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Magnetostatic spin solitons in ferromagnetic nanotubes
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We study the linear and nonlinear evolution of a magnetostatic spin (8&V) in a charge free, isotropic
ferromagnetic hollow nanotube. By analyzing the dispersion relation we observe that elliptically polarized
forms of wave can propagate through the ferromagnetic nanotube. Using the multiple scale analysis we find
that the dynamics of magnetization of the medium is governed by the cubic nonlinear Schrédinger equation.
The stability of the continuous wave, related to the propagation of either bright onld&ksolitons in the
nanotube, is governed by the direction of the external magnetic field relative to the magnetized nanotube.
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I. INTRODUCTION by Daniel and Veerakuma?. The above studies were re-

The study of interaction of electromagnetEM) field in stricted to_ the_bul_k ferro/antiferromagnetic materials and fer-
ordered magnetic media has become an emerging and grofgmagnetic thin films. _ _ ) )
ing field of research. In this context, ferromagnetic medium In a different context many innovative magnetic materials
has assumed lot of importance in the field of magneto-opticake now synthesized experimentally in order to fulfill the
recording for higher storage and faster reading ofdemands of the data storage industry. Important among them
information! The ferromagnetic medium with different mag- are the nanoscale ferromagnetic tubes and wires which are
netic interactions were identified as an interesting class o$ynthesized using nanofabrication techniques and whose
nonlinear medium exhibiting soliton excitations of their properties can be tailored as per our needs by changing the
magnetization in the classical continuum lirfiit. This soli-  size, the shape or composition of the nanostructtfrsthis
ton excitation of magnetization is mainly due to the nonlin-case the size of the nanomagnets becomes comparable to the
earity present in the ferromagnetic medium. Several studiegagnetic length scales such as exchange length or domain
on the propagation of EM wawEMW) in a ferromagnetic  wall width. Therefore it will be interesting to understand the
medium were carried out in the recent past taking into aceffect of interaction of EM field with the magnetization of
count the nonlinear nature of the medi@fThe authors of the nanoferromagnetic tubes. The linear propagation of
the present paper have separately investigated the nonline#SW in magnetic nanowires has been studied recéntly.
modulation of quasi-monochromatic EMW in a ferromag-the present paper we investigate the interaction of spatially
netic medium with different magnetic interactioh$? The  varying EM field with the magnetization of a charge free
results show that when the EMW propagates in a charge freigotropic ferromagnetic hollow nanotube and the nature of
isotropic or anisotropic ferromagnetic medium, the planeexcitation of the later. The linear propagation is studied in
EMW is modulated in the form of solitons, while the mag- Sec. Il: first we formulate the model and derive the dynami-
netization of the medium exhibits soliton excitation¥  cal equations to be solved. Then, using a cylindrical model
This results in the dispersionless propagation of EMW in &gor the nanotube and linearizing the system of coupled equa-
ferromagnetic medium. The propagation of magnetostatiéions, the analysis of the dispersion relation is carried out.
spin wave(MSW) has been also studied extensively, espe-Section Ill deals with the nonlinear problem of interaction of
cially in ferromagnetic thin film$.It has been shown that EM field with the magnetization of the ferromagnetic nano-
magnetostatic backward volume waveMSBVW) can tube without free charges, and the results are concluded in
propagate in the case when the direction of propagation ofec. IV.
EMW is parallel to the constant applied fiéld@he nonlinear
Schroédinge(NLS) equation which describes the propagation Il. LINEAR WAVES
of MSW solitons in thin magnetic films has been first derived
as early as 1982 Further, bright and dark solitons have
been observed experimentally a few years [&éf.In a re- We consider an isotropic charge free ferromagnetic film in
cent paper one of the authors, Leblond, has given a rigoroubie form of a cylindrical hollow tube with the surface thick-
derivation of the NLS equation which describes the propaganess very less compared to other dimensions. Practically
tion of the MSBVW solitons, using for the first time a mul- such cylindrical tubes are realized in the form of ferromag-
tiscale approach which takes into account the wave guideetic nanotubes which are experimentally synthestédte
propertiest* Further, the propagation of EM soliton in iso- hollow cylindrical ferromagnetic tube is locally equivalent to
tropic and anisotropic antiferromagnetic media was studie@ planar film as shown in Fig. 1, provided the thicknass

