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We study ground-state properties of the two-dimensional random-bond Ising model with couplings having a
concentrationpP f0,1g of antiferromagnetic ands1−pd of ferromagnetic bonds. We apply an exact matching
algorithm which enables us the study of systems with linear dimensionL up to 700. We study the behavior of
the domain-wall energies and of the magnetization. We find that the paramagnet-ferromagnet transition occurs
at pc,0.103 compared to the concentrationpn,0.109 at the Nishimori point, which means that the phase
diagram of the model exhibits a re-entrance. Furthermore, we find no indications for an(intermediate) spin-
glass ordering at finite temperature.
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I. INTRODUCTION

Despite more than two decades of intensive research,
many properties of spin glasses,1 especially in finite dimen-
sions, are still not well understood. For two-dimensional
Ising spin glasses it is now widely accepted that no ordered
phase for finite temperatures exists.2–6 Furthermore, it seems
clear that the behavior can be described well by a zero-
temperature droplet scaling approach,7–10but one needs quite
large system sizes to observe11 the true behavior. One unan-
swered question is whether an additional phase, usually
calledrandom antiphase, exists12–15 for TÞ0 in two dimen-
sions with an asymmetric distribution of random bonds. Also
it is no clear whether at low temperatures the phase boundary
of the ferromagnetic phase is perpendicular16,17 to thep axis,
p denoting the concentration of the antiferromagnetic bonds.
The aim of the present paper is to reinvestigate this issues by
studying the domain-wall energy and magnetization at zero
temperature via the determination ofexact ground states18

for large system sizes and huge sample numbers. This allows
us to draw much more reliable conclusions in comparison to
past studies, where only considerable smaller system sizes
could be studied.

The organization of the paper is as follows: In Sec. II, we
will expose the model and briefly describe the polynomial
matching algorithm, which allows us to treat large system
sizes. Section III presents our results for the domain-wall
energy. In Sec. IV, we explain the additional methods used to
obtain the magnetization and show the results. Finally, we
summarize and draw our conclusions in Sec. V.

II. THE MODEL AND THE METHOD

The model consists ofN=L2 spins Si = ±1 on a simple
square lattice with periodic boundary conditions in thex di-
rection and free boundary conditions in they direction. The
Hamiltonian is

H = − o
ki j l

JijSiSj , s1d

where the sum runs over all pairs of nearest neighborski j l
and theJij are the quenched random spin-spin couplings. The

couplings are set independently antiferromagneticsJij =−1d
with a probability pP f0,1g and ferromagneticsJij = +1d
with probability s1−pd.

The phase diagram of the model as a function of tempera-
ture T and the concentrationp is shown in Fig. 1. The pure
system sp=0d has a transition at a Curie temperatureT0

=2flns1+Î2dg−1, above which the system is paramagnetic.
When antiferromagnetic bonds are introducedsp.0d, the
ferromagnetic phase is destroyed at a threshold concentration
pcsTd. A particular curve on thep−T plane is known as the
Nishimori line19 (NL). It is defined by the equation exp 2b
=s1−pd /p. On this line the internal energy is analytic and
the spin-spin correlation functions obey the equalities
ksis jl2k−1=ksis jl2k, for integerk. It was also proven20 that a
multicritical point delimiting two critical behaviors on the
ferropara boundary coincides with the intersection of the NL
with the boundary: this defines the Nishimori pointsNPd.
Besides, by studying domain-wall energies of exact ground
states for system’s sizes up toL=32, Kawashima and
Rieger15 found that the stability of the ferromagnetic and
spin-glass order cease to exist at a unique concentration for
the antiferromagnetic bonds, so they concluded that there is
no intermediate spin-glass phase.

FIG. 1. The phase diagram of the two-dimensional random-bond
Ising model, with the concentrationp of antiferromagnetic bond
and the temperatureT on the vertical axis. It has been conjectured
that the phase boundary from the NP falls vertically to thep-axis.
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In this paper we want to compute numerically with high
accuracy the critical concentrationpc

s1d=pcsT=0d corre-
sponding to the para-ferro transition at zero temperature, and
to compare this result with the believed value of the Nishi-
mori point pn=0.109s1d.21,22 Furthermore, we want to check
with high accuracy, whether there is an intermediate spin-
glass phase at nonzero temperature.

