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Exploiting the dependence of Kerr spectra on the polarization state of incident light, it is shown that Kerr
angles can be optimized by using elliptically polarized incident light. The proposed scheme is applied to fcc
Ni(100) and fcc Co/Pt3/Co/Pts100d. By making use of the complex optical conductivity tensor(calculated by
means of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method) and an appropriate 232
matrix formalism(to include all reflections and interferences) it is found, that the Kerr angle can be increased
substantially even for very small deviations from perfect normal incidence or polar geometry. This increase
pertains over the entire visible range of photon energies when using almost circularly polarized incident light.
In the case of Ni(100) it is shown that depending on the photon energy even in using arbitrary linearly
polarized incident light of azimuth different than ±45°, the Kerr angles can be improved by 5–60 %.
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I. INTRODUCTION

In 1876 Kerr discovered that reflected from iron the po-
larization plane of linearly polarized light is rotated. Since in
his first experiments the pole of an Fe magnet was used, this
magneto-optical effect has been called the polar Kerr effect.
Two years later Kerr demonstrated that the same effect
shows up even when iron is magnetized in plane. This par-
ticular setup is known today as the longitudinal geometry.1

Nowadays, the magneto-optical Kerr effect(MOKE) is a
widely used powerful experimental tool, e.g., for magnetic
domain imaging, mapping of hysteresis loops, etc., and tech-
nologically applied in magneto-optical high-density
recording.2

MOKE is usually identified with a change in the polariza-
tion state of incident linearly polarized light when reflected
from a magnetic system,3 namely, with a rotation of the main
polarization plane(characterized by the Kerr rotation angle
uK) and the ellipticity of the reflected light(i.e., Kerr ellip-
ticity eK or equivalently to this attached ellipticity angle
eK).4,5 In viewing the linearly polarized incident light as a
superposition of right- and left-handed circularly polarized
waves of equal amplitudes, from a purely optical point of
view, the magneto-optical Kerr effect is caused by different
reflections of these two circularly polarized components of
the incident light.3,5

Based on the relative orientation of the magnetization
with respect to the surface of the system and the plane of
incidence, one distinguishes between three basic Kerr geom-
etries, which are most frequently used in experiments. In the
polar Kerr effect, the magnetization of the system is in the
plane of incidence and perpendicular to the reflective sur-
face. The longitudinal(meridional) Kerr effect occurs, when
the magnetization is parallel to both, the plane of incidence
and the reflective surface. If the magnetization is in plane
and perpendicular to the plane of incidence, the Kerr effect is
said to be transverse(equatorial) and, unlike in other
geometries,4 magnetization-dependent intensity differences
are measured.5 Because only the polar Kerr effect and a spe-
cific transverse configuration goes linearly with the magni-
tude of magnetization,3 presently, all optical data storage

technologies use these geometries.2 The longitudinal Kerr
effect, on the other hand, is mainly applied for investigating
domain structures.4

In principle, the magneto-optical Kerr effect has to show
up also for elliptically or at least arbitrary linearly polarized
incidence light. Exactly this, namely, to point out the conse-
quences of using MOKE with elliptically polarized incidence
light, is the scope of the present contribution.

The paper is organized as follows. In Sec. II an appropri-
ate 232 matrix technique is introduced, which facilitates to
recursively calculate the surface reflectivity matrix in the
case of an arbitrary layered system. In Sec. III this surface
reflectivity matrix is then used to obtain the polarization state
of the reflected light for an arbitrary geometry and oblique
incidence. In Sec. IV it is shown that in general the polariza-
tion state of the reflected light also depends on the polariza-
tion state of the incident light and therefore(with the excep-
tion of the ideal case of polar geometry and normal
incidence) both the Kerr rotation and the Kerr ellipticity
angle can easily be manipulated by using elliptically polar-
ized incident light. Section V serves to illustrate the gain in
optimizing the Kerr angles using elliptically polarized inci-
dent light. Finally, in Sec. VI the obtained results are sum-
marized.

II. SURFACE REFLECTIVITY MATRIX

Consider a right-handed Cartesian coordinate system
Shx,y,zj with the origin fixed in the interface between
vacuum and a given layered system such that thez axis is
perpendicular to the surface layer and +z points into the
vacuum. In the following, layers are numbered starting with
the first bulklike layer of a semi-infinite substratesp=1d, i.e.,
if N layers are considered, the index of the surface layer is
p=N. It is convenient to label the substrate and the vacuum
by 0 andN+1, respectively. Furthermore, it is assumed that
the lower and upper boundaries of the layerp are planes
situated atzp andzp+1 szp,zp+1d, see also Fig. 1.

From the optical point of view each layerp can be sup-
posed to be a homogeneous, linear and anisotropic conduct-
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ing medium characterized by the complex permittivity«̃psvd.
The plane waves associated with the complex electric and
magnetic fields propagating through a layerp are given by

AW psrW,td = AW p expfisqWprW − ṽtdg sAW p P Cd, s1d

where qWp is the complex propagation vector andṽ=v− id
is the complex frequency, withd being a positive infinitesi-
mal imposing the electromagnetic field to be turned on
in the infinite past.6 In terms of the spherical colatitude
u s0øu,p /2d and longitudew s0øwø2pd of the light
incident coming in from the vacuum side,qWp=q0nWp
=q0sñpxeWx+ ñpyeWy+ ñpzeWzd, with q0 being the propagation con-
stant in vacuum,eWx, eWy, eWz the unit vectors inShx,y,zj, andnWp

being the complex refraction vector in layerp

ñpx = − sinu cosw = ñx,

ñpy = − sinu sinw = ñy,

ñpz= Ñpsvdcosu. s2d

Within the Gaussian system of units and suppressing the
frequency dependence of all quantities, the propagation of
the electric and magnetic plane waves in a layerp is com-
pletely described by the Helmholtz equation4