A. Equations for an ultrathin ferromagnetic film
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FIG. 1. Thin film representation of the ferromagnetic

nanotube. FIG. 2. Cylindrical model of the ferromagnetic nanotube.
the film is constant and very small in relation with the radius Hy«=Hi o (6)
of curvature. In this case, the magnetic medium fills the re- ) o

gion of space betweer=0 andx=a, denoted by II. The The subscripts |, Il, and Il in Eqs(4)—«6) represent the

regions above and below the magnetic medium are denotd@SPective region.
as Il and I, respectively. The magnetization dynamics in the

isotropic charge free ferromagnetic film in a continuum limit B. Cylindrical model and linearized equations
is governed by the Landau-Lifshitz equatién Since the ultrathin ferromagnetic film is rolled to form a
- e - cylindrical hollow tube, the magnetization exists only on the
M =M O[H' + JAM], (1) surfaceS of the cylinder as illustrated in Fig. 2. We denote

- ) o _ by z the axis of the cylinder and bg,, €, andé, the unit
whereM=(M,,My,M,) is the magnetization of the medium, vectors along the cylindrical coordinatés 6,2). The cylin-
H‘:(H'X,H'y,H'Z) is the magnetic field inside the filnd,is the  drical components of the magnetization and magnetic field
exchange integral and=d;+d+4; is the Laplacian opera- are written as(M;,M,,M,) and (H;,Hy,H,), respectively.
tor. The magnetizatioM is zero outside the medium. The The field H satisfy the magnetostatic equatiof® and (3)
term H' accounts for both demagnetizing and dipolar fields.everywhere. Outside the magnetic medium, &).reduces
Thus the Landau-Lifshitz equatiqi) gives account for the 0
dipolar and exchange interactioh$he length of nanotubes, > -
at most in the micrometer range, will be very small with V-H=0. ()
regard to the considered wavelengths, rarely below the milThe surfaceS of the film is obtained at the limit— R. Ac-
limeter range. Therefore retardation can be neglected, angbrding to the results of the preceding section, the magnetic
the components of the extemnal magnetic field satisfy thefield inside the ferromagnetic surfadd is related to the

magnetostatic Maxwell equatiotis - L -
exterior fieldH and the magnetizatiom by

VOH=0, 2 H, - M,
o H=| H, | 8
V-(H+M)=0. (3) H,

The surface of the hollow cylinder can be considered as an In order to derive the dispersion relation we expand the
ultrathin ferromagnetic film, of thickness Notice thatais ~ Magnetization of the medium and the magnetic field as

well below the exchange length, and even smaller with re- 5 s .

gard to the thickness of the usual ferromagnetic thin films. M=Mq+em, 9)
Thus usual results on MSW in magnetic films do not apply

here. Therefore we study the above equations in the Bmit H=Hg+ eh, (10)

—0. In this limit it is reasonable to assume thétand M - - ] ] ]
depend only orx. It follows from Egs.(2) and (3) that H, wh«_areMO andHg represent the unlfo_rm_saturatlon magneti-
and H, are uniform in regions I, Il, and Ill, and so ak¢,  Zation and the applied static magnetic f|elq, respectively, and
+M, in region Il andH, in regions | and lIl. Further, the & is a small perturbation parameten and h are the wave
boundary conditions state that these field components amagnetization and magnetic field, respectively. Using the ex-
continuous at the surfaces0 andx=a. Thus we obtain the pansiong9) and(10) in Eg. (1) and neglecting the quadratic

following conditions specific to our problem: terms we obtain the following equation at the org€r
Hy g=Hi g=Hy g, (4) Mo OHL=0. (11)
whereB=y,z and At order e, we get
Hix = Hix— My, (5) af= Mo O (h' + JAM) + M OHp, (12)
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For sake of simplicity, we assume that the magnetization w
Mg has the symmetry of the cylinder. Since it is uniform, it is

parallel to the axis of the cylind€r axis), and so islrlo. Then
the uniform magnetization and magnetic field are

Mo=ME, (13)
Ho = aM8é,. (14)
The parametesr=H,/ M, measures the strength of the exter- o

nal field. In bulk materials, the steady state is stable when
a>0 only. In the smallest nanotubes, the reversal of the
magnetization which should occur for negativean be pro- k

hibited by exchange effect8. The diameter of the tubes can FIG. 3. The dispersion relation for MSW in hollow
indeed be less than the exchange length. Then steady staﬁ%otubes_’

with negative values ofr may become stable. Substituting

Egs.(9) and(10) into Eq.(8), we find that the magnetic field

on the surface of the tube can be written as V2A=- AL Ayl 22)

hi=h-mé. (15)