We can reach a much higher precision compared to pre-
vious studies, by applying a matching algorithm. This allows
to compute exact ground states for large system sizes,N
=7002 spins in our case. Let us now explain just the basic
idea of the matching algorithm, for the details, see Refs.
23–25. The method works for spin glasses which are planar
graphs, this is the reason, why we apply periodic boundary
conditions only in one direction. In the left part of Fig. 2 a
small 2d system with open boundary conditions is shown.
All spins are assumed to be “up,” hence all antiferromagnetic
bonds are not satisfied. If one draws a dotted line perpen-
dicular to all unsatisfied bonds, one ends up with the situa-
tion shown in the figure: all dotted lines start or end at frus-
trated plaquettes and each frustrated plaquette is connected to
exactly one other frustrated plaquette. Each pair of plaquettes
is then said to bematched. Now, one can consider the frus-
trated plaquettes as the vertices and all possible pairs of con-
nections as the edges of a(dual) graph. The dotted lines are
selected from the edges connecting the vertices and called a
perfectmatching, sinceall plaquettes are matched. One can
assign weights to the edges in the dual graph, the weights are
equal to the sum of the absolute values of the bonds crossed
by the dotted lines. The weightL of the matching is defined
as the sum of the weights of the edges contained in the
matching. As we have seen,L measures the broken bonds,
hence, the energy of the configuration is given byE
=−oki,jluJij u+2L. Note that this holds forany configuration
of the spins, since a corresponding matching always exists.
Obtaining a ground state means minimizing the total weight
of the broken bonds(see right panel of Fig. 2), so one is
looking for aminimum-weight perfect matching. This prob-
lem is solvable in polynomial time.

The algorithms for minimum-weight perfect
matchings26,27 are among the most complicated algorithms
for polynomial problems. Fortunately the LEDA library

offers a very efficient implementation,28 except that it
consumes a lot of memory, which limits in our case the
size of the systems to aboutN=7002 on a typical 500 MB
workstation.

III. DOMAIN-WALL ENERGIES
AND FINITE-SIZE SCALING

We calculate the domain-wall energydE defined bydE
;Ep−Ea, where Ep and Ea are the ground-state energies
with periodic and the antiperiodic boundary conditions in the
x-direction, respectively. We take an average over the disor-
der. We are interested in the exponentsr anduS that charac-
terize the system-size dependence of the meanDE and the
width ssdEd of the distribution of the domain-wall energies:

DE ~ Lr and ssdEd ~ LuS. s2d

For a general dimensionsd of the system, a positive value of
r indicates the stability of a ferromagnetic phase Forr,0,

FIG. 3. The domain-wall energyDE of the random-bond model
plotted as a function of the system sizeL for various ferromagnetic-
bond concentrationsp.

FIG. 4. The width of the distribution of the domain-wall energy
ssdEd of the random-bond model plotted as a function of the sys-
tem sizeL for various ferromagnetic-bond concentrationp.

FIG. 2. 2d spin glass with all spins up(left, up spins not shown).
Straight lines are ferromagnetic, jagged lines antiferromagnetic
bonds. The dotted lines connect frustrated plaquettes(crosses). The
bonds crossed by the dotted lines are unsatisfied. In the right part
the GS with three spins pointing down(all other up) is shown,
corresponding to a minimum number of unsatisfied bonds.
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no ferromagnetic ordering is present. Then, in dimensiond
above the lower critical dimensiondc, we haveuS.0 and
spin glass-ordering is stable against thermal fluctuations. On
the other hand, whenuS,0, thermal fluctuations prevent
spin-glass ordering.10 The current belief is that ind=2,
uS,0 holds for all concentrationspc

s1d,p,1−pc
s1d.