o
n=x,y,z

sñp
2dmn − ñpmñpn − «̃mn

p dEpn = 0, sm = x,y,zd s3d

and the curl Maxwell equation7

HW p = nWp 3 EW p. s4d

Indeed, knowing the permittivity«̃psvd, the normal modes
(i.e., nontrivial solutions of the Helmholtz equation) are im-
mediately obtained by solving the Fresnel(characteristic)
equation8

uñp
2dmn − ñpmñpn − «̃mn

p u = 0 sm,n = x,y,zd, s5d

which is of fourth order inñpz and directly results from the
vanishing of the determinant of the system of linear equa-
tions in Eq.(3). For each normal modeñpz

skd sk=1, . . . ,4d, the
Helmholtz equation(3) then directly provides all Cartesian

components of the electric fieldEWp
skd, which in turn substi-

tuted into Eq.(4), finally yield the magnetic fieldHW p
skd.

The imaginary part ofñpz
skd, on the other hand, uniquely

fixes the propagation direction of beamk in the −z direction,
when Imñpz

skd,0, or in +z direction, if Im ñpz.0, see Eq.(1).
In the following, ñpz

s1d and ñpz
s2d denote those solutions of Eq.

(5), which correspond to beams propagating in direction −z
(“downward”), whereasñpz

s3d andñpz
s4d stand for normal modes

propagating in the opposite “upward” direction.

In practice, the determination ofEWp
skd is slightly compli-

cated by the fact, that not all equations in Eq.(3) are linearly
independent and therefore the Helmholtz equation for a
given solutionñpz

skd of Eq. (5) has to be solved by keeping at
least one Cartesian component of the electric field arbitrary.
Among all possible parametrization of the electric fields in a
given layerp, a physically very transparent scheme results
by following Mansuripur’s strategy2,9

Epx
skd = arbitrary,

Epy
skd = ãp

skdEpx
skd,

Epz
skd = b̃p

skdEpx
skd, for k = 1,3

and

Epx
skd = ãp

skdEpy
skd,

Epy
skd = arbitrary,

Epz
skd = b̃p

skdEpy
skd, for k = 2,4. s6d

The layer-resolved reflectivity matrixRp relates then all ar-
bitrary electric field components at the lower boundaryzp to
each other as

SEpx
s3d

Epy
s4d D = RpSEpx

s1d

Epy
s2d D = Sr̃11

p r̃12
p

r̃21
p r̃22

p DSEpx
s1d

Epy
s2d D, p = 0, . . . ,N + 1.

s7d

By exploiting in each layerp=0, . . . ,N+1 the continuity of
the tangential components of the total electric and magnetic

FIG. 1. The macroscopic model of a layered system used within
the 232 matrix technique. Thex axis is perpendicular to the plane
of the figure.
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field at the lower boundaryzp, the reflectivity matrices

Rp = sDp−1Ap
34 − Bp

34d−1sBp
12 − Dp−1Ap

12d s8d

can be determined recursively by starting from the vanishing
reflectivity matrixR0=0 of the substrate(viewed as a semi-
infinite bulk without boundaries) and by means of the fol-
lowing 232 matrices

Ap
k,k+1 = S 1 ãp

sk+1d

ãp
skd 1

D ,

Bp
k,k+1 = Sñyb̃p

skd − ñpz
skdãp

skd ñyb̃p
sk+1d − ñpz

sk+1d

ñpz
skd − ñxb̃p

skd ñpz
sk+1dãp

sk+1d − ñxb̃p
sk+1d D , s9d

where ãp
skd and b̃p

skd refer to Eq.(6) and nWp to Eq. (2). Fur-
thermore, also the propagation matrices

Cp
k,k+1 = Sexpf+ iq0ñpz

skddpg 0

0 expf+ iq0ñpz
sk+1ddpg

D ,

sk = 1,3 andp = 0, . . . ,Nd, s10d

with dp=zp+1−zp.0 being the thickness of layerp, are
needed to construct the auxiliary matrices

Dp = sBp
12Cp

12 + Bp
34Cp

34RpdsAp
12Cp

12 + Ap
34Cp

34Rpd−1,

p = 0, . . . ,N s11d

to be used. Because in vacuum there are only two normal
modes, namely an incident beamsñN+1,z

s1d = ñN+1,z
s2d = ñN+1,z

sid d and
reflected beamsñN+1,z

s3d = ñN+1,z
s4d = ñN+1,z

srd d, the surface reflectivity
matrix is given by

Rsurf = RN+1 = sDN − BN+1
34 d−1sBN+1

12 − DNd = S r̃xx r̃xy

r̃yx r̃yy
D ,

s12d

where in terms of Eq.(9),

BN+1
12 = − BN+1

34 =
1

Î1 − sñx
2 + ñy

2d
S ñxñy 1 − ñx

2

− 1 + ñy
2 − ñxñy

D .

s13d

Rsurf then relates the tangential components of the reflected
light with respect to the reference frameShx,y,zj to the cor-
responding components of the incident light

SEN+1,x
srd

EN+1,y
srd D = Rsurf = SEN+1,x

sid

EN+1,y
sid D = S r̃xxEN+1,x

sid + r̃xyEN+1,y
sid

r̃ yxEN+1,x
sid + r̃ yyEN+1,y

sid D .

s14d

Hence in contrast to the layer-resolved reflectivity matrices
Rp for ∀p=0, . . . ,N as introduced in Eq.(7), here the com-
plex reflectivity coefficientr̃mn is the fraction of thenth com-
ponent of the incident electric field contained in themth
component of the reflected electric fieldsm ,n=x,yd.

