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We study the linear and nonlinear evolution of a magnetostatic spin wave(MSW) in a charge free, isotropic
ferromagnetic hollow nanotube. By analyzing the dispersion relation we observe that elliptically polarized
forms of wave can propagate through the ferromagnetic nanotube. Using the multiple scale analysis we find
that the dynamics of magnetization of the medium is governed by the cubic nonlinear Schrödinger equation.
The stability of the continuous wave, related to the propagation of either bright or dark(MS) solitons in the
nanotube, is governed by the direction of the external magnetic field relative to the magnetized nanotube.
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I. INTRODUCTION

The study of interaction of electromagnetic(EM) field in
ordered magnetic media has become an emerging and grow-
ing field of research. In this context, ferromagnetic medium
has assumed lot of importance in the field of magneto-optical
recording for higher storage and faster reading of
information.1 The ferromagnetic medium with different mag-
netic interactions were identified as an interesting class of
nonlinear medium exhibiting soliton excitations of their
magnetization in the classical continuum limit.2–4 This soli-
ton excitation of magnetization is mainly due to the nonlin-
earity present in the ferromagnetic medium. Several studies
on the propagation of EM wave(EMW) in a ferromagnetic
medium were carried out in the recent past taking into ac-
count the nonlinear nature of the medium.5,6 The authors of
the present paper have separately investigated the nonlinear
modulation of quasi-monochromatic EMW in a ferromag-
netic medium with different magnetic interactions.7–10 The
results show that when the EMW propagates in a charge free
isotropic or anisotropic ferromagnetic medium, the plane
EMW is modulated in the form of solitons, while the mag-
netization of the medium exhibits soliton excitations.7–10

This results in the dispersionless propagation of EMW in a
ferromagnetic medium. The propagation of magnetostatic
spin wave(MSW) has been also studied extensively, espe-
cially in ferromagnetic thin films.6 It has been shown that
magnetostatic backward volume waves(MSBVW) can
propagate in the case when the direction of propagation of
EMW is parallel to the constant applied field.6 The nonlinear
Schrödinger(NLS) equation which describes the propagation
of MSW solitons in thin magnetic films has been first derived
as early as 1982.11 Further, bright and dark solitons have
been observed experimentally a few years later.12,13 In a re-
cent paper one of the authors, Leblond, has given a rigorous
derivation of the NLS equation which describes the propaga-
tion of the MSBVW solitons, using for the first time a mul-
tiscale approach which takes into account the wave guide
properties.14 Further, the propagation of EM soliton in iso-
tropic and anisotropic antiferromagnetic media was studied

by Daniel and Veerakumar.15 The above studies were re-
stricted to the bulk ferro/antiferromagnetic materials and fer-
romagnetic thin films.

In a different context many innovative magnetic materials
are now synthesized experimentally in order to fulfill the
demands of the data storage industry. Important among them
are the nanoscale ferromagnetic tubes and wires which are
synthesized using nanofabrication techniques and whose
properties can be tailored as per our needs by changing the
size, the shape or composition of the nanostructures.16 In this
case the size of the nanomagnets becomes comparable to the
magnetic length scales such as exchange length or domain
wall width. Therefore it will be interesting to understand the
effect of interaction of EM field with the magnetization of
the nanoferromagnetic tubes. The linear propagation of
MSW in magnetic nanowires has been studied recently.17 In
the present paper we investigate the interaction of spatially
varying EM field with the magnetization of a charge free
isotropic ferromagnetic hollow nanotube and the nature of
excitation of the later. The linear propagation is studied in
Sec. II: first we formulate the model and derive the dynami-
cal equations to be solved. Then, using a cylindrical model
for the nanotube and linearizing the system of coupled equa-
tions, the analysis of the dispersion relation is carried out.
Section III deals with the nonlinear problem of interaction of
EM field with the magnetization of the ferromagnetic nano-
tube without free charges, and the results are concluded in
Sec. IV.