We have computedssdEd and DE for sizes up toL
=700 and for values ofp ranging from 0.100 to 0.109. We
performed a disorder average of a number of realizations
ranging from 30000 for the smallest sizes to typically 2000
for the largest sizeL=700. In Figs. 3 and 4 the mean and the
width of the distribution of domain-wall energies are plotted
as a function of the system size. We denote bypc

s1d and pc
s2d

the critical concentrations of antiferromagnetic bonds at
which the asymptoticL dependencies ofDE andssdEd, re-
spectively, change from increasing to decreasing, i.e., the
concentrations where a ferromagnetic phase and a spin-glass
phase, respectively, cease to exist at finite temperature. We
conclude from the figures thatpc

s1d,0.103, while forpc
s2d the

“transition” is less sharp but the value is between 0.103 and
0.105. For small sizes, the width even seems to increase for
all values ofpP f0.1,0.107g we have considered. For small
sizes, at intermediate concentrationspP f0.1,0.15g, the
mean of the domain-wall energy already decreases with sys-
tem size, while the width of the distribution first increases,
which appears as if the system exhibits some kind of spin-
glass phase. This is probably the reason that in some previ-
ous studies12–14 the existence of an additional intermediate
phase has been assumed. We see that we have to consider
large system sizes to observe the true behavior.

Another way to computepc
s1d/s2d is to check the scaling

relations forDE andssdEd proposed in Ref. 15

DELc1 = f1ssp − pc
s1ddLf1d, s3d

ssdEdLc2 = f2ssp − pc
s2ddLf2d. s4d

The parameterspc, f, and c for both moments of domain
wall energies have to be chosen such that a good data col-
lapse for all data is obtained. To quantify the “goodness” of

this fit, we used an appropriate cost functionSspc,f ,cd in-
troduced in Ref. 29 whose minimum value should be close to
unity when the fit is statistically acceptable. To minimize
Sspc,f ,cd we used the implementation of the simplex
method offered by Numerical Recipes library.30 The best fits
give the estimates

pc
s1d = 0.103s1d f1 = 0.75s5d, c1 = − 0.12s5d s5d

with S=0.75 and

pc
s2d = 0.104s2d, f2 = 0.74s5d, c2 = − 0.13s5d s6d

with S=0.65. The resulting scaling plots are shown in Figs. 5
and 6. We have estimated the error bars given above in the
following way. For each parameter, we fix it to different
values and perform the minimization over the remaining two
parameters. In Fig. 7 we show as example a plot of this
partly minimized value ofSspc,c ,fd as a function ofpc. Our
error bars are the ranges of values whereSspc,c ,fd in-
creases to twice of its minimum value.

Within the statistical errors the critical parameters for both
moment ofdE agree: this strongly suggest the absence of a
spin-glass phase. Therefore there is a discrepancy between

FIG. 5. The scaling plot of mean domain-wall energyDE versus
the concentration of the antiferromagnetic bonds, using the values
pc

s1d=0.103,f1=0.75,c1=−0.12.

FIG. 6. The scaling plot ofssdEd versus the concentration of the
antiferromagnetic bonds, using the valuespc

s2d=0.104, f2=0.74,
c2=−0.13.

FIG. 7. Plot of the minimum value ofSspc,c ,fd for different
fixed values ofpc.
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the critical concentrationp evaluated at the NP and at zero
temperature, in disagreement with the conjecturepn=pc

s1d by
Nishimori16 and later by Kitatani.17 Later, Le Doussal and
Harris20 have shown that the tangent to the phase boundary
at the NP is vertical. But this result does not exclude the
possibility of a re-entrance in the phase diagram as shown in
Fig. 1.

IV. STUDY OF THE MAGNETIZATION

We furthermore study the para-ferro transition by evalu-
ating the magnetization and using the Binder cumulant cross-
ing method.31,32 The Binder cumulant is given by

Bsp,Ld =
3

2
S1 −

kml4

3km2l2D , s7d

wherem=1/NoSi is the magnetization andk¯l denotes the
average over the disorder. For second order phase transitions,
the curves for different sizes intersect at one point, the criti-
cal concentrationpc

s1d. This is a consequence of finite-size
scaling.