For a homogeneous layered system consisting of identical
layers from Eqs.(8) and (11) immediately follows that all

layer-resolved reflectivity matrices are vanishing, i.e.,Rp
=0 for ∀p=0, . . . ,N. This in turn implies that for a semi-
infinite bulk system, the surface reflectivity matrix with re-
spect to the reference frameShx,y,zj is simply given by10

Rsurf
sbd = fBN+1

12 + Bb
12sAb

12d−1g−1fBN+1
12 − Bb

12sAb
12d−1g. s15d

III. POLARIZATION STATE OF TRANSVERSE
PLANE WAVES

The polarization state of a wave describes the time depen-
dence of the electric field vector at a given point in space. In
order to determine the polarization state of transverse plane
waves, one primarily has to know the electric field compo-
nents in a plane perpendicular to the propagation direction.
Consider a local right-handed Cartesian coordinate system
Lhp,s,dj, attached to the investigated wave, with thed axis
pointing along the propagation direction, thep axis being in
the plane of incidence(perpendicular tod axis) and thes axis
perpendicular to plane of incidence(perpendicular to bothd
andp axes).

A transformation ofShx,y,zj to Lhp,s,dj consists of two
successive rotations: a rotation around thez axis by an angle
w followed by a rotation by the angle between the propaga-
tion direction of the wave and thez axis around the newy8
axis. Note that only in vacuum for this angleu=uN+1

sid

=−uN+1
srd implies and therefore

SEN+1,x
skd

EN+1,y
skd D = PN+1

skd = SEN+1,p
skd

EN+1,s
skd D + Scosu cosw − sinw

cosu sinw cosw
D

3SEN+1,p
skd

EN+1,s
skd D sk = i,rd,

see Eq.(2). By introducing the 232 rotation matrix

PN+1 ; PN+1
sid = PN+1

srd ,

the surface reflectivity matrix is then given by

Rsurf = PN+1
−1 RsurfPN+1 = Sr̃ pp r̃ps

r̃sp r̃ss
D . s16d

Consequently the complex reflectivity coefficients, see also
Eq. (12), are given by

r̃ pp = r̃xx cos2 w + r̃ yy sin2 w + sr̃xy + r̃ yxdsinw cosw,

r̃ ps= fr̃xycos2 w − r̃ yx sin2 w + sr̃ yy − r̃xxdsinw coswg
1

cosu
,

r̃sp= fr̃ yx cos2 w − r̃xy sin2 w + sr̃ yy − r̃xxdsinw coswgcosu,

r̃ss= r̃ yy cos2 w + r̃xx sin2 w − sr̃xy + r̃ yxdsinw cosw s17d

and now directly relate thep and s components of the re-
flected wave to that of the incident one
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SEN+1,p
srd

EN+1,s
srd D = RsurfSEN+1,p

sid

EN+1,s
sid D = S r̃ ppEN+1,p

sid + r̃ psEN+1,s
sid

r̃spEN+1,p
sid + r̃ssEN+1,s

sid D .

s18d

In contrast to Eq.(14), for a given r̃mn herenPLsidhp,s,dj
(coordinate system of the incident electric field) and m
PLsrdhp,s,dj (coordinate system of the reflected electric
field). Although in principle,Lsrdhp,s,dj is not identical with
Lsidhp,s,dj, for a vanishingd component of the electric field,
the difference betweenLsrdhp,s,dj and Lsidhp,s,dj is of mi-
nor importance. Therefore, in the followingRsurf is simply
termed the surface reflectivity matrix with respect to the lo-
cal Cartesian coordinate systemLhp,s,dj.

To calculate the Kerr rotation and ellipticity angle, one
has to determine the polarization state of the reflected light in
terms of the Cartesian componentsEN+1,p

srd and EN+1,s
srd of the

reflected electric field. These are immediately obtained via
Eq. (18), if in addition to the surface reflectivity matrixRsurf
with respect toShx,y,zj, see Eq.(12) and the geometry of
the incidence, the polarization state of the incident light is
also known. However, because the polarization state of any
monochromatic, transverse wave is completely specified
within Lhp,s,dj by the amplitudeuEu, the absolute phasef,
the azimuthq and ellipticity angle«, namely,11

SEp

Es
D = EScosq cos« − i sinq sin«

sinq cos« + i cosq sin«
D , s19d

where

E = uEuexpsifd

and

−
p

2
ø q ø

p

2
and −

p

4
ø « ø

p

4
, s20d

it follows that all these quantities have to be specified for the
incident light, in order to get the polarization state of the
light reflected from a layered system. For example, an arbi-
trary linearly polarized incident wave is present, if its ellip-
ticity is zero and hence the Cartesian Jones vector in Eq.(18)
is of the form

SEN+1,p
sid

EN+1,s
sid D = EiScosqi

sinqi
D , s21d

while a right-handed(left-handed) circular incident wave
corresponds to«i = +p /4s−p /4d and

SEN+1,p
sid

EN+1,s
sid D = ±

Ei

Î2
Sexps− iqid

exps+ iqid
D . s22d

As long as in Eq.(22) the azimuth of the incident waveqi is
indeterminable, the quantity in Eq.(21) defines the handed-
ness of the arbitrary linearly polarized incident wave. In par-
ticular for ap waveqi =0; for a right-handed(left-handed) s
wave,qi = +p /2s−p /2d.

