. to§ 'SY in order to repel the system from the ground state.

The problem one has to face when studying system witirhis perturbation, which depends upon a positive parameter
discrete interactions, is the exponentially large number of, is defined by
states all giving the same energy. Hence there is no unique
ground-state magnetization. For a given set of bonds we here Jj— Jj + Ay, (8)
determine one exact ground state using an efficient polyno-
mial time “matching” algorithm, but we are not able to enu- Where
merate all the ground statés.

In order to check if “typical” configurations with respect AJ: = — iql)ql) (9)
to the magnetization are found, we first performed a zero- Y Ny ’
temperature Monte Carl@MC) simulation which consists in
flipping all spins with zero local field, starting with the whereN, is the number of bonds in the system. We then
ground-state configuration. This allows to explore all statesecompute the ground state and check that the new configu-
within a single-spin-flip cluster of ground-state configura-ration is still a ground state of the unperturbed Hamiltonian.
tions (see below. In Fig. 8 a typical evolution of the mag- This is our second ground stﬁ). The next step, to obtain
netization (scattered poinysand its running average fdr  a third ground state, consists of adding a perturbation in or-
=300, p=0.1, averaged over 100 samples, are shown as der to repel the system from both ground states obtained so
function of the number of Monte Carlo steps. We observefar. This process can be iterated. For a numbef steps of
that after few hundred MC steps the simulation is equili-this process, we have

134425-4
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FIG. 9. Magnetization obtained after averaging okéndepen-
dent ground states as a functionkofThe horizontal lines indicate FIG. 10. Binder cumulanlB(p,L)=%(1—(m>4/3<mz>2) as a
the magnetization of the first ground st&tel. The data is foi function of the concentration of antiferromagnetic bopds
=100, p=0.103 and averaged over 1000 realizations.

obtained above by studying domain wall energies. This also
" indicates that the matching algorithm indeed finds ground
AJj=- a N—S&)ﬁk). (10) states which are typical with respect to the magnetization.
k=1 b Finally, we present further ways to check the previous
wherea is a scaling factor that we choose equal to 1. In thisconclusions. We have performed another treatment of the
way we hope to find configurations belonging to differentdata by trying to collapse all curves in Fig. 10 in a single
clusters, even if this procedure is not completely under conone- This means we want to find the parameters which sat-
trol since it is a biased random sampling in the space otsfy the finite-size scaling relation for the Binder cumulant:
configurations. To test the behavior of our method, we have _
calculated for each stek of the e-coupling approach the B(p,L) =B(LY(p-py), (11
magnetizationm® of the kth ground state. Figure 9 shows the
resulting behavior ofmK], [---] denoting the average over wherev is the critical exponent of the correlation length. We
the firstk—1 iterations of thee-coupling method and over Vvary p. and v in order to minimize the functiona®(p, »).
1000 configurations of the disordédr=300,p=0.1). We ob-  We find its minimum value fop,=0.103 andv=1.551)(S
serve that, within the statistical error bars, the magnetization-2.2), the resulting data collapse is illustrated in Fig. 11.
for the first ground state, indicated by the horizontal lines,The value forv is consistent with the value=1.503) at the
agrees well with the value obtained after averaging over seWP reported in Ref. 22, but differs from the value
eral different degenerate ground-state configurations. Note1.333) found previously! Since in the work of Merz and
that for smallk the difference is larger. This is due to the fact Chalker much larger system sizes are treated compared to the
that the e-coupling method repels each configuration fromwork of Honeckeret al, the valuer=1.5013) appears more
the previously obtained ground states. Hence, for skl reliable. Hence, our result indicates that the transition at NP
will move strongly away from the first ground state. With and atT=0 are in the same universality class.
increasing numbek of steps, the different ground states will

be scattered around in configuration space. Ifikhé& ground 1 — : . . : ,
state is typical with respect to the magnetization, then the S If:fooo .
average will converge to the initial value again, which seems 0.95 - 994\\ L=120 + %
to be the case here. Note that we have also checked for the '. pod
different iterations of the-coupling method that performing 09| i“ L=200 -0 1
an additionall=0 MC simulation changes the obtained mag- - % L=300 e
izati i ; ; ; ~ L=500 re--
netization values again only slightly. Since thecoupling & 085 M L=700 st
method strongly slows the simulations and the differences = o
are negligible within statistical error bars, we have restricted 08 | .
the simulations to the immediately obtained ground states )
(k=1), i.e., without applying the=-coupling method. 075 1 i
In Fig. 10 the Binder cumulant is shown as a function of . . . . . .
the concentration op for different sized <500, where we 0.7 02 01 0 0.1 02 03
have obtained data for all concentratigoes0.1, 0.101, ..., Pl

0.107. It intersects close mxicl~0.103 except for the largest
size, where the statistics is not so good. Hence, we again FIG. 11. Scaling plot of the Binder cumulaBtp,L) as a func-
concludep;=0.1031) which agrees well with what we have tion of (p—p)L"” with p,=0.103 andv=1.55.
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FIG. 12. Scaling plot of the rescaled magnetizatioh”” as a
function of (p—pg)LY” with p,=0.103,»=1.55,8=0.9.

Finally, we study the finite-size scaling behavior of the
magnetization. The prediction for the magnetization is

m(p) = L"M((p - p)LY), (12)

PHYSICAL REVIEW B 70, 134425(2004

matching algorithm, we could study systems which are much
larger than in previous studies.

We find that both ferromagnetic and spin-glass phases
cease to exist at the same concentrafiprn0.1031). This
means, we do not find any sign for an intermediate “random
antiphase.” Furthermore, the valuespmpfat T=0 and at the
Nishimori point, found in the most reliable studies so%ed?
are different, indicating a re-entrance of the paramagnetic
phase.

Large system sizels=500 are needed to observe the true
thermodynamic behavior with good accuracy. Slightly above
pe the width of the distribution of domain-wall energies in-
creases for small sizes, while it decreases for larger sizes.
Note that in principle we cannot exclude that a similar turn-
over happens for smaller concentrations, epg0.103, at
even larger system sizés> 700, which are out of reach of
our algorithm. Nevertheless, this would mean that the pgal
is even smaller, hence the discrepancy betwpgerand p,
would increase and the re-entrance became stronger.
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