The problem one has to face when studying system with
discrete interactions, is the exponentially large number of
states all giving the same energy. Hence there is no unique
ground-state magnetization. For a given set of bonds we here
determine one exact ground state using an efficient polyno-
mial time “matching” algorithm, but we are not able to enu-
merate all the ground states.33

In order to check if “typical” configurations with respect
to the magnetization are found, we first performed a zero-
temperature Monte Carlo(MC) simulation which consists in
flipping all spins with zero local field, starting with the
ground-state configuration. This allows to explore all states
within a single-spin-flip cluster of ground-state configura-
tions (see below). In Fig. 8 a typical evolution of the mag-
netization (scattered points) and its running average forL
=300, p=0.1, averaged over 100 samples, are shown as a
function of the number of Monte Carlo steps. We observe
that after few hundred MC steps the simulation is equili-

brated, i.e., the relative fluctuations of the average magneti-
zation are less than 10−3. Additionally, we see that the value
of the magnetization found by the ground-state algorithm,
i.e., for zero MC steps, is slightly outside the scattering of
the datapoints for large Monte Carlo steps, and that the se-
lected configuration has a lower magnetization value. To
check whether this is a coincidence or not, we did some test
by applying the matching algorithm to a mainly ferromag-
netic system with some antiferromagnetics bond. Surpris-
ingly, we found that that the free spins of the configuration
are selected without preferential direction respect to the di-
rection of the total magnetization. However there could be
some bias for more complicated domain walls, but we cannot
fully explain it since we used a commercial library. Besides,
compared to the final statistical error bars(see below), this
difference is negligible. Hence we conclude that the ground
state obtained by the matching algorithm exhibits a typical
magnetization of the cluster, in which the ground state is
located.

Anyway, the set of ground states usually is divided into
severalclusters:34 different ground states belong to the same
cluster if they are related by a sequence of single free spin
flips (i.e., spin in zero local field). Ground states in different
cluster can only be reached from each other by making co-
operative flips of multiple spins or when using single-spin
flips via increasing the energy. This means that with our
single-spin-flip MC algorithm atT=0 the system always
stays in the same cluster. In principle one can enumerate all
ground states.33 Since the ground-state degeneracy grows ex-
ponentially fast with the system size, only small systems can
be treated like this.

Thus, we have applied an alternative method to find dif-
ferent ground states, the so-callede-coupling method. It al-
lows us to obtain ground states from different clusters, but no
exhaustive enumeration is necessary. The basic idea is to first
add a perturbation to the system which tends to increase the
energy if two neighboring spins are in the same relative ori-
entation as in the ground state and then to recalculate the
ground state. LetSi

s1d be the ground-state spin configuration.
We then perturb the couplingsJij by an amount proportional
to Si

s1dSj
s1d in order to repel the system from the ground state.

This perturbation, which depends upon a positive parameter
e, is defined by

Jij → Jij + DJij , s8d

where

DJij = −
e

Nb
Si

s1dSj
s1d, s9d

where Nb is the number of bonds in the system. We then
recompute the ground state and check that the new configu-
ration is still a ground state of the unperturbed Hamiltonian.
This is our second ground stateSi

s2d. The next step, to obtain
a third ground state, consists of adding a perturbation in or-
der to repel the system from both ground states obtained so
far. This process can be iterated. For a numbern of steps of
this process, we have

FIG. 8. Magnetization averaged over 100 samples(L=300, p
=0.1) as a function of the number of MC steps for a zero-
temperature single-spin-flip dynamics. The bold line is the running
average(averaged over the samples).
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DJij = − ao
k=1

n
e

Nb
Si

skdSj
skd, s10d

wherea is a scaling factor that we choose equal to 1. In this
way we hope to find configurations belonging to different
clusters, even if this procedure is not completely under con-
trol since it is a biased random sampling in the space of
configurations. To test the behavior of our method, we have
calculated for each stepk of the e-coupling approach the
magnetizationmk of thekth ground state. Figure 9 shows the
resulting behavior offmkg, f¯g denoting the average over
the first k−1 iterations of thee-coupling method and over
1000 configurations of the disorder(L=300,p=0.1). We ob-
serve that, within the statistical error bars, the magnetization
for the first ground state, indicated by the horizontal lines,
agrees well with the value obtained after averaging over sev-
eral different degenerate ground-state configurations. Note
that for smallk the difference is larger. This is due to the fact
that thee-coupling method repels each configuration from
the previously obtained ground states. Hence, for smallk it
will move strongly away from the first ground state. With
increasing numberk of steps, the different ground states will
be scattered around in configuration space. If thek=1 ground
state is typical with respect to the magnetization, then the
average will converge to the initial value again, which seems
to be the case here. Note that we have also checked for the
different iterations of thee-coupling method that performing
an additionalT=0 MC simulation changes the obtained mag-
netization values again only slightly. Since thee-coupling
method strongly slows the simulations and the differences
are negligible within statistical error bars, we have restricted
the simulations to the immediately obtained ground states
sk=1d, i.e., without applying thee-coupling method.