IV. KERR ROTATION AND ELLIPTICITY ANGLE

Because the magneto-optical Kerr effect is fully described
by the Kerr rotation angle and ellipticity angle, the amplitude
and the absolute phase of the incident and the reflected light
are of secondary interest. From Eq.(19) one immediately can
see that by dividing the components of the Jones vector by
each other, a simpler representation of the polarization state
is obtained, which directly provides the azimuth and the el-
lipticity angle of any monochromatic transverse wave and
hence the Kerr rotation and ellipticity angles.11 Defining
therefore the polarization variable of the incident wave
within the Cartesian complex plane as

x̃fp,sg
sid =

EN+1,s
sid

EN+1,p
sid =

tanqi + i tan«i

1 − i tanqi tan«i
,

from Eq. (18) follows that the polarization variablex̃fp,sg
srd of

the reflected wave can be written as

x̃fp,sg
srd =

EN+1,s
srd

EN+1,p
srd =

r̃spEN+1,p
sid + r̃ssEN+1,s

sid

r̃ ppEN+1,p
sid + r̃ psEN+1,s

sid =
r̃sp+ r̃ssx̃fp,sg

sid

r̃ pp + r̃ psx̃fp,sg
sid

=
r̃sps1 − i tanqi tan«id + r̃ssstanqi + i tan«id
r̃ pps1 − i tanqi tan«id + r̃ psstanqi + i tan«id

.

s23d

The azimuthqr and ellipticity angle«r of the reflected light
are then directly obtained from the following expressions:

tan 2qr =
2 Resx̃fp,sg

srd d

1 − ux̃fp,sg
srd u2

and sin 2«r =
2 Imsx̃fp,sg

srd d

1 + ux̃fp,sg
srd u2

. s24d

In particular, if the incident light is ap wave, i.e.,qi =«i =0,
Eq. (23) reduces tox̃fp,sg

srd = r̃sp/ r̃ pp, and the Kerr rotation angle

uK,p=qr, whereas the Kerr ellipticityeK,p=«r. Because nor-
mally both Kerr angles are small, tan 2uK.2uK and
sin 2eK.2eK, and in additionux̃fp,sg

srd u2!1, Eq. (24) directly

provides the below approximation for the complex Kerr
angle

FK,p = uK,p + ieK,p .
r̃sp

r̃pp

sincidentp waved, s25d

with uK,p referring to the positivep axis.
Similarly, if the incidents wave, i.e.,qi = ±p /2 and «i

=0, yields small Kerr rotation and ellipticity angles and
ux̃fp,sg

srd u2@1, from Eq.(24) immediately follows that

FK,s = − suK,s − ieK,sd . −
r̃ ps

r̃ss

sincidents waved. s26d

By comparing for an incidents wave, the polarization vari-
ablex̃fp,sg

srd = r̃ss/ r̃ ps in Eq. (23) with the expression in Eq.(26),

it is evident that in Eq.(26) uK,s is measured with respect to
thes axis. These rather well-known expressions for the com-
plex Kerr angleFK for a p or s incidence,12 are nowadays
widely used with different sign conventions in calculating
theoretical Kerr spectra.13–15
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Alternatively to Eq.(24), the polarization variable of the
reflected wave within a complex polar coordinate system can
be written as

x̃f+,−g
srd =

i + x̃fp,sg
srd

i − x̃fp,sg
srd

=
r̃+

fpgs1 − i tanqi tan«id − ir̃ +
fsgstanqi + i tan«id

r̃−
fpgs1 − i tanqi tan«id + ir̃ −

fsgstanqi + i tan«id
,

s27d

where

r̃±
fpg = r̃ pp 7 ir̃ sp= R±

fpg + iI ±
fpg

r̃±
fsg = r̃ss± ir̃ ps= R±

fsg + iI ±
fsg sR±

fkg,I±
fkg P R, k = p,sd,

s28d

and the azimuthqr and the ellipticity angle«r are given by

qr = −
1

2
argsx̃f+,−g

srd d and tan«r =
ux̃f+,−g

srd u − 1

ux̃f+,−g
srd u + 1

. s29d

By using the well-known properties of complex numbers,16

these expressions can be rewritten as

qr =
1

2
sq+ − q−d, with q± = arctanSY±

X±
D ,

tan«r =
Z+ − Z−

Z+ + Z−
, Z± = ÎX±

2 + Y±
2, s30d

where

X± = sR±
fpg ± R±

fsg tan«id + sI±
fpg tan«i ± I±

fsgdtanqi ,

Y± = sR±
fpg tan«i ± R±

fsgdtanqi − sI±
fpg ± I±

fsg tan«id. s31d

These equations show that both anglesqr and«r also depend
on the azimuthqi and the ellipticity angle«i of the incident
light. In accordance with Eq.(20), the definition of the Kerr
rotation angleuK then simply reduces to

uK = qr − qi, whereqk P F−
p

2
,
p

2
G sk = i,rd. s32d

As can be seen from Eq.(27), Eqs.(30) and(35), the depen-
dence of the Kerr angles on the incident polarization state
not necessarily is linear. In general, the Kerr rotation angle as
given by Eq.(32), is a function of«i and the incidence azi-
muth qi. It can be demonstrated, however, see Appendix A,
that the extrema of the Kerr angle show up for ans or p
wave if and only if

o
j=±

Rj
fpgRj

fsg + I j
fpgI j

fsg

sRj
fsgd2 + sI j

fsgd2 = 2 or o
j=±

Rj
fpgRj

fsg + I j
fpgI j

fsg

sRj
fpgd2 + sI j

fpgd2 = 2,

s33d

namely for particular combinations of incidence and optical
properties of the system. This in turn implies that at least in
principle, the Kerr rotation angle can be enhanced by using
adequate elliptically polarized incident light.

In the following, in analogy with Eq.(32), the Kerr ellip-
ticity angle is defined as

eK = «r − «i, with «k P F−
p

4
,
p

4
G sk = i,rd, s34d

namely, as the change in the ellipticity measured for reflected
light with respect to that of the incident light. No doubt, that
with this definition of the Kerr ellipticity angle, its physical
meaning is radically changed:eKsvd=0, e.g., now not nec-
essarily means that the reflected light is linearly polarized,
but that both the reflected and incident light have the same
ellipticity. The Kerr ellipticity angle in Eq.(34), in general
depends onqi as well as on«i, and hence its value, at least in
principle, can be increased. An exception from this occurs
when using a circularly polarized incident lights«i = ±p /4d,
because then the corresponding polarization variable of the
reflected wave, see Eqs.(27) and (28), is given by

x̃f+,−g
srd =

r̃+
fpg ± r̃+

fsg

r̃−
fpg 7 r̃−

fsg =
sr̃ pp ± r̃ssd − isr̃sp7 ir̃ psd
sr̃ pp 7 r̃ssd + isr̃sp± r̃ psd

,

and, independent of the handedness of the incident wave, no
longer is a function of an indeterminable azimuthqi. This
feature limits the validity of Eq.(32) to cases for which the
ellipticity angle«i Þ ±p /4 !