] ) which reduces Eq21) to
Using Egs.(13)—«15), Eqg. (12) can be rewritten as

R . R R ) -(1+a)A - KA,
am=MEg,0(h-m€& — am+JAM). (16) —iﬂ,&:éZD — oA, - KA, . (23)
Here the term m& is the demagnetizing field. It is shown - ah, - JICA,
below that the relative magnitude of the demagnetizing field
and the exchange integral strongly influences the polarizatio/e have set
of the MSW. 1
K=J(k2+ ?)’ (24)
C. Dispersion relation
Let us consider a linear wave propagating along the axis ®
of the cylinder. Therefore we look for a solution in the form Q= M’ (29
m= A6, (17)  In Eq. (23) we have used the limit— R as we analyze the
dynamics of magnetization on the surface of the ferromag-
h= é(r g)eikzet (19) netic nanotube. From E@R3) we find the dispersion relation
. - 2
whereA andC are the amplitudeﬁs of the wave magnetization “)_2 - |:a'+ J<k2+ %)} [1 fa+t J<k2 + %)] (26)
and magnetic field, respectivelfx depends only ord since M R

the magnetization exists in the surface of the cylinder. Sub;

N which is plotted in Fig. 3. Due to the geometry, the wave
fgtutlon of Egs(17) and(18) reduces Eqs2), (7), and(16)  4iging properties of the hollow tube differ from that of the

thin films, thus the dispersion relatig@6) coincides neither
with that of MSW in thin films nor in the bulk medium.

(V. +ike)OC=0, (19) Notice that the curvev=w(k) does not cross the origin, but
. - presents some minimal frequency
(V,+iké)-C=0, (20
J J
R R R . R w0=M\/<a+—2>(l+a+—2>. 27
-iwA=ME& 0[C-AE - aA+I(V2 -KIA], (21) R R

> _z 3 ; The minimal frequency, also exists in the bulk, its value is
whereV | =&, +(1/r)€,d,. Equationg19) and (20) are sat- 0 ’
1 =60 +(1INéd, Ea S19) and(20) wo=Mya(l+a), which corresponds to the ferromagnetic

resonance. The latter is indeed often considered at micro-

essary i!k:O, but other solutions seem to be possible for the'\/\/ave frequencies, in a situation where the effect of the ex-
case of interest of a nonzekd. Further, due to the symmetry change on the dispersion is negligible. In the nanotubgs,

of the cylinder, we assume thAtis constant with regard to js shifted up due to the combined effect of the exchange
6. Thus the components, , A, andA, of A are uniform. The interaction and the tube curvature. From E2f3), we obtain
Laplacian operator can be expressed as the amplitude of the linear spin wave as

isfied byé:O (it is easy to show that this condition is nec-
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We substitute the expansiof@9) and(30) for M and H
and the stretched variabl€3l) into Eq.(1), collect the terms
proportional to different powers of and try to solve the
resulting equations. At order®, we find again that the mag-
netization density is collinear to the magnetic field. Equa-

e comparable  demagnetizing field tions(13) and(14) are still valid(with MS; Mo and ng_ Ho).
todemagnenzmgﬁeld dominates Here M can take both signs. The positizedirection is de-
fined by the propagation direction of the waves. At order
we are interested only ip=+1. Forp=1, we get

FIG. 4. The possible polarizations of a spin wave in a

nanotube.
- (1+a@)Mi, - KM7,
- (a+K) —ioMi=g,0| -aMi,-KMi, |. (32
A=l i | (28) - aMi, - M},
0

Recall thatK is defined by Eq(24). From Eq.(32) we re-
If (a+K)>1, i.e., if the demagnetizing field is negligible trieve again the dispersion relatig@6). The corresponding
compared to the external and exchange field, then(E®8).  polarization vector is written as

refers to a circularly polarized wave. In this case, the waves

are clearly yielded by the precession of the magnetization - _(‘_H K) _
about the axis of the cylinder. On the other hand, if the Mi= iQ |g withg=9({,7). (33
demagnetizing field is not negligible, then the precession is 0

slightly distorted, giving rise to an elliptically polarized
wave. On the contrary, if the demagnetizing field is domi-At order > we obtain
nant,(a+K) <1, the precession is not possible at all, and the

K —i P_ P=Ma P4+ XP

polarization vectorA becomes proportional tg0, 1, 0, iPMS Vo Mi=Me, UL+, (34)
which represent a wave linearly polarized in the tangentialvhere
direction. In the same time the frequency goes to zero. Thus,
in conclusion, the linear analysis shows the possibility of ~(l+a+ KP)Mg,r
existence of an elliptically polarized wave. The elliptical po- L]g: —(a+ Kp)Mgﬂ + 2ikaa§|\7|§, (35)
larization is close to circular when the exchange or the ex- — (a+ IPARAMS
ternal field dominates, and becomes close to linear when the 2z
demagnetizing field dominates, as illustrated in Fig. 4. with