II. LINEAR WAVES

A. Equations for an ultrathin ferromagnetic film

We consider an isotropic charge free ferromagnetic film in
the form of a cylindrical hollow tube with the surface thick-
ness very less compared to other dimensions. Practically
such cylindrical tubes are realized in the form of ferromag-
netic nanotubes which are experimentally synthesized.16 The
hollow cylindrical ferromagnetic tube is locally equivalent to
a planar film as shown in Fig. 1, provided the thicknessa of
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the film is constant and very small in relation with the radius
of curvature. In this case, the magnetic medium fills the re-
gion of space betweenx=0 and x=a, denoted by II. The
regions above and below the magnetic medium are denoted
as III and I, respectively. The magnetization dynamics in the
isotropic charge free ferromagnetic film in a continuum limit
is governed by the Landau-Lifshitz equation18

]tMW = MW ∧ fHW i + JDMW g, s1d

whereMW =sMx,My,Mzd is the magnetization of the medium,

HW i =sHx
i ,Hy

i ,Hz
i d is the magnetic field inside the film,J is the

exchange integral andD=]x
2+]y

2+]z
2 is the Laplacian opera-

tor. The magnetizationMW is zero outside the medium. The

term HW i accounts for both demagnetizing and dipolar fields.
Thus the Landau-Lifshitz equation(1) gives account for the
dipolar and exchange interactions.6 The length of nanotubes,
at most in the micrometer range, will be very small with
regard to the considered wavelengths, rarely below the mil-
limeter range. Therefore retardation can be neglected, and
the components of the external magnetic field satisfy the
magnetostatic Maxwell equations19

¹W ∧ HW = 0, s2d

¹W · sHW + MW d = 0. s3d

The surface of the hollow cylinder can be considered as an
ultrathin ferromagnetic film, of thicknessa. Notice thata is
well below the exchange length, and even smaller with re-
gard to the thickness of the usual ferromagnetic thin films.
Thus usual results on MSW in magnetic films do not apply
here. Therefore we study the above equations in the limita

→0. In this limit it is reasonable to assume thatHW and MW

depend only onx. It follows from Eqs.(2) and (3) that Hy
and Hz are uniform in regions I, II, and III, and so areHx
+Mx in region II andHx in regions I and III. Further, the
boundary conditions state that these field components are
continuous at the surfacesx=0 andx=a. Thus we obtain the
following conditions specific to our problem:

HI,b = HII,b = HIII, b, s4d

whereb=y,z and

HII,x = HI,x − Mx, s5d

HIII, x = HI,x. s6d

The subscripts I, II, and III in Eqs.(4)–(6) represent the
respective region.

B. Cylindrical model and linearized equations

Since the ultrathin ferromagnetic film is rolled to form a
cylindrical hollow tube, the magnetization exists only on the
surfaceS of the cylinder as illustrated in Fig. 2. We denote
by z the axis of the cylinder and byeWr, eWu, and eWz the unit
vectors along the cylindrical coordinatessr ,u ,zd. The cylin-
drical components of the magnetization and magnetic field
are written assMr ,Mu ,Mzd and sHr ,Hu ,Hzd, respectively.

The field HW satisfy the magnetostatic equations(2) and (3)
everywhere. Outside the magnetic medium, Eq.(3) reduces
to

¹W ·HW = 0. s7d

The surfaceS of the film is obtained at the limitr →R. Ac-
cording to the results of the preceding section, the magnetic

field inside the ferromagnetic surfaceHW i is related to the

exterior fieldHW and the magnetizationMW by

HW i = 1Hr − Mr

Hu

Hz
2 . s8d

In order to derive the dispersion relation we expand the
magnetization of the medium and the magnetic field as

MW = MW 0 + «mW , s9d

HW = HW 0 + «hW , s10d

whereMW 0 andHW 0 represent the uniform saturation magneti-
zation and the applied static magnetic field, respectively, and

« is a small perturbation parameter.mW and hW are the wave
magnetization and magnetic field, respectively. Using the ex-
pansions(9) and(10) in Eq. (1) and neglecting the quadratic
terms we obtain the following equation at the order«0:

MW 0 ∧ HW 0
i = 0. s11d

At order «, we get

]tmW = MW 0 ∧ shW i + JDmW d + mW ∧ HW 0
i . s12d

FIG. 1. Thin film representation of the ferromagnetic
nanotube. FIG. 2. Cylindrical model of the ferromagnetic nanotube.
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For sake of simplicity, we assume that the magnetization

MW 0 has the symmetry of the cylinder. Since it is uniform, it is

parallel to the axis of the cylinder(z axis), and so isHW 0. Then
the uniform magnetization and magnetic field are

MW 0 = MeWz, s13d

HW 0 = aMeWz. s14d

The parametera=H0/M0 measures the strength of the exter-
nal field. In bulk materials, the steady state is stable when
a.0 only. In the smallest nanotubes, the reversal of the
magnetization which should occur for negativea can be pro-
hibited by exchange effects.16 The diameter of the tubes can
indeed be less than the exchange length. Then steady states
with negative values ofa may become stable. Substituting
Eqs.(9) and(10) into Eq.(8), we find that the magnetic field
on the surface of the tube can be written as

hW i = hW − mreWr . s15d

Using Eqs.(13)–(15), Eq. (12) can be rewritten as

]tmW = MeWz ∧ shW − mreWr − amW + JDmW d. s16d

Here the term −mreWr is the demagnetizing field. It is shown
below that the relative magnitude of the demagnetizing field
and the exchange integral strongly influences the polarization
of the MSW.

C. Dispersion relation

Let us consider a linear wave propagating along the axis
of the cylinder. Therefore we look for a solution in the form

mW = AW sudeiskz−vtd, s17d

hW = CW sr,udeiskz−vtd, s18d

whereAW andCW are the amplitudes of the wave magnetization

and magnetic field, respectively.AW depends only onu since
the magnetization exists in the surface of the cylinder. Sub-
stitution of Eqs.(17) and(18) reduces Eqs.(2), (7), and(16)
to

s¹W ' + ikeWzd ∧ CW = 0, s19d

s¹W ' + ikeWzd ·CW = 0, s20d

− ivAW = MeWz ∧ fCW − AreWr − aAW + Js¹W '
2 − k2dAW g, s21d

where¹W '=eWr]r +s1/rdeWu]u. Equations(19) and (20) are sat-

isfied byCW =0 (it is easy to show that this condition is nec-
essary ifk=0, but other solutions seem to be possible for the
case of interest of a nonzerok). Further, due to the symmetry

of the cylinder, we assume thatAW is constant with regard to

u. Thus the componentsAr ,Au, andAz of AW are uniform. The
Laplacian operator can be expressed as

¹W '
2 AW = −

Ar

r2 eWr −
Au

r2 eWu, s22d

which reduces Eq.(21) to

− iVAW = eWz ∧ 1− s1 + adAr − KAr

− aAu − KAu

− aAz − Jk2Az
2 . s23d

We have set

K = JSk2 +
1

R2D , s24d

V =
v

M
. s25d

In Eq. (23) we have used the limitr →R as we analyze the
dynamics of magnetization on the surface of the ferromag-
netic nanotube. From Eq.(23) we find the dispersion relation

v2

M2 = Fa + JSk2 +
1

R2DGF1 + a + JSk2 +
1

R2DG , s26d

which is plotted in Fig. 3. Due to the geometry, the wave
guiding properties of the hollow tube differ from that of the
thin films, thus the dispersion relation(26) coincides neither
with that of MSW in thin films nor in the bulk medium.
Notice that the curvev=vskd does not cross the origin, but
presents some minimal frequency

v0 = MÎSa +
J

R2DS1 + a +
J

R2D . s27d

The minimal frequencyv0 also exists in the bulk, its value is
v0=MÎas1+ad, which corresponds to the ferromagnetic
resonance. The latter is indeed often considered at micro-
wave frequencies, in a situation where the effect of the ex-
change on the dispersion is negligible. In the nanotubes,v0
is shifted up due to the combined effect of the exchange
interaction and the tube curvature. From Eq.(23), we obtain
the amplitude of the linear spin wave as

FIG. 3. The dispersion relation for MSW in hollow
nanotubes.
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AW = 1− sa + Kd
iV