Consider for example the particular case of polar geom-

etry, when the magnetization in each layerMW pi f001g, and
normal incidence(u=0 and 0øwø2p). For this technologi-
cal important Kerr setup, it has been shown, Ref. 17 that the
surface reflectivity matrixRsurf with respect to the global
coordinate systemShx,y,zj, see Eq.(12), is given by

Rsurf = S r̃xx r̃xy

− r̃xy r̃xx
D . s35d

In fact, it can be easily proven(not shown in here), thatRsurf
is of this highly symmetric form, if and only if, the incidence
is normal and the geometry is polar. In terms of Eqs.(16)
and (17), the surface reflectivity matrixRsurf with respect to
the local frameLhp,s,dj is then identical toRsurf and, as
expected, is independent ofw. For this particular case Eq.
(28) yields

r̃±
fpg = r̃±

fsg = r̃xx ± ir̃ xy = r̃± = r± expsiD±d, s36d

which in turn implies that the polarization variable of the
reflected wave in Eq.(27) can be be written as

x̃f+,−g
srd = F r+

r−
tanS«i +

p

4
DGexpfisD+ − D− − 2qidg. s37d

For x̃f+,−g
srd , Eq. (29) directly leads to

qr = −
1

2
sD+ − D−d + qi and tan«r =

r+ tanS«i +
p

4
D − r−

r+ tanS«i +
p

4
D + r−

.

s38d

The Kerr angles are therefore given by
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uK = −
1

2
sD+ − D−d and taneK

=
r+ − r−

r+ tanS«i +
p

4
D − r− tanS«i −

p

4
D . s39d

Alternatively, these expressions can be derived from Eqs.
(30) and (31) by using R±

fpg=R±
fsg=R± and I±

fpg= I±
fsg= I±. For

polar geometry and normal incidence, one then gets

q± = ± sqi 7 D+d, whereD± = arctanS I±

R±
D ,

Z± = r±s1 ± tan«idÎ1 + tan2 qi, r± = ÎR±
2 + I±

2.

Obviously, for polar geometry and normal incidence the con-
ditions in Eq.(33) are fulfilled, implying that extrema of the
Kerr rotation angle can be reached using either an incidents
or a p wave. In contrast to the Kerr rotation angle for the
polar geometry and normal incidence, which is not at all
affected by the polarization state of the incidence light, the
Kerr ellipticity depends on the ellipticity of the incidence
light, such that wheneverr+Þ r− the condition

]eK

]«i
= − sr+ − r−d

r+s1 + tan«id2 − r−s1 − tan«id2

r+
2s1 + tan«id2 + r−

2s1 − tan«id2 = 0,

corresponds to

«i = arctanS±2
Îr+r−

r+ − r−
−

r+ + r−

r+ − r−
D .

Another interesting aspect follows directly from Eqs.(38)
and (39), namely, that the polarization state of a circularly
polarized incident lights«i = ±p /4d after reflection is pre-
served, tanu«ru«i=±p/4= ±1, and consequently the Kerr elliptic-
ity as introduced in Eq.(34) vanishes, i.e., tanueKu«i=±p/4=0.
Finally, it should be pointed out, that the expression ofuK
and that ofeK for «i =0,

taneK = tan«r =
r+ − r−

r+ + r−
,

is well known in the literature, see for example Ref. 3.
Viewed oppositely, this also means that any deviation from
the polar geometry or normal incidence introduces an inci-
dent polarization dependence(qi and«i) for both Kerr angles
uK andeK.

V. RESULTS AND DISCUSSIONS

From the layer-resolved optical conductivitiess̃psvd and
for plane waves as given by Eq.(1), the layer-dependent
permittivities«̃psvd are obtained within the Gaussian system
of units as10

«̃psvd = I +
4pi

ṽ
s̃psvd,

whereI is the 333 identity matrix

s̃psvd = o
q=1

N

s̃pqsvd, p = 1, . . . ,N

and

s̃pqsvd =
S̃pqsvd − S̃pqs0d

"v + id
, p,q = 1, . . . ,N,

with S̃pqsvd being the current-current correlation
functions.6,18

In the present calculations, the current-current correlation
functions are numerically evaluated19 by performing contour
integrations in the complex energy plane at a finite
temperature;20 the electronic Green’s function entering the
kernel of these integrals is determined within the spin-
polarized relativistic screened Korringa-Kohn-Rostoker
(SKKR) method for layered systems.21 The 232 matrix
technique was applied as presented in Sec. II; the polariza-
tion state of the reflected light is directly calculated using
Eqs.(27) and (29).

In the next section the dependence of Kerr rotation and
ellipticity angles on the polarization state of the incident light
is investigated for two Kerr setups different from an ideal
polar geometry and normal incidence. In the first setup, re-
ferred to as the case of polar geometry and almost normal
incidence, the geometry remains polar because of the system
considered, namely fcc Ni(100), and an angle of incidence of
2° is assumed, which typically applies in standard Kerr
equipments.3 In the other setup, referred to as almost polar
geometry and normal incidence, the angle of incidence van-
ishes, since the direction of the magnetic moments of the
magneto-optically active layers in the fcc layered system
Co/Pt3/Co/Pt7/Pts111d are chosen to be not perpendicular
to the surface, but form an angle of 2° with respect to the
surface normal.