I1I. NONLINEAR WAVES AND SOLITONS Kp: J(p2k2+ é) (36)

A. Multiscale formalism

The nonlinear modulation of the linear wave found in theand

preceding section is now investigated using the multiple — (L +KIMS
scale analysis. For this we expand the magnetization of the

medium and the magnetic field in a series of harmonics of a Xg= M{ 0 - KsMi,a . (37
fundamental phase=kz- wt as arsp 0
M > s”l\7|ﬁeip“’, (299  The nonlinear tern’)zg can be nonzero fop=0 or +2 only.
n=0/pl<n For p=0, using Eq.(33) we obtain after simplificatiorx}
. . =0. Since the solution of the profile equati¢d¥) is unique
H= X &"HRePe, (30)  for p# £1, we find that
n=0,p|<n
M3=0. (38)

where agaire is the small perturbation parameter, that will
give account of the smallness of the signal amplitude and of For p=2, still at orders2, we get

the spectral width. The proﬁleISKIp and Hp are functions of

the slow variables X2=-iQ(a+K)g%,, (39)
{=&(z- V1) andr=¢t. (3)  which implies a nonzerdiZ, as

From Egs.(2) and (7) we find thatH is uniform. We still -, a+K

assume that the wave has the symmetry of the cylinder, then M2="m g€, (40)

the cylindrical components of the magnetization are indepen-

dent of 6. For p=1, Eq.(34) yields M3,=0 and
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Vv
-iQM3, + (@t KIog= (at KIM3 ,+ 2kQJ3,9,

(41)

\%
-iQM3 .- 107 09=-(1+a+ KIM3,, - 2ik(a +K)J3,9.

(42)

Combing Eq(42) and Eq.(41) and simplifying the resulting
equation using the dispersion relatig®6), we obtain the
wave velocity
V. k—J(Z +2K +1)
M = QO o .
It is observed that Eq43) coincides with the usual expres-
sion for the group velocity

(43)

V_1ldo_do s
M Mdk dk’
Another combination of Eq$41) and(42) yields the relation
-kJa+K
IOM3, + (a+ K)ML ;= “kda+K) )aég, (45)

Q

which will be useful below.

The nonlinear evolution equation is found as usual at or-

PHYSICAL REVIEW B 70, 134413(2004)

ish andx} reduces toxk;*+X42 Using expressioii40) for
M3, we deduce
—-iQ(K - 4k2J)
ark 91| (a+K)(1+K - 4k2))
oM g9 .

X3= (50)

Ther and 8 components of Eqi46), can be combined to
obtain a new equation, in which the terms invoIvih@ﬂ
vanish directly. The terms Witlh/léyr vanish after using the

dispersion relatior{26). The term involvingl\7|§ in the new
combined equation is

V2
T= Mag[umvl;,, — (a+K)M;3 ]

- 210kdfiOM3 o+ (a+ K)M3,]. (52

Using the expressio3) of the group velocityV, it reduces

to

L2712
QZ

Substituting Eqs(53) and (33), the equation obtained by
combining ther and # components of Eq46), reduces to
the integrable cubic NLS equation

T=

(a+K)dg. (53

der &3, as a solvability condition for the fundamental fre- iGa,g+Bdzg+Cdgl*=0, (54)
quencyp=1. The equation satisfied by this component at thi%/vh
: ere
order is
- - s 20(a+K
—iwM3-VgM3+dMi=ME U+ X3,  (46) G:%, (55
with
1 _ 2J2
[T A EKOMs, o B=— 7 (@t K)+ 0%+ (a+K?),  (56)
Ui=| -KMj3, [+2JksM3+I#MI~aM]
0 1
(47) C= M[mxg,, — (a+K)X3 4. (57)
and -
R R R Substituting the expressiaidl) of Xé, the nonlinear coeffi-
X3=2 (X33+X39). (48)  cientC reduces to
q
- > _ - (a' + K)2 2
The nonlinear termX3? and X3 are defined as C=—yz (a+t4) (58)
~ ~ — (L +KJM3, . and using Eq(26), we reduce the expressias6) of the
Xza=M{O[| -KM3, [+2Is9M;| (49) dispersion coefficienB to
0 K2J
and B=J[a+K][2(a+K)+1—§]. (59)
- (1 +KyMg, Taking the derivative of the group velociy given by (43),
ig'g: I\7I§ Ol -KMS, (50) we check that the usual formula