0
2 . s28d

If sa+Kd@1, i.e., if the demagnetizing field is negligible
compared to the external and exchange field, then Eq.(28)
refers to a circularly polarized wave. In this case, the waves
are clearly yielded by the precession of the magnetization
about the axis of the cylinder. On the other hand, if the
demagnetizing field is not negligible, then the precession is
slightly distorted, giving rise to an elliptically polarized
wave. On the contrary, if the demagnetizing field is domi-
nant,sa+Kd!1, the precession is not possible at all, and the

polarization vectorAW becomes proportional to(0, 1, 0),
which represent a wave linearly polarized in the tangential
direction. In the same time the frequency goes to zero. Thus,
in conclusion, the linear analysis shows the possibility of
existence of an elliptically polarized wave. The elliptical po-
larization is close to circular when the exchange or the ex-
ternal field dominates, and becomes close to linear when the
demagnetizing field dominates, as illustrated in Fig. 4.

III. NONLINEAR WAVES AND SOLITONS

A. Multiscale formalism

The nonlinear modulation of the linear wave found in the
preceding section is now investigated using the multiple
scale analysis. For this we expand the magnetization of the
medium and the magnetic field in a series of harmonics of a
fundamental phasew=kz−vt as

MW = o
nù0,upuøn

«nMW n
peipw, s29d

HW = o
nù0,upuøn

«nHW n
peipw, s30d

where again« is the small perturbation parameter, that will
give account of the smallness of the signal amplitude and of

the spectral width. The profilesMW n
p andHW n

p are functions of
the slow variables

z = «sz− Vtd andt = «2t. s31d

From Eqs.(2) and (7) we find thatHW is uniform. We still
assume that the wave has the symmetry of the cylinder, then
the cylindrical components of the magnetization are indepen-
dent ofu.

We substitute the expansions(29) and (30) for MW andHW

and the stretched variables(31) into Eq.(1), collect the terms
proportional to different powers of« and try to solve the
resulting equations. At order«0, we find again that the mag-
netization density is collinear to the magnetic field. Equa-

tions (13) and(14) are still valid(with MW 0
0=MW 0 andHW 0

0=HW 0).
Here M can take both signs. The positivez direction is de-
fined by the propagation direction of the waves. At order«,
we are interested only inp= ±1. For p=1, we get

− iVMW 1
1 = eWz ∧ 1− s1 + adM1,r

1 − KM1,r
1

− aM1,u
1 − KM1,u

1

− aM1,z
1 − Jk2M1,z

1 2 . s32d

Recall thatK is defined by Eq.(24). From Eq.(32) we re-
trieve again the dispersion relation(26). The corresponding
polarization vector is written as

MW 1
1 = 1− sa + Kd

iV

0
2g with g = gsz,td. s33d

At order «2 we obtain

− ipvMW 2
p − V]zMW 1

p = MeWz ∧ UW 2
p + XW 2

p, s34d

where

UW 2
p = 1− s1 + a + KpdM2,r

p

− sa + KpdM2,u
p

− sa + Jp2k2dM2,z
p 2 + 2ipkJ]zMW 1

p, s35d

with

Kp = JSp2k2 +
1

R2D s36d

and

XW 2
p = o

q+s=p

MW 1
q ∧ 1− s1 + KsdM1,r

s

− KsM1,u
s

0
2 . s37d

The nonlinear termXW 2
p can be nonzero forp=0 or ±2 only.

For p=0, using Eq.(33) we obtain after simplificationXW 2
0

=0W. Since the solution of the profile equation(34) is unique
for pÞ ±1, we find that

MW 2
0 = 0W . s38d

For p=2, still at order«2, we get

XW 2
2 = − iVsa + Kdg2eWz, s39d

which implies a nonzeroMW 2
2, as

MW 2
2 =

a + K

2M
g2eWz. s40d

For p=1, Eq.(34) yields M2,z
1 =0 and

FIG. 4. The possible polarizations of a spin wave in a
nanotube.
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− iVM2,r
1 +