A. Polar geometry and almost normal incidence

Consider fcc Ni(100) with the magnetization pointing
along thez axis (perpendicular to the surface), i.e., polar
geometry. Consider further an almost normal incidence,
namely whenñx and ñy in Eq. (2) are not simultaneously
vanishing, but the angle of incidenceu is small, e.g., 2°. This
angle of incidence,u=2°, is small enough not to yield any
notable differences, whenever the incident light is linearly
polarized. However it is large enough to point out the depen-
dence of the Kerr angles on the polarization state of the
incident light, see Figs. 2 and 3.

Due to nonsimultaneously vanishingx andy components
of the complex refraction vector, see Eqs.(9) and (13), the
surface reflectivity matrixRsurf as determined in terms of Eq.
(12) with respect to the reference frameShx,y,zj is of lower
symmetry than that defined in Eq.(35) and therefore the Kerr
angles quite obviously do depend on the incident polariza-
tion state. Although in general for polar geometry and arbi-
trary oblique incidence, this is valid, in the case of almost
normal incidence these arguments fail to explain the depen-
dence of the polar Kerr angles onqi and «i. The reason of
this failure is that for polar geometry and almost normal
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incidence, Eq.(35) approximately is still valid, namely,

r̃ yy . r̃xx,

r̃ yx . − r̃xy sMW p i f001g andu ! 1d s40d

and consequently the polar Kerr spectra are independent of
the longitudew. The surface reflectivity matrixRsurf with
respect to the local Cartesian coordinate systemLhp,s,dj,

Rsurf . Rsurf + r̃xy
u2

2
S0 1

1 0
D ,

however, no longer is identical toRsurf as this is the case for
normal incidence. Therefore, Eq.(36) is not valid, because

r̃±
fsg . r̃± ± ir̃ xy

u2

2
Þ r̃± 7 ir̃ xy

u2

2
. r̃±

fpg,

where r̃±= r̃xx± ir̃ xy=r±expsiD±d. Consequently, theqi and«i

dependence of the polar Kerr angles for almost normal inci-
dence as evaluated from Eq.(27) by means of the circular
complex polarization variable of the reflected wave

x̃f+,−g
srd =

r+ expfisD+ − qidgtanS«i +
p

4
D − ir̃ xy

u2

2
exps+ iqid

r− expfisD− + qidg + ir̃ xy
u2

2
exps− iqidtanS«i +

p

4
D

3s0 , u ! 1d,

never equalsx̃f+,−g
srd as given by Eq.(37). This implies that for

a layered system with its total magnetization oriented per-
pendicular to the surface, the polar Kerr rotation angle de-
pends on the polarization state of the incident light even for
the smallest possible departure of the incidence direction
from the surface normal.

Except right- and left-handed circularly polarized light,
for which «i = ±p /4, all physically possible incident polar-
ization states, see Eq.(20), are considered in Figs. 2 and 3.
Because the azimuth of circularly polarized incident light is
indeterminable, one does not need to take into account these

incident polarization states. In the case of the Kerr ellipticity
angle, the definition in Eq.(34) is valid for «i = ±p /4, the
corresponding value however, is almost vanishing. A com-
mon feature of the Kerr rotation angleuKsv ;qi ,«id viewed
as a function of the azimuthqi and ellipticity angle«i is in
case of the semi-infinite Ni(100) bulk (u=2° andw arbitrary)
the independence of the photon energyv. In contrast to the
Kerr rotation angle, the shape of the Kerr ellipticity angle
eKsv ;qi ,«id as function ofqi and«i strongly depends on the
photon energyv: the curvature turns from positive to nega-
tive for photon energies between 2.72 and 2.99 eV. Below
and above these values, however, the shape ofeKsv ;qi ,«id is
very similar to the case shown in Fig. 3. Including also
eKsv ;qi , ±p /4d.0 (left- or right-handed circularly polar-
ized incident light), independent ofv, an absolute minimum
or maximum ofeKsv ;qi ,«id would be seen, which however,
is of secondary interest.

From the global extrema ofuKsv ;qi ,«id andeKsv ;qi ,«id
follows that Kerr spectra cannot be optimized simultaneously
for all photon energies in the visible regime, since
uKsv ;qi ,«id andeKsv ;qi ,«id have extrema at different ener-
gies. An exception from this rule seems to be an arbitrary
incident linearly polarized light, see the solid bold line in
Figs. 2 and 3, which for an azimuth ofqi = +p /4s−p /4d
maximizes(minimizes) the Kerr rotation angle and simulta-
neously minimizes(maximizes) the Kerr ellipticity angle for
all photon energies in the visible range. In all other cases, the
gain is between 5–35 % for the Kerr rotation angle and be-

FIG. 3. As in Fig. 2 but for the Kerr ellipticity angle and arbi-
trary photon energiesvø2.72 eV(top) andvù2.99 eV(bottom).
Not accounted for is the left- and right-handed circularly polarized
incident light, for whichqi is indeterminable. Top:eK

max=0.05° and
eK

min=−0.025°, if v=2.45 eV. Bottom:eK
max=0.025° andeKmin

=−0.055°, forv=3 eV.

FIG. 2. Polar Kerr angle for almost normal incidencesu=2°d
and arbitrary photon energiesv within the visible spectrum in the
case of fcc Ni(100) as a function of the polarization state of the
incident light characterized by the azimuthqi and the ellipticity
angleei. The solid bold line represents the Kerr angle calculated for
arbitrary linearly polarized lightsei =0d. For v=5 eV, for example,
uK

max is at 0.3° anduK
min at −0.45°.
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tween 5–60 % for the Kerr ellipticity angle with respect to
linear p-polarized incident lightsqi =«i =0d, see also Fig. 4.
No differences occur in the Kerr angles, if linears- sqi
= ±p /2d or p-polarizedsqi =0d incident lights«i =0d is used
as long as the geometry is polar and the incidence is almost
normal.