0

wheres=1-q. It is clear that)Zé;g can be nonzero only for
g=+1 andX3{ for s=+1 only. SinceM3=0, two terms van-

B 1d%

G 240 (60

is satisfied.
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B. Bright and dark solitons cally modulated waves are stable. Let us determine this sign.
Equation (54) is the well-known completely integrable FO positive values of the field constamtthe BC product is
cubic NLS equation which has been solved for N-bright anc?Ways negative: only dark solitons can be formed, and the
dark soliton solutions using inverse scattering transfornfONtiNUOUS wave is stable. Indezed, from the definit@# of
method® In Eq. (54) the dark and bright soliton solutions K We haveK>Jk® and since)*(2a+2K+1)>K, we find
are characterized by the sign of the product of coefficient ofhatB is always positive. On the other hand, expressis)
nonlinear and dispersion terms.BC> 0, the bright soliton ~Shows that the coefficier€ is always negative whea>0

solution exists. The single bright soliton of E&4) is given  (récall thatJ>0, and henceK>0). Solitons can thus be
by formed only whern <0, i.e., when the direction of the mag-

netization is opposite to that of the external field. This con-
: C 2\C dition may be achieved by changing the direction of the ap-
9(d,m) =2psech | \/25({= Lo+ =7 plied magnetic field. While in bulk this does not lead to a
stable ground state, it can be stable in nanotubes. This is
. /¢ . C , possible if the tube is very narrow, so that the exchange
X eXp<_'{2)‘ 2|3§+42(3()‘ -7 )tD effect due to the curvature of the tube is strong enough to
61) prevent the magnetization reverdél et us precise the sign
of the productBC in the corresponding limiR— 0. Then
where 7 is the amplitude)\ and ¢, are all free real param- K— + andB~ 2JK? is positive. The nonlinear constant is
eters. IfBC<0, the formation of dark soliton is possible. C ~ - K2M2(ar + 4K2J). 67)

The single dark soliton has the fofn
ThusBC is positive and solitons can be formed if the wave-

-Qr
M E 7]ei<k§—wr>%, (62) length is long enough, depending on the external field
1+€ strength,
where » is again the amplitude, , -a
B 507 ke < E (68)
Q:Ep(2k+ T”—pz), (63)
IV. CONCLUSIONS
B C
w= 5<k2— {) (64) In this paper we studied the linear and nonlinear interac-

tion of an EM field with a charge free, isotropic ferromag-
netic hollow nanotube, in the presence of an applied constant
p2+i(@ _ka) field, by assuming the surface thickness to be very small
compared to other dimensions with the magnetization con-
GQ : (65 centrated only on the surface of the nanotube. The analysis
-p*+ I<? - 2kp> of the dispersion relation shows that when the demagnetizing
field is negligible compared to the exchange field, the pre-

andp, k are arbitrary constants with?<-2C7?/B. Substi-  cession of the magnetization vector leads to circularly polar-
tuting Egs.(61) and(62) into Eq.(33) yields the expression ized wave while elliptically polarized waves are formed
of the wave magnetization amplitudé! for either the bright ~When the demagnetizing field is not negligible. The polariza-
or dark soliton. It is the lowest order of the expansion. A firsttion goes close to linear when it dominates. Further, the mul-
correction to this approximate amplitude is the second harliPlé scale analysis shows that the magnetization on the sur-
monic term obtained by substituting Eq61) and (62) into face of the ferromagnetic nanotube at the lowest order of

. =5 o expansion is governed by the completely integrable NLS
the expressio0) of M. The full wave magnetization den- equation. For the nanotubes of the largest diameter, the di-

b=

sity is then rection of the magnetization is always the same as the direc-
'\7|w _ sl\7|iei“’ + szl\zgeziq,_,_ cc., (66) tion of the external flel_d. In this case, no bright spllton can be

formed. The propagation of a continuous wave is stable, and

where c.c. stands for complex conjugate. could support dark solitons. For the smallest tubes, magneti-

Moreover, ifBC>0, the so-called modulational instabil- zation reversal can be prevented when the direction of the
ity of Benjamin-Feir type can occéf-an incident continuous external magnetic field is changed. In this case, under a spe-
wave, especially when it is periodically modulated, is de-cific condition on the wavelength and the field strength, soli-
stroyed by this instability and transformed into a train oftons can be formed, while the continuous wave is modula-
solitons. On contrary, iBC<0, the continuous and periodi- tionally unstable.
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