V

M
sa + Kd]zg = sa + KdM2,u

1 + 2kVJ]zg,

s41d

− iVM2,u
1 − iV

V

M
]zg = − s1 + a + KdM2,r

1 − 2iksa + KdJ]zg.

s42d

Combing Eq.(42) and Eq.(41) and simplifying the resulting
equation using the dispersion relation(26), we obtain the
wave velocity

V

M
=

kJ

V
s2a + 2K + 1d. s43d

It is observed that Eq.(43) coincides with the usual expres-
sion for the group velocity

V

M
=

1

M

dv

dk
=

dV

dk
. s44d

Another combination of Eqs.(41) and(42) yields the relation

iVM2,r
1 + sa + KdM2,u

1 =
− kJsa + Kd

V
]zg, s45d

which will be useful below.
The nonlinear evolution equation is found as usual at or-

der «3, as a solvability condition for the fundamental fre-
quencyp=1. The equation satisfied by this component at this
order is

− ivMW 3
1 − V]zMW 2

1 + ]tM1
1 = MeWz ∧ UW 3

1 + XW 3
1, s46d

with

UW 3
1 = 1− s1 + KdM3,r

1

− KM3,u
1

0
2 + 2iJk]zMW 2

1 + J]z
2MW 1

1 − aMW 3
1

s47d

and

XW 3
1 = o

q

sXW 3,a
1,q + XW 3,b

1,qd. s48d

The nonlinear termsXW 3,a
1,q andXW 3,b

1,q are defined as

XW 3,a
1,q = MW 1

q ∧ 31− s1 + KsdM2,r
s

− KsM2,u
s

0
2 + 2iJs]zMW 1

s4 s49d

and

XW 3,b
1,q = MW 2

q ∧ 3− s1 + KsdM1,r
s

− KsM1,u
s

0
4 , s50d

wheres=1−q. It is clear thatXW 3,a
1,q can be nonzero only for

q= ±1 andXW 3,b
1,q for s= ±1 only. SinceMW 2

0=0W, two terms van-

ish andXW 3
1 reduces toXW 3,a

1,−1+XW 3,b
1,2. Using expression(40) for

MW 2
2, we deduce

XW 3
1 =

a + K

2M
gugu21 − iVsK − 4k2Jd

sa + Kds1 + K − 4k2Jd
0

2 . s51d

The r andu components of Eq.(46), can be combined to
obtain a new equation, in which the terms involvingM3,u

1

vanish directly. The terms withM3,r
1 vanish after using the

dispersion relation(26). The term involvingMW 2
1 in the new

combined equation is

T =
V

M
]zfiVM2,r

1 − sa + KdM2,u
1 g

− 2iJk]zfiVM2,u
1 + sa + KdM2,r

1 g. s52d

Using the expression(43) of the group velocityV, it reduces
to

T =
− k2J2

V2 sa + Kd]z
2g. s53d

Substituting Eqs.(53) and (33), the equation obtained by
combining ther and u components of Eq.(46), reduces to
the integrable cubic NLS equation

iG]tg + B]z
2g + Cgugu2 = 0, s54d

where

G =
2Vsa + Kd

M
, s55d

B =
− k2J2

V2 sa + Kd + JfV2 + sa + Kd2g, s56d

C =
1

M
fiVX3,r

1 − sa + KdX3,u
1 g. s57d

Substituting the expression(51) of XW 3
1, the nonlinear coeffi-

cient C reduces to

C =
− sa + Kd2

2M2 sa + 4k2Jd s58d

and using Eq.(26), we reduce the expression(56) of the
dispersion coefficientB to

B = Jfa + KgF2sa + Kd + 1 −
k2J

V2G . s59d

Taking the derivative of the group velocityV given by(43),
we check that the usual formula

B

G
=

1

2

d2v

dk2 s60d

is satisfied.
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B. Bright and dark solitons