As can be seen in Fig. 4, changes in the Kerr rotation
angle for photon energies below 2 eV and in the Kerr ellip-
ticity angle below 1 eV that correspond to the use of arbi-
trary linearly polarized incident lights«i =0d of azimuthqi

= ±p /4 are negligible with respect to those obtained with a
linear p-polarized incident lightsqi =«i =0d. For qi =p /4s«i

=0d and photon energies above 2 eV, the Kerr rotation spec-
trum is close to the experimental one, whereas forqi
=−p /4s«i =0d, the Kerr rotation is largest for arbitrary lin-
early polarized incident light; the opposite applies for the
Kerr ellipticity spectrum above 1 eV.

In comparing the theoretical Kerr spectra obtained for ar-
bitrary linearly polarized incident lights«i =0d of azimuth

qi =0, ±p /4 with available experimental data, one immedi-
ately observes that the calculated spectra are qualitatively
similar to the experimental ones, but shifted to higher values
of v than those measured, although in the calculations the
experimental lattice parameter of 6.66 a.u.22 has been as-
sumed for the fcc semi-infinite Ni(100) bulk. Furthermore,
the theoretical Kerr ellipticity angle below 4 eV shows a
better agreement with the experimental data than the Kerr
rotation angle in the same range of photon energies. The
obtained minimum of the Kerr ellipticity angle, however, is
deeper and shifted toward higher photon energies as com-
pared to experiments. In the literature, the discrepancies in
photon energies between the theoretical and experimental
Kerr spectra are rationalized by “deficiencies” in the local
density approximations(LDA ).23,24 It is therefore not sur-
prising that all other theoretical Kerr spectra of Ni obtained
on the basis of band-structure methods other than the SKKR
method used here,25,26 are in pretty good agreement with the
present ones: all show the same differences with respect to
the experimental results, independent of whether a general-
ized gradient approximation(GGA), or orbital polarization
(OP), or full-potential(FP) approach was applied.22

Because of Eq.(40), in choosing the ellipticity angle for
the almost circularly polarized incident light, which in turn
optimizes the Kerr rotation angle for a given photon energy,
one has to take into account that the azimuth of the reflected
light must be unambiguously determined even when the el-
lipticity of the reflected light slightly increases. For this rea-
son, when calculating the phase of the circular complex po-
larization variablex̃f+,−g

srd associated with the reflected light,

the Kerr rotation spectrum in Fig. 4 has been optimized by
considering«i = ±43°. This allows a change of at most ±2° in
the ellipticity angle after reflection. Correspondingly, an azi-
muth ofqi = ±10° has been taken in the optimization to be as
close as possible to global extrema of Kerr rotation angle
below 1 eV. No doubt, that for incident polarization states
characterized byqi = ±10° and«i = ±43°, one does not reach
any local extremum of the Kerr rotation angle above 1 eV.
However, as is shown in Fig. 4, for such chosen incident
polarization states the entire Kerr rotation spectrum is sig-
nificantly improved over the whole visible range, while the
ellipticity remains almost unchanged. In view of Eq.(32),
uKsv ;10° ,43°d.0 means that the azimuth of the reflected
light is increased by over 10° for photon energy between 1
and 6 eV, whereasuKsv ;−10° ,−43°d,0 it is always less
than 10°. Clearly enough, there are quite a lot of incident
polarization states, for which the Kerr spectra can be opti-
mized. For example, an incident light of«i =15° and qi
=15° puts the theoretical Kerr rotation spectrum closely to
the experimental one, for«i =qi =30° the negative peak in
the Kerr ellipticity spectrum around 5 eV is obtained within
the experimental range.

B. Almost polar geometry and normal incidence

Another possible deviation from the ideal case of polar
geometry and normal incidence occurs when the incidence is
kept normal, but the magnetization of the investigated sys-
tem is not exactly perpendicularly oriented to the surface.

FIG. 4. Polar Kerr spectra for almost normal incidence in the
case of fcc Ni(100) as obtained for arbitrary linearly polarized in-
cident light sei =0d of azimuthqi =0, ±p /4 (open circles, squares
and diamonds). In addition, Kerr spectra calculated for an incident
light with qi = ±10° andei = ±43° are also included(open up tri-
angles for positive values ofqi andei and down triangles for nega-
tive values, respectively). The experimental data refer to full sym-
bols (stars: Ref. 27, squares: Ref. 28, diamonds: Ref. 29, up
triangles: Ref. 30, down triangles: Ref. 31 and pulses: Refs. 32 and
33).
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Such a magnetic configuration has been assumed for the fcc
layered system Co/Pt3/Co/Pt7/Pts111d, see Table I, in
which Qp refers to the rotation angle of the orientation of
magnetization in atomic layerp around thex axis (perpen-
dicular to the surface normal).

It is well known that for normal incidence no Kerr rota-
tion angle occurs in the longitudinal or transverse geometry.
Therefore, in the present magnetic configuration of
Co/Pt3/Co/Pt7/Pts111d only layers with an out-of-plane
magnetization, but not necessarily perpendicular to the sur-
face, contribute to the Kerr effect at normal incidence. In the
chosen example, these layers are: the surface Co layer and
two Pt layers immediately below. Because in the Pt layers
the magnetic moment induced by Co(Mx=0.09mB and Mz
=0.40mB) is smaller than that of the surface Co layer(Mx
=0.00mB and Mz=2.15mB), the total magnetic moment of
magneto-optically active layers at normal incidence shows
only a small departure of about 2° from the direction perpen-
dicular to the surface and hence the geometry can be as-
sumed to be an almost polar one. In contrast to the previous
case of polar geometry and almost normal incidence, the
shape of the surfacesuKsv ;qi ,«id andeKsv ;qi ,«id as func-
tions of qi and«i now strongly depend not only on the pho-
ton energyv, but also on the spherical longitudew, which in
spite of u=0 places the incidence plane in reference to the
global Cartesian coordinate systemShx,y,zj. However, prob-
ably due to a similar angular deviation from the ideal polar
geometry and normal incidence, the Kerr rotation angle for
Co/Pt3/Co/Pts111d has global extrema for right- or left-
handed almost circularly polarized incident light independent
of w, but for different azimuthsqi. The Kerr ellipticity angle,
on the other hand, just as in case of semi-infinite Ni(100)
bulk, has global extrema for right- or left-handed almost cir-
cularly polarized incident light. An interesting aspect is that
the size of these Kerr angles extrema are numerically inde-
pendent ofw. For almost polar geometry and normal inci-
dence by using arbitrary linearly polarized incident light with
an azimuthqi = ±p /4, none of the Kerr angles reach one of
the local extrema, which depending on the photon energyv
are of the order of 10–35 % for the Kerr rotation and
10–90 % in case of the Kerr ellipticity angle.