In Fig. 10 the Binder cumulant is shown as a function of
the concentration ofp for different sizesLø500, where we
have obtained data for all concentrationsp=0.1, 0.101, . . .,
0.107. It intersects close topc

1,0.103 except for the largest
size, where the statistics is not so good. Hence, we again
concludepc

1=0.103s1d which agrees well with what we have

obtained above by studying domain wall energies. This also
indicates that the matching algorithm indeed finds ground
states which are typical with respect to the magnetization.

Finally, we present further ways to check the previous
conclusions. We have performed another treatment of the
data by trying to collapse all curves in Fig. 10 in a single
one. This means we want to find the parameters which sat-
isfy the finite-size scaling relation for the Binder cumulant:

Bsp,Ld = B̃sL1/nsp − pcdd, s11d

wheren is the critical exponent of the correlation length. We
vary pc and n in order to minimize the functionalSspc,nd.
We find its minimum value forpc=0.103 andv=1.55s1dsS
,2.2d, the resulting data collapse is illustrated in Fig. 11.
The value forn is consistent with the valuen=1.50s3d at the
NP reported in Ref. 22, but differs from the valuen
=1.33s3d found previously.21 Since in the work of Merz and
Chalker much larger system sizes are treated compared to the
work of Honeckeret al., the valuen=1.50s3d appears more
reliable. Hence, our result indicates that the transition at NP
and atT=0 are in the same universality class.

FIG. 9. Magnetization obtained after averaging overk indepen-
dent ground states as a function ofk. The horizontal lines indicate
the magnetization of the first ground statek=1. The data is forL
=100,p=0.103 and averaged over 1000 realizations.

FIG. 10. Binder cumulantBsp,Ld= 3
2s1−kml4/3km2l2d as a

function of the concentration of antiferromagnetic bondsp.

FIG. 11. Scaling plot of the Binder cumulantBsp,Ld as a func-
tion of sp−pcdL1/n with pc=0.103 andn=1.55.

DOMAIN-WALL ENERGIES AND MAGNETIZATION OF… PHYSICAL REVIEW B 70, 134425(2004)

134425-5



Finally, we study the finite-size scaling behavior of the
magnetization. The prediction for the magnetization is

mspd = L−b/nm̃ssp − pcdL1/nd, s12d

whereb is the critical exponent of the magnetization. Using
pc=0.1032,n=1.55, a good data collapse is obtained with
b=0.9s1d, see Fig. 12.

V. CONCLUSIONS

To summarize, we have performed a systematic calcula-
tion of the domain-wall energy at zero temperature for the
two-dimensional random-bond Ising model for different con-
centrationsp of the antiferromagnetic bonds. By using a

matching algorithm, we could study systems which are much
larger than in previous studies.

We find that both ferromagnetic and spin-glass phases
cease to exist at the same concentrationpc=0.103s1d. This
means, we do not find any sign for an intermediate “random
antiphase.” Furthermore, the values ofpc at T=0 and at the
Nishimori point, found in the most reliable studies so far,21,22

are different, indicating a re-entrance of the paramagnetic
phase.

Large system sizesLù500 are needed to observe the true
thermodynamic behavior with good accuracy. Slightly above
pc, the width of the distribution of domain-wall energies in-
creases for small sizes, while it decreases for larger sizes.
Note that in principle we cannot exclude that a similar turn-
over happens for smaller concentrations, e.g.,p=0.103, at
even larger system sizesL.700, which are out of reach of
our algorithm. Nevertheless, this would mean that the realpc
is even smaller, hence the discrepancy betweenpc and pn
would increase and the re-entrance became stronger.
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