Equation (54) is the well-known completely integrable
cubic NLS equation which has been solved for N-bright and
dark soliton solutions using inverse scattering transform
method.20 In Eq. (54) the dark and bright soliton solutions
are characterized by the sign of the product of coefficient of
nonlinear and dispersion terms. IfBC.0, the bright soliton
solution exists. The single bright soliton of Eq.(54) is given
by

gsz,td = 2h sech 2hSÎ C

2B
sz − z0d +

2lC

G
tD

3 expS− iF2lÎ C

2B
z + 4

C

2G
sl2 − h2dtGD

s61d

whereh is the amplitude,l and z0 are all free real param-
eters. If BC,0, the formation of dark soliton is possible.
The single dark soliton has the form21

gsz,td = heiskz−vtd1 + bepz−Vt

1 + epz−Vt , s62d

whereh is again the amplitude,

V =
Bp

G
S2k +Î− 2Ch2

B
− p2D , s63d

v =
B

G
Sk2 −

Ch2

B
D , s64d

b =

p2 + iSGV

B
− 2kpD

− p2 + iSGV

B
− 2kpD , s65d

and p, k are arbitrary constants withp2ø−2Ch2/B. Substi-
tuting Eqs.(61) and (62) into Eq. (33) yields the expression

of the wave magnetization amplitudeMW 1
1 for either the bright

or dark soliton. It is the lowest order of the expansion. A first
correction to this approximate amplitude is the second har-
monic term obtained by substituting Eqs.(61) and (62) into

the expression(40) of MW 2
2. The full wave magnetization den-

sity is then

MW w . «MW 1
1eiw + «2MW 2

2e2iw + c.c., s66d

where c.c. stands for complex conjugate.
Moreover, if BC.0, the so-called modulational instabil-

ity of Benjamin-Feir type can occur:22 an incident continuous
wave, especially when it is periodically modulated, is de-
stroyed by this instability and transformed into a train of
solitons. On contrary, ifBC,0, the continuous and periodi-

cally modulated waves are stable. Let us determine this sign.
For positive values of the field constanta, theBC product is
always negative: only dark solitons can be formed, and the
continuous wave is stable. Indeed, from the definition(24) of
K, we haveK.Jk2 and sinceV2s2a+2K+1d.K, we find
thatB is always positive. On the other hand, expression(58)
shows that the coefficientC is always negative whena.0
(recall that J.0, and henceK.0). Solitons can thus be
formed only whena,0, i.e., when the direction of the mag-
netization is opposite to that of the external field. This con-
dition may be achieved by changing the direction of the ap-
plied magnetic field. While in bulk this does not lead to a
stable ground state, it can be stable in nanotubes. This is
possible if the tube is very narrow, so that the exchange
effect due to the curvature of the tube is strong enough to
prevent the magnetization reversal.16 Let us precise the sign
of the productBC in the corresponding limitR→0. Then
K→ +` andB,2JK2 is positive. The nonlinear constant is

C , − K2M2sa + 4k2Jd. s67d

ThusBC is positive and solitons can be formed if the wave-
length is long enough, depending on the external field
strength,

k2 ,
− a

4J
. s68d

IV. CONCLUSIONS

In this paper we studied the linear and nonlinear interac-
tion of an EM field with a charge free, isotropic ferromag-
netic hollow nanotube, in the presence of an applied constant
field, by assuming the surface thickness to be very small
compared to other dimensions with the magnetization con-
centrated only on the surface of the nanotube. The analysis
of the dispersion relation shows that when the demagnetizing
field is negligible compared to the exchange field, the pre-
cession of the magnetization vector leads to circularly polar-
ized wave while elliptically polarized waves are formed
when the demagnetizing field is not negligible. The polariza-
tion goes close to linear when it dominates. Further, the mul-
tiple scale analysis shows that the magnetization on the sur-
face of the ferromagnetic nanotube at the lowest order of
expansion is governed by the completely integrable NLS
equation. For the nanotubes of the largest diameter, the di-
rection of the magnetization is always the same as the direc-
tion of the external field. In this case, no bright soliton can be
formed. The propagation of a continuous wave is stable, and
could support dark solitons. For the smallest tubes, magneti-
zation reversal can be prevented when the direction of the
external magnetic field is changed. In this case, under a spe-
cific condition on the wavelength and the field strength, soli-
tons can be formed, while the continuous wave is modula-
tionally unstable.
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