In conclusion, in case of almost polar geometry and nor-
mal incidence, there is no way — even approximately — to
optimize Kerr spectra for the entire visible spectrum of pho-
ton energies as was the case for polar geometry and almost
normal incidence. For this reason in Fig. 5 the relative gain
in the Kerr rotation angle as function ofqi with respect to
the value obtained with a linearp-polarized incident light is
given for different photon energies, if almost circularly po-
larized incident light with«i = ±43° is used.

VI. SUMMARY

Using elliptically polarized incident light for the magneto-
optical Kerr effect instead of linearly polarized incident light
has the advantage that with the exception of ideal polar ge-
ometry and normal incidence, in all other setups the Kerr
angle can easily be increased by exploiting its dependence on
the polarization state of incident light.34 In particular for po-
lar geometry and almost normal incidence, and almost polar
geometry and normal incidence, it has to be also numerically
demonstrated by using the present formalism that two global
and two local extrema of the Kerr angles occur for ellipti-
cally polarized incident light whose ellipticity is consider-
ably smaller than unity. Furthermore, it was shown that some
local extrema in the Kerr angles can be reached by using an
arbitrary linearly polarized incident light of proper azimuth.
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APPENDIX A: EXTREMA OF KERR ROTATION ANGLE

In order to determine the azimuthqi and ellipticity angle
«i for which the Kerr angle, see Eq.(30) becomes extreme,
the following system of two equations has to solved:

]uK

]qi
=

1

2

]q+

]qi
−

1

2

]q−

]qi
− 1 = 0,

]uK

]«i
=

1

2

]q+

]«i
−

1

2

]q−

]«i
− 1 = 0,

where according to Eq.(31)

]q±

]z
=

1

Z±
2SX±

]Y±

]z
− Y±

]X±

]z
D sz = qi,«id. sA1d

In Eq. (A1) the derivatives ofX± andY± are given by

]X±

]qi
= sI±

fpg tan«i ± I±
fsgds1 + tan2 qid,

]X±

]«i
= s±R±

fsg + I±
fpg tanqids1 + tan2 «id,

]Y±

]«i
= sR±

fpg tan«i ± R±
fsgds1 + tan2 qid,

]Y±

]«i
= sR±

fpg tanqi 7 I±
fsgds1 + tan2 «id sA2d

while Z± follows from Eq.(28),

Z±
2 = sr±

fpgd2s1 + tan2 qi tan2 «id + sr±
fsgd2stan2 qi + tan2 «id

± 2sR±
fpgR±

fsg + I±
fpgI±

fsgds1 + tan2 qidtan«i

± 2sR±
fpgI±

fsg − R±
fsgI±

fpgdtanqis1 − tan2 «id. sA3d

In using the expressions given in Eqs.(A2) and (A3)
explicitly in Eq. (A1), one obtains

]q±

]qi
=

1 + tan2 qi

Z±
2 hfsr±

fpgd2 + sr±
fsgd2gtan«i

± fR±
fpgR±

fsg + I±
fpgI±

fsggs1 + tan2 «idj,

]q±

]«i
=

1 + tan2 «i

Z±
2 hfsr±

fpgd2 − sr±
fsgd2gtanqi

7 fR±
fpgI±

fsg − R±
fsgI±

fpggs1 − tan2 qidj

such that

o
j=±

j
1 + tan2 qi

Zj
2 hfsr j

fpgd2 + sr j
fsgd2gtan«i

+ jfRj
fpgRj

fsg + I j
fpgI j

fsggs1 + tan2 «idj = 2,

o
j=±

j
1 + tan2 «i

Zj
2 hfsr j

fpgd2 − sr j
fsgd2gtanqi

− jfRj
fpgI j

fsg − Rj
fsgI j

fpggs1 − tan2 qidj = 2.

Consider now arbitrary linearly polarized incident lights«i
=0d, for which

uZj
2u«i=0 = sr j

fsgd2 tan2 qi + 2jsRj
fpgI j

fsg − Rj
fsgI j

fpgdtanqi

+ sr j
fpgd2 s j = ± d.

The only equation left to be solved with respect toqi reduces
therefore to

o
j=±

1 + tan2 qi

Zj
2 sRj

fpgRj
fsg + I j

fpgI j
fsgd = 2,

from which immediately follows that the Kerr angle for ans
or p wave is extreme only for particular combinations of
incidence and optical properties of the system investigated,
namely,

U ]uKs«i = 0d
]qi

U
qi=±p/2

= 0 if and only if o
j=±

Rj
fpgRj

fsg + I j
fpgI j

fsg

sRj
fsgd2 + sI j

fsgd2

= 2

and

U ]uKs«i = 0d
]qi

U
qi=0

= 0 if and only if o
j=±

Rj
fpgRj

fsg + I j
fpgI j

fsg

sRj
fpgd2 + sI j

fpgd2 = 